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ABSTRACT 

In several image applications, it is necessary to retrieve 
specific line segments born a potentially very large set. In this 
paper, we consider the problem of indexing straight line 
segments to enable efficient retrieval of all line segments that 
(i) go through a specified point, or (ii) intersect a specified line 
segment. We propose a data organization, based on the Hough 
transform, that can be used to solve both retrieval problems 
efficiently. In addition, the proposed structure can be used for 
approximate retrievals, finding all line segments that pass close 
to a specified point. We show, through analysis and 
experiment, that the proposed technique always does as well as 
or better than retrieval based on minimum bounding rectangles 
or line segment end-points. 

1. INTRODUCTION 

Interest in spatial databases has burgeoned of late, as it has 
become practical to construct large databases that comprise 
spatial rather than alphanumeric data. Several excellent 
approaches have been devised for indexing points in a multi- 
dimensional space, and also for indexing rectangular regions. 
See, for example. [2.9,11.13,15] 

Given an arbitrarily shaped object, the typical strategy is to 
create a rectangular bounding region (or a polyhedral bounding 
region) of the object, and then to index this bounding region. 
(Sometimes multiple smaller rectangles may be used to cover 
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the object). The disadvantage is that the bounding region is 
necessarily larger than the object itself so that some “false 
hits” will be generated. This penalty may be acceptable if the 
bounding region is only a little bit larger than the object that it 
bounds. However, in the case of a line segment, the bounding 
region typically has an area (or volume) much greater than the 
line itself. 

So far, not much attention has been focussed on devising 
index structures for line segments in particular. The 
coordiiates of the end points of the line segment can be used 
for indexing. Thus a line segment in m-dimensional space can 
be represented as a point in a 2m-dimensional space, and any 
well-known index structure can be built over these points. For 
example, the grid-file has been suggested in [4] and the quad 
tree in [14]. Such an index method is of value only when the 
retrieval is based upon the coordinates of the end-points of the 
line. The index provides little advantage for a retrieval based 
on some intermediate point on the line. 

A better option is to divide the space into cells. and store 
with each cell a list of line segments that intersect it. Several 
different techniques have been proposed to divide the space 
into cells. For example, edge Excell [17] and the PMR 
quadtree [8]. A drawback of these. techniques is that 
information regarding each line segment has to be stored 
several times. once for each cell that the line segment 
intersects. Two line segments can intersect only if they pass 
through at least one cell in common. Therefore, the smaller 
the cell size the greater the selectivity. but also the greater the 
storage cost due to information duplication. (Consequently 
much effort has been devoted to sizing the cells adaptively). 

In this paper we propose an index structure for line 
segments, which requires storing a line segment only once, and 
using which it is possible to perform the following retrievals 
efficiently: 

i. Fii all line segments that pass through a specified 
pins 

ii. Fii all line segments that lie in the vicinity of a 
specified point, and 

iii. Fii all line segments that intersect a specified line 
segment. 
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In addition, the following simpler retrievals fall out as easy 
by-products of the index structure constructed: 

i. Find all line segments that are parallel or perpendicular 
to a specified line, 

ii. Find all line segments that are coincident with a 
specified line, 

iii. Emd all line segments that intersect a specified (infinite) 
lirae, 

iv, Find all line segments that include a specified set of 
points, and 

v, Find all line segments that have specified end-points. 

We begin by presenting in Section 2 some motivation for 
studying the line segment indexing problem. Background 
material covered in Section 3 includes a quick tutorial on the 
Hough Trmrrfonn. a simple mathematical operation that is 
central to the data structure proposed in this paper. 

Section 4 is the heart of the paper, in which we present our 
proposed data structure and show how each of the types of 
queries listed above can be handled. In Section 5, we 
analytically compare our indexing to the traditional boundmg 
rectangle method. We con&m our analysis with simulation 
expiments described in Section 6. 

Sections 2-6 deal only with line segments in a two- 
dimensional plane. In Section 7. we show how these ideas can 
be extended to line segments in a multidimensional space. 
We wrap up with some tlnal comments in Section 8. 

2. MOTIVATION 

In machine vision, line segments are found from’edges of 
objects, and these line segments are then used for further 
procesing. For example, to facilitate higher level recognition 
of a pattern or object, one has to determine mutual 
relationships between pairs (or sets) of these line segments. In 
this context, one may wish to find all line segments that pass 
through the end-point of a specified line segment. One may 
also wish to determine all line segments that intersect a given 
line segment. These would be the line segments with which 
the given line segment is likely to have an interaction or 
relationship. This information, when passed to a higher level 
in the recognition process, can be used to &xl known 
gmupings of line segments. 

For example, an optical character recognition system can 
be programmed to recognize as the Hindu numeral 4, any set 
of three line segments where segments A & B share an end- 
point and are at an angle of 45’ to 90’. segment B is within 
15’ of the horizontal, and segment C intersects segment B at 
an angle of 60’ to 120’. Such a system would recognize as the 
numeral 4. any of the line segment groups in Fig. 1. (In a real 
system, the rules would be similar in spirit to the ones given 
above, but could be far more complex). 

The basic idea described above has been used in many 
different applications. For example, in (I]. line segments are 
found in an image and matched against a reference, in the 

Figure 1. A few different ways of writing the numeral 4, 
which can be recognized as a set of three 
intersecting line segments: A, B. and C 

context of scene understanding for robots with machine vision. 
In structured light machine vision systems, stripes of lights are 
projected on an object for threedimensional recognition [ 181. 
The edges of these stripes are line segments whose intersection 
with object features has to be determined. In [lo] line 
segments are fit to the contours of a fingerprint, and used for 
pattern recognition. Similarly, for recognition of roads and 
boundaries in geographical maps, satellite images, and aerial 
images, line segments are the common primitive [7]. 

Line segments are useful in a completely different context 
as well. Electrical connectivity desired on a Printed Circuit 
Board is obtained by the use of piecewise linear metallic 
traces. As boards have grown larger and more complex, these 
traces are “laid out” by computer, rather than by hand. In an 
involved design. an important integrity check is that two traces 
on one layer should intersect only if they belong to the same 
electrical net. This problem boils down to finding all pairs of 
intersecting line segments in a given set. 

Similarly, when creating a “via”, or a hole from one layer 
to another in a PC board, one has to ensure that the hole does 
not go through any traces in any of the intervening layers. 
Treating the hole as a point, this problem translates into 
ascataining that no line segments go through the specified 
point in each of the intervening layers. 

Thus we see that in diverse applications. it is important to 
be able to determine efficiently the set of all line segments that 
either go through a specified point or intersect a specified line 
segment. It is these problems that we address in this paper. 

3. PRELIMINARIES 

The Hough transform [5] was developed as an aid to 
pattern recognition and is widely used today. The basic idea 
in the transform is that each (infmite) line (in a two- 
dimensional plane) can in general be written in the form 
y = mx + b. In other words, it is determined uniquely given 
its slope, m. and its intercept on the Y-axis, b. So, in a 
rr@rm space, in which slope is plotted along one axis and 
intercept along the other, every point uniquely determines and 
is uniquely determined by a line in the regular space. Thus the 
Hough transform provides a one-to-one mapping of lines in the 
original space to points in the transform space. 

Observe that vertical lines are not treated properly. A 
vertical line has an “infinite” slope, and corresponds to a 
point “at infinity” in the transform space. In fact, we would 
like to avoid lines with a large slope since they cause an 
explosion of the ranges of values of transform space 
coordinates. We observe that the line, y = mz + b. could also 
be written as x =ny +c, where n = l4n and c =-b/ht. In 

615 



other words, only one of n and m can have an absolute value 
greater than one for any given line, with n = m = fl for lines 
at a i45’ angle. Let us call the regular Hough transform, 
defined in the previous paragraph, the Hough-X transform. We 
can then define a corresponding Hough-Y transform, into the 
n,c transform space, rather than the m.6 transform space. For 
every line, note that at least one of the Hot&-Y and Hough-X 
transforms is well-defined 

(4 04 

Figure 2. (a) A line in a plane, and two points on it. (b) The 
Hough-X transform of the line is a point, and of the 
points is a pair of lines. 

Now consider a point in the original space. Every pair of 
lines determines a point at their intersection’. But the pair of 
lines correspond to a pair of points in the transform space, and 
these determine a line in the transform space. Thus, a point in 
the original space corresponds to a line in the transform space. 
Mathematically, let the point be (xa,yo). Every line that goes 
through it must have a slope and intercept such that 
yo = mo + b. This equation can be rearranged and written, 
b = -xm + ya which represents a straight line in the m.6 
transform space with a slope of -x0 and an intercept of yo. 
Similarly, the Hot@-Y transform of the point can be written, 
c = -yen + XO, which is a straight line with a slope of -ye and 
an intercept of xg Note that for every point (with bounded 
coordinates) both the Hough-X and the Ho&-Y transforms 
are defined, and that both the slope and the intercept of the 
resulting line are bounded. See Fig. 2. 

4. PROPOSED TECHNIQUE 

4.1 The Data Structure 

Given a database, D, of line segments in a (two- 
diiensional) plane, partition it into two sets. In one set, Dx, 
place all line segments that have slopes in the range [-l.+l]. 
In the other set, Dv. place all line segments with slopes outside 
this range. Extend each line segment in Dx to an infinite line, 
and then obtain the Hot&t-X transform of the line. Thus 
obtain one point in the transform space corresponding to each 
line segment in Dx. 

1. A pair of parallel lines deaamk . p&r at infinity. 

Suppose that the X coordinate in Dx ranges from xmi. to 
xmu, and the Y coordinate ranges born yh to y,. Then the 
m coordinate in the transform space ranges from -1 to +I, and 
theb coordinateatmostfiomy~-max(]x~],]xx,])to 
ymu+max()x~).]x,]). In other words, the ranges of 
values in the transform space are bounded, and are comparable 
to the ranges in the regular space. The area bounded by these 
ranges in transform space will be called the region of interest. 

Four numbers determine a line segment Traditionally, 
these could be the X and Y coordinates of both end-points. 
Instead, for each line segment in Dx, the four values are stored 
along three different attribute axes: 

i. The slope of the line segment. That is, the m 
coordinate. 

ii. The Y-intercept of the infinite extension of the line 
segment. That is, the b coordinate. 

iii. The projection on the X axis of the line segment. That 
is the range xe to xmu. 

Similarly, for each line segment in Dv. values are stored 
along the three complementary attribute axes. 

1. 

ii. 

. . . 
Ill. 

The inverse slope of the line segment That is, the n 
coorflmate. 

The X-intercept of the infinite extension of the line 
segment. That is, the c coordinate. . 

The projection on the Y axis of the line segment. That 
is, the range ymh to y-. 

slope=m 
A 

@ 
Yti 

---_- _ Ja 
X 

/ Inverse Slope 

Figure 3. Two parallel line segments in Dy shown in the X-Y 
plane, and after transformation for our data 
structure, in three-diiensional space. 

Thus an arbitrarily oriented line segment in a plane is 
transformed into a vertical line segment in threedimensions. 
See Fig. 3. Any standard multi-dimensional range indexing 
technique, such as grid file [9]. R -tree [2], R+-tree [ 161. P -tree 
[6]. LSD -tree 131, or z -ordering [I 11, can be used for each of 
Dy and Dx. If necessary, the range on X (or Y) can be 
mapped to two coordinates on different axes, giving a point in 
four-dimensional space. 

4.2 Some Simple Queries 

4.2.1 Coincident with Specified Line 

Obtain the slope of the specihed line. If the absolute value 
of the slope is less than or equal to 1. then obtain the Y- 
intercept as well. The slope and the Y-intercept provide a 
selection on two attributes of elements in the set Dx. There is 
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no selection on the range attribute. One can use any standard could ps through this point However, we know that the 
partial match technique to retrieve all line. segments in the point wrreaponds to a line in the Hough-X transform space 
database that are coincident with a specified line. Observe that and a line in the Hot&-Y transform space. Any line segments 
there is no need to examine Dy at all. On the other hand, if that pass through this point must correspond to a point on one 
the absolute value of the slope. is greater than 1, use the of these lines in the appropriate transform space. Moreover, a 
inverse of the slope and the X-intercept to provide a selection line segment can pass through a point only if the point lies 
on two attributes in Dv. witbin the X-range (and Y-range) of the line segment. 

4.2.2 Parallel or Perpendicular to a Specitied Line 

Obtain the slope of the line. Depending on whether its 
absolute value is greater than one. use it or its inverse to 
perform a single attribute selection on either Dv or Dx. No 
selection is specified on the intercept or range attributes. Thus 
obtain all line segments parallel to a specilied line-. 

To find all line segments perpendicular to a specified line, 
take the inverse of the slope of the specified line. change its 
sign, and then proceed as above. In effect, find a line 
perpendicular to the specified line, and then find line segments 
parallel to this new line. The same i&a can be used to 
retrieve all line segments at a specified angle (or range of 
angles), either absolute OT relative to a given line. 

The if part is only a little more difficult. Since condition 
(ii) is satisfied, the infinite extension of the line segment 
includes the speciEed point However, all points in the infinite 
extension of the line segment will have coordinates outside the 
X and Y ranges of the line segment. That is. the infinite 
extension of the given line segment contains no points in the 
range [Xe, X-1 that are not in the line segment itself. 
Similarly for the. Y coordinate. But, from condition (i). the 
specified point of interest has an X coordinate in [Xb, X-J 
(or a Y coordinate in [Yd. Y-1). Therefore if the specified 
point is included in the inlinite extension of a line segmenf 
then it must be included in the line segment itself. 0 

4.23 Specified End Points 

Using the end points specified, one can compute the slope 
(or inverse-slope), the intercept (X or Y as required), and the 
range (Y or X as required). One thus has a selection specitied 
on all attributes, and can use this to retrieve the relevant line 
segment(s) from Dv or Dx as the case may be. 

4.2.4 Specified Intermediate Points 

As before, if two intermediate points are specified, they 
determine an @finite) line, which has a specific slope and 
intercept. We then have a retrieval with a completely. specified 
selection on two attributes, and a requirement on the other 
attribute that the retrieved items include the specified X (or Y) 
range obtained from the two points. 

Thus we have transformed the retrieval problem into one of 
selecting vertical line segments that intersect a specified query 
region in three-dimensional space. The query region is planar, 
obtained as a product of a line segment parallel to one (the 
range) axis, and a line in the plane defined by the other two 
axes. By splitting the data set in two, and generating two 
separate queries, one for each transform space, we have 
ensured that the line in the plane is bounded, giving us a finite 
query region. This region can be approximated, if necessary, 
by multiple small rectangles that cover the region, so that 
standard rectangle retrieval techniques can be used thereafter. 
Observe that it is only the query region that is being 
approximated, and not the data items. Therefore, there is no 
increase in storage required for data or indexing, even if many 
rectangles are used to obtain a very good approximation of the 
search region. 

If more than two points are specified. first check to see that 
they are collinear. If so. use the two outermost points and 
apply the procedure above. If no6 there cannot be a line 
segment that passes through them all. 

4.3 One Specified Point 

Theorem 1 

A line segment passes through a specified point if and only if 
it satisfies the following two conditions: (4 

Hough-Y 

0 

Hot&X 

(4 

1. 

. . 
11. 

The X (or Y) range includes the specified point. That is. 
given a query point (x&y 0). the line segment must have 
x~~xoIxmu. 

The point corresponding to the line segment in transform 
space lies on the line in transform space corresponding 
to the specified point. That is, b = -xm + yc, where b 
is the Y-intercept, and m is the slope of the line 
segment, for a line segment in Dx (or c = -yen + xo, for 
a line segment in Dv). 

Figure 4. A line segment in the X-Y plane, and the Hough-Y 
and Hough-X transforms of its end-points. Since 
the line segment has a slope greater then 1. the 
transformed end-points meet only outside the area of 
interest in the Hough-X transform space. The 
region between the two lines is shown hatched. The 
dashed line in Fig. 4c corresponds to lines parallel 
to and between the dashed lines in Fig. 4a. 

PrOOfi 
The only if part is straightforward. If only one point is 
specified, a line segment of any arbitrary slope and intercept 

617 



4.4 Intersecting a Specified Line Segment 

4.4.1 A Simple Technique 

Take the two end-points of the specified line segment and 
apply the Hot&-X transform. We thus obtain two lines in X- 
transform space. If the absolute value of the slope of the 
given line segment is no greater than 1. then these two lines 
will intersect within the area of interest in the X-transform 
space. If no& then the two lines will not intersect in the area 
of interest. Similarly, the end-points of the given line segment 
can be used to create two lines in the Y-transform space. See 
Fig. 4. 

Each intermediate. point on the line segment is represented 
by a line in each transform space that lies “between” the lines 
corresponding to the two end-points. Any (infinite.) line that 
intersects the given line segment must pass through an 
intermediate point, and hence must lie ‘between” the two 
lines in the appropriate transform space. Therefore we need 
consider only those line segments whose infinite extensions 
transform to points that he “between” the pair of lines 
obtained by transforming the end-points of the specified line 
segment. This notion of betweenness is illustrated in Fig. 4 
and formally defined below. 

Call the two lines, P and Q. Consider first the case where 
the two lines do not intersect within the region of interest. 
Line P divides the region of interest into two regions, HI and 
Hz. Since line Q does not intersect line P within the region of 
interest, it passes through only one of the two regions. 
Without loss of generality assume that is region HI. Similarly, 
line Q divides the region in two, and line P passes through 
only one of these two regions, say, Hs. Then HI n H3 is the 
desired region between the pair of lines P and Q. 

Now consider the case where the two lines intersect at a 
point within the region of interest. The lines intersect in a 
point that is the Hough transform of the given line segment 
Clearly, no line with the same slope can intersect this line 
segment. That is, no point in transform space with the same 
m (or n) coordinate can be of interest. Two intersecting lines 
divide the region of interest into 4 parts. Two of these parts 
are eliminated by the above rule. The remaining two parts are 
the ones that we consider to he between the two lines. 
Another way of looking at it is that for any given slope, the 
two lines determine the extreme values of the intercepts that a 
line can have and still intersect the line segment. At the 
intersection point of these two lines, the intercept is uniquely 
determined. At all other points, it is a range. 

In addition to the restriction on slope and intercept 
discussed above, two line segments cannot intersect unless 
their X (and Y) ranges intersect. Thus our search region in the 
three-dimensional transform space is given by the area between 
the lines in the m ,b (or n ,c) plane, multiplied by the height of 
the X (or Y) range along the third orthogonal axis. (See the 
Appendix for the mathematics). The retrieval is of all 
(vertical) line segments that intersect this region in three- 
dimensional transform space. As before, two retrievals are 
required, one for the line segments in Dx, and another for the 
line segments in Dv. 

r 
P .A 
h Q 

Figure 5. The extension of line segment AB intersects query 
segment PQ. and their X-ranges intersect, but the 
line segments do not intersect 

4.43 An Exact Technique 

If we perform the retrieval suggested above, we will still 
get some line segments that do not intersect the specified line 
segment. See Fig. 5. The problem is that even though we 
have ensured that the infinite extension of a retrieved line 
segment, such as AB in Fig. 5. does intersect the specified 
query line segment, PQ. the range condition we have set is too 
weak. Consequently, some excess line segments. such as AB, 
are retrieved. 

Consider the region between the lines corresponding to the 
end-points of the query segment in the transform plane. Each 
point in this region corresponds to an (infinite) line that 
intersects the given line segment. This intersection is at a 
point, which has a single X-coordinate (and Y-coordinate). A 
line segment with the corresponding slope and intercept will 
intersect the query segment iff its X range includes this 
intersection X-coordinate (or Y range includes the intersection 
Y-coordinate). Therefore, rather than specifying a range of 
value along the X (or Y) axis, we can actually compute and 
specify a unique X (or Y) coordinate value for each slope- 
intercept pair. Thus, the query region becomes a two- 
dimensional manifold in the three dimensional space. 

A line segment intersects a specijkd query line segment if 
and only if its transjbrm intersects the manifold obtained as 
above. 

What does this manifold look like? For every value of the 
slope, there is a range of values of intercepts, and a 
corresponding range of values of intersection points for line 
segments that intersect the query segment. For example, the 
dashed line in Fig. 4c corresponds to a set of parallel lines 
between the two dashed lines in Fig. 4a. The intersection 
point is simply P. at the bottom end of the dashed line in Fig. 
4c, with a corresponding X coordinate. At the top end of the 
dashed line, the intersection point is Q. with a corresponding X 
coordinate. Between these two ends. as the intercept value is 
changed, the X coordinate of the intersection point also 
changes - linearly. The equation is derived in the Appendix. 
A similar argument applies for every choice of slope value. 
The X value for the intersection point, is cOnstam along the P 
line, being the coordinate of the point P itself. Similarly, it is 
constant along the Q line. Imagine a scroll, or a window 
blind, with a stiff top and bottom. Pull the bottom out a little 
so that it is not in alignment with the top. This is roughly 
what our manifold looks like. 

Turn now to the case of Fig. 4b. The same arguments 
applies as above. The only difference is that as the slope gets 
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closer to the slope of the query segment. the range of 
permissible intercept values gets smaller and smaller, while the 
range of Y (or X) coordinates is not altered. When the slope 
exactly equals the slope of the query segmen& only one 
intercept value is permitted, and that is the intercept value of 
the query segment itself. For this choice of slope and 
intercept the entire range of Y (or X) coordinate values of the 
query segment are acceptable. You could imagine twisting the 
bottom end of the scroll around, while still keeping both top 
and bottom perfectly horizontal, so that in the middle of the 
twist there is a point where the scroll is vertical. 

4.4.3 Intersecting a Specified (Infinite) Line 

Lines with every slope and intercept will intersect any 
given infinite line query object. The only interesting selection 
we can apply is in terms of the range coordinate. The 
intersection point of any line (specified in terms of its slope 
and intercept), with the query line, can be determined 
uniquely2. We thus obtain a two-dimensional manifold in our 
three-dimensional attribute space. We must retrieve the 
transformed vertical line segments that intersect this manifold, 
in response to the query. 

Another way of thinking about this problem is to take the 
end points of a query line segmenL move them infinitely apart 
and solve the line segment intersection problem above. The 
manifolds described above would still be of the same basic 
form, but would simply get stretched (in the intercept and 
range dimensions). Since the given database has some linite 
bounds on the coordinates, and hence intercepts of the line 
segments in is we need perform the retrieval only on a 6nite 
portion of the infinitely stretched manifold 
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Figure 6. A pixel and its neighbors. 1. 2. and 3 pixels away 

4.5 Close to a Specified Point 

Due to noise or error in the image creation, it may often be 
the case that a line that is “supposed” to go through a point 
actually does not do so. Similarly, in a printed circuit board 
layout, design rules may require a minimum gap between a 
trace and a via, as a safety margin. When queried for line 
segments that pass through a specified point, one may therefore 
wish to include line segments that “nearly” go through the 
point From a purely geometric viewpoint, we may be 
interested in line segments that pass a distance no greater than 
6 away from a given poinb essentially requiring the retrieval of 
all line segments that pass through a circular region. However, 
in the digital domain, one has discrete pixels, and error is more 
appropriately measured in number of pixels away. Using the 
standard convention of each pixel having four neighbors, Fig. 

6 shows all pixels upto one pixel away, upto two pixels away, 
and upto three pixels away from a specified point (pixel). 
Observe that each of these k-pixel neighborhoods, for any 
positive integer A. is a square rotated through 45’. Therefore, 
the problem of interest is to find all line segments that pass 
through such a rotated square. 

Y 

Figure 7. A rotated square query region and a line 
intersecting it are shown in the original plane and in 
the Hough-Y transform space. Observe that the line 
L is in Dx. and intersects the vertical disgonal of the 
square (shown dashed), but does not intersect the 
horizontal diagonal. 

Consider lines with absolute value of slope no greater than 
1. These are lines that are closer to the horizontal than 45’. If 
any such line intersects a rotated square, then it passes through 
the vertical “diagonal” of the square. See Fig. 7. Thus the 
problem reduces to lindiig lines that intersect this vertical line 
segment. Using the technique of Sec. 4.4, we observe that the 
Hough-X transform of the end-points of the vertical line 
segment are a pair of parallel lines. (There is no need to take 
the Hough-Y transform of this line segment since we are 
currently considering only line segments with absolute slopes 
less than one). A line segment in Dx intersects a given rotated 
square only if the Hot@-X transform of its infinite extension 
lies in the region between the two parallel lines obtained by a 
Hough-X transform of the top and bottom vertices of the 
rotated square. Moreover. a line segment intersects a given 
rotated square only if its X-range intersects the X-range of the 
rotated square. As in the previous sections, all line segments 
in Dx that intersect the given rotated square can be retrieved 
by means of a selection on all attributes that arises horn these 
conditions. The selected region is a parallelopiped. 

Once more, using the simple range selection described in 
the preceding paragraph is much too generous. We observe, as 
in Section 4.4.2 that a line segment passing through the 
rotated square has a specified range of X coordinate values in 
the intersection, as a function of its slope and intercept. This 
range of coordinate values can Lx described as a piecewise 
liar function, continuous but not differentiable each time a 
vertex of the rotated square is crossed. The three-dimensional 
region thus obtained provides a perfect selection of line 
segments that intersect the (interior of) the given rotated square 
query region. See the Appendix for the mathematics. 

Similar arguments can be applied to line segments in Dr. 
using the leh and right end vertices of the rotated square and 
its ‘horizontal” diagonal. 
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5. PERFORMANCE ANALYSIS 

There are two previous proposals against which we must 
compare ours. One is to use rectangular bounding boxes for 
each data line segment, and for the query regions, and then to 
use an index structure on these boundmg boxes, such as the 
R-tree. The other is to use the coordinates of the end-points of 
the line segments to map the line segment to a point in a 
four-dimensional space, and then to index these points. One 
could then use an index structure such as the grid file. 

It is easy to see that the selectivity obtained by these two 
methods is identical. Since bounding rectangles in two 
dimensions are easier to visualize than equivalent structures in 
four dimensions, we compare the proposals of this paper 
against bounding rectangles in what follows. 

Each line segment is stored and indexed by means of four 
parameter values, both in our proposal and in pevious 
proposals. To this extent, one should not expect the storage 
required for the data, or for in&xing. to be very much 
different for our technique and its competition. 

On the other hand, whereas traditional (end-point or 
rectangular boundmg region) techniques retrieve more items 
than specified in a selection, we are able to perform a retrieval 
of exactly the set of selected items. Through analysis in this 
section, we place a quantitative measure on this improvement 

Performing an exact retrieval using our technique requires 
that we use an index structure that can handle a query region 
that is a polyhedron Most indexing techniques today permit 
only rectangles or, at the most, polyhedra with specified face 
angles [6]. To match available in&x structures, our query 
polyhedron will have to be approximated by multiple 
rectangular regions that together cover the query region. 
Retrievals are then performed on these rectangular regions. 
Observe that no additional storage is involved, and that the 
data and index structures are not altered due to the query. The 
query itself is simply divided into smaller queries that can be 
answered efficiently. See [12] for an excellent study of a 
similar problem in a different context 

Some improvement can be obtained in the traditional 
techniques also, if the query region is thus divided up into 
smaller rectangles. However, this improvement is small. The 
major hurdle is that the data-set still comprises arbitrarily 
oriented line segments each of which has a single bounding 
rectangle. Selectivity can be improved by using multiple 
boundiig rectangles in the data-set as well but this results in 
an increased storage and indexing cost, and is not considered 
here. 

Thii section is organized as follows. In Section 5.1. we 
discuss previous proposals that compete with ours. In Section 
5.2 we describe the analytic technique used in the rest of this 
section. Having established these preliminaries, we discuss the 
point (and region) intersection problem in Section 53. and the 
line segment intersection problem in Section 5.4. In both 
cases, we obtain solutions for the performance of four 
techniques: 

i. Bounding rectangles for data and for query. Call this 
technique B (for Both Bounded). 

ii. Bounding rectangle for data items only, but with an 
exact query region. Call this technique D (for only Data 
items bounded). 

iii. Our proposal for an exactly specified search region. Call 
this technique E (for Exact). 

iv. Our proposal+ with the range axis specified orthogonally. 
Call this technique S (for transform space index with 
Simplified range condition). 

5.1 Analytic Technique 

Consider a line segment of a known length d, at a random 
angle 8 from the horizontal. Without loss of generality, we 
shall assume that 8 is a positive angle: the arguments are 
symmetric for negative values of 8. We shall determine what 
the position of the lower left end points of the segment must 
be for it to intersect the specilied object, where this object may 
be a region, a point or another line segment. 

Assume that the lower left end-points of the line segments 
in the database are uniformly distributed. This is likely to be 
true neglecting boundary effects, that is, if the length of a line 
segment is a small fraction of the range of values in the 
database. Then the area of the region in which the lower-left 
end-point must lie, for the line segment to intersect the given 
object, is a measure of the selectivity of the given query. (The 
!hction of line segments in the answer set is the area of this 
region normalized by the area of the entire database). 

Similar regions can be computed for the positions of the 
lower left end-points that cause a line segment to be retrieved 
in response to the query, for any particular indexing method 
used. The areas of these regions are again proportional to the 
selectivity of the corresponding indexing method, and can be 
used to compute the effectiveness of different index strategies, 

The results obtained can be integrated over the possible 
values of the angle and length of the lines segments, using any 
specified (possibly non-uniform) distributions. if desired. 

5.2 Intersecting a Region 

Consider a rotated square region of side s. The bounding 
rectangle of this region is a square of size 2r, as shown in d- 

Fig. 8a. A line segment of length d at an angle 8 has a 
bounding rectangle that is dcos0 wide and d sine high, as 
shown in Fig. 8b. Such a line segment will be retrieved as 
potentially intersecting the square, using the bounding 
rectangles intersection method, if its lower left end point is 
anywhere in the region shown in Fig. 8c. The area of this 
region is (6 + dcose) x (+.s + d sine) = 
23 + d%inecme + %sdcose + +&sine. If the rotated 
square region is represented exactly and not approximated we 
save sa, as can be seen from Fig. 8d. 

3. The left md-p&r if the line sqmmt is h&at&, and the lower md point 
ifitkvaticaL In~othcrusaonccndp&ltisbDthlow~thnMdtothe 
1CftdtkOtk. 
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Figure 8. The region of possible locations for the lower left 

end-point of a line segment intersecting a rotated 
square query region. (a) The query region and its 
bounding rectangle, (b) A typical line segment and 
its bounding rectangle, (c) The region found by 
bounding rectangles on query and data, (d) The 
region found by bounding rectangles on data, but 
using the query exactly, (e) The region found by the 
exact retrieval technique using our data structure. 
and (f) The region found by the simple retrieval 
technique using our data structure. 

The actual set of lower left end-point values for a line 
segment that intersects the region can be obtained by 
“sweeping” the region to the left and down at an angle 8 for 
a distance d. This region is the one that our technique would 
find and is shown in Fig. 8e. The area of this region is 
s2 + 6sdcose. which is strictly less than the area obtained 
from the bounding rectangles method above. If we use the 
simpler range computation technique with our data structure, 
then we pay an area penalty of sr as shown in Fig. 8f: there is 
a single lar er parallelogram and its area is 
-5.r x(d + 2.rhse)xcose. $ Fig. 8 considers the case where 
8 < 45 “. so that the line segment belongs to Dx. For line 
segments in Dv, the figures would look essentially similar, and 
the computations are identical. The only exception is Fig. gf, 
where the larger parallelogram has two of its sides horixontal 
rather than vertical, since a Y range condition is used isntead 
of an X range condition. The extra area due to the simplitkl 
range condition is still ~2. 

Assuming that the angle 8 is uniformly distributed, we can 
integrate over it to obtain an expected area for each method as 
shown in the table below. If d is small compared to s, then 
the savings from our method is small. Methods that bound the 
query region exactly win, by a factor of roughly two. over 
methods that using a bounding rectangle for the query region. 
However, if s is small compared to d. then the savings from 
our method could be a very large factor. For the applications 
discussed in Section 2. s is expected to be small, since we 
typically want to find line segments that pass close to a point 
of interest. 

In fact, for the point intersection problem, s goes to zero, 
giving us a theoretically unbounded benefit. However, 
considering a discrete image, a point is one pixel. So setting 
s = 1, we obtain the result that our method outperforms 
bounding rectangles by a factor of approximately d, the 
expected length of a line segment in the databases, measured 

Figure 9. The region of possible locations for the lower left 
end-point of a line segment intersecting another line 
segment (a) The query region and its bounding 
rectangle. (b) A typical line segment and its 
bowling rectangle, (c) The region found by 
bounding rectangles on query and data, (d) The 
region found by bounding rectangles on data, but 
using the query exactly, (e) The region found by the 
exact retrieval technique using our data structure, 
and (I) The region found by the simple retrieval 
technique using our data structure. 

in pixels. 

5.3 Intersecting a Line Segment 

Consider a line segment L. of length s at an angle a, as 
shown in Fig. 9a. Now we can no longer assume a to be a 
positive angle without loss of generality. So we let a range 
between -~2 and N2. The bounding rectangle of this line 
segment is of width scosjal. and height ssinlal. As 
before, the bounding rectangle of L intersects with the 
bounding rectangle of a candidate line segment of length d 
and positive angle 8, if and only if the lower left end point of 
the latter lies in of 
(dcos0 + scos I a I ) x (d sin0 + sk I ofycee Figs. 9b 2: 
5%. If the query line segment is not approximated by a 
bounding rectangle, then the search region, as shown in Fig. 
9d. saves two triangular regions at the top-right and bottom-left 
comers with a combined area of 
scoslalxssinlal. for a total area of 
dkosfhine + sdsin&m 1 a I + sdcos9si.n I a I . 

The actual region in which the lower left end-point of a 
line segment intersecting L may he can be obtained once more 

by “sweeping” L to the left and down at an angle 8 for a 
distance d. ‘lhe result is a parallelogram with sides of length 
s and d. as shown in Fig. 9e. The area is sdsin( I 8-a I ). A 
larger parallelogram is obtained, as shown in Fig. 9f, if we use 
our proposal with the simplified range condition. The area is a 
little messy to compute and depends on the relative values of 
a and 8. For the specific case shown in Fig. 9f, with a4kf3, 
the area is 
(d +scosIaIkoti)x(ssinIaI +scosIaItane)xcose. 
The general solution can be shown through analyzing such 
cases, to be 

(sd + s2 w)sin( I 0-a I ), provided that the data line 

segment belongs to Dx. The solution for data line segments in 
Dv can be derived: 

(sd + s2 .w)sin( I 9-u I ). 
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Technique Region Query Line Segment Query 

B (Bounding Rectangles) 2.~2 + 4’ksdh + 2dMt dMr + sM + 8sdM 

D (Data Bounding Rectangle) s2 + 4’bsdhr + 2d4fr d#c + 8sd& 
E (Our Exact Proposal) sa + 2\‘2sdm 2sdh 

s (our Simplified Proposal) 23 + Z.&&t 2rdAr+sy~+~) 

TABLE . Relative Performance of the Algorithms 

Once more, we can assume that the angles 8 and a are 
uniformly distributed, and integrate over them to obtain an 
expected area for each method as shown in the table. As in 
the case of region queries, our proposal always wins, but wins 
by the largest margin when d is much larger than s. that is, 
when the query line segment is much smaller than most line 
segments in the database. The integral for the case of our 
simplified proposal is messy to evaluate exactly. Instead, the 
vale in the table is an upper bound for the integral. The 
actual value will be slightly smaller. 

6. EXPERIMENTAL EVALUATION 

To confirm the predictions from the analysis in the 
previous section. we ran some simulation experiments. All 
four techniques discussed in the previous section were 
evaluated against both line segment queries and region queries. 
Four curves marked ‘B’. ‘D’, ‘S’, and ‘E’. respectively plot the 
performance of these techniques in Fig. 10 and 11. ‘B’ for 
Both query and data item are approximated by Bounding 
rectangles; ‘D’ for only the Data item has a boundmg 
rectangle. ‘S’ for our proposal with the Simple range 
condition, and ‘E’ for our proposal with the Exact range 
condition. 

The appropriate performance metric to compare the four 
techniques should be the number of disk blocks fetched in 
response to different queries. However, the number of disk 
blocks fetched depends on the exact physical clustering 
strategy used, a subject that is outside the scope of this current 
paper. So we use the number of data items fetched as the 
measure of performance instead. 

Ideally, one should run experiments against the actual 
database, or at least a synthetic database with the expected 
statistics of the actual. A characterization of the parameters of 
a line segment database, and performance studies as these 
parameters are varied, are a current topic of research. In the 
absence of such characterization, all experiments were run on a 
synthetic database of 10.000 line segments that were randomly 
generated by choosing each end point coordinate from a 
uniform distribution over a range, [-1000.+1000]. 

Query line segments were randomly generated with the 
length controlled as a parameter. Fig. 11 shows a plot of the 
relative number of line segments fetched for a query line 
segment as the length of the query segment is varied. Each 
point in the graph is obtained by computing the number of 
items fetched for 100 different random query segments. The 
total number of items retrieved is plotted as a multiple of the 
number of items that actually satisfied the specified selections. 
The selectivity of the query, in terms of the actual fraction of 

Number 
of Items 
Retrieved 

200 
100 
50 

20 
10 
5 1 

Length of Query Segment 

Figure 10. Relative number of line aegmcnta retrieved by 
each technique in response to a line segment 
intersection query 

line segments that should be retrieved (and are relieved upon 
exact selection) varies from leas than 0.05% for very short 
query segments to over 10% for very long ones. 

For small query segments, we see that our proposals, S & 
E. perform a couple of orders of magnitude better than the 
competition. Note the log scale of the plot. As the query 
segment gets larger, bounding rectangles start performing 
relatively much better. However, even for extremely large 
query segments, the exact technique, E, is still ahead by a 
factor greater than 2. 

Nlllllber 
of Items 
Retrieved 

1 
I III III 1 

2 4 102040 1O@OUOOlOOO 

Length of Query Region Diagonal 

Figure 11. Relative number of line segments retrieved by 
each technique in response to a rotated square 
region intersection query 
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Fig. 12 shows the four techniques used against a rotated 
square query region, as the size of this square is changed. 
Once more, each point is obtained from 100 randomly centered 
rotated square query regions of the specified size, and plotted 
as a ratio. The selectivity varies from less than 0.05% for a 
very small rotated square (effectively a point) to over 3096 for 
huge rotated squares that encompass a large fraction of the 
database. The trends are very similar to those in Fig. 11. Our 
proposals win handsomely for small query regions, and win by 
a small margin for large query regions. The simplitied range 
criterion technique performs almost as well as the exact 
technique except for very large query regions. 

Overall, we find that our proposals greatly outperformed 
the current techniques in the selectivity provided, as measured 
in our simulations. 

7. MULTIPLE DIMENSIONS 

Thus far we have only looked at line segments in a plane. 
This decision is reasonable, since the two-dimensional case is 
by far the most important in practice. However, the techniques 
we have developed here can conveniently be extended to 
multiple dimensions. We briefly diicuss how in this section. 

IY Q 
P 
Figure 12. A line segment PQ in 3-space, and its projections 

totheXYandXZplanes 

An infinite line has only one degree of freedom irrespective 
of the dimension of the space it is in. Given one coordinate of 
a point on the line, all the other coordinates can be derived as 
(linear) functions of the given coordinate’. For example, in 
three-diiensional space a line can be represented as a pair of 
equations of the form cy = mxx + 4, z = fix + bz>. These 
equations are obtained by projecting the line on the X-Y and 
X-Z planes respectively, and then writing down the equation of 
the projected line in the two-dimensional plane. If, in addition 
to the four parameters in these equations, we also store the X- 
range of a line segment, then we have a complete detinition of 
a line segment, See Fig. 12. 

In k-dimensional space, a line segment is traditionally 
represented by a B-tuple comprising the coordinates of its two 
end-points. Instead we have a 2k -tuple 
enl.6mz.b~ . . . ,m-l.bt-l~~s~m>, where the last two 

entries are the range spanned by the line segment on the xk 

4. Bming dcgenmte cam. We shortly show how degenente cases can be 
rvoidul. 

axis, and the remaining entries are the slopes and intercepts of 
the projections of the infinite extension of the given line 
segment on the x1-a plane, x2-x& plane, etc. 

Some slopes could become infInite. for certain lines. and 
ranges may not be very meaningful along axes orthogonal to a 
given line segment. To avoid such problem cases, we partition 
the line segments, as in Section 4. b partitions are created in 
kdiiensional space, one corresponding to each axis. Each 
line segment is placed in a partition with whose axis it 
subtends the smallest angle. This axis is the distinguished axis 
against which all the slopes are determined, as well as the 
segment range. Since a line cannot be orthogonal to all the 
axes in space, we are guaranteed that it will always be able to 
lind such an axis, on which a line segment subtends a non-zero 
range, and which can be used to define slopes along other 
axes. Moreover, since the line is closer to this axis than to 
any other axis. in the pro&tion of the line segment to a plane 
defined by this axis and another one, the slope of the line 
segment will always be less than or equal to one, closer to this 
axis than to the other one. Thus all slopes are bounded by fl, 
as in the two-dimensional case. 

A point in the original space transforms to a line in each 
transform space, just as in the two-dimensional case. For any 
given value. of slope, in the projection to a pair of axes, one 
can determine the appropriate intercept for a line that goes 
through the point. These functions of slope and intercept 
along k-l different projections, provide A-l orthogonal 
projections of a line. From these., a line in k-dimensional 
space can be determined uniquely. 

Finding all line segments that go through a point once 
again involves finding all line segments that transform to a 
point on the line (in one of the A transform spaces) obtained 
by transforming the poin& and that also satisfy a range 
condition. 

Finding all line segments that intersect a given query line 
segment once again involves taking the transforms of the two 
end points of the query segment. These two lines form a 
plane, and a region in this plane can be determined as lying 
between these lines. as before. The desired line segments all 
transform to points in this region. 

8. CONCLUSIONS 

In this paper we have proposed a data structure to store 
line segments in a muhi-dimensional space. The data structure 
stores the slope, intercept and range along one axis of a line 
segment, rather than storing the end-points. The size of the 
storage structure is roughly the same as for conventional 
techniques. 

We have shown how this proposed storage structure can be 
used effectively to retrieve the set of line segments in a 
database that (i) pass through a point. (ii) pass close to a point, 
and (iii) intersect a given line segment. We have also 
demonstrated, through geometric analysis and simulations, that 
our method can provide a significant improvement over 
traditional techniques that store end-points or use bounding 
rectangles. 
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APPENDIX 

Intersection Calculations for a Line Segment Query 

Consider a query segment with end points P=(xt,yt) and 
Q=(xz.,yz). For every value of m E [-1.11, we can compute a 
range for the allowable intercepts from the equations: 
bl = -xlm + yl and bz = -xm + ~2. Any line that intersects 
this query segment has a b value within this range of limits 
for every choice of m. Observe that when m = rnh the slope 
of the query segmen& then bl = b2 = bb the intercept of the 
query segment, and the range becomes a unique point. 

A line with slope m and intercept bl intersects the line at 
point P. A line with slope m and intercept b2 intersects the 
line at point Q. A line with slope m and an intercept b. 
between these two limits, intersects the line at a point with X- 
coordinate demrmined by a simple ratio: xhwdh = 

x1 + $$j+ (b - bl) = x1 + ~ - b-b1 _ b-b0 This 
mo-m mo-m’ 

coordinate, x*m+crpl. must lie within the bounds of the data 
line segment under consideration for it to be retrieved using 
the exact method. If the query line segment is vertical, ma is 
meaningless, but x t = x2 = x*=h. 

For data line segments in Dv. similarly, one can compute 
bounds on the c values as a function of a specified n value. 
And an exact y-h as a function of the c value and n 
VidUe. 

Intersection Calculations for a Region Query 

Consider a query rotated square. centered at a point (x~ya). 
with a side of length &. The top vertex of this square has 
coordinates (xa,ye + A), and the bottom has coordinates 
(x&y0 - k). Considering line segments in Dx. we find that 
lines intersecting the “vertical” diagonal between these top 
and bottom points must have an intercept b in the range 
[yo-mxo-k. ya-m.xe+k]iftheslopeism. 

The exact range condition requires that we consider cases. 
A line segment in Dx intersects the given rotated square region 
only if its right end point is to the right of the left segments of 
the rotated square, and its left end point is to the left of the 
right segments. In other words, xmu should be greater than or 
equaltox~. andx., less than or equal to xti, where xmu and 
xh are the X coordinates of the end-points of the candidate 
line segments, x6 is the X coordinate of the intersection of (the 
inlinite extension of) the line segment with one of the two left 
side edges of the rotated square as appropriate, and xti, is 
similarly the X coordiite of the right intersection. 

The lower left edge of the rotated square has an equation: 

Y = x0 + ye - A - x . If this line segment intersects with the 
cmdiite line segment: y=mx+b. the intersection 
coordinates are (xo+Y;+~~ -b,m*@o+zo-k)+b). Fm 

this intersection to occur within the lower left edge, we must 
have: XCI-k I xti I xo and ye-k I yri I ye. Due to the linear 
relationship between x and y coordinates on this line segment, 
we need check this condition only for one of x or y . Using 
the constraint on y, we derive the following limits on the 
intercept of the candidate line segment: 
yo-mro-k Ib Iyo-mxo+mk. The first inequality is 
automatically satisfied due to the limits on intercept value 
already placed. We thus say. that when the second inequality 

is satisfied, we must have xmu 2 y!zg.p. 

Performing similar calculations over each of the four edges of 
the rotated square, we get the following range conditions: 

X-2 YO-b+(xO-k) jfb <yo-m(xo-k) 

X-2 
yo-by(xo-k) 

1 ifb 2 yo - m(xo - k) 

X&I PJ-~‘~~O+~) ifb <yo-m(xo+k) m-l 
xdI yo-b +(xo+k) 

m+l ifb 1yo-m(xo+ k) 

A similar set of conditions can be obtained for line 
segments in Dv by interchanging x and y. and substituting n 
for m and c for b everywhere. 
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