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ABSTRACT: 

The problem of view updates in deductive databases is 
studied by casting this in a naturally associated abductive 
framework. It is shown that this abductive approach deals 
successfully, in a simple yet powerful way, with the 
difficulties related to the presence of negation in the 
database and provides a uniform common procedure for 
insert and delete update requests. This procedure is 
formally defined and its correctness and completeness is 
investigated. 

The abductive formalization of the update problem allows 
for a natural generalization of the basic update procedure 
in various ways. One important such extension is the fact 
the integrity checking asssociated with any update request 
can be dynamically incorporated into the update procedure 
so that potential inconsistent solutions to the request are 
trapped and rejected during their generation. It is also 
possible to extend the abductive approach to handle 
general non ground requests using constructive abduction 
and an associated form of constructive negation. 

1. Introduction and Motivation 

This paper is concerned with the problem of updating a 
deductive database. Given an update request insert(q) 
(resp. delete(q)), where cp is a closed first order formula, 
the task of updating is to change the database in such a 
way that the new modified database satisfies the update 
request. This problem is a generalization of the view 
update problem for relational databases (see e.g. 
[Banchilhon and Spyratos 811, [Cosmadakis and 
Papadimitriou 841, Dayal and Bemestein 821, [Fagin et 
al. 831, [Furtado and Casanova 853, [Gottlob et al. 881 ). 
At the same time it is a special case of a more general 
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problem, namely that of Knowledge Assimilation (see 
e.g. [Kowalski 791) where the new informatiqn to be 
assimilated is the truth (resp.falsity) of cp. 

It has been argued that a new piece of information should 
not necessarily be assimilated into the knowledge base by 
the explicit addition of this information. Instead, it may 
be useful to add a set of (defeasible) hypotheses that 
together with the current state of the knowledge base is 
sufficient to prove the new information. These 
hypotheses are also required to be consistent with the 
current state of the knowledge base. In other words, the 
new information is assimilated implicitly by the explicit 
addition of the hypotheses. 

There are several reasons why such an implicit 
assimilation of information is desirable. In some cases a 
new piece of information may carry with it other implicit 
information that would be lost if thiS is just added 
explicitly to the knowledge base. For example, consider a 
knowledge base about families organized primarily in 
terms of the Parent relation. Then a new piece of 
information such as “Tom is the brother of Bob”, if added 
explicitly as a fact does not capture other implicit 
information such as the fact that Tom and Bob have the 
same grandparents. On the other hand, if this is 
assimilated by adding a common parent for Bob and Tom 
then the knowledge base would contain implicitly the fact 
that they have the same grandparents. Another related 
reason for assimilating information implicitly, is the fact 
that relevant new information may not always be acquired 
in terms directly related to the way the knowledge base 
itself is organized. Such new pieces of information need 
first to be “translated” into a form that reflects the 
organization of the information within the knowledge 
base, before they can be included in the knowledge base, 
if this is to maintain its original structure. 

The problem of updating a deductive database, that 
concerns us in this paper, is an important example where 
these ideas are relevant. In a deductive database DB1 the 
knowledge is separated into two parts: 

(a) the extensional database (EDB) - a set of 
ground facts on base relations (base predicates) 
which &scribes the state of the world. 

1 In this paper we will regard a deductive database as a 
logic program. 
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(b) the intensional database (IDB) - a set of rules 
(view) on view relations (view predicates) 
which are regarded as reasoning mechanisms 
with which new facts can be derived 

Different users may have different sets of rules (view) IDB 
with which they can manipulate the data in the common 
extensional part of the database. Whenever a new piece of 
information on a view relation arrives at a particular user, 
this is assimilated by appropriately changing the EDB 
rather than adding it explicitly into the view. In other 
words, an update request insert(q) or delete(g) on DB = 
IDB u EDB, where cp is in terms of view predicates - a 
view update request - is accomplished by drawing suitable 
transactions on EDB only. In this way different users 
share the new view information received by each one, and 
the structure of the database maintains its original form. 

There is another important reason that motivates why a 
view update request should be effected by changing the 
EDB only. This is the fact that the rules (view) are 
generally regarded to be complete and non-defeasible and 
thus should not be changed, whereas the EDB is regarded 
as containing incomplete and &feasible knowledge about 
the world, i.e. data on base relations may be added or 
deleted in the future. From this point of view it is natural 
to consider the base predicates as abducible predicates 
(predicates whose instances can be assumed when required) 
and the problem of view updates as an abductive problem. 
In this abductive framework an update request insert(q) 
(resp. delete(q)) is regarded as a new observation that 
needs to be explained, i.e. explain(v) (resp. explain(7cp)), 
in terms of possible hypotheses on the abducible 
(assumable) base predicates. Note that at first sight this 
appears to differ from the way the view update problem is 
tackled in the relation database case where both the view 
and the database are modified by an update. However, in 
our case for deductive databases the view is modified 
indirectly through the changes in the extensional database. 

In the next section we clarify further the connection with 
abduction and present the basic ideas behind this 
approach. In section 3 the details of the abductive 
framework and the basic strategy of the update procedure 
are presented with particular emphasis on the problem of 
negation. The main features of this procedure are 
illustrated in section 4 before this is formally defined. Its 
correctness and completeness are investigated in section 5. 
Finally, in the last section important extensions of the 
update procedure that follow naturally from the abductive 
approach are discussed. 

The problem of view updates in deductive databases has 
recently received much attention by various authors. 
Work related to the approach taken here can be found in 
[Bry 901 where the update request is effected by generating 
a suitable model that can support it. For definite databases 
(i.e. with no negation) this has been tackled in lNicolas 
and Yazdanian 831 [Tomasic 883. The problems with the 

presence of negation are studied in [Guessoum and Lloyd 
9Oa] [Guessoum and Lloyd 90b] IDecker 891 in terms of 
SLDNF derivations. In [Fagin et al. 831 the problem of 
dealing with the different ways in which an update can be 
effected has been studied. Their work has been extended in 
[Rossi and Naqvi 891. Other work on the update problem 
can be found in Ross 853 [Manchanda and Warren 881 
[Abiteboul88] and references therein. 

2. Basic ideas 

In the previous section it has been argued that the 
problem of updating a deductive database with an update 
request on view predicates (in IDB) should be effected by 
changing appropriately the extensional part (EDB) of the 
database. This motivates the translation of the original 
update request on view predicates to an equivalent update 
request on base predicates alone. In this section we 
present the basic strategy of an update procedure based on 
such a translation of the problem and explain how 
abduction can be used to provide this translation. It is 
important to note that despite this distinction between the 
view and the extensional parts of the database it is 
possible to handle within the same abductive approach 
view update requests that can not be satisfied by any set 
of hypotheses on the base predicates and hence require 
changes in the view. This will be discussed in section 6. 

First, let us state some assumptions that we will make. 
We will assume, unless stated otherwise, that all update 
requests are of the form insert(q) or delete(q) where cp is a 
ground instance of a view predicate (see section 6 for 
comments about the case where cp is a general first order 
formula). For the most part of this paper, we will assume 
that the database is locally stratified [Przymusinski 881. 
The technical results will be presented with respect to the 
stable model semantics [Gelfond and Lifschitz 881 for 
negation as failure associated with such databases. One of 
the main motivations for choosing this semantics is the 
fact that it allows a natural formulation of various 
extensions of our basic approach, as we will discuss in 
the last section. Before proceeding with the update 
problem let us briefly overview the stable model 
semantics and its suitability for deductive databases. 

Let P be a logic program and I a Herbrand interpretation. 
We denote by l-I1 the following (possibly infinite) set of 
ground definite Horn clauses: 
l-I1 ={HtBl ,..., Bk 1 H t Bl,..., Bk, 7L1, . . . , TLm 
is a clause in ground(P) and LiC I for each i= 1,. . . ,m> 

where ground(P) &notes the set of all ground instances of 
clauses in P. Notice that if a clause has no negative literal 
in its body, then all its ground instances belong to nl, 
for any I; moreover if a clause in ground(P) contains a 
negative literal 7L such that LE I, then such a clause does 
not contribute to the set l-I1 . 
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Definition ([Gelfond and Lifschitz881) 
Let P be a logic program and M a Herbrand interpretation. 
M is a stable model of P iff M is equal to the minimal 
Herbrand model of I’I”. 

Definition ([Gelfond and Lifschitz881) 
The stable model semantics is defined for a logic program 
P if P has exactly one stable model M and it declares M 
to be the meaning of P. 

Proposition ([Gelfond and Lifschitz881) 
Let P be a locally stratified logic program. Then P has a 
unique stable model and hence a stable model semantics. 

Stable model semantics for logic programs with negation 
as failure finds its roots in Moore’s autoepistemic logic 
FIoore85], for beliefs. A stable model M of P is a closed 
rational set of beliefs given P as the premises. If M is the 
set of atoms that we believe to be true then any rule that 
has 7L with LE M in its conditions is useless; any 
condition IL with Le M is believed to be true and hence 
can be dropped. The result of this process is to transform 
the rules in ground(P) in a set of definite clauses, fl”. If 
M is the set of atomic logical consequences of l-IM then 
M is rational. 

example 
The program (view) 

P@+l 
q+B 
rtBI 

has a unique stable model {p}. 

For deductive databases, it is appropriate to regard a view, 
IDB, as representing a collection of stable models, each 
one defined by a particular state, E, of the extensional 
database (see[Kakas and Mancarella 9Oal). In the previous 
example this correspondence between the state of the 
extensional database and stable models of the whole 
database is: 
E: 0 M= (~1 
E: B. M= {ql u PI 
E: Bl. M= {rr ~1 u {BI1 
E: B. Bl. M = {r, ql u -3 Bil 
Roughly speaking, given an update request abduction 
chooses a subclass of suitable stable models by defining a 
set of conditions that the corresponding extensional 
database must satisfy. 

The task of a view update procedure is to define a suitable 
set of transactions Tr on the extensional database so that 
the resulting database satisfies the update request. In this 
paper, by the satisfaction of an update request insert(v) 
(resp. delete(q)) on a database DB, we mean that cp (resp. 
-cp) is true in the stable model of DB. We will be 
primarily interested in finding a specification for these 

transactions Tr. We will not study here in detail how 
these transactions would be effected on the extensional 
database. This would depend on various assumptions that 
the database may have (e.g. domain assumptions). In any 
case, the generated specification reduces the problem from 
updating a deductive database to updating its extensional 
part, which can be solved by existing methods for 
relational databases. 

In order to translate the original view update request into 
an update problem for the extensional database, we will 
use abduction within a naturally associated abductive 
framework. Abduction has recently received much 
attention in Artificial Intelligence and has been recognized 
as an appropriate form of non-monotonic reasoning with 
incomplete and changing knowledge (see e.g. [Poole 881 
Eshghi and Kowlaski 891). This theoretical and mainly 
abstract idea can be simplified and applied in a natural 
way to the view update problem as we shall see below. In 
fact, its usefulness to this problem gives it practical value 
and can help in the further development of abduction. Let 
us briefly review the basic notion of abduction. By an 
abducrive framework cT,A,I> we mean (see [Eshghi and 
Kowlaski 891, [Kakas and Mancarella 90aJ) a theory 
(logic program) T where a collection of predicates in T, 
A, are designated as abducibles, together with a (possibly 
empty) integrity theory I. The abducible predicates have 
no definition in T but are assumable, and given an 
observation Q the aim of abduction is to explain Q by 
finding a consistent set A of hypotheses involving the 
abducibles, which together with T imply Q. Intuitively 
the abducible predicates represent the incomplete 
information in the theory and can be used at any time 
(observation) to partially complete the theory. 
Furthermore the hypotheses in A are defeasible and would 
be withdrawn or replaced if they become inconsistent with 
later observations. 

Returning now to our problem of view updates, it is clear 
from the above description of abduction that these are 
closely related. At first, let us consider a definite database 
DB = EDB u IDB, i.e. where the rules in IDB have no 
negative conditions. A naturally associated abductive 
framework is <IDB, A, 0> where A is the set of base 
predicates (base predicates will always be denoted by a 
capital B, e.g. B, BI, B2, . ..). An update request, 
insert(p) say, can be equivalently regarded as the abductive 
query to explain the observation p in <IDB, A, 0~ The 
set A generated by abduction for p is a specification of a 
set of sufficient requirements that the extensional 
database, EDB, should satisfy for the original request to 
be effected. Thus abduction provides a translation of the 
original view update request on the whole database, DB, 
into an update request on the extensional database, EDB, 
defined through A. To illustrate these ideas and the basic 
strategy of an update procedure let us consider a simple 
example. 
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example 1 
IDB: P(x) + B(x) 

WC). 
EDB: 

B(d). 

Update: insert(p(a)) 

The first step, step A, of our update procedure is to solve 
abductively the query p(a) on IDB alone irrespective of the 
information in EDB. Reasoning backwards from t p(a) 
we obtain t B(a) where B(a) is an abducible. To 
complete the proof we can assume B(a) since it is 
consistent to do so thus giving a successful abductive 
proof with A={B(a)}. This in effect translates the 
insert(p(a)) request on DB to the update request 
insert(B(a)) in EDB. Schematically: 

The second step, step B, of the update procedure would 
involve solving the update problem on EDB generated in 
step A. In this example this would be achieved by adding 
B(a) to EDB. (As mentioned earlier, in this paper we will 
not be concerned with how step B is accomplished). 

In general, the existence of negation complicates the view 
update problem but we can maintain the close connection 
with abduction by adapting and extending the abductive 
approach introduced in [Eshghi and Kowalski 891 for 
simulating and generalizing negation by failure in logic 
programming. The related abductive framework now 
allows negations, as well as base predicates, to be treated 
as abducibles. Then as before, an update request insert(p) 
is translated to an update request on EDB through the 
result A of abduction for explain(p). 

Finally, for delete view update requests, e.g. delete(p), the 
abductive approach for negation will allow, as we shall 
see in the next section, to treat these as insert requests, 
e.g. insert(not p) and thus provide a completely uniform 
framework with a single procedure for both insert and 
delete requests. 

3. Non-definite databases 

The existence of negation in IDB introduces added 
complications to the view update problem. In [Guessoum 
and Lloyd 90a] and [Decker 891 it has been pointed out 
that it is possible for some solution of an update request 
drawn from SLDNF derivations, to be invalidated due to 
negation. One way to avoid this problem of invalidation, 
proposed in [Guessoum and Lloyd 90a], is to impose the 
strictness condition [Kunen 871 on IDB. In [Decker 891 
this problem is tackled by trying to find all possible ways 

in which an update request can be effected thus ensuring 
that any valid solutions would be amongst the ones 
found. In this section we present the full abductive 
framework that we will be using which incorporates 
negations as abducibles and describe how the basic ideas 
and strategy for the update procedure presented in the 
previous section carry through for the case where negation 
is present. In the following sections we will see how the 
complications of negation are handled within this 
abductive approach. 

Given a general logic program with negative conditions, 
P, the abductive framework for negation [Eshghi and 
Kowlaski 891 associated with P is cP*, A*, IC*> where: 
l P* is the (definite) logic program obtained from P by 
replacing each negative literal, -q(t), by a new positive 
literal q*(t); 
l A* is the set of predicate symbols, q*, introduced in P*; 
l IC* is the set of denials 

+- q(x), s*(x) 
and meta-level statements 

Demo(P*uA, q(x)) v Demo(P*uA, q*(x)) 
for all predicate symbols, q*, introduced in P*. 

Here IC* is to be thought of as an integrity theory which 
any generated set of hypotheses A together with P* must 
satisfy. In the semantics of stable models that we 
associate to P (and generalized stable models for cP*, A*, 
IC*> see [Kakas and Mancarella 90a]) the meta-level 
integrity constraint Demo(P*uA, q(x)) v Demo(P*uA, 
q*(x)) means truth of the disjunction q(x) v q*(x) in these 
models and can be replaced by this object-level disjunctive 
integrity constraint. 

For the problem at hand where P is IDB we need to adapt 
this framework (due to delete requests) by introducing a * 
new predicate q* for all predicates in IDB. Furthermore, 
this framework is extended by treating the base predicates 
and their negations as abducibles, giving the abductive 
!iXIIEWO& 

<IDB*, Ab, IC*> 
where Ab is the set of all base predicates together with a 
new predicate, a*, for every view or base predicate a, and 
IC* is defined as above for every predicate symbol a*. 
Note that the extensional database EDB is not taken into 
account in the definition of this abductive framework. For 
the following example: 

example 2 
IDB: p(x) +- not q(x) 

q(x) +- B(x) 
the associated abductive framework is: 
IDB*: PC4 + q*(x) 

q(x) * B(x) 
Ab: {B, B*, p*, q*l 
1c*: + q(x), s*(x) q(x) v s*(x) 

+ p(x), p*(x) p(x) v P*(x) 
6 B(x), B*(x) B(x) v B*(x) 
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With this framework the basic strategy for the update 
procedure remains as before: Given a view update request 
insert(p), the fist step, step A, tries to solve abductively 
the query t p in <IDB*, Ab, IC*> generating a set of 
abducibles A such that 

IDB* u A entails p 
IDB* u A is consistent and does not violate the 

integrity constraints in IC*. 
This A translates the original update request into an 
update problem, Update(A, EDB), on EDB, i.e. 

I I 

I insert(p) inDB 1 Ayonwi Update& EDB) 1 

1 I3 I 1 

Then the second step, step B, of the update procedure will 
solve the Update(A,EDB) problem by drawing a suitable 
set of transactions, Tr, on EDB such that Tr(EDB) entails 
any assumption in A involving only base predicates. 

One useful way to view these steps of the update 
procedure is to regard step A as an investigation of 
whether the update request can indeed be supported by 
IDB, by finding a sufficient set A of “beliefs” about the 
base predicates that could achieve the request. Then step B 
can be regarded as a revision of “beliefs” with priority on 
the beliefs expressed by A over those present in EDB, 
whenever a conflict exists between the two. At the end 
the new set of “beliefs” Tr(EDB) ensures that the update 
request is satisfied. 

In the case where step A fails to return any A this 
indicates that the update request, insert(p), can not be 
supported by IDB, no matter how EDB is changed. Hence 
failure to find a A means that the update request in not 
“well-posed” and the update procedure would “fail”. For 
the update request to succeed it will be necessary to 
change the view IDB itself. In section 6 we will indicate 
how this can be done, without changing the form of the 
update procedure, by suitably extending the set of 
abducibles Ab. 

An abductive solution, A, is usually required to be 
minimal in the sense that no proper subset of A is itself a 
solution. Despite this minimality condition it is possible 
that there could exist many different minimal abductive 
solutions, A 1, . . . ,An, each of which will define a 
different way in which the update request can be satisfied. 
In this paper, we will not study the important problem of 
defining a preference among these different choices and 
only make a few comments on this problem here. 

Some of these choices may be invalidated due to the 
integrity theory of the database (see section 6) but it is 
still possible for more than one solution to remain. It 
may be that domain specific priorities on the abducibles 
(base predicates) exist which can be used to provide a 

preference between these choices. Another way to choose 
between different solutions is to prefer those that have 
fewer additional consequences when effected in the 
database. Note that due to the presence of negation as 
failure in the rules of IDB it is possible for a non 
minimal solution to be prefered over its minimal subet 
under this criterion. Yet another way is to use some 
facility, like query-the-user, to generate tests that would 
discriminating between these choices by rejecting those 
that are incompatible with the results of these tests. 
Unfortunately, even in the case where all of these 
methods are used it is not always possible to get a unique 
prefered choice or indeed if such a choice exists that this 
will be the correct one. In view of this we would propose 
an alternative complementary approach to this problem 
whereby a method for recovery from inconsistency that 
allows backtracking to previous update requests is 
developed. Then if in the face of new information, eg. 
new update requests, the database becomes inconsistent 
due to a wrong choice of solution at some earlier update 
we would be able to recover by backtracking and choosing 
another solution. Such a truth maintenance system can be 
developed in a natural way within our abductive 
framework by recording and manipulating the abductive 
solutions (see [Kakas and Mancarella gob]). Together 
with this recovery mechanism we could also generalize 
the query evaluation methods of the database to allow 
conditional answers to queries that make explicit the 
dependency of any answer to a query on the choice of 
solutions to the update requests prior to the query. In this 
way the database can recover from a wrong choice when 
this is made apparent while in the meantime it safeguards 
against mistaken choices by considering any piece of 
information extracted from the database that depends on a 
choice of solution to an earlier update request to be 
conditional on that choice being correct. 

In order to illustrate the basic structure of the abductive 
procedure let us consider example 2 with EDB = (B(a)} 
and the update request insert(p(a)). The abductive search 
space of step A is shown below: 

t-F@) 
I +-4*(a) 
!, 

4 *(a) 
I 

+qW 
I 464 
! 

+-B*(a) 

I 
0 

A = {q*(a)3 
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giving A = { q*(a), B*(a) } where 0 denotes success of a 

branch and W failure. Any part of the search space 
enclosed in a bold outlined box shows the consistency 
checking of the new hypothesis that is added to the A. 
This is done by adapting and extending the consistency 
method of [Sadri and Kowalski 881. Note that in such a 
consistency tree success in showing the consistency of 
the abducible at the top requires that all its branches end 
up in failure. In the large bold box the hypothesis q*(a) is 
checked against the integrity constraint t q(x),q*(x). At 
the tip of the branch the required failure of B(a) triggers 
the query t B*(a) due to the integrity constraint B(a) v 
B*(a) which in turn requires B*(a) to be ad&d to the A. 

From the generated A = (q*(a), B*(a)} the original view 
update request has been reduced to Update (B*(a), EDB) 
which can be effected by removing B(a) from EDB, i.e. a 
minimal set of transactions Tr would be Tr = 
W~WW)l. 

Finally, delete requests such as delete(p) are handled by 
transforming them to an insert request, i.e. 

delete(p) W insert(not p) W insert(p*) 

In the previous example 2 the delete request, delete(q(a)), 
will be transformed to the abductive query t q*(a). Its 
search space will be the same as that shown for 
insert(p(a)) without the first resolution step and 
subsequently the solution will be the same, i.e. Tr = { 
remove(B(a)) }. In this way inserts and deletes are treated 
uniformly in the same way within one procedure. This 
allows us to generalize in a trivial way the set of possible 
updates by allowing mixed multiple requests of the form 

insert(p1) and . . . insert@n) and delete(ql) and . . . and 
delete&). 

Such an update request is transformed to the abductive 
Query 

+ Pl ,...&I, ql*,...,qk* 
for step A. 

4. Main features of the update procedure 

In this section we illustrate the main features of the 
update procedure and the way it handles various problems, 
in particular those related to negation discussed in the 
previous section, through a series of examples. These 
will also be helpful to explain further the defmition of the 
abduction procedure of step A before its formal definition, 
which will be given in the next section. 

example 3 
IDB*: p&B* EDB: B. 

P+B 
Update: delete(p). 
The abductive search space for the query t p* is: 

_[ 

A = {P’} 

L I 0 
fJi1 

! 
The abductive procedure fails to find a A. The reason for 
this is the fact that for the consistency checking of any 
abducible all branches in the consistency tree must end in 
a. Here the second branch of the consistency search space 
for p* ends in Cl due to the fact that for the first one to 

end in W B has to be added in the A. 

The fact that the abductive procedure fails to find a A 
indicates that the update request can not be supported by 
any set of beliefs in EDB with the given IDB: if we want 
to satisfy the update request we must change IDB in some 
way (see section 6). Thus we see that the naive “solution” 
of removing B from EDB which is invalidated by the 
presence of negation is not drawn within our approach. In 
general, the invalidation due to negation is subsumed by 
the abductive procedure of step A. As a result, it is not 
necessary to impose the restriction of strictness onto IDB. 
Consider the following non-strict related example: 

example 4 
IDB*: p+B*,Bl 

P+-B 
Update: delete(p) 
The abductive search space fort p* is: 

EDB: B. 
Bl. 

A = {P’) 

giving a final A of {p*, B*, Bl*}. Then the update 
request can be satisfied if B* and B l* (or 7B and 7Bl) are 
true in EDB which is achieved, for instance, by Tr = 
(remove(B), remove(B 1)). Another non-strict example is: 
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example 5 
IDB*: p-+-q*,B 

q+Bt*,B 
EDB=0 

Update: insert(p) 

The update request requires q* to be consistent. There are 
two sets of hypothesis that can support the consistency of 
q*, reflecting the two possible ways the goal t B, BI* 
can fail in the consistency tree of q*. At such a goal we 
have a forking (backtracking point) in the abductive 
procedure, giving AI={q*, B*) and A2=(q*, BI}. The 
success in proving p requires the additional assumption B. 
The consistency check of B will reject AI and give as 
final A only A = {q*, BI, B ). Notice that the procedure 
takes an active view towards ensuring that required 
negations are consistent. This means that when a 
negation q* is required, instead of first looking for the 
non-failed branches oft q and then trying to make them 
fail, we try from the start to make all branches of tq 
fail. Moreover the information about the failure of each 
branch, which is in fact part of the solution to the update 
request, is dynamically recorded in the A and is used to 
ensure that the failure of subsequent branches is indeed 
consistent with that of the previous ones. 

Whenever the update request is not ground or when local 
variables are involved in the definition of the view 
predicates the generated A in step A is not fully ground. 
Consider for example: 

example 6 
lDB*: P + B I(x),B2(x) 

EDB: Bl(a). 
Update: insert(p) 

The abductive procedure of step A can be extended to a 
form of constructive abduction that allows existentially 
quantified hypotheses. During the execution of the 
procedure a “grounding” substitution is applied that 
replaces any such variable with a new (skolem) constant, 
The final generated A for this example will be 
A=(3y(BI(y),B2(y))} obtained by reversing the grounding 
substitution. Then one solution of the reduced problem, 
Update(A, EDB), that is minimal with respect to what 
already exists in EDB is given by TrI={add(B2(a))) but 
notice that another solution would be Tr;?= { add( B I(o)), 
add(B2(o))} where ‘0’ is a new individual. Similarly, for 
the view, IDB*: p(x) t BI(x),B2(x), and the update 
request, inser@xp(x)), the same A and thus the same two 
solutions will be generated. 

Another interesting example with local variables is : 
example 7 
IDB*: pi- Bl*(x),B2*(x) 

EDB: W(a). RW. B3W 

B t(b). W(b). 
Update: delete(p) 

The consistency of p* requires that no individual ‘0’ exists 
such that BI(o) and B2(0) are both false. This is handled 
by adding the denial Vx(t BI*(x),B2*(x)) to the 
abductive assumptions resulting in the final A={p* , 
Vx(BI(x)vB2(x))}. Hence the required transactions Tr are 
defined by the condition that Tr(EDB) must entail 
Vx(BI(x)vB2(x)). Such abduced denials are first checked 
for consistency against the current assumptions in the A 
and then they act as new additional integrity constraints 
that must be satisfied by any subsequent additions to the 
A. This will be done in the consistency phase of the 
procedure alongside with that for the constraints IC* and 
any constraints of the database. For more discussion on 
non ground updates and more general integrity checking 
see section 6. 

5. Correctness and completeness of the 
Update Procedure 

In this section we will present the formal definition of the 
abductive proof procedure with theorems for its 
correctness and completeness. We will show that 
whenever the procedure succeeds there exists a state E of 
the extensional database such that the update request is 
true in the stable model of the resulting database. 
Similarly, under suitable conditions on IDB, the 
procedure is complete in the sense that if there exists a 
state E of the extensional database such that the update 
request is true in the corresponding stable model of the 
database, then the procedure will generate a sufficient set 
of assumptions to define this state. In appendix A we 
review the notion of stable models and discuss how these 
are appropriate for deductive databases and the view update 
problem. 

As indicated by the examples of the previous sections, the 
abductive proof procedure is an interleaving of two 
activities: 1) reasoning backwards for a refutation 
collecting any required abductive assumption and 2) 
checking for the consistency of these assumptions. The 
procedure will be defined by suitably adapting and 
extending the procedure of [Eshghi and Kowalski 891 
which itself can be seen as an extension to SLDNF. In 
this paper, in order to simplify the presentation we will 
define only a restricted form of the procedure where only 
ground abducibles are allowed to be abduced. 

In the sequel, given an atom L=p(tl,...?tk) (resp. 
PVl,..., tk)) we will denote by L* the atom p*(tI,...,tk) 
(resp. p(tl,...&)). Moreover an abducible atom is called 
base abducible if it has the form B(tI,...,tk) or 
B*(tl,..., tk)? where B is a base predicate. 
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Definition (safe selection rule) 
A safe selection rule R is a (partial) function which, 
given a goal t Ll, . . . , Lk k2l returns an atom Li, 
i=l ,. . .,k such that: 

either i> Li is not abducible; 
or ii) Li is ground. 

From now on we will refer to a safe selection rule R. 

Definition (abductive proofprocedure) 
An abductive derivation from (Gl Al) to (Gn An) 
via rule R is a sequence 

G1 Al), (G2 A2), . . . , (Gn An) 
such that for each i>l Gi has the form t Ll,...,Lk, 
R(Gi)=Lj and (Gi+l Ai+l) is obtained according to one of 
the following rules: 

If Lj is not abducible, then Gi+ l=C and 
Ai+l=Ai where C is the resolvent of some 
clause in lDB* with Gi on the selected literal 
Lj; 
If Lj is abducible and Lj’ Ai, then 
Gi+l= +Ll ,..., Lj-l,Lj+l,... ,Lk and 
Ai+l=Ai; 
If Lj is a base abducible, Lje Ai and Lj*t~ Ai 
then Gi+l = tLl,..., Lj-1, Lj+l,..., Lk and 
Ai+l = Ai U{Lj); 
If Lj is a non-base abducible and Lje A and 
there exists a consistency derivation from 
((t Lj’} AiU(Lj}) to (0 A’) then 
Gi+l= tL1 ,..., Lj-1, Lj+l,..., Lk and 
Ai+l = A’. 

Steps Al) and A2) are SLD-resolution steps with the 
rules of IDB* and abductive hypotheses, respectively. In 
step A3) and A4) a new abductive hypotheses is required 
and it is added to the current set of hypotheses provided it 
is consistent. Note that in case A3) the consistency 
checking is trivial. 

A consistency derivation from (Fl Al) to (Fn An) 
is a sequence 

(Fl Al), (F2 4?) . . . (Fn An) to (Fn An) 
such that for each i>l Fi has the form (tLl,...,Lk} u 
Fi’ and for some j=l ,...,k (Fi+l Ai+l) is obtained 
according to one of the following rules: 

Cl) If Lj is not abducible, then Fi+l = C’ u Fi’ 
where C’ is the set of all resolvents of clauses 
in IDB* with tL1 ,. . .,Lk on the literal Lj and 
0~ C’, and Ai+l=Ai; 

C2) If Lj is abducible, Lj is ground, Lje Ai and 
k>l, then Fi+l={tLl,..., Lj-1, Lj+l,...,Lk} 

u Fi’ and Ai+l=Ai; 
C3) If Lj is abducible, Lj is ground and Lj*E Ai, 

then Fi+l=Fi’ and Ai+l=Ai; 

C4) If Lj is a base abducible, Lj is ground, Lje Ai 
and Lj*’ Ai, then Fi+l=Fi’ and 
Ai+l=Ai U {Lj*}; 

C5) If Lj is a non base abducible, Lj is ground and 
there exists an abductive derivation from 
(CLj’ Ai) to (0 A’) then Fi+l=Fi’ and 
Ai+ ISA’. 

The consistency derivations do not rely on a particular 
selection rule, since in general all the possible ways in 
which a conjunction tLl,...,Lk can fail should be 
explored. This introduces an extra non determinism in the 
proof procedure. In case Cl) the current branch splits into 
as many branches as the number of resolvents of 
+L1 ,...,Lk with the clauses in IDB* on Lj. If the empty 
clause is one of such resolvents the whole consistency 
check fails. In case C3) the current branch is already 
consistent under the assumptions in Ai, and this branch is 
dropped from the consistency checking. Case C4) and C5) 
correspond to the enforcement of the disjunctive integrity 
constraint Lj* v Lj: the current branch of the consistency 
search space can be dropped provided tLj* is abductively 
provable. Notice that this may require new hypotheses to 
be added to the current A. In C4) this is accomplished by 
adding Lj*. 

The correctness and completeness results of the procedure 
will be stated in terms of a set of transactions on the 
extensional database. By a transaction we mean an action 
involving the addition or removal of tuples from the 
extensional database. As mentioned above, we are only 
concerned with the problem of generating a specification 
for the set of transactions on EDB which, if effected, 
would accomplish the update request. This specification is 
obtained from the set of assumptions A generated by the 
procedure, by dropping any non base abducible. In the 
sequel we will denote by Tr(E) the state of the 
extensional database resulting by effecting on E each 
transaction in Tr. 

Definition (transactions associated with a A) 
Let A be a set of assumptions generated by the abductive 
procedure. Then TEA denotes any set of transactions such 
that, given a state E of the extensional database, for each 
base abducible LEA (L*E A), TEA I= L (- L). 

The soundness theorem is proved using the following 
lemma which justifies the above definition of transactions 
drawn from a successful abductive derivationl. 

Lemma 1 

1 The technical proofs are omitted from this paper 
due to lack of space and can be found in [Kakas and 
Mancarella 9Oc]. 
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Let JDB be locally stratified, Q be the conjunction 
Al,...,An,~An+l,.,.,lAm. Assume that 
(+-Al,...,An,A*n+l,...,A*m {>> has an abductive 
derivation to (0 A). Then for each EDB, if M is a stable 
model of IDBuEDB such that for each base abducible 
LEA (L*E A) M t= L (TL), then for each non base 
abducible p*(tl ,... ,tn)EA, Mb-p(tl,..., tn). 

Theorem 1 (correctness) 
Let lDB be a locally stratified database, u be the update 
request insert(L) (resp. delete(L)). If (tL {)) (resp. (G-L* 
{})) has an abductive derivation to (Cl A) then for any 
EDB, TrA(EDB) accomplishes u, i.e. L (resp. -,L) is 
true in the stable model of IDB u Tr(EDB). 

For completeness, it is necessary to impose further 
restrictions on IDB. These restrictions are required to 
ensure that the abductive procedure does not loop 
indefinitly and does not flounder (see Lemma in appendix 
A). To do this, we define (appendix A) the properties of 
acyclic@ and of allowedness for intensional databases, 
suitably adapting similar definitions for logic programs 
(see [Apt and Bezem 901 and Fopor 873). 

Theorem (completeness) 
Let IDB be an acyclic and allowed intensional database, u 
be the update request insert(L) (resp. delete(L)). If there 
exists an extensional database EDB such that L (resp. -L) 
is true in the stable model of IDBuEDB then (tL {}) 
(resp. (tL* {}) has an abductive derivation to (0 A) 

such that EDB I= L’ (- L’) for each base abducible Lk A 
(L’*E A). 

6. Extensions 

An important feature of the particular approach to the 
update problem presented in this paper is the fact that this 
can be naturally extended in various directions. The 
semantics of stable models will allow a straightforward 
formalization of these extensions. In this section we will 
briefly discuss these different ways in which the update 
procedure can be extended. These are currently under 
investigation and will be presented elsewhere. 

Let us first consider the case where no A is found in step 
A. This means that IDB can not support the update 
request no matter how EDB is changed. In order to satisfy 
the request we need to change the view IDB but this 
should not be done in an ad hoc way. The fact that such 
situations of no A arise means that some (perhaps all) of 
the rules in IDB are defeasible and/or some predicates in 
IDB are incompletely defined. Such .jncomplete 
knowledge representation is typical of the problems for 
which abduction has been developed in AI (see e.g. [Poole 
88]), [Eshghi and Kowalski 891). Abduction provides an 

effective way for handling such knowledge: every 
defeasible rule in IDB, p(x) t Conds, can be transformed 
into p(x) c Conds, ah*(x) in the abductive’ framework, 
where ab is a new abducible predicate and, similarly, for 
every incomplete predicate, p(x), a new rule p(x) t UP 
is added into the abductive framework where again Zp is a 
new abducible predicate. Intuitively, ab* can be thought 
of as standing for “not abnormal” or “normal” and 8p for 
some “unknown” cause for p. With these transformations 
the structure of the abductive framework and update 
procedure remains unchanged. By keeping in EDB 
information about these new abducibles we get the effect 
of changing the rules in IDB without altering the rules 
themselves, i.e. the rules are implicitly changed in such a 
way that any of these changes can be undone and the 
original lDB recovered. An appropriate priority ([Kakas 
and Mancarella 891) can be given to the ah(x), Sp(x) 
abducibles relative to the base predicate abducibles so that 
altering the rules is used only as a last resort, i.e. when 
no A with base predicates only exists. Let us reconsider 
example 3 where we are given that the first rule is 
defeasible: 

example 3’ 
lDB*: p t B*, ab* 

pc B. 
EDB: B. 

Update: delete(p) 
Then step A of the update procedure will generate, in 
exactly the same way as in example 4, A = (p*, B*, ab} 
indicating that to delete p we must remove B and “switch 
off’ the fmt rule by adding ab in the database. 

In section 4, we briefly discussed how the abductive 
procedure can handle non ground hypotheses. When such 
hypotheses involve only base predicates a straightforward 
extension of the abductive procedure given in section 5 
can be defined to achieve this [Kakas and Mancarella 90~1. 
For the case where the required hypotheses in A contain 
abducibles corresponding to negations of view predicates, 
eg. 3 xq*(x) where q is a view predicate, we can extend 
further this constructive abduction procedure with a form 
of constructive negation that follows from our treatment 
of negation through abduction. For an example consider: 

example 8 
IDB*: P + s*(x), B l(x) 

EDB: Bl(a). F?(a) 
q(x) + B2W 

Wb). 
Update: insert(p) 
The query t p solved by this extension of the abductive 
procedure will give A = (3x (Bl(x), q*(x), By*)). 
Possible transactions corresponding to this A are: 

Trl = { remove(Bz(a)) ) 
Trz = WmmOWbN, add(B l(b)) I 
Tr3=( add(Bl(o))} for a new object ‘0’. 
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This extension would then allow us to remove the 
allowdeness condition and also enable us to handle general 
update requests, insert($) (delete($)), where $ is any first 
order formula. This would be done by first applying a set 
of transformations as in lLloyd 871 to transform the rule 
pt $ where p is a new predicate symbol into a logic 
program and then solving the request insert(p) (delete(p)). 

Another important extension that can be naturally 
included in our approach is the dynamic integration of 
integrity checking of the possible solution to the update 
request against an integrity theory IDB that might exist 
with the deductive database. This integrity checking can 
be included as part of the already existing consistency 
checking with IC* in the procedure. Now the consistency 
checking for any required abducible will be done with 
respect to IC*uIDB rather then just IC*. An example of 
this extension is as follows: 

example 9 
lDB*: P(x) +- q*(x) 

EDB: Bl(a). &(a). 
q(x) + B 109 
Bl(b). 

IDB : + q*(x), B2W 
Update: insert@(a)). 
The abductive search space fort p(a) is: 

The abductive approach for negation presented in @3shghi 
and Kowalski 891 provides a way to generalize negation 
as failure to handle non-locally stratified programs such as 

p+notq 
q +- not p. 

and hence the abductive procedure of step A which is 
based on such a treatment for negation can also handle 
such programs. The added complication from such 
programs is that there exists more than one stable model, 
e.g. in this example there exists two stable models Ml = 
{p}, M2 = {q}. Hence in the example 

IDB*: p+q*,B EDB=0 
q+p* 

Update: insert(p) 

the generated A = {q*, B} chooses the first stable model 
Ml and this must be made explicit by recording the 
abducible q*. In effect, our update procedure can deal 
successfully with such non-locally stratified views, 
without any change in step A, by changing step B to 
alIow a new type of transaction where negations of view 
predicates are explicitly added in the database. Technical 
results for this extended procedure would be expressed as 
before with the difference that any reference to “the stable 
model of DB” is replaced by “the existence of a stable 
model of DB”. 

+PW 
I tq*(a 
I 

A = Is*(a)) 
+ q(a) tB44 

I 
+Blta) L 

Lj 

giving as a final A the set {q*(a), BI*(a), Bz*(a)}. Hence 
in step B apart from removing B l(a), which makes Tq(a) 
provable, we must also remove B2(a) to make Tq(a) 
consistent with IDB. The semantics of stable models for 
logic programs P can be generalized to the case where P 
is replaced by an abductive framework cP,A,IC> (see 
[Kakas&Mancarella90]). This generalization when applied 
to the framework <IDB*,A,IC*uIDB> provides an 
appropriate semantics for the extended update procedure 
that incorporates the integrity checking of IDB : when 
this procedure succeeds then there exists a model of DB 
(generalized stable model) where both the update request 
and IDB are true. 

7. Conclusions 

The problem of view updates in deductive databases has 
been studied within an abductive approach. We have 
argued that this problem is naturally related to abduction 
and have used this relation to translate any given view 
update request to an equivalent update problem on the 
extensional (relational) part of the deductive database. A 
common single update procedure for both insert and delete 
requests is developed which handles successfully the 
complications arising from the presence of negations. An 
important feature of the approach based on abduction is 
the fact that this can be naturally extended along the lines 
discussed in section 6 in many desirable directions to give 
a more general solution to the problem. 

Finally, in view of the fact that abduction can be used 
successfully for non-monotonic reasoning in a variety of 
problems (see e.g. [Poole88], [Eshghi and Kowalski 891 
[Shanahan 891 [Kakas and Mancarella 891) and the fact 
that the view update problem is closely related to 
abduction, an important message can be drawn: solving 
the view update problem (irrespective of the method of 
solution) will enhance the capabilities of deductive 
databases. 
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APPENDIX A 
In the following definitions HB(P) denotes the Herbrand 
base of a logic program P. 

Definition (level mapping) 
Let P be a logic program. A level mapping I 1 is a 
function I I : HB(P) + N. Given a level mapping I 1 its 
extension to ground negative literals is given by I-Al=lAl. 

Definition (acycliciry) [Apt and Bezem 901 
A logic program P is acyclic if and only if there exists a 
level mapping I I such that for each clause A t 
Ll,. . . ,Ln in ground(P) IAI>ILil for each i= 1,. . .,n. 

Let us now define the notion of allowedness for 
intensional databases. In the following definitions by 
local variable we mean a variable which occurs in the 
body but not in the head of a clause. 

Definition (floundering) 
A derivation leading to a goal containing only non 
ground abducibles is said to flounder. 

Definition (allowedness) 
An intensional database IDB is allowed if for each 
clause H t W any variable occurring in an abducible 
literal of W also occurs in a non abducible literal of W. 

Lemma 
Let IDB be an allowed database and tQ a ground goal. 
Then no abductive or consistency derivation resulting 
from this goal flounders. 
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