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ABSTRACT - In this paper we describe the design, implemen- 
tation, and performance of an incremental join facility that has 
been added as an extension to the Starburst extensible DBMS. 
This facility provides an efficient access path for joins that 
materialize many-to-one relationships, and it works by maintain- 
ing hidden pointer fields embedded in related tuples. The facility 
was constructed for two reasons: as an experiment in using 
pointers in the internals of a relational DBMS, and as a stress-test 
of the Starburst extension architecture. In addition to describing 
the join facility and its performance, we also summarize what it 
taught us about extensibility both in Starburst and in general. 

1. INTRODUCTION 

In the two decades since the relational data model was first 
proposed, much progress has been made towards efficient imple- 
mentation techniques for the model. As evidence, a number of 
relational database system products are now commercially avail- 
able, and most new database applications developed today are 
based upon relational database systems. Despite this progress, 
however, relational database systems are still generally con- 
sidered to be inferior to systems based on the hierarchical and 
network models in terms of their “inherent processing efficiency” 
[Elma89]. One reason for thii is that systems based on the 
hierarchical and network models usually provide more flexibility 
in terms of storage and access structures. For example, such sys- 
tems permit pointer-based (rather than just value-based) represen- 
tations of relationships, and inter-record clustering is commonly 
available as an option for tuning performance when pairs of 
record types are frequently co-referenced in an application. 

In the relational data model, relationships are frequently 
represented by foreign key attributes with values that match those 
of primary key attributes elsewhere in the database. Related 
foreign and primary keys can be declared in the schema through 
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referential integrity constraints [Date81]. Support for referential 
integrity is now recognized as desirable, to the point where it is 
viewed today as an essential part of the complete relational model 
[Elma89]. Some commercial systems (e.g., DB2 and UNIFY) 
already provide a certain degree of referential integrity support, 
and it is not unreasonable to expect that all commercial relational 
database systems will include it in the future. This provides an 
opportunity to further improve the performance of relational data- 
base systems - if the system is aware of which records logically 
refer to which other records, pointer-based access structures can 
be used “under the covers” to link related records together. In 
addition to being useful for referential integrity maintenance, 
such structures can also be used as access paths for joins and as a 
basis for clustering. It is these latter opportunities that motivated 
the work described here. 

In this paper, we describe a pointer-based access structure that 
has been added as an extension to the Starburst extensible DBMS 
[Schw86, Haas90]. This access structure, called the,Starburst 

&IS’ attachment, provides support for both pointer-based joins 
and inter-relation clustering. It works by adding hidden pointer 
fields to related records and by incrementally keeping these hid- 
den pointer fields up-to-date as related records are inserted, 
deleted, or modified in the database. In other words, it provides 
support much like that provided in network database systems for 
set types where insertion is automatic and set selection is struc- 
tural [DBTG71, Elma89]. The IMS attachment also provides 
access paths that are available to the Starburst optimizer in devis- 
ing plans for processing foreign key joins. 

The IMS attachment was actually added to Starburst for two 
reasons: (i) to experiment with the benefits offered by pointer- 
based access structures and inter-relation clustering in a relational 
context, and (ii) as a test of the extensibility of the architecture of 
Starburst. In the remainder of this paper we describe the design, 
implementation, and performance of the Starburst IMS attach- 
ment. In Section 2, we briefly review the relevant features of the 
Starburst extension architecture. Section 3 describes the design 
and implementation of the IMS attachment, including a discus- 
sion of how it was integrated with the other components of Star 
burst. Section 4 provides performance results for queries run 
with and without IMS support, providing an indication of the 
potential benefits of employing pointer-based access structures in 
a relational DBMS. Section 5 describes some lessons that we 

’ IMS stands for Incrementally Matched Sets. The name also 
reflects its main objective -- to enable a relational DBMS to compete 
with systems like LMS in efficiently handling many-to-one relationships! 
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learned in the process of building the IMS attachment, as doing 
so required certain changes in the Starburst extension architec- 
ture. Finally, Section 6 reviews our main conclusions. 

2. EXTENSIBILITYINSTARBURST 
The Starburst DBMS consists of two major components, the 

Corona query language processor and the Core data manager 
[Schw86, Haas90]. These two components correspond roughly 
to the RDS and RSS levels of the original System R architecture 
[Astr76]. One of the main extensibility-oriented features of Core 
is its data management extension architecture [Lind87], while 
extensibility at the Corona level includes the use of a rule-based 
query optimizer [Lohm88, Haas89]. In this section of the paper 
we briefly review these features of Starburst to set the stage for 
describing the IMS attachment. We focus mainly on Core, as it is 
the most relevant Starburst component for our purposes. 

The Core data manager is designed to support two classes of 
extensions, and for each class it defines a generic interface that 
must be adhered to by alI extensions of that class. The fnst class 
of data management extension is known as a storage method. A 
storage method provides a means of storing the records of a rela- 
tion. Example storage methods include sequential files, nonre- 
coverable temporary files, and B+ tree files. Every storage 
method must provide a well-defined set of operations that include 
create storage method instance, destroy storage method instance, 
insert record, and delete record. In addition, each storage method 
must support the notion of a record key, and direct-by-key and 
key-sequential record access operations must be provided as well. 
The structure and meaning of keys are defined by the storage 
method. For example, a key could be made up of one or more 
field values (as in the case of a B+ tree storage method) or it 
could simply be a physically-oriented record identifier (as in the 
case of a sequential file storage method). Every relation managed 
by the Core data manager is physically stored as an instance of 
some storage method. 

The other class of data management extension that Core sup- 
ports is called an attachment. An attachment is a component that 
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Figure 1: Storage Method and Attachment Example. 

can be associated with a relation, and it is given the opportunity 

to react to changes in the contents of the relation.2 Attachments 
are notified of changes as a side effect of relation updates. 
Whenever a record insertion, deletion, or modification occurs, the 
corresponding update routine for each of the relation’s attach- 
ments is invoked so that it can take note of the change. A simple 
example of an attachment is a secondary index (e.g., a B+ tree), 
but the notion is actually somewhat more general. In addition to 
tracking changes to keep auxilliary data structures up-to-date, 
attachments are permitted to veto operations. This makes it 1x3s 
sible to use the attachment interface to support functions such as 
integrity constraint checking or production rule triggering. In 
addition to change notification, the generic attachment interface 
also supports both direct-by-key and key-sequential record 
accesses. These are relevant for attachments such as secondary 
indices that serve as access paths. So, in addition to being 
managed by a primary storage method, every relation in Core can 
have zero or more instances of each of the available attachment 
types. Figure 1 summarizes these concepts, showing an 
Employee relation stored via the sequential file storage method, 
indexed via several instances of the B+ tree attachment type, and 
guarded by several integrity constraint instances. 

Figure 2 highlights the distinction between storage methods 
and attachments. It also summarizes the basic operations that 
each provides. The direct operafionr in the figure are those 
which are directly invoked by Corona when executing queries, 
while the indirect operations listed there are operations which are 
invoked only as a side effect of some direct (update) operation. 
The common services box at the bottom of the figure provides 
support for commonly needed functions such as manipulation of 
individual records, predicate evaluation, etc. 

In addition to the operations listed in Figure 2. storage method 
and attachment extensions also support the creation and destruc- 
tion of their instances. Since different storage method and attach- 
ment types tend to have different requirements regarding create 
time parameters (e.g., keys, fill factors, etc.), the Starburst data 
definition language supports extensible parameter lists for han- 
dling new storage methods and attachments [Haas90]. 

Of course, extensions to Starburst at the Core level are only 
useful if the Corona query processor is aware of them and able to 
take advantage of them when appropriate. To enable the Corona 
query optimizer to be informed about newly added Core facili- 
ties, the query optimizer has a rule-based architecture [Lohm88]. 
Optimization rules, which are called strategy alternative rules (or 
STARS), have a structure similar to that of the production rules of 
a context-free grammar. To inform Corona about a new index 
attachment, one need only (i) add an additional option to the right 
hand side of the rule that describes how alternative indices can be 
used to select records from a relation and (ii) provide certain aux- 
illiary functions that handle things like estimating the cost of 
using the new attachment. The hierarchical nature of Corona 

* Actually, Starburst now permits an attachment to be associated 
with multiple relations. This extension of the original design was driven 
by LVS attachment needs, as Section 5 will describe. 
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Figure 2: Storage Method and Attachment Interfaces. 

rules ensures that, in all contexts where record selection is per- 
formed, the new attachment type will be considered as an option 
because all selections will be optimized using the newly extended 
rule. 

For query execution, Corona provides a demand-driven query 
execution subsystem (QES) where each primitive operator con- 
sumes and produces record streams [Haas89]. Adding a new 
QES operator (e.g., a new join method) is similar to adding a new 
storage method or attachment to Core. It must adhere to the QES 
operator interface, and it is made known to the Corona query 
optimizer by extending the appropriate operator selection STAR 
(e.g., the STAR that describes alternative join methods). 

3. THE IMS ATTACHMENT 
The Starburst IMS attachment provides support for pointer- 

based joins, for clustering related records together on disk, and 
for a limited form of referential integrity. This support is pro- 
vided in the context of many-to-one (i.e., referential) relation- 
ships. In this section of the paper we describe the design and 
implementation of the IMS attachment as well as the associated 
pointer-based join methods. 

3.1. Creating an IMS Attachment Instance 
The job of the IMS attachment can be viewed as incremen- 

tally joining related records from a pair of relations when changes 
are made to either relation. One of the relations, called the child 
relation, must have a field (or field set) that references by value a 
record of the other relation, called the parent relation. In other 
words, the reference field (or field set) of the child is a foreign 
key, and the field (or field set) that it matches in the parent rela- 
tion is the parent’s primary key. 

To create a new IMS instance, the user must specify the pair 
of relations involved, the relevant foreign and primary keys, and 

two additional pieces of information. The first piece of infomta- 
tion is the name of another attachment, which is a unique index 
on the primary key of the parent relation. This index is used 
when the IMS attachment needs to find a parent record based on 
its primary key. The second piece of information is the desired 
clustering mode. IMS provides three clustering options - 
NONE, where related records are linked together but are not 
clustered on disk; CHILD clustering, where child records with a 
common parent are clustered together on disk, and FULL, where 
a parent record and its associated child records are all clustered 
together on disk. 

At this point, an example is in or&r. Consider the following 
schema for the inevitable Employee/Department database: 

Department(&pmo. dname, budget, location) 
Employee(empno, enarne, age, salary, dept) 

If the query workload for this database includes frequent requests 
for department information to be joined with the corresponding 
employee information, it may be beneficial to construct an IMS 
instance to maintain the join and to cluster each employee with 
its department. To do this, one could type the following Starburst 
command in setting up the physical schema for the database: 

create IMS EmpDept on Department 
childtable (Employee), 
parentkey (deptno), 
childkey (dept), 
parentindex (DnoIndex), 
clustering (FULL) 

Thii would create an IMS instance called EmpDept with Depart- 
ment as the parent relation. The command text from the second 
line on is specific to the IMS attachment type, and comprises the 
attribute list of the attachment creation syntax [Haas90]. The 
second line of the command declares that Employee is the child 
relation. The third and fourth lines specify the join, giving the 
primary key of the parent relation (depmo) and the foreign key of 
the child relation (dept). In general, these keys may be lists of 
fields. The fifth line identifies DnoIndex as a unique, permanent 
index on the deptno field of the Department relation. The final 
line of the command specifies that FULL clustering is desired. 

3.2. Data Structures and Updates 
When a new IMS instance is created, the schemas of the 

parent and child relations are extended to include several hidden 

pointer fields.3 Figure 3 illustrates the IMS pointer structure via 
an example where three Employee records (E3, E84. and E39) 
reference a common Department record (Dll). A parent record 
points to the first of its children, if any, with this pointer being 
null if no corresponding children exist. Each child record points 
to its parent and to the next and previous children that share the 

’ Due to time constraints on the initial implementation, we disal- 
lowed the creation of an IMS attachment if the parent or child relation is 
already populated with data. However, since missing fields are defined to 
be null in Starburst [Haas90]. it would not be difficult to relax this cm- 
straint. 
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Figure 3: Example of IMS Data Structure. 

same parent. This is similar to structures that are used to imple- 
ment set occurrences in network database systems [DBTG71, 
Elma89]. We selected this particular structure for use in the IMS 
attachment because it allows (i) a parent to locate its first child in 
at most one I/O. (ii) a child to locate its parent in at most one I/O, 
and (iii) the space overhead for parent records to be independent 
of the number of children. 

An IMS instance is notified when an update is made to either 
its parent or child relation. To simplify the initial IMS imple- 
mentation, we chose to enforce the flavor of referential integrity 
where child records can exist only if they reference a valid parent 
record, and where parent record deletions and modifications are 
rejected (vetoed) if they would cause this constraint to be 
violated. Consequently, to process updates to the parent relation, 
an IMS instance has relatively little to do. Insertions can simply 
be ignored, as unspecified fields (such as the child list pointer in a 
new parent record) are initialized to null by default in Starburst. 
Deletions are permitted if the parent record’s child pointer is null; 
otherwise the IMS instance vetos the operation. Similarly, 
modifications are ignored unless they affect the primary key, in 
which case they are also vetoed. 

When a new record is inserted into a child relation that has an 
IMS attachment, the affected IMS instance is notified both before 
and after the record is physically inserted into the underlying 
storage method instance. In order to maximize the effectiveness 
of CHILD or FULL clustering, and to keep insertions simple, 
new child records are always added at the front of their parent’s 
list of children. Thus, IMS pre-insertion processing involves: (i) 
fetching the child’s parent record using the parent index, (ii) 
using the parent record’s storage method key and tirst child 
pointer to set up the new child record’s parent pointer and next 
child pointer, and (iii) optionally giving Core the parent or 
current first child’s storage method key as a clustering hint (see 
below) to use when inserting the new child. Post-insertion pro- 
cessing for the affected IMS instance involves fetching and 
updating both the new child record’s parent and the next child 
record in order to modify their pointers to refer to the new child. 
Note that the new child’s storage method key is not known until 
the child record has actually been inserted, so these pointers can- 
not be set at pre-insertion time. 

As indicated above, Core provides a mechanism that enables 
attachments to provide clustering hints to storage methods when 
new records are about to be inserted. The IMS attachment uses 
this mechanism to support its FULL and CHILD clustering 
modes. To support FULL clustering, the child pre-insertion rou- 
tine gives either the child’s parent or the parent’s current first 
child as a “near hint” for inserting the new child record. The 
parent is used as the hint if it has no other children, and the 
current first child is used as the clustering hint otherwise. The net 
effect is that the fust child of a parent will go on the same page, if 
space allows, as wilI subsequent children of the same parent, and 
this continues until that page fills up. After thak the next series 
of child records for this parent will be placed on another nearby 
page, and will accumulate there until that page fills up as well. 
Subsequent children will be placed on yet another nearby page, 
then another, and so on. CHILD clustering is handled almost 
identically, except that no clustering hint is given when the very 
first child record of a parent record is inserted (since child records 
are not clustered with their parent in this case). 

When a record is deleted from the child relation of an IMS 
instance, the affected instance is again notified both before and 
after the record is physically deleted. The IMS attachment uses 
only the pre-deletion call in this case, using it to perform the 
obvious processing on the affected list of children. If the deleted 
record is the first child of its parent. then its parent record and the 
next child record are fetched and their pointer fields are modified. 
If the deleted record lies somewhere in the middle of the list, then 
the previous and next chid records are fetched and modified. 
Finally, if the deleted record is at the end of the list, only its 
predecessor must be fetched and modified. 

When a child record is updated, the affected IMS instance is 
notified both before and after the update operation actually takes 
place, as for insertions and deletions. If the update does not 
affect the child record’s foreign key field, it is simply ignored by 
the IMS attachment. If it does change the child’s foreign key, it 
is handled as a deletion from the old parent’s list of children fol- 
lowed by an insertion into the new parent’s list; the details fol- 
low from the discussions above. 

3.3. Join Processing 
An IMS instance can be used to process a join query if the 

IMS parent and child keys appear together as an equi-join predi- 
cate. The query optimizer thus considers the use of IMS join 
strategies whenever this condition holds. The current implemen- 
tation supports three &IS-based join strategies: the parent-child 
(PC) join method, the child-parent (CP) join method, and the 
sorted child-parent (CP-SORT) join method. The PC join 
method, in turn, relies on a scan facility associated with the IMS 
attachment type. This scan facility, given the first child pointer 
from a particular parent record, enumerates all of the children of 
that parent by traversing the list of children. 

The PC join method is essentially an IMS-based nested-loop 
join using the parent relation as the outer relation for the join. In 
fact, due to the way the optimizer’s rule set is structured, the Star- 
burst execution plan for an IMS PC join simply reduces to a stan- 
dard nested-loop join operation with an IMS scan being used to 



retrieve records from the inner (child) relation. Thus, instead of 
using a key value from each parent record to perform an index 
probe of the child relation, as in a conventional nested-loop index 
join, each parent’s first child pointer is used to perform an IMS 
scan of its children. This eliminates the index I/O and index page 
processing that would be required in a nested-loop index join. 

The CP join method is another B&S-based nested-loop join 
method, but the roles of the parent and child relations are 
reversed. An IMS CP join reduces to composing an access to the 
child relation with a fetch of the parent record using the parent 
pointer field from the child. Again, compared to a nested-loop 
index join using the parent relation’s primary key index, the CP 
join method saves on index I/O and page processing. To further 
reduce the amount of I/O required for a large CP join in cases 
without clustering, the records of the child relation can be sorted 
on their parent pointer field by inserting a sort operation before 
the fetch of the parent records; this is how the IMS CP-SORT 
join method works. To further improve performance for CP- 
SORT joins, repeated accesses to the same parent record are 
avoided by an optimization where the sort operator indicates that 
its current output record will be followed by another record with 
the same sort key. 

Given the similarity of IMS joins to an index-based nested- 
loop join, the task of adding these join methods to Starburst was 
not difficult. The use of IMS pointer fields to perform equi-joins 
was expressed by adding several alternatives to the existing join 
method selection STAR of the optimizer. In this join STAR, the 
applicability of various join methods is conditioned on things 
such as the availability of access methods and the eligibility of 
predicates. Since IMS join plans are expressed as alternatives of 
the join operation STAR, no new primitive Starburst execution 
operators (LOLEPOPs) had to be built to support IMS joins. 
However, one other slight twist did arise: IMS join plans require 
the relevant IMS pointer fields to be included when fetching pro- 
jected records from the query’s base relations. This requires that 
the field lists for the execution plan’s outer and inner relation 
fetches be modified to include these pointer fields when IMS 
joins are selected. 

3.4. Related Work 

In addition to its direct relationship to network database sys- 
tems, the IMS attachment is also related to the implementation 
tactics of several relational database systems. System R sup- 
ported Zinkr (record pointers) internally at the RSS level, but 
never exploited them for handling user data [Cham81]. UNIFY 
includes an explicit relationship access method [Rube87] based 
on a pointer structure much like that of the IMS attachment. Val- 
duriez proposed using join indices to maintain the join of a pair 
of relations via a dual B+ tree data structure stored separately 
from the relations themselves [Vald87]. Join indices are more 
general than the IMS attachment, as they can handle joins that are 
not foreign key (parent-child) joins. The IMS attachment is supe- 
rior for foreign key joins, though, since it avoids the overhead 
involved in storing and accessing the join index data structure. 
As for clustering, ORACLE supports multi-relation clwters in 
order to reduce paging for joins [Mart86]. 

4. EXPERIMENTS AND RESULTS 

In order to study the join processing benefits offered by the 
IMS attachment, we conducted a series of experiments compar- 
ing traditional join methods with the three IMS join methods 
described in the previous section. Two traditional join methods 
were used for the comparisons: nested-loop join using an index 
on the inner relation (NL-INDEX) and a variant of sort-merge 
join where the outer relation must be sorted but the inner relation 
can be accessed in sorted order using a clustered index (NL- 
SORT). Our experiments include both full join queries as well as 
queries with a selection followed by a join. The data used for the 
experiments are the OneK (1.000 record) and TenK (10,000 
record) relations from the Wisconsin benchmark database 
[Bitt83]. Each query was executed on test relations that were 
constructed using several clustering alternatives to investigate the 
impact of clustering on join query performance. 

4.1. The Test Database 

Each of the experiments that we ran involved joining a parent 
relation with a child relation and extracting several attributes 
from each. As prescribed in [Bitt83], the test relations each con- 
tain sixteen attributes - thirteen 4-byte integer attributes and 
three 52-byte string attributes. Each relation has two candidate 
key attributes, unique1 and unique2, whose values range from 0 
to N-l where N is the cardinality of the relation. The other attri- 
bute relevant to our experiments is the thousand attribute, which 
contains values that range from 0 to 999. We chose unique2 as 
the primary key for the parent and child relations, with the 
thousand attribute of the child serving as the foreign key for 

relating child records to their corresponding parent.4 The parent 
and child relations are both indexed on their unique2 attributes, 
and the child relation is also indexed on its thousand attribute. In 
each case, the index is an instance of the Starburst B+ tree attach- 
ment type. For query plans based on IMS joins, an IMS instance 
was also attached to the parent-child relation pair. 

The experiments that we ran considered two different cases 
for the average cardinality of the parent-child relationship. In 
half of the tests, the average number of child records per parent 
record was just one (1:l). For these tests, the parent and child 
were each OneK relations, each containing 1,000 records and 
occupying 67 4K-byte pages of disk space, excluding the over- 
head for indices and IMS pointers. In the other half of the tests, 
the average number of children per parent was ten (1O:l). As 
before, the parent was a OneK relation, but in this case the child 
relation was a TenK relation, containing 10,000 records and con- 
suming 667 pages of space without overhead. 

As mentioned earlier, our tests considered several alternative 
parent-child clustering strategies. In each of the tests, parent 
records were physically ordered by their unique2 key values. 
The first clustering strategy is NONE, where parent and child 

4 Unlike [Bitt83], we generated the thousand value for each record 
by randomly choosing an integer (with replacement) from the integers 0 
through 999; this seemed a bit more realistic for our purposes than hav- 
ing 1000 distinct thourand values. 
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Figure 4: Test Database Clustering Alternatives. 

records were stored separately and child records were clustered 
on their own unique2 attribute values. The next form of cluster- 
ing is CHILD, where the relations were stored in separate areas 
but were relatively clustered (i.e., both were clustered on the 
parent key). In this case, child records were clustered on their 
thousand values. The third and final clustering option is FULL. 
The relative record ordering in this case was the same as in 
CHILD, but with child and parent records clustered together on 
pages of a common database space. Figure 4 illustrates the three 
clustering alternatives by showing which indices were clustered 
and whether the parent and child relations were stored separately 
or together in each case. In the figure, P represents the parent 
relation, C represents the child relation, U2 stands for the unique2 
attribute, and T stands for the thousand attribute. 

Based on the options enumerated above, the test database for 
the full set of experiments contained 12 parent-child relation 
pairs, 6 with IMS attachments connecting them and 6 without. In 
each case, the 6 pairs are due to the two different relationship car- 
dinalities, 1: 1 and 1O:l. and the three different clustering options, 
NONE, CHILD, and FULL. The relations and their B+ tree and 
IMS attachments were defined using the Starburst SQL interface. 
Once defined, the 12 parent-child relation pairs were then popu- 
lated in accordance with the chosen clustering strategies. This 
was done using a driver program that repeatedly performed inser- 
tions. (While experiments with a more dynamically clustered test 
database would also be interesting, we have not yet run any such 
experiments.) 

4.2. The Test Query Set 
For our initial tests, we wished to investigate IMS attachment 

performance for both full join queries and select-join queries. 
The general form of the queries used in our experiments is cap- 
tured by the following SQL query: 

select P.uniquel, Punique2, C.uniquc2 
from Parent P, Child C 
where P.unique2 = Cthousand 
and (P.unique2 >= . ..) and (P.unique2 <= . ..) 
and (C.unique2 >= . ..) and (C.unique2 <= . ..) 

As indicated, all of the queries used in our experiments are 
parent-child joins that retrieve integer attributes from each rela- 
tion. The last two lines of the query, which are optional, are used 
to control the percentage of parent or child records that are actu 
ally selected. For our tests, we used a total of five basic SQL 
queries - a full parent-child join, two queries joining 1% and 
10% of the parent relation with the entire child relation, and two 
queries joining 1% and 10% of the child relation with the com- 
plete parent relation. 

Each of the five queries was run using several different query 
plans for both the 1:l and 1O:l cardinalities and for all three clus- 
tering strategies. To control the join methods used in the query 
plans, each plan was hand-generated and then run using the Star- 
burst query execution driver. Consequently, all measurements 
reported here are for compiled query plan execution (i.e., they do 
not include query optimization overhead). We discuss the vari- 
ous query plans in a bit more detail as the results are presented. 
All records produced by the queries were projected into a buffer 
and discarded in order to eliminate overheads due to writing 
results to the screen or to a temporary relation. 

4.3. The Test Environment 
The hardware used for the experiments was an IBM RT/PC 

with a 1OMHz processor and 8MB of physical memory. The 
machine had three disks, including two 70MB drives and a 
114MB drive. The operating system was AIX Version 2.2. The 
RT used for the tests was running in single-user mode throughout 
the tests. 

The tests were run using the latest version of Starburst. The 
test relations were stored on one of the 70MB drives, and tem- 
porary relations were placed on the 114MB drive. Starburst 
currently runs on top of AIX, storing relations in the AIX file sys- 
tem, so we configured Starburst to have 1OOKB of buffer space 
(25 4KB pages) and configured AIX with only SOKB of I/O 
buffer space. This was done in hopes of minimizing the impact 
of AIX buffering on our test results. For sorting, Starburst does 
not use the global buffer pool, relying instead on a separate sort 
buffer; we configured its sort buffer size to be lOOKI to provide 
a comparable amount of space for sorting as for regular I/O. 
Finally, the block size for AIX is 2KB, with Starburst assuming 
4KB pages, so each Starburst I/O actually requires two AIX 

I/OS.’ The fact that each Starburst I/O requires multiple AlX 
I/OS causes the execution times presented here to be somewhat 
higher than they would be if Starburst did its own low-level file 
management. Fortunately, our interest is in the relative (as 
opposed to absolute) performance of the different join methods. 

In running the tests, we first populated the database via 
repeated insertions and then ran the sequence of IMS and non- 

__-- 
’ Actually, each Starburst I/O involved an average of 2.73 physical 

A!S I/OS according to our measurements. This is because the underlying 
files were large enough to require indirect blocks; the additional I/OS 
were caused by inode and indirect block accesses. lhe ratio of 2.73 was 
quote stable, with a 95% confidence interval of 2.73 +I 0.05 over the fuU 
set of experiments. 
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IMS query plans one after another against the appropriate 
parent-child relation pairs. To prevent inter-query buffering 
effects from biasing our results, an unrelated copy of the TenK 
relation was scanned before each query to flush both the Starburst 
and AIX buffer pools. We measured the elapsed time for each 
query along with the CPU time consumed, and we measured the 
number of Starburst I/OS and the number of page fix operations 
for each query in order to characterize the page access behavior 
of the different join algorithms. We also measured the AM-level 
I/O traffic in or&r to ensure that hidden AIX-level buffering did 
not adversely affect our measurements (though we present only 
the Starburst I/O numbers here). The timing information was 
obtained using standard AIX system calls, as was the AIX I/O 
information. The Starburst I/O and buffer-related measurements 
were obtained from internal Starburst counters. 

4.4. Full Join Query Experiments 

The first experiments that we present are the full joins. Figure 
5 shows the results for the 1:l relationship cardinality, where the 
parent and child relations were both OneK relations. The figure 
presents measurements under all three clustering alternatives for 
the three &IS join methods (PC, CP, CP-SORT) and the two 
non-IMS join methods (NL-INDEX, NL-SORT). Figure 5a 
shows the actual elapsed time measurements, and Figures 5b and 
5c show the measurements for the number of Starburst I/OS and 
number of page fixes, respectively. Figure 6 presents the 
corresponding results when the child is a TenK relation, i.e., 
when the relationship cardinality is 1O:l. Each of the elapsed 
time figures (here and elsewhere) is also annotated to indicate the 
percentage decrease in join time provided by the best IMS join 
method relative to the best non-&IS join method. 

Throughout the full join experiments, the outer relation for the 
NL-INDEX and PC join methods was the parent relation, 
whereas the outer relation for the NL-SORT, CP, and CP-SORT 
join methods was the child relation. We remind the reader that 
NL-SORT is essentially a sort-merge join - the child relation is 
sorted by its foreign key field and then the parent’s clustered pri- 
mary key index is used to retrieve corresponding parent records 
in physical order. Put another way, the parent relation is 
clustered optimally for NL-SORT since it is in unique2 order. 
Were this not the case, NL-SORT would perform significantly 
worse relative to CP-SORT than it does here. 

For NONE clustering, where the parent and chid relations 
were unclustered relative to one another, Figure 5a indicates that 
CP-SORT was by far the best join method. NL-SORT was the 
next best method, followed by the CP and PC methods, with 
NL-INDEX performing the worst of all. As indicated in the 
figure, the best IMS join method (CP-SORT) was 48% faster than 
the best non-IMS method (NL-SORT). The reason for these 
results is clear from Figures 5b and 5c. Figure 5b shows that 
CP-SORT and NL-SORT did far fewer I/OS than the other 
methods, with CP-SORT doing slightly fewer I/OS than NL- 
SORT. Both of these methods scan the child relation, project out 
the fields needed, sort the result, and then scan the parent relation 
in physical order (directly in CP-SORT and through the unique2 
index in NL-SORT). In contrast, the other methods scan one 

relation and randomly access corresponding records of the other 
relation. This random access behavior naturally leads to many 
more I/OS. Figure 5c shows why CP-SORT performed so much 
better than NL-SORT - CP-SORT and the other IMS join 
methods required far fewer page fix operations than the non-IMS 
join methods. While the IMS methods use pointers to fetch inner 
relation records, the non-IMS methods must use index lookups to 
fetch them; the resulting page fixes and correspondingly higher 
CPU times contributed significantly to the elapsed times of the 

NL-SORT method (and the NL-INDEX method).6 

For CHILD clustering, where the parent and child ‘relations 
were relatively clustered with respect to each other, Figure 5a 
shows that all three IMS join methods ran significantly faster than 
the non-E&S methods, with CP-SORT performing the best of the 
group. Figures 5b and 5c indicate why this was the case. CHILD 
clustering allows all of the join methods to compute the join in 
roughly the same number of I/OS, as shown in Figure 5b. This is 
because child records are stored in parent-record order; also, the 
two sort-based methods are able to sort the projected child data in 
main memory. In terms of page fixes, Figure SC shows that CP- 
SORT does the least page fixes, followed by the other two IMS 
join methods, with the two non-IMS methods doing significantly 
more fix operations due to inner relation index processing. CP- 
SORT does the fewest fixes because of the optimization that was 
noted in Section 3; it does one fix per parent page rather than one 
per parent record since a run of references to a given page can be 
served by a single fix operation. The important point is that the 
IMS join methods again enjoy significant performance benefits 
because they follow pointers rather than probing an index to 
retrieve referenced records. 

For FULL clustering, where the parent and child relations 
were stored together on disk, Figure 5a again shows that all three 
IMS join methods performed significantly better than the non- 
IMS methods. CP performed the best, then PC, then CP-SORT, 
with NL-SORT and NL-INDEX taking significantly more time to 
perform the join. Figure 5b shows that the two sort-based 
methods did more I/OS in this case since both of them scan, pro- 
ject and then sort child relation data which is now spread over 
twice as many disk pages due to the parent-child clustering. And, 
of course, there is no advantage to sorting in this case, as evi- 
denced by the increased elapsed time for the sort-based methods 
as compared to CHILD clustering. The CP join method was 
slightly faster than PC join because it involved slightly less CPU 
processing overhead. This is because a CP join does a direct 
parent record fetch operation for each child record, while a PC 
join must open, use, and then close a child record scan for each 
parent record processed. 

Let us now examine Figure 6, the 1O:l case, where the child 
relation is ten times larger. A number of the results are similar to 
those of Figure 5, and for similar reasons, so we concentrate on 
the differences and their causes. 

6 Reading index pages also involves locking them; this contributes 
to the CPU time advantage of IMS methods over non-MS methods as 
wd. 
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For NONE clustering, Figure 6a shows the same relative join 
method ordering as obtained in the 1:l case, with the IMS CP- 
SORT join method being the best performer by a sign&ant mar- 
gin. One difference here is that the PC join method is 
significantly worse than the CP method due to more I/OS, as 
shown in Figure 6b. This is because CP scans a large relation 
while randomly probing a small relation, which leads to more 
buffer hits than scanning a small relation while randomly probing 
a large one as PC does. Another difference affecting the relative 
performance of all of the join methods here is that methods which 
use the child as the outer relation require relatively more fix 
operations, as shown in Figure 6c. This is because of the 
increased child relation size, with a parent page being fixed for 
each child record processed (except in CP-SORT). 

For CHILD clustering, Figure 6a shows that the IMS methods 
outperform the non-BE methods by quite a bit, as in the 1:l 
case. The PC join method does the best in this case. The CP- 
SORT method performs worse here because more data must be 

retrieved and sorted, as the Starburst I/O counts of Figure 6b indi- 
cate. The CP method performs worse relative to the PC join 
method because of a larger number of page fixes, as Figure 6c 
shows. The PC join method scans the parent relation, fixing each 
parent page once, while the CP method fixes a parent page once 
for each of ten thousand child records. 

The results for FULL clustering are similar to those of 
CHILD clustering, with PC join outperforming the other IMS 
methods, especially CP-SORT, and beating the non-BE methods 
by a large margin. The reasons are similar to those just given for 
CHILD clustering and to those given earlier for FULL clustering 
in the 1:l case. 

4.5. Select-Join Query Experiments 
The next results that we present are for select-join queries. 

Figure 7 presents measurements for both the 1:l and 10: 1 rela- 
tionship cardinalities for the query that joins a 10% selection of 
the parent relation with the full child relation. Two join methods 
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were tested, an IMS method (PC) and a non-&IS method (NL- 
INDEX). In both cases the selected parent relation was the outer 
relation for the join. The other three methods were not tested 
here since they require the child to serve as the outer relation. 
Figure 7 includes results for all three clustering alternatives. 

Figure 7a shows the elapsed time results for the I:1 case. As 
shown, the PC join method outperformed the NL-INDEX method 
under all three clustering alternatives. As shown in Figure 7b, 
the PC join method required fewer Starburst I/OS in each case. 
The page fix counts are not shown there, but the PC method 
needed only 40% of the page fix operations performed by the 
NL-INDEX method. The reason that the PC method outperforms 
the NL-INDEX method by more when the relations are relatively 
clustered is clear from Figure 7b; fewer I/OS are involved in 
those cases, so the page processing savings of PC over NL- 
INDEX contributes more heavily to their performance differ- 
ences there. Figures 7c and 7d show the corresponding results 
for the 1O:l case, where the child relation is a TenK relation 
instead of a OneK relation. The results are similar to those for 
the 1:l case, but the elapsed times are higher due to the larger 
child relation size. 

Figure 8 presents measurements for the 1:l and 1O:l relation- 
ship cardinalities for the query that joins a 10% selection of the 
child relation with the full parent relation. Four join methods 
were tested in this case, including two IMS methods (CP and 
CP-SORT) and two non-IMS methods (NL-INDEX and NL- 
SORT). In all cases, the selected child relation acted as the outer 
relation for the join. As usual, Figure 8 contains results for all 
three of the clustering alternatives. 

Figure 8a presents the performance results from the 1:l case. 
With NONE clustering, the CP-SORT join method performed the 
best, followed by the NL-SORT and CP methods, with NL- 
INDEX doing the worst here. Figure 8b shows the underlying 
Starburst I/O results. The measured fix counts (not shown) were 
as one would expect by now: CP-SORT performed the fewest 
page fixes, CP performed about 20% more fixes than CP-SORT, 
and the two nor&IS methods each performed more than twice 
as many fix operations as the CP method. This information 
explains the ordering of the algorithms in the NONE case. The 
CP-SORT method required the least number of ~/OS since it 
accesses the parent records directly and in the right physical 
order, and it also did the fewest page fixes, so it performed the 
best. The NL-SORT method required somewhat more I/OS due 
to index page accesses, and its fix count was much higher. The 
CP method had a low fix count but did more I/OS due to random 
probing of the parent relation. The NLINDEX method shares 
the disadvantages of both the CP and NL-SORT methods without 
their corresponding advantages, resulting in both the most I/OS 
and the most page fixes. 

The CHILD clustering results in Figure 8a are fairly similar in 
nature to those of the NONE case. This is because the child 
relation’s unique2 index was used to perform the 10% child 
selection, and it is an unclustered index in both the CHILD and 
FULL cases. As a result, despite the relative ordering implied by 
the CHILD clustering alternative, parent records are accessed in 
random order (i.e., in the unclustered order in which child records 

are selected). Note that another result of this is that the overall 
performance for all of the methods is worse in the two relatively 
clustered cases. This is because child records are clustered 
according to their thousand values instead of their unique2 values 
as they are in the NONE case. 

The FULL clustering results in Figures 8a and 8b show 
behavior for the join methods that is somewhat similar to the 
CHILD case. Here, though, the two sort-based algorithms per- 
form worse because they sort the selected child relation unneces- 
sarily, while the remaining algorithms both benefit from the clus- 
tering of child records with their parent in the FULL case. The 
CP join method performs the best here, followed by CP-SORT, 
NL-INDEX and lastly NL-SORT. 

Figures 8c and 8d present the corresponding results for the 
1O:l case. The relative performance of the algorithms for the 
three clustering alternatives is close to that of the 1: 1 case, but the 
differences between the four join methods are somewhat more 
pronounced due to the larger child relation size. In particular, 
since the join is larger here, both sort-based methods gain more 
of an advantage by optimizing the order in which parent records 
are accessed. A related effect is evident for the non-IMS 
methods in the FULL case in Figures 8c and 8d. NL-SORT 
slightly, outperforms NL-INDEX there because, although parent 
records are clustered with their children, an index I/O advantage 
is obtained by probing the unique2 index of the parent in order 
(like NL-SORT) rather than randomly (like NL-INDEX). This 
was a non-issue in the 1:l case because there each parent record 
was retrieved by only one child instead of an average of ten child 
records. 

As discussed earlier, in addition to the results that we 
presented, we also ran each of the select-join queries with a 1% 
selectivity. Those results added no new insight beyond what we 
have described and their execution times were a bit less stable 
because they were closer to the limits of our measurement tools 
and test environment. Thus, in the interest of space, we simply 
summarize them here. All of the trends in the 1% selectivity runs 
matched those of the corresponding 10% queries. The IMS join 
methods provided similar fix count savings and even better I/O 
savings in each case tested. The elapsed time differences were 
slightly less pronounced for the 1% queries, however. This was 
because the startup cost for queries began playing a measurable 
role in determining overall performance, thus reducing the net 
impact of the I/O and fix count savings. Just as we found in the 
10% tests, the best performance for each of the 1% tests was pro- 
vided by one of the IMS join methods. 

5. LESSONS ON STARBURST EXTENSIBILITY 

In addition to being a study of pointer-based access path sup- 
port for joins in a relational DBMS, the IMS attachment effort 
was also a first attempt by “outsiders” (the first two authors) to 
extend the Starburst system. In this section of the paper, we 
reflect on lessons about storage-level extensibility that came out 
of this work. 

As described in Section 2, the Starburst extension architecture 
is based on a model where each relation is physically stored by an 
instance of some particular storage method and can have zero or 
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more attachment instances associated with it. The model of an 
attachment, at least as implemented, was that of a component 
attached to a single relation; each time a storage method was 
called to update a relation, each of the relation’s attachments was 
given an opportunity to react (after the fact) to the change. Also, 
when Core was designed, storage methods and attachments were 
assumed to be independent of one another. The needs of the IMS 
attachment violated both of these assumptions in ways that 
required certain changes to be made to the generic portion of the 
Core architecture. 

The IMS attachment type is an example of an attachment that 
spans a pair of relations rather than being attached to a single (or 
distinguished) relation. It is not difficult to think of additional 
functions that one might wish to add to Starburst where multi- 
relation attachments would be needed. Examples include attach- 
ments to implement a join index, to enforce general N-relation 
integrity constraints, to monitor condition satisfaction for N- 
relation production rules, to incrementally maintain materialized 
join views, or even to manage replicated data in a distributed 
DBMS context. Unfortunately, the Starburst data definition facil- 
ities currently recognize just one relation as the one to which a 
given attachment instance is “officially” attached; this is the 
attachment point visible in the user-level catalog that keeps track 
of attachments. Fortunately, Core contained no barriers prevent- 
ing more than one attachment point from actually being used (as 
long as just one was the “official” one). 

The IMS routines for processing child relation updates need 
to take certain actions before the updates actually take place, as 
described in Section 3. In some cases this is an efficiency issue, 
such as avoiding the need to reread and then modify a child 
record that was just inserted or updated. In other cases, it is truly 
a necessity. For example, IMS clustering can only be supported 
if IMS attachments can provide hints prior to storage method 
insertions. Other attachments with similar requirements are easy 
to imagine. Any attachment that wishes to influence clustering, 
such as a clustered index or complex object manager, must be 
allowed to provide pre-insertion clustering hints. Any attachment 
that needs to set or modify record fields before they are written, 
or perhaps even when they are read, would also benefit from pre- 
operation action support. Examples here could include attach- 
ments to perform data compression or encryption on the contents 
of a relation, or an attachment that extends the records of a rela- 
tion with additional hidden columns for purposes such as materi- 
alizing virtual fields or replicating data [Shek89]. When we 
began work on the IMS attachment, Core provided only post- 
operation opportunities for attachments to be notified of changes. 
Corresponding pre-operation calls were added in response to the 
needs of the IMS effort. 

In designing the IMS attachment, we quickly discovered that 
storage methods and attachments are not always as independent 
as they were initially thought to be. We found two ways that a 
new type of attachment can depend on the storage method of a 
relation or another of its attachments. The first way is for an 
attachment to depend on certain properties of the storage method 
or attachments. These can either be properties of the storage 
method or attachment type, or they can be properties of one 

particular instance. The second way is for an attachment to 
depend on the continued existence of another attachment on the 
same relation. Examples of such dependencies that we encoun- 
tered were: 

(1) In order to create an IMS attachment on a relation with 
CHILD clustering, it is necessary for the child relation’s storage 
method to support record clustering based on the Core “near hint” 
facility. This is a property of the child relation’s storage method 
type that is checked whenever creation of a new IMS instance 
with CHILD clustering is attempted. 

(2) In order to create an IMS attachment on a relation with 
FULL clustering, the parent and child storage methods must per- 
mit records from the two relations to be clustered together on 
disk. Whenever creation of a new IMS instance with FULL clus- 
tering is attempted it is thus necessary to verify that the two rela- 
tions are stored together in a common Starburst database space 
and that the storage method for this shared database space indeed 
supports clustering. These illustrate both instance-specific (“are 
these two relations stored together?“) and type-specific (“is clus- 
tering supported?“) checks of storage method properties. 

(3) For the IMS attachment to function properly, it requires the 
parent relation to have a permanent attachment (the parentindex 
in the syntax for creating an IMS attachment) that supports 
efficient lookups on the parent key and ensures that the parent 
key is unique over the parent relation (to ensure many-to-1-ness). 
Another create-time IMS check thus verifies. that the specified 
parent index meets these requirements. In addition, the IMS 
attachment needs to guarantee the continued existence of the 
parent index by not allowing it to be dropped for as long as the 
dependent IMS instance exists. 

To deal with these dependencies, the Core architecture had to 
be extended with a mechanism to permit storage methods and 
attachments to communicate relevant type and instance specific 
properties. As discussed in [HaasgO], the Core implementation 
uses vectors of function pointers to make it easy to hook in new 
storage methods and attachments - once the code for a new 
component is functional, one simply makes entries for the new 
component in each of a number of function vectors (two per 
operation, e.g., pre- and post-operation routines for insert record, 
delete record, or fetch record). Following this model, we added a 
set of storage method and attachment property vectors to permit 
properties to be registered with the system. For type-specific pro- 
perties, there is a vector of boolean values for each property of 
interest; the value entered for a particular storage method or 
attachment type is either true or false depending on whether or 
not it has the property. For instance-specific properties, the vec- 
tors contain pointers to functions with boolean return values. 
Finally, to handle the fact that an attachment can depend on the 
continued existence of another attachment instance, we added a 
facility whereby all of a relation’s attachments are notified when 
any of them are dropped, thereby giving them an opportunity to 
veto a drop operation. 

In light of the above discussions, one might begin to wonder 
whether or not the Starburst extension architecture was initially 
well-designed. It is the authors’ opinion that the IMS attachment 
effort is in fact quite a strong testimonial in favor of the 
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architecture. Despite the issues raised above, the IMS attachment 
was designed and implemented by a team of two “outsiders” in 
less than 12 weeks - even though they had no prior exposure to 
Starburst aside from reading conference papers about the system. 
Moreover, several of the changes needed in the generic portion of 
the Starburst code were made by the outsiders themselves, 
including the addition of an “alter table” facility for adding the 
hidden pointer fields needed for the IMS data structure. Finally, 
virtually all of the necessary changes had a fairly localized 
impact on the existing Core code. 

6. CONCLUSIONS 

In this paper, we have described the design and implementa- 
tion of the Starburst IMS attachment type. The significance of 
this work is two-fold. First, it is a demonstration of how pointer- 
based join access paths and inter-relation record clustering can be 
naturally incorporated into a relational DBMS in the context of 
referential integrity information. Second, it is the first objective 
demonstration of the extensibility provided by the Starburst data 
management extension architecture. 

In describing the IMS attachment’s design and implementa- 
tion, we described how updates are handled and we outlined three 
simple join algorithms that take advantage of the IMS pointer 
structure. Two were simply nested-loop join variants, and the 
third was a variant of the sort-merge join method. As demon- 
strated by our initial performance experiments, these algorithms 
can significantly reduce both the I/O cost and the page processing 
overhead required for computing referential joins as compared to 
the corresponding value-based join methods. In addition to this 
empirical evidence favoring the use of pointers for join computa- 
tion, we have also studied pointer-based join methods from an 
analytical perspective in [Shek90]. There we propose a wider 
range of pointer-based join algorithms (including a hash-based 
join method) and provide a detailed analytical comparison of 
pointer- versus value-based joins. Compared to the empirical 
results presented here, the results of that analysis were similarly 
favorable. 

Our experience with the LMS attachment turned out to be 
quite useful from the standpoint of testing the Starburst architec- 
ture. It pointed out the need to support multi-relation attach- 
ments, demonstrated a need for pre-operation routines to comple- 
ment the post-operation routines that notify attachments when 
storage’method updates occur, and pointed out the reality that 
storage methods and attachments are not always as independent 
as one might like them to be. Despite the minor changes that 
were required to accommodate the IMS attachment type, we were 
pleased to discover that such an attachment could indeed be 
added to Starburst in a relatively short period by “outsiders.” 
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