
DATABASE UPDATES THROUGH ABDUCTION

A.C. Kakas’ and P. Mancarella”*

*Department of Computing, Imperial College,180 Queen’s Gate, London SW7 2BZ, UK.
l *Dipartimento di Informatica, Universitat di Pisa, Corso Italia, 40, l-561 25 Pisa, Italy.

ABSTRACT:

The problem of view updates in deductive databases is
studied by casting this in a naturally associated abductive
framework. It is shown that this abductive approach deals
successfully, in a simple yet powerful way, with the
difficulties related to the presence of negation in the
database and provides a uniform common procedure for
insert and delete update requests. This procedure is
formally defined and its correctness and completeness is
investigated.

The abductive formalization of the update problem allows
for a natural generalization of the basic update procedure
in various ways. One important such extension is the fact
the integrity checking asssociated with any update request
can be dynamically incorporated into the update procedure
so that potential inconsistent solutions to the request are
trapped and rejected during their generation. It is also
possible to extend the abductive approach to handle
general non ground requests using constructive abduction
and an associated form of constructive negation.

1. Introduction and Motivation

This paper is concerned with the problem of updating a
deductive database. Given an update request insert(q)
(resp. delete(q)), where cp is a closed first order formula,
the task of updating is to change the database in such a
way that the new modified database satisfies the update
request. This problem is a generalization of the view
update problem for relational databases (see e.g.
[Banchilhon and Spyratos 811, [Cosmadakis and
Papadimitriou 841, Dayal and Bemestein 821, [Fagin et
al. 831, [Furtado and Casanova 853, [Gottlob et al. 881).
At the same time it is a special case of a more general
Permission to cop! withoul fee all or part of Ihi\ niatcrial ik

granted provided that tht2 topics arc not matlc or di4trihuicd l’ot

direct commercial ad\;Intage. the VLDH cop! ri$t notice and

the title of the publication and it5 date appear. and nottcc i\ gi\cn

that copying i\ h? permi95ion of the Vcr! L;ityc I>ata I32w

Endowment. To copy otherMIw. or to rcpuhli\h. rcqt~irc\ J ICC

and/or qxxial pcrmi\5ion from the F.ntlo\rmcnt

Proceedings of the 16th VLDB COII~~I-CIICC

Brisbane. Australia 1990

problem, namely that of Knowledge Assimilation (see
e.g. [Kowalski 791) where the new informatiqn to be
assimilated is the truth (resp.falsity) of cp.

It has been argued that a new piece of information should
not necessarily be assimilated into the knowledge base by
the explicit addition of this information. Instead, it may
be useful to add a set of (defeasible) hypotheses that
together with the current state of the knowledge base is
sufficient to prove the new information. These
hypotheses are also required to be consistent with the
current state of the knowledge base. In other words, the
new information is assimilated implicitly by the explicit
addition of the hypotheses.

There are several reasons why such an implicit
assimilation of information is desirable. In some cases a
new piece of information may carry with it other implicit
information that would be lost if thiS is just added
explicitly to the knowledge base. For example, consider a
knowledge base about families organized primarily in
terms of the Parent relation. Then a new piece of
information such as “Tom is the brother of Bob”, if added
explicitly as a fact does not capture other implicit
information such as the fact that Tom and Bob have the
same grandparents. On the other hand, if this is
assimilated by adding a common parent for Bob and Tom
then the knowledge base would contain implicitly the fact
that they have the same grandparents. Another related
reason for assimilating information implicitly, is the fact
that relevant new information may not always be acquired
in terms directly related to the way the knowledge base
itself is organized. Such new pieces of information need
first to be “translated” into a form that reflects the
organization of the information within the knowledge
base, before they can be included in the knowledge base,
if this is to maintain its original structure.

The problem of updating a deductive database, that
concerns us in this paper, is an important example where
these ideas are relevant. In a deductive database DB1 the
knowledge is separated into two parts:

(a) the extensional database (EDB) - a set of
ground facts on base relations (base predicates)
which &scribes the state of the world.

1 In this paper we will regard a deductive database as a
logic program.

650

(b) the intensional database (IDB) - a set of rules
(view) on view relations (view predicates)
which are regarded as reasoning mechanisms
with which new facts can be derived

Different users may have different sets of rules (view) IDB
with which they can manipulate the data in the common
extensional part of the database. Whenever a new piece of
information on a view relation arrives at a particular user,
this is assimilated by appropriately changing the EDB
rather than adding it explicitly into the view. In other
words, an update request insert(q) or delete(g) on DB =
IDB u EDB, where cp is in terms of view predicates - a
view update request - is accomplished by drawing suitable
transactions on EDB only. In this way different users
share the new view information received by each one, and
the structure of the database maintains its original form.

There is another important reason that motivates why a
view update request should be effected by changing the
EDB only. This is the fact that the rules (view) are
generally regarded to be complete and non-defeasible and
thus should not be changed, whereas the EDB is regarded
as containing incomplete and &feasible knowledge about
the world, i.e. data on base relations may be added or
deleted in the future. From this point of view it is natural
to consider the base predicates as abducible predicates
(predicates whose instances can be assumed when required)
and the problem of view updates as an abductive problem.
In this abductive framework an update request insert(q)
(resp. delete(q)) is regarded as a new observation that
needs to be explained, i.e. explain(v) (resp. explain(7cp)),
in terms of possible hypotheses on the abducible
(assumable) base predicates. Note that at first sight this
appears to differ from the way the view update problem is
tackled in the relation database case where both the view
and the database are modified by an update. However, in
our case for deductive databases the view is modified
indirectly through the changes in the extensional database.

In the next section we clarify further the connection with
abduction and present the basic ideas behind this
approach. In section 3 the details of the abductive
framework and the basic strategy of the update procedure
are presented with particular emphasis on the problem of
negation. The main features of this procedure are
illustrated in section 4 before this is formally defined. Its
correctness and completeness are investigated in section 5.
Finally, in the last section important extensions of the
update procedure that follow naturally from the abductive
approach are discussed.

The problem of view updates in deductive databases has
recently received much attention by various authors.
Work related to the approach taken here can be found in
[Bry 901 where the update request is effected by generating
a suitable model that can support it. For definite databases
(i.e. with no negation) this has been tackled in lNicolas
and Yazdanian 831 [Tomasic 883. The problems with the

presence of negation are studied in [Guessoum and Lloyd
9Oa] [Guessoum and Lloyd 90b] IDecker 891 in terms of
SLDNF derivations. In [Fagin et al. 831 the problem of
dealing with the different ways in which an update can be
effected has been studied. Their work has been extended in
[Rossi and Naqvi 891. Other work on the update problem
can be found in Ross 853 [Manchanda and Warren 881
[Abiteboul88] and references therein.

2. Basic ideas

In the previous section it has been argued that the
problem of updating a deductive database with an update
request on view predicates (in IDB) should be effected by
changing appropriately the extensional part (EDB) of the
database. This motivates the translation of the original
update request on view predicates to an equivalent update
request on base predicates alone. In this section we
present the basic strategy of an update procedure based on
such a translation of the problem and explain how
abduction can be used to provide this translation. It is
important to note that despite this distinction between the
view and the extensional parts of the database it is
possible to handle within the same abductive approach
view update requests that can not be satisfied by any set
of hypotheses on the base predicates and hence require
changes in the view. This will be discussed in section 6.

First, let us state some assumptions that we will make.
We will assume, unless stated otherwise, that all update
requests are of the form insert(q) or delete(q) where cp is a
ground instance of a view predicate (see section 6 for
comments about the case where cp is a general first order
formula). For the most part of this paper, we will assume
that the database is locally stratified [Przymusinski 881.
The technical results will be presented with respect to the
stable model semantics [Gelfond and Lifschitz 881 for
negation as failure associated with such databases. One of
the main motivations for choosing this semantics is the
fact that it allows a natural formulation of various
extensions of our basic approach, as we will discuss in
the last section. Before proceeding with the update
problem let us briefly overview the stable model
semantics and its suitability for deductive databases.

Let P be a logic program and I a Herbrand interpretation.
We denote by l-I1 the following (possibly infinite) set of
ground definite Horn clauses:
l-I1 ={HtBl ,..., Bk 1 H t Bl,..., Bk, 7L1, . . . , TLm
is a clause in ground(P) and LiC I for each i= 1,. . . ,m>

where ground(P) ¬es the set of all ground instances of
clauses in P. Notice that if a clause has no negative literal
in its body, then all its ground instances belong to nl,
for any I; moreover if a clause in ground(P) contains a
negative literal 7L such that LE I, then such a clause does
not contribute to the set l-I1 .

651

Definition ([Gelfond and Lifschitz881)
Let P be a logic program and M a Herbrand interpretation.
M is a stable model of P iff M is equal to the minimal
Herbrand model of I’I”.

Definition ([Gelfond and Lifschitz881)
The stable model semantics is defined for a logic program
P if P has exactly one stable model M and it declares M
to be the meaning of P.

Proposition ([Gelfond and Lifschitz881)
Let P be a locally stratified logic program. Then P has a
unique stable model and hence a stable model semantics.

Stable model semantics for logic programs with negation
as failure finds its roots in Moore’s autoepistemic logic
FIoore85], for beliefs. A stable model M of P is a closed
rational set of beliefs given P as the premises. If M is the
set of atoms that we believe to be true then any rule that
has 7L with LE M in its conditions is useless; any
condition IL with Le M is believed to be true and hence
can be dropped. The result of this process is to transform
the rules in ground(P) in a set of definite clauses, fl”. If
M is the set of atomic logical consequences of l-IM then
M is rational.

example
The program (view)

P@+l
q+B
rtBI

has a unique stable model {p}.

For deductive databases, it is appropriate to regard a view,
IDB, as representing a collection of stable models, each
one defined by a particular state, E, of the extensional
database (see[Kakas and Mancarella 9Oal). In the previous
example this correspondence between the state of the
extensional database and stable models of the whole
database is:
E: 0 M= (~1
E: B. M= {ql u PI
E: Bl. M= {rr ~1 u {BI1
E: B. Bl. M = {r, ql u -3 Bil
Roughly speaking, given an update request abduction
chooses a subclass of suitable stable models by defining a
set of conditions that the corresponding extensional
database must satisfy.

The task of a view update procedure is to define a suitable
set of transactions Tr on the extensional database so that
the resulting database satisfies the update request. In this
paper, by the satisfaction of an update request insert(v)
(resp. delete(q)) on a database DB, we mean that cp (resp.
-cp) is true in the stable model of DB. We will be
primarily interested in finding a specification for these

transactions Tr. We will not study here in detail how
these transactions would be effected on the extensional
database. This would depend on various assumptions that
the database may have (e.g. domain assumptions). In any
case, the generated specification reduces the problem from
updating a deductive database to updating its extensional
part, which can be solved by existing methods for
relational databases.

In order to translate the original view update request into
an update problem for the extensional database, we will
use abduction within a naturally associated abductive
framework. Abduction has recently received much
attention in Artificial Intelligence and has been recognized
as an appropriate form of non-monotonic reasoning with
incomplete and changing knowledge (see e.g. [Poole 881
Eshghi and Kowlaski 891). This theoretical and mainly
abstract idea can be simplified and applied in a natural
way to the view update problem as we shall see below. In
fact, its usefulness to this problem gives it practical value
and can help in the further development of abduction. Let
us briefly review the basic notion of abduction. By an
abducrive framework cT,A,I> we mean (see [Eshghi and
Kowlaski 891, [Kakas and Mancarella 90aJ) a theory
(logic program) T where a collection of predicates in T,
A, are designated as abducibles, together with a (possibly
empty) integrity theory I. The abducible predicates have
no definition in T but are assumable, and given an
observation Q the aim of abduction is to explain Q by
finding a consistent set A of hypotheses involving the
abducibles, which together with T imply Q. Intuitively
the abducible predicates represent the incomplete
information in the theory and can be used at any time
(observation) to partially complete the theory.
Furthermore the hypotheses in A are defeasible and would
be withdrawn or replaced if they become inconsistent with
later observations.

Returning now to our problem of view updates, it is clear
from the above description of abduction that these are
closely related. At first, let us consider a definite database
DB = EDB u IDB, i.e. where the rules in IDB have no
negative conditions. A naturally associated abductive
framework is <IDB, A, 0> where A is the set of base
predicates (base predicates will always be denoted by a
capital B, e.g. B, BI, B2, . ..). An update request,
insert(p) say, can be equivalently regarded as the abductive
query to explain the observation p in <IDB, A, 0~ The
set A generated by abduction for p is a specification of a
set of sufficient requirements that the extensional
database, EDB, should satisfy for the original request to
be effected. Thus abduction provides a translation of the
original view update request on the whole database, DB,
into an update request on the extensional database, EDB,
defined through A. To illustrate these ideas and the basic
strategy of an update procedure let us consider a simple
example.

652

example 1
IDB: P(x) + B(x)

WC).
EDB:

B(d).

Update: insert(p(a))

The first step, step A, of our update procedure is to solve
abductively the query p(a) on IDB alone irrespective of the
information in EDB. Reasoning backwards from t p(a)
we obtain t B(a) where B(a) is an abducible. To
complete the proof we can assume B(a) since it is
consistent to do so thus giving a successful abductive
proof with A={B(a)}. This in effect translates the
insert(p(a)) request on DB to the update request
insert(B(a)) in EDB. Schematically:

The second step, step B, of the update procedure would
involve solving the update problem on EDB generated in
step A. In this example this would be achieved by adding
B(a) to EDB. (As mentioned earlier, in this paper we will
not be concerned with how step B is accomplished).

In general, the existence of negation complicates the view
update problem but we can maintain the close connection
with abduction by adapting and extending the abductive
approach introduced in [Eshghi and Kowalski 891 for
simulating and generalizing negation by failure in logic
programming. The related abductive framework now
allows negations, as well as base predicates, to be treated
as abducibles. Then as before, an update request insert(p)
is translated to an update request on EDB through the
result A of abduction for explain(p).

Finally, for delete view update requests, e.g. delete(p), the
abductive approach for negation will allow, as we shall
see in the next section, to treat these as insert requests,
e.g. insert(not p) and thus provide a completely uniform
framework with a single procedure for both insert and
delete requests.

3. Non-definite databases

The existence of negation in IDB introduces added
complications to the view update problem. In [Guessoum
and Lloyd 90a] and [Decker 891 it has been pointed out
that it is possible for some solution of an update request
drawn from SLDNF derivations, to be invalidated due to
negation. One way to avoid this problem of invalidation,
proposed in [Guessoum and Lloyd 90a], is to impose the
strictness condition [Kunen 871 on IDB. In [Decker 891
this problem is tackled by trying to find all possible ways

in which an update request can be effected thus ensuring
that any valid solutions would be amongst the ones
found. In this section we present the full abductive
framework that we will be using which incorporates
negations as abducibles and describe how the basic ideas
and strategy for the update procedure presented in the
previous section carry through for the case where negation
is present. In the following sections we will see how the
complications of negation are handled within this
abductive approach.

Given a general logic program with negative conditions,
P, the abductive framework for negation [Eshghi and
Kowlaski 891 associated with P is cP*, A*, IC*> where:
l P* is the (definite) logic program obtained from P by
replacing each negative literal, -q(t), by a new positive
literal q*(t);
l A* is the set of predicate symbols, q*, introduced in P*;
l IC* is the set of denials

+- q(x), s*(x)
and meta-level statements

Demo(P*uA, q(x)) v Demo(P*uA, q*(x))
for all predicate symbols, q*, introduced in P*.

Here IC* is to be thought of as an integrity theory which
any generated set of hypotheses A together with P* must
satisfy. In the semantics of stable models that we
associate to P (and generalized stable models for cP*, A*,
IC*> see [Kakas and Mancarella 90a]) the meta-level
integrity constraint Demo(P*uA, q(x)) v Demo(P*uA,
q*(x)) means truth of the disjunction q(x) v q*(x) in these
models and can be replaced by this object-level disjunctive
integrity constraint.

For the problem at hand where P is IDB we need to adapt
this framework (due to delete requests) by introducing a *
new predicate q* for all predicates in IDB. Furthermore,
this framework is extended by treating the base predicates
and their negations as abducibles, giving the abductive
!iXIIEWO&

<IDB*, Ab, IC*>
where Ab is the set of all base predicates together with a
new predicate, a*, for every view or base predicate a, and
IC* is defined as above for every predicate symbol a*.
Note that the extensional database EDB is not taken into
account in the definition of this abductive framework. For
the following example:

example 2
IDB: p(x) +- not q(x)

q(x) +- B(x)
the associated abductive framework is:
IDB*: PC4 + q*(x)

q(x) * B(x)
Ab: {B, B*, p*, q*l
1c*: + q(x), s*(x) q(x) v s*(x)

+ p(x), p*(x) p(x) v P*(x)
6 B(x), B*(x) B(x) v B*(x)

653

With this framework the basic strategy for the update
procedure remains as before: Given a view update request
insert(p), the fist step, step A, tries to solve abductively
the query t p in <IDB*, Ab, IC*> generating a set of
abducibles A such that

IDB* u A entails p
IDB* u A is consistent and does not violate the

integrity constraints in IC*.
This A translates the original update request into an
update problem, Update(A, EDB), on EDB, i.e.

I I

I insert(p) inDB 1 Ayonwi Update& EDB) 1

1 I3 I 1

Then the second step, step B, of the update procedure will
solve the Update(A,EDB) problem by drawing a suitable
set of transactions, Tr, on EDB such that Tr(EDB) entails
any assumption in A involving only base predicates.

One useful way to view these steps of the update
procedure is to regard step A as an investigation of
whether the update request can indeed be supported by
IDB, by finding a sufficient set A of “beliefs” about the
base predicates that could achieve the request. Then step B
can be regarded as a revision of “beliefs” with priority on
the beliefs expressed by A over those present in EDB,
whenever a conflict exists between the two. At the end
the new set of “beliefs” Tr(EDB) ensures that the update
request is satisfied.

In the case where step A fails to return any A this
indicates that the update request, insert(p), can not be
supported by IDB, no matter how EDB is changed. Hence
failure to find a A means that the update request in not
“well-posed” and the update procedure would “fail”. For
the update request to succeed it will be necessary to
change the view IDB itself. In section 6 we will indicate
how this can be done, without changing the form of the
update procedure, by suitably extending the set of
abducibles Ab.

An abductive solution, A, is usually required to be
minimal in the sense that no proper subset of A is itself a
solution. Despite this minimality condition it is possible
that there could exist many different minimal abductive
solutions, A 1, . . . ,An, each of which will define a
different way in which the update request can be satisfied.
In this paper, we will not study the important problem of
defining a preference among these different choices and
only make a few comments on this problem here.

Some of these choices may be invalidated due to the
integrity theory of the database (see section 6) but it is
still possible for more than one solution to remain. It
may be that domain specific priorities on the abducibles
(base predicates) exist which can be used to provide a

preference between these choices. Another way to choose
between different solutions is to prefer those that have
fewer additional consequences when effected in the
database. Note that due to the presence of negation as
failure in the rules of IDB it is possible for a non
minimal solution to be prefered over its minimal subet
under this criterion. Yet another way is to use some
facility, like query-the-user, to generate tests that would
discriminating between these choices by rejecting those
that are incompatible with the results of these tests.
Unfortunately, even in the case where all of these
methods are used it is not always possible to get a unique
prefered choice or indeed if such a choice exists that this
will be the correct one. In view of this we would propose
an alternative complementary approach to this problem
whereby a method for recovery from inconsistency that
allows backtracking to previous update requests is
developed. Then if in the face of new information, eg.
new update requests, the database becomes inconsistent
due to a wrong choice of solution at some earlier update
we would be able to recover by backtracking and choosing
another solution. Such a truth maintenance system can be
developed in a natural way within our abductive
framework by recording and manipulating the abductive
solutions (see [Kakas and Mancarella gob]). Together
with this recovery mechanism we could also generalize
the query evaluation methods of the database to allow
conditional answers to queries that make explicit the
dependency of any answer to a query on the choice of
solutions to the update requests prior to the query. In this
way the database can recover from a wrong choice when
this is made apparent while in the meantime it safeguards
against mistaken choices by considering any piece of
information extracted from the database that depends on a
choice of solution to an earlier update request to be
conditional on that choice being correct.

In order to illustrate the basic structure of the abductive
procedure let us consider example 2 with EDB = (B(a)}
and the update request insert(p(a)). The abductive search
space of step A is shown below:

t-F@)
I +-4*(a)
!,

4 *(a)
I

+qW
I 464
!

+-B*(a)

I
0

A = {q*(a)3

654

giving A = { q*(a), B*(a) } where 0 denotes success of a

branch and W failure. Any part of the search space
enclosed in a bold outlined box shows the consistency
checking of the new hypothesis that is added to the A.
This is done by adapting and extending the consistency
method of [Sadri and Kowalski 881. Note that in such a
consistency tree success in showing the consistency of
the abducible at the top requires that all its branches end
up in failure. In the large bold box the hypothesis q*(a) is
checked against the integrity constraint t q(x),q*(x). At
the tip of the branch the required failure of B(a) triggers
the query t B*(a) due to the integrity constraint B(a) v
B*(a) which in turn requires B*(a) to be ad&d to the A.

From the generated A = (q*(a), B*(a)} the original view
update request has been reduced to Update (B*(a), EDB)
which can be effected by removing B(a) from EDB, i.e. a
minimal set of transactions Tr would be Tr =
W~WW)l.

Finally, delete requests such as delete(p) are handled by
transforming them to an insert request, i.e.

delete(p) W insert(not p) W insert(p*)

In the previous example 2 the delete request, delete(q(a)),
will be transformed to the abductive query t q*(a). Its
search space will be the same as that shown for
insert(p(a)) without the first resolution step and
subsequently the solution will be the same, i.e. Tr = {
remove(B(a)) }. In this way inserts and deletes are treated
uniformly in the same way within one procedure. This
allows us to generalize in a trivial way the set of possible
updates by allowing mixed multiple requests of the form

insert(p1) and . . . insert@n) and delete(ql) and . . . and
delete&).

Such an update request is transformed to the abductive
Query

+ Pl ,...&I, ql*,...,qk*
for step A.

4. Main features of the update procedure

In this section we illustrate the main features of the
update procedure and the way it handles various problems,
in particular those related to negation discussed in the
previous section, through a series of examples. These
will also be helpful to explain further the defmition of the
abduction procedure of step A before its formal definition,
which will be given in the next section.

example 3
IDB*: p&B* EDB: B.

P+B
Update: delete(p).
The abductive search space for the query t p* is:

_[

A = {P’}

L I 0
fJi1

!
The abductive procedure fails to find a A. The reason for
this is the fact that for the consistency checking of any
abducible all branches in the consistency tree must end in
a. Here the second branch of the consistency search space
for p* ends in Cl due to the fact that for the first one to

end in W B has to be added in the A.

The fact that the abductive procedure fails to find a A
indicates that the update request can not be supported by
any set of beliefs in EDB with the given IDB: if we want
to satisfy the update request we must change IDB in some
way (see section 6). Thus we see that the naive “solution”
of removing B from EDB which is invalidated by the
presence of negation is not drawn within our approach. In
general, the invalidation due to negation is subsumed by
the abductive procedure of step A. As a result, it is not
necessary to impose the restriction of strictness onto IDB.
Consider the following non-strict related example:

example 4
IDB*: p+B*,Bl

P+-B
Update: delete(p)
The abductive search space fort p* is:

EDB: B.
Bl.

A = {P’)

giving a final A of {p*, B*, Bl*}. Then the update
request can be satisfied if B* and B l* (or 7B and 7Bl) are
true in EDB which is achieved, for instance, by Tr =
(remove(B), remove(B 1)). Another non-strict example is:

655

example 5
IDB*: p-+-q*,B

q+Bt*,B
EDB=0

Update: insert(p)

The update request requires q* to be consistent. There are
two sets of hypothesis that can support the consistency of
q*, reflecting the two possible ways the goal t B, BI*
can fail in the consistency tree of q*. At such a goal we
have a forking (backtracking point) in the abductive
procedure, giving AI={q*, B*) and A2=(q*, BI}. The
success in proving p requires the additional assumption B.
The consistency check of B will reject AI and give as
final A only A = {q*, BI, B). Notice that the procedure
takes an active view towards ensuring that required
negations are consistent. This means that when a
negation q* is required, instead of first looking for the
non-failed branches oft q and then trying to make them
fail, we try from the start to make all branches of tq
fail. Moreover the information about the failure of each
branch, which is in fact part of the solution to the update
request, is dynamically recorded in the A and is used to
ensure that the failure of subsequent branches is indeed
consistent with that of the previous ones.

Whenever the update request is not ground or when local
variables are involved in the definition of the view
predicates the generated A in step A is not fully ground.
Consider for example:

example 6
lDB*: P + B I(x),B2(x)

EDB: Bl(a).
Update: insert(p)

The abductive procedure of step A can be extended to a
form of constructive abduction that allows existentially
quantified hypotheses. During the execution of the
procedure a “grounding” substitution is applied that
replaces any such variable with a new (skolem) constant,
The final generated A for this example will be
A=(3y(BI(y),B2(y))} obtained by reversing the grounding
substitution. Then one solution of the reduced problem,
Update(A, EDB), that is minimal with respect to what
already exists in EDB is given by TrI={add(B2(a))) but
notice that another solution would be Tr;?= { add(B I(o)),
add(B2(o))} where ‘0’ is a new individual. Similarly, for
the view, IDB*: p(x) t BI(x),B2(x), and the update
request, inser@xp(x)), the same A and thus the same two
solutions will be generated.

Another interesting example with local variables is :
example 7
IDB*: pi- Bl*(x),B2*(x)

EDB: W(a). RW. B3W

B t(b). W(b).
Update: delete(p)

The consistency of p* requires that no individual ‘0’ exists
such that BI(o) and B2(0) are both false. This is handled
by adding the denial Vx(t BI*(x),B2*(x)) to the
abductive assumptions resulting in the final A={p* ,
Vx(BI(x)vB2(x))}. Hence the required transactions Tr are
defined by the condition that Tr(EDB) must entail
Vx(BI(x)vB2(x)). Such abduced denials are first checked
for consistency against the current assumptions in the A
and then they act as new additional integrity constraints
that must be satisfied by any subsequent additions to the
A. This will be done in the consistency phase of the
procedure alongside with that for the constraints IC* and
any constraints of the database. For more discussion on
non ground updates and more general integrity checking
see section 6.

5. Correctness and completeness of the
Update Procedure

In this section we will present the formal definition of the
abductive proof procedure with theorems for its
correctness and completeness. We will show that
whenever the procedure succeeds there exists a state E of
the extensional database such that the update request is
true in the stable model of the resulting database.
Similarly, under suitable conditions on IDB, the
procedure is complete in the sense that if there exists a
state E of the extensional database such that the update
request is true in the corresponding stable model of the
database, then the procedure will generate a sufficient set
of assumptions to define this state. In appendix A we
review the notion of stable models and discuss how these
are appropriate for deductive databases and the view update
problem.

As indicated by the examples of the previous sections, the
abductive proof procedure is an interleaving of two
activities: 1) reasoning backwards for a refutation
collecting any required abductive assumption and 2)
checking for the consistency of these assumptions. The
procedure will be defined by suitably adapting and
extending the procedure of [Eshghi and Kowalski 891
which itself can be seen as an extension to SLDNF. In
this paper, in order to simplify the presentation we will
define only a restricted form of the procedure where only
ground abducibles are allowed to be abduced.

In the sequel, given an atom L=p(tl,...?tk) (resp.
PVl,..., tk)) we will denote by L* the atom p*(tI,...,tk)
(resp. p(tl,...&)). Moreover an abducible atom is called
base abducible if it has the form B(tI,...,tk) or
B*(tl,..., tk)? where B is a base predicate.

656

Definition (safe selection rule)
A safe selection rule R is a (partial) function which,
given a goal t Ll, . . . , Lk k2l returns an atom Li,
i=l ,. . .,k such that:

either i> Li is not abducible;
or ii) Li is ground.

From now on we will refer to a safe selection rule R.

Definition (abductive proofprocedure)
An abductive derivation from (Gl Al) to (Gn An)
via rule R is a sequence

G1 Al), (G2 A2), . . . , (Gn An)
such that for each i>l Gi has the form t Ll,...,Lk,
R(Gi)=Lj and (Gi+l Ai+l) is obtained according to one of
the following rules:

If Lj is not abducible, then Gi+ l=C and
Ai+l=Ai where C is the resolvent of some
clause in lDB* with Gi on the selected literal
Lj;
If Lj is abducible and Lj’ Ai, then
Gi+l= +Ll ,..., Lj-l,Lj+l,... ,Lk and
Ai+l=Ai;
If Lj is a base abducible, Lje Ai and Lj*t~ Ai
then Gi+l = tLl,..., Lj-1, Lj+l,..., Lk and
Ai+l = Ai U{Lj);
If Lj is a non-base abducible and Lje A and
there exists a consistency derivation from
((t Lj’} AiU(Lj}) to (0 A’) then
Gi+l= tL1 ,..., Lj-1, Lj+l,..., Lk and
Ai+l = A’.

Steps Al) and A2) are SLD-resolution steps with the
rules of IDB* and abductive hypotheses, respectively. In
step A3) and A4) a new abductive hypotheses is required
and it is added to the current set of hypotheses provided it
is consistent. Note that in case A3) the consistency
checking is trivial.

A consistency derivation from (Fl Al) to (Fn An)
is a sequence

(Fl Al), (F2 4?) . . . (Fn An) to (Fn An)
such that for each i>l Fi has the form (tLl,...,Lk} u
Fi’ and for some j=l ,...,k (Fi+l Ai+l) is obtained
according to one of the following rules:

Cl) If Lj is not abducible, then Fi+l = C’ u Fi’
where C’ is the set of all resolvents of clauses
in IDB* with tL1 ,. . .,Lk on the literal Lj and
0~ C’, and Ai+l=Ai;

C2) If Lj is abducible, Lj is ground, Lje Ai and
k>l, then Fi+l={tLl,..., Lj-1, Lj+l,...,Lk}

u Fi’ and Ai+l=Ai;
C3) If Lj is abducible, Lj is ground and Lj*E Ai,

then Fi+l=Fi’ and Ai+l=Ai;

C4) If Lj is a base abducible, Lj is ground, Lje Ai
and Lj*’ Ai, then Fi+l=Fi’ and
Ai+l=Ai U {Lj*};

C5) If Lj is a non base abducible, Lj is ground and
there exists an abductive derivation from
(CLj’ Ai) to (0 A’) then Fi+l=Fi’ and
Ai+ ISA’.

The consistency derivations do not rely on a particular
selection rule, since in general all the possible ways in
which a conjunction tLl,...,Lk can fail should be
explored. This introduces an extra non determinism in the
proof procedure. In case Cl) the current branch splits into
as many branches as the number of resolvents of
+L1 ,...,Lk with the clauses in IDB* on Lj. If the empty
clause is one of such resolvents the whole consistency
check fails. In case C3) the current branch is already
consistent under the assumptions in Ai, and this branch is
dropped from the consistency checking. Case C4) and C5)
correspond to the enforcement of the disjunctive integrity
constraint Lj* v Lj: the current branch of the consistency
search space can be dropped provided tLj* is abductively
provable. Notice that this may require new hypotheses to
be added to the current A. In C4) this is accomplished by
adding Lj*.

The correctness and completeness results of the procedure
will be stated in terms of a set of transactions on the
extensional database. By a transaction we mean an action
involving the addition or removal of tuples from the
extensional database. As mentioned above, we are only
concerned with the problem of generating a specification
for the set of transactions on EDB which, if effected,
would accomplish the update request. This specification is
obtained from the set of assumptions A generated by the
procedure, by dropping any non base abducible. In the
sequel we will denote by Tr(E) the state of the
extensional database resulting by effecting on E each
transaction in Tr.

Definition (transactions associated with a A)
Let A be a set of assumptions generated by the abductive
procedure. Then TEA denotes any set of transactions such
that, given a state E of the extensional database, for each
base abducible LEA (L*E A), TEA I= L (- L).

The soundness theorem is proved using the following
lemma which justifies the above definition of transactions
drawn from a successful abductive derivationl.

Lemma 1

1 The technical proofs are omitted from this paper
due to lack of space and can be found in [Kakas and
Mancarella 9Oc].

657

Let JDB be locally stratified, Q be the conjunction
Al,...,An,~An+l,.,.,lAm. Assume that
(+-Al,...,An,A*n+l,...,A*m {>> has an abductive
derivation to (0 A). Then for each EDB, if M is a stable
model of IDBuEDB such that for each base abducible
LEA (L*E A) M t= L (TL), then for each non base
abducible p*(tl ,... ,tn)EA, Mb-p(tl,..., tn).

Theorem 1 (correctness)
Let lDB be a locally stratified database, u be the update
request insert(L) (resp. delete(L)). If (tL {)) (resp. (G-L*
{})) has an abductive derivation to (Cl A) then for any
EDB, TrA(EDB) accomplishes u, i.e. L (resp. -,L) is
true in the stable model of IDB u Tr(EDB).

For completeness, it is necessary to impose further
restrictions on IDB. These restrictions are required to
ensure that the abductive procedure does not loop
indefinitly and does not flounder (see Lemma in appendix
A). To do this, we define (appendix A) the properties of
acyclic@ and of allowedness for intensional databases,
suitably adapting similar definitions for logic programs
(see [Apt and Bezem 901 and Fopor 873).

Theorem (completeness)
Let IDB be an acyclic and allowed intensional database, u
be the update request insert(L) (resp. delete(L)). If there
exists an extensional database EDB such that L (resp. -L)
is true in the stable model of IDBuEDB then (tL {})
(resp. (tL* {}) has an abductive derivation to (0 A)

such that EDB I= L’ (- L’) for each base abducible Lk A
(L’*E A).

6. Extensions

An important feature of the particular approach to the
update problem presented in this paper is the fact that this
can be naturally extended in various directions. The
semantics of stable models will allow a straightforward
formalization of these extensions. In this section we will
briefly discuss these different ways in which the update
procedure can be extended. These are currently under
investigation and will be presented elsewhere.

Let us first consider the case where no A is found in step
A. This means that IDB can not support the update
request no matter how EDB is changed. In order to satisfy
the request we need to change the view IDB but this
should not be done in an ad hoc way. The fact that such
situations of no A arise means that some (perhaps all) of
the rules in IDB are defeasible and/or some predicates in
IDB are incompletely defined. Such .jncomplete
knowledge representation is typical of the problems for
which abduction has been developed in AI (see e.g. [Poole
88]), [Eshghi and Kowalski 891). Abduction provides an

effective way for handling such knowledge: every
defeasible rule in IDB, p(x) t Conds, can be transformed
into p(x) c Conds, ah*(x) in the abductive’ framework,
where ab is a new abducible predicate and, similarly, for
every incomplete predicate, p(x), a new rule p(x) t UP
is added into the abductive framework where again Zp is a
new abducible predicate. Intuitively, ab* can be thought
of as standing for “not abnormal” or “normal” and 8p for
some “unknown” cause for p. With these transformations
the structure of the abductive framework and update
procedure remains unchanged. By keeping in EDB
information about these new abducibles we get the effect
of changing the rules in IDB without altering the rules
themselves, i.e. the rules are implicitly changed in such a
way that any of these changes can be undone and the
original lDB recovered. An appropriate priority ([Kakas
and Mancarella 891) can be given to the ah(x), Sp(x)
abducibles relative to the base predicate abducibles so that
altering the rules is used only as a last resort, i.e. when
no A with base predicates only exists. Let us reconsider
example 3 where we are given that the first rule is
defeasible:

example 3’
lDB*: p t B*, ab*

pc B.
EDB: B.

Update: delete(p)
Then step A of the update procedure will generate, in
exactly the same way as in example 4, A = (p*, B*, ab}
indicating that to delete p we must remove B and “switch
off’ the fmt rule by adding ab in the database.

In section 4, we briefly discussed how the abductive
procedure can handle non ground hypotheses. When such
hypotheses involve only base predicates a straightforward
extension of the abductive procedure given in section 5
can be defined to achieve this [Kakas and Mancarella 90~1.
For the case where the required hypotheses in A contain
abducibles corresponding to negations of view predicates,
eg. 3 xq*(x) where q is a view predicate, we can extend
further this constructive abduction procedure with a form
of constructive negation that follows from our treatment
of negation through abduction. For an example consider:

example 8
IDB*: P + s*(x), B l(x)

EDB: Bl(a). F?(a)
q(x) + B2W

Wb).
Update: insert(p)
The query t p solved by this extension of the abductive
procedure will give A = (3x (Bl(x), q*(x), By*)).
Possible transactions corresponding to this A are:

Trl = { remove(Bz(a)))
Trz = WmmOWbN, add(B l(b)) I
Tr3=(add(Bl(o))} for a new object ‘0’.

658

This extension would then allow us to remove the
allowdeness condition and also enable us to handle general
update requests, insert($) (delete($)), where $ is any first
order formula. This would be done by first applying a set
of transformations as in lLloyd 871 to transform the rule
pt $ where p is a new predicate symbol into a logic
program and then solving the request insert(p) (delete(p)).

Another important extension that can be naturally
included in our approach is the dynamic integration of
integrity checking of the possible solution to the update
request against an integrity theory IDB that might exist
with the deductive database. This integrity checking can
be included as part of the already existing consistency
checking with IC* in the procedure. Now the consistency
checking for any required abducible will be done with
respect to IC*uIDB rather then just IC*. An example of
this extension is as follows:

example 9
lDB*: P(x) +- q*(x)

EDB: Bl(a). &(a).
q(x) + B 109
Bl(b).

IDB : + q*(x), B2W
Update: insert@(a)).
The abductive search space fort p(a) is:

The abductive approach for negation presented in @3shghi
and Kowalski 891 provides a way to generalize negation
as failure to handle non-locally stratified programs such as

p+notq
q +- not p.

and hence the abductive procedure of step A which is
based on such a treatment for negation can also handle
such programs. The added complication from such
programs is that there exists more than one stable model,
e.g. in this example there exists two stable models Ml =
{p}, M2 = {q}. Hence in the example

IDB*: p+q*,B EDB=0
q+p*

Update: insert(p)

the generated A = {q*, B} chooses the first stable model
Ml and this must be made explicit by recording the
abducible q*. In effect, our update procedure can deal
successfully with such non-locally stratified views,
without any change in step A, by changing step B to
alIow a new type of transaction where negations of view
predicates are explicitly added in the database. Technical
results for this extended procedure would be expressed as
before with the difference that any reference to “the stable
model of DB” is replaced by “the existence of a stable
model of DB”.

+PW
I tq*(a
I

A = Is*(a))
+ q(a) tB44

I
+Blta) L

Lj

giving as a final A the set {q*(a), BI*(a), Bz*(a)}. Hence
in step B apart from removing B l(a), which makes Tq(a)
provable, we must also remove B2(a) to make Tq(a)
consistent with IDB. The semantics of stable models for
logic programs P can be generalized to the case where P
is replaced by an abductive framework cP,A,IC> (see
[Kakas&Mancarella90]). This generalization when applied
to the framework <IDB*,A,IC*uIDB> provides an
appropriate semantics for the extended update procedure
that incorporates the integrity checking of IDB : when
this procedure succeeds then there exists a model of DB
(generalized stable model) where both the update request
and IDB are true.

7. Conclusions

The problem of view updates in deductive databases has
been studied within an abductive approach. We have
argued that this problem is naturally related to abduction
and have used this relation to translate any given view
update request to an equivalent update problem on the
extensional (relational) part of the deductive database. A
common single update procedure for both insert and delete
requests is developed which handles successfully the
complications arising from the presence of negations. An
important feature of the approach based on abduction is
the fact that this can be naturally extended along the lines
discussed in section 6 in many desirable directions to give
a more general solution to the problem.

Finally, in view of the fact that abduction can be used
successfully for non-monotonic reasoning in a variety of
problems (see e.g. [Poole88], [Eshghi and Kowalski 891
[Shanahan 891 [Kakas and Mancarella 891) and the fact
that the view update problem is closely related to
abduction, an important message can be drawn: solving
the view update problem (irrespective of the method of
solution) will enhance the capabilities of deductive
databases.

Acknowledgements
We wish to thank Robert Kowalski, Fariba Sadri and
John Lloyd, Ahmed Guessoum Hendrik Decker, Francois

659

Bry, Luis Pereira for many useful discussions. This
work has been supported under the COMPULGG Esprit
Basic Research Project 3012.

APPENDIX A
In the following definitions HB(P) denotes the Herbrand
base of a logic program P.

Definition (level mapping)
Let P be a logic program. A level mapping I 1 is a
function I I : HB(P) + N. Given a level mapping I 1 its
extension to ground negative literals is given by I-Al=lAl.

Definition (acycliciry) [Apt and Bezem 901
A logic program P is acyclic if and only if there exists a
level mapping I I such that for each clause A t
Ll,. . . ,Ln in ground(P) IAI>ILil for each i= 1,. . .,n.

Let us now define the notion of allowedness for
intensional databases. In the following definitions by
local variable we mean a variable which occurs in the
body but not in the head of a clause.

Definition (floundering)
A derivation leading to a goal containing only non
ground abducibles is said to flounder.

Definition (allowedness)
An intensional database IDB is allowed if for each
clause H t W any variable occurring in an abducible
literal of W also occurs in a non abducible literal of W.

Lemma
Let IDB be an allowed database and tQ a ground goal.
Then no abductive or consistency derivation resulting
from this goal flounders.

References

[Abiteboul 881
Abiteboul, S., Updates a new Frontier, Proc. ICDT,
Springer Verlag, ~01326, 1988.
[Apt and Bezem 901
Apt, K. and Bezem M., Acyclic Programs, to appear in
Proc. 7th ICLP, Jerusalem 1990.
[Bancilhon and Spyratos 811
Bancilhon, F. and Spyratos, N., Update semantics of
relational views, ACM TODS, Vol 6, No4, 1981.
WY 891
Bry, F., Intensional Updates: Abduction via Deduction, to
appear in Proc. 7th ICLP, Jerusalem 1990.
[Cosmadakis and Papadimitriou 841
Cosmadakis, C.C. and Papadimitriou, CH., Updates of
Relational Views, JACM 31 (4) 742-760, 1984.
[Dayal and Bernstein 821

Dayal, U. and Bernstein P.A., On the correct translation
of Update Operations on relatiuonal Views, ACM TODS,
Vol 8, No 3, 1982.
[Decker 89 1
Decker, H., Drawing Updates from Derivations, ECRC
Technical Report, 1989.
[Eshghi and Kowlaski 891
Eshghi, K. and Kowalski, R.A., Abduction Compared
with Negation by Failure, Proc. 6th ICLP 89, MIT
Press, 1989.
[Fagin et al. 831
Fagin, R., Ullman, J. and Vardi, M., On the Semantics
of Updates in Databases, Proc. 2nd ACM PODS, 1983.
[Furtado and Casanova 851
Furtado, A.L. and Casanova, M.A., Updating Relational
Views, in W. Kim et al (eds.), Query Processing in
Database Systens, Springer Verlag, 1985.
[Gelfond and Lifschitz 881
Gelfond, M. and Lifschitz, V., The Stable Model
Semantics for Logic Programming, Proc. 5th ICLP, MIT
Press, 1988.
[Gottlob et al 881
Gottlob, G., Paolini, P., Zicari R., Properties and Update
Sematics of Consistent Views, ACM TODS, Vol 13, No
4, 1988.
[Guessoum and Lloyd 90al
Guessoum, A. and Lloyd, J.W., Updating Knowledge
Bases, to appear in New Generation Computing 1990.
[Guessoum and Lloyd 90bl
Guessoum, A. and Lloyd, J.W., Updating Knowledge
Bases II, Technical report, Department of Computer
Science, University of Bristol, 1990.
[Kakas and Mancarella 891
Kakas, A.C. and Mancarella, P., Anomalous Models and
Abduction, Proc. 2nd Int. Symp. on AI, Monterrey,
Mexico, 1989.
[Kakas and Mancarella 90a]
Kalcas, A.C. and Mancarella, P., Generalised Stable
Models: A Semantics for Abduction, to appear in ECAI-
90, Stockholm, 1990.
[Kakas and Mancarella 90bI
Kakas, A.C. and Mancarella, P., On the relation between
Truth Maintenance and Abduction, Imperial College
preprint, 1990.
[Kakas and Mancarella 90~1
Kakas, A.C. and Mancarella, P., An Abductive Procedure
for Database View Updates, Imperial College Report,
1990.
[Kowalski 791
Kowalski, R.A. Logic for Problem Solving, Elsevier
North-Holland, Amsterdam, 1979.
[Kunen 871
Kunen, K., Negation in Logic Programming, in J. Logic
Programming Vol4, 1987.
[Lloyd 871
Lloyd, J.W., Foundations of Logic Programming, second
edition, Springer Verlag, 1987.
[Manchanda and Warren 881

660

Manchanda, S. and Warren,D.S., Towards a Logical
Theory of Database View Updates, in J. Minker (ed.)
Foundations of Deductive Databases and Logic
Programming, Morgan Kaufman, 1988.

[Moore851

Moore, R.C., Semantical Considerations on
Nonmonotonic Logic, Artificial Intelligence, 25(1)

(1985), pp.7594.
[Nicolas and Yazdanian 831
Nicolas, J.-M. and Yazdanian, K., An Outline of
BDGEN: A Deductive DBMS, Proc. IFIP 83, Elsevier,
1983.
[Poole 881
Poole, D.L., A Logical Framework for Default
Reasoning, AI 36, 1988.
[Przymusinski 881
Przymusinski, T., On the Declarative and Procedural
Semantics of Stratified Deductive Databases, in J. Minker
(ed.) Foundations of Deductive Databases and Logic
Programming, Morgan Kaufman, 1988.
[Ross 851
Ross, B., View Updates on Deductive Databases,
Department of Computer Science, University of
Melbourne, 1985.
[Rossi and Naqvi 891
Rossi, F. and Naqvi, S. A., Contributions to the View
Update Problem, Proc. 6th ICLP 89, MIT Press, 1989.
[Sadri and Kowalski 881
Sadri, F. and Kowalski, R.A., A Theorem Proving
Approach to Database Integrity, in J. Minker (ed.)
Foundations of Deductive Databases and Logic
Programming, Morgan Kaufman, 1988.
[Shanahan 891
Shanahan, M.P., Prediction is Deduction but Explanation
is Abduction, Proc. IJCAI 89, 1989.
[Tomasic 881
Tomasic, A., View Update Annotation in Definite
Deductive Databases, Proc. ICDT 88, Springer Verlag,
1988.
[Topor 871
Topor, R.W., Domain Independent Formulas and
Databases, TCS 52,3, 1987.

661

