
On Indexing Line Segments

H. V. Jagadish

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

In several image applications, it is necessary to retrieve
specific line segments born a potentially very large set. In this
paper, we consider the problem of indexing straight line
segments to enable efficient retrieval of all line segments that
(i) go through a specified point, or (ii) intersect a specified line
segment. We propose a data organization, based on the Hough
transform, that can be used to solve both retrieval problems
efficiently. In addition, the proposed structure can be used for
approximate retrievals, finding all line segments that pass close
to a specified point. We show, through analysis and
experiment, that the proposed technique always does as well as
or better than retrieval based on minimum bounding rectangles
or line segment end-points.

1. INTRODUCTION

Interest in spatial databases has burgeoned of late, as it has
become practical to construct large databases that comprise
spatial rather than alphanumeric data. Several excellent
approaches have been devised for indexing points in a multi-
dimensional space, and also for indexing rectangular regions.
See, for example. [2.9,11.13,15]

Given an arbitrarily shaped object, the typical strategy is to
create a rectangular bounding region (or a polyhedral bounding
region) of the object, and then to index this bounding region.
(Sometimes multiple smaller rectangles may be used to cover

Permission to cop) Mithout l’cc all or part of thi\ material i\

granted provirlcd that the corks arc not mxlc or di\trihutcd l’or

direct commercial ;Ict\antafe. the VLDB cop)ri$it notice ;Intl

the title of the publication and it5 date appear. and notics is gi\cn

that copying is h! permission of the VCI-1 Large Data l3a~

Endowment To cop> otherwise. or to rcpuhli\h. rquirc\ ;I [cc

and/or \pccial permi\\ion li-om the EntloMmcnt.

Proceedings of the 16th VLDB Confercncc
Brisbane. Australia 1990

the object). The disadvantage is that the bounding region is
necessarily larger than the object itself so that some “false
hits” will be generated. This penalty may be acceptable if the
bounding region is only a little bit larger than the object that it
bounds. However, in the case of a line segment, the bounding
region typically has an area (or volume) much greater than the
line itself.

So far, not much attention has been focussed on devising
index structures for line segments in particular. The
coordiiates of the end points of the line segment can be used
for indexing. Thus a line segment in m-dimensional space can
be represented as a point in a 2m-dimensional space, and any
well-known index structure can be built over these points. For
example, the grid-file has been suggested in [4] and the quad
tree in [14]. Such an index method is of value only when the
retrieval is based upon the coordinates of the end-points of the
line. The index provides little advantage for a retrieval based
on some intermediate point on the line.

A better option is to divide the space into cells. and store
with each cell a list of line segments that intersect it. Several
different techniques have been proposed to divide the space
into cells. For example, edge Excell [17] and the PMR
quadtree [8]. A drawback of these. techniques is that
information regarding each line segment has to be stored
several times. once for each cell that the line segment
intersects. Two line segments can intersect only if they pass
through at least one cell in common. Therefore, the smaller
the cell size the greater the selectivity. but also the greater the
storage cost due to information duplication. (Consequently
much effort has been devoted to sizing the cells adaptively).

In this paper we propose an index structure for line
segments, which requires storing a line segment only once, and
using which it is possible to perform the following retrievals
efficiently:

i. Fii all line segments that pass through a specified
pins

ii. Fii all line segments that lie in the vicinity of a
specified point, and

iii. Fii all line segments that intersect a specified line
segment.

614

In addition, the following simpler retrievals fall out as easy
by-products of the index structure constructed:

i. Find all line segments that are parallel or perpendicular
to a specified line,

ii. Find all line segments that are coincident with a
specified line,

iii. Emd all line segments that intersect a specified (infinite)
lirae,

iv, Find all line segments that include a specified set of
points, and

v, Find all line segments that have specified end-points.

We begin by presenting in Section 2 some motivation for
studying the line segment indexing problem. Background
material covered in Section 3 includes a quick tutorial on the
Hough Trmrrfonn. a simple mathematical operation that is
central to the data structure proposed in this paper.

Section 4 is the heart of the paper, in which we present our
proposed data structure and show how each of the types of
queries listed above can be handled. In Section 5, we
analytically compare our indexing to the traditional boundmg
rectangle method. We con&m our analysis with simulation
expiments described in Section 6.

Sections 2-6 deal only with line segments in a two-
dimensional plane. In Section 7. we show how these ideas can
be extended to line segments in a multidimensional space.
We wrap up with some tlnal comments in Section 8.

2. MOTIVATION

In machine vision, line segments are found from’edges of
objects, and these line segments are then used for further
procesing. For example, to facilitate higher level recognition
of a pattern or object, one has to determine mutual
relationships between pairs (or sets) of these line segments. In
this context, one may wish to find all line segments that pass
through the end-point of a specified line segment. One may
also wish to determine all line segments that intersect a given
line segment. These would be the line segments with which
the given line segment is likely to have an interaction or
relationship. This information, when passed to a higher level
in the recognition process, can be used to &xl known
gmupings of line segments.

For example, an optical character recognition system can
be programmed to recognize as the Hindu numeral 4, any set
of three line segments where segments A & B share an end-
point and are at an angle of 45’ to 90’. segment B is within
15’ of the horizontal, and segment C intersects segment B at
an angle of 60’ to 120’. Such a system would recognize as the
numeral 4. any of the line segment groups in Fig. 1. (In a real
system, the rules would be similar in spirit to the ones given
above, but could be far more complex).

The basic idea described above has been used in many
different applications. For example, in (I]. line segments are
found in an image and matched against a reference, in the

Figure 1. A few different ways of writing the numeral 4,
which can be recognized as a set of three
intersecting line segments: A, B. and C

context of scene understanding for robots with machine vision.
In structured light machine vision systems, stripes of lights are
projected on an object for threedimensional recognition [181.
The edges of these stripes are line segments whose intersection
with object features has to be determined. In [lo] line
segments are fit to the contours of a fingerprint, and used for
pattern recognition. Similarly, for recognition of roads and
boundaries in geographical maps, satellite images, and aerial
images, line segments are the common primitive [7].

Line segments are useful in a completely different context
as well. Electrical connectivity desired on a Printed Circuit
Board is obtained by the use of piecewise linear metallic
traces. As boards have grown larger and more complex, these
traces are “laid out” by computer, rather than by hand. In an
involved design. an important integrity check is that two traces
on one layer should intersect only if they belong to the same
electrical net. This problem boils down to finding all pairs of
intersecting line segments in a given set.

Similarly, when creating a “via”, or a hole from one layer
to another in a PC board, one has to ensure that the hole does
not go through any traces in any of the intervening layers.
Treating the hole as a point, this problem translates into
ascataining that no line segments go through the specified
point in each of the intervening layers.

Thus we see that in diverse applications. it is important to
be able to determine efficiently the set of all line segments that
either go through a specified point or intersect a specified line
segment. It is these problems that we address in this paper.

3. PRELIMINARIES

The Hough transform [5] was developed as an aid to
pattern recognition and is widely used today. The basic idea
in the transform is that each (infmite) line (in a two-
dimensional plane) can in general be written in the form
y = mx + b. In other words, it is determined uniquely given
its slope, m. and its intercept on the Y-axis, b. So, in a
rr@rm space, in which slope is plotted along one axis and
intercept along the other, every point uniquely determines and
is uniquely determined by a line in the regular space. Thus the
Hough transform provides a one-to-one mapping of lines in the
original space to points in the transform space.

Observe that vertical lines are not treated properly. A
vertical line has an “infinite” slope, and corresponds to a
point “at infinity” in the transform space. In fact, we would
like to avoid lines with a large slope since they cause an
explosion of the ranges of values of transform space
coordinates. We observe that the line, y = mz + b. could also
be written as x =ny +c, where n = l4n and c =-b/ht. In

615

other words, only one of n and m can have an absolute value
greater than one for any given line, with n = m = fl for lines
at a i45’ angle. Let us call the regular Hough transform,
defined in the previous paragraph, the Hough-X transform. We
can then define a corresponding Hough-Y transform, into the
n,c transform space, rather than the m.6 transform space. For
every line, note that at least one of the Hot&-Y and Hough-X
transforms is well-defined

(4 04

Figure 2. (a) A line in a plane, and two points on it. (b) The
Hough-X transform of the line is a point, and of the
points is a pair of lines.

Now consider a point in the original space. Every pair of
lines determines a point at their intersection’. But the pair of
lines correspond to a pair of points in the transform space, and
these determine a line in the transform space. Thus, a point in
the original space corresponds to a line in the transform space.
Mathematically, let the point be (xa,yo). Every line that goes
through it must have a slope and intercept such that
yo = mo + b. This equation can be rearranged and written,
b = -xm + ya which represents a straight line in the m.6
transform space with a slope of -x0 and an intercept of yo.
Similarly, the Hot@-Y transform of the point can be written,
c = -yen + XO, which is a straight line with a slope of -ye and
an intercept of xg Note that for every point (with bounded
coordinates) both the Hough-X and the Ho&-Y transforms
are defined, and that both the slope and the intercept of the
resulting line are bounded. See Fig. 2.

4. PROPOSED TECHNIQUE

4.1 The Data Structure

Given a database, D, of line segments in a (two-
diiensional) plane, partition it into two sets. In one set, Dx,
place all line segments that have slopes in the range [-l.+l].
In the other set, Dv. place all line segments with slopes outside
this range. Extend each line segment in Dx to an infinite line,
and then obtain the Hot&t-X transform of the line. Thus
obtain one point in the transform space corresponding to each
line segment in Dx.

1. A pair of parallel lines deaamk . p&r at infinity.

Suppose that the X coordinate in Dx ranges from xmi. to
xmu, and the Y coordinate ranges born yh to y,. Then the
m coordinate in the transform space ranges from -1 to +I, and
theb coordinateatmostfiomy~-max(]x~],]xx,])to
ymu+max()x~).]x,]). In other words, the ranges of
values in the transform space are bounded, and are comparable
to the ranges in the regular space. The area bounded by these
ranges in transform space will be called the region of interest.

Four numbers determine a line segment Traditionally,
these could be the X and Y coordinates of both end-points.
Instead, for each line segment in Dx, the four values are stored
along three different attribute axes:

i. The slope of the line segment. That is, the m
coordinate.

ii. The Y-intercept of the infinite extension of the line
segment. That is, the b coordinate.

iii. The projection on the X axis of the line segment. That
is the range xe to xmu.

Similarly, for each line segment in Dv. values are stored
along the three complementary attribute axes.

1.

ii.

. . .
Ill.

The inverse slope of the line segment That is, the n
coorflmate.

The X-intercept of the infinite extension of the line
segment. That is, the c coordinate. .

The projection on the Y axis of the line segment. That
is, the range ymh to y-.

slope=m
A

@
Yti

---_- _ Ja
X

/ Inverse Slope

Figure 3. Two parallel line segments in Dy shown in the X-Y
plane, and after transformation for our data
structure, in three-diiensional space.

Thus an arbitrarily oriented line segment in a plane is
transformed into a vertical line segment in threedimensions.
See Fig. 3. Any standard multi-dimensional range indexing
technique, such as grid file [9]. R -tree [2], R+-tree [161. P -tree
[6]. LSD -tree 131, or z -ordering [I 11, can be used for each of
Dy and Dx. If necessary, the range on X (or Y) can be
mapped to two coordinates on different axes, giving a point in
four-dimensional space.

4.2 Some Simple Queries

4.2.1 Coincident with Specified Line

Obtain the slope of the specihed line. If the absolute value
of the slope is less than or equal to 1. then obtain the Y-
intercept as well. The slope and the Y-intercept provide a
selection on two attributes of elements in the set Dx. There is

616

no selection on the range attribute. One can use any standard could ps through this point However, we know that the
partial match technique to retrieve all line. segments in the point wrreaponds to a line in the Hough-X transform space
database that are coincident with a specified line. Observe that and a line in the Hot&-Y transform space. Any line segments
there is no need to examine Dy at all. On the other hand, if that pass through this point must correspond to a point on one
the absolute value of the slope. is greater than 1, use the of these lines in the appropriate transform space. Moreover, a
inverse of the slope and the X-intercept to provide a selection line segment can pass through a point only if the point lies
on two attributes in Dv. witbin the X-range (and Y-range) of the line segment.

4.2.2 Parallel or Perpendicular to a Specitied Line

Obtain the slope of the line. Depending on whether its
absolute value is greater than one. use it or its inverse to
perform a single attribute selection on either Dv or Dx. No
selection is specified on the intercept or range attributes. Thus
obtain all line segments parallel to a specilied line-.

To find all line segments perpendicular to a specified line,
take the inverse of the slope of the specified line. change its
sign, and then proceed as above. In effect, find a line
perpendicular to the specified line, and then find line segments
parallel to this new line. The same i&a can be used to
retrieve all line segments at a specified angle (or range of
angles), either absolute OT relative to a given line.

The if part is only a little more difficult. Since condition
(ii) is satisfied, the infinite extension of the line segment
includes the speciEed point However, all points in the infinite
extension of the line segment will have coordinates outside the
X and Y ranges of the line segment. That is. the infinite
extension of the given line segment contains no points in the
range [Xe, X-1 that are not in the line segment itself.
Similarly for the. Y coordinate. But, from condition (i). the
specified point of interest has an X coordinate in [Xb, X-J
(or a Y coordinate in [Yd. Y-1). Therefore if the specified
point is included in the inlinite extension of a line segmenf
then it must be included in the line segment itself. 0

4.23 Specified End Points

Using the end points specified, one can compute the slope
(or inverse-slope), the intercept (X or Y as required), and the
range (Y or X as required). One thus has a selection specitied
on all attributes, and can use this to retrieve the relevant line
segment(s) from Dv or Dx as the case may be.

4.2.4 Specified Intermediate Points

As before, if two intermediate points are specified, they
determine an @finite) line, which has a specific slope and
intercept. We then have a retrieval with a completely. specified
selection on two attributes, and a requirement on the other
attribute that the retrieved items include the specified X (or Y)
range obtained from the two points.

Thus we have transformed the retrieval problem into one of
selecting vertical line segments that intersect a specified query
region in three-dimensional space. The query region is planar,
obtained as a product of a line segment parallel to one (the
range) axis, and a line in the plane defined by the other two
axes. By splitting the data set in two, and generating two
separate queries, one for each transform space, we have
ensured that the line in the plane is bounded, giving us a finite
query region. This region can be approximated, if necessary,
by multiple small rectangles that cover the region, so that
standard rectangle retrieval techniques can be used thereafter.
Observe that it is only the query region that is being
approximated, and not the data items. Therefore, there is no
increase in storage required for data or indexing, even if many
rectangles are used to obtain a very good approximation of the
search region.

If more than two points are specified. first check to see that
they are collinear. If so. use the two outermost points and
apply the procedure above. If no6 there cannot be a line
segment that passes through them all.

4.3 One Specified Point

Theorem 1

A line segment passes through a specified point if and only if
it satisfies the following two conditions: (4

Hough-Y

0

Hot&X

(4

1.

. .
11.

The X (or Y) range includes the specified point. That is.
given a query point (x&y 0). the line segment must have
x~~xoIxmu.

The point corresponding to the line segment in transform
space lies on the line in transform space corresponding
to the specified point. That is, b = -xm + yc, where b
is the Y-intercept, and m is the slope of the line
segment, for a line segment in Dx (or c = -yen + xo, for
a line segment in Dv).

Figure 4. A line segment in the X-Y plane, and the Hough-Y
and Hough-X transforms of its end-points. Since
the line segment has a slope greater then 1. the
transformed end-points meet only outside the area of
interest in the Hough-X transform space. The
region between the two lines is shown hatched. The
dashed line in Fig. 4c corresponds to lines parallel
to and between the dashed lines in Fig. 4a.

PrOOfi
The only if part is straightforward. If only one point is
specified, a line segment of any arbitrary slope and intercept

617

4.4 Intersecting a Specified Line Segment

4.4.1 A Simple Technique

Take the two end-points of the specified line segment and
apply the Hot&-X transform. We thus obtain two lines in X-
transform space. If the absolute value of the slope of the
given line segment is no greater than 1. then these two lines
will intersect within the area of interest in the X-transform
space. If no& then the two lines will not intersect in the area
of interest. Similarly, the end-points of the given line segment
can be used to create two lines in the Y-transform space. See
Fig. 4.

Each intermediate. point on the line segment is represented
by a line in each transform space that lies “between” the lines
corresponding to the two end-points. Any (infinite.) line that
intersects the given line segment must pass through an
intermediate point, and hence must lie ‘between” the two
lines in the appropriate transform space. Therefore we need
consider only those line segments whose infinite extensions
transform to points that he “between” the pair of lines
obtained by transforming the end-points of the specified line
segment. This notion of betweenness is illustrated in Fig. 4
and formally defined below.

Call the two lines, P and Q. Consider first the case where
the two lines do not intersect within the region of interest.
Line P divides the region of interest into two regions, HI and
Hz. Since line Q does not intersect line P within the region of
interest, it passes through only one of the two regions.
Without loss of generality assume that is region HI. Similarly,
line Q divides the region in two, and line P passes through
only one of these two regions, say, Hs. Then HI n H3 is the
desired region between the pair of lines P and Q.

Now consider the case where the two lines intersect at a
point within the region of interest. The lines intersect in a
point that is the Hough transform of the given line segment
Clearly, no line with the same slope can intersect this line
segment. That is, no point in transform space with the same
m (or n) coordinate can be of interest. Two intersecting lines
divide the region of interest into 4 parts. Two of these parts
are eliminated by the above rule. The remaining two parts are
the ones that we consider to he between the two lines.
Another way of looking at it is that for any given slope, the
two lines determine the extreme values of the intercepts that a
line can have and still intersect the line segment. At the
intersection point of these two lines, the intercept is uniquely
determined. At all other points, it is a range.

In addition to the restriction on slope and intercept
discussed above, two line segments cannot intersect unless
their X (and Y) ranges intersect. Thus our search region in the
three-dimensional transform space is given by the area between
the lines in the m ,b (or n ,c) plane, multiplied by the height of
the X (or Y) range along the third orthogonal axis. (See the
Appendix for the mathematics). The retrieval is of all
(vertical) line segments that intersect this region in three-
dimensional transform space. As before, two retrievals are
required, one for the line segments in Dx, and another for the
line segments in Dv.

r
P .A
h Q

Figure 5. The extension of line segment AB intersects query
segment PQ. and their X-ranges intersect, but the
line segments do not intersect

4.43 An Exact Technique

If we perform the retrieval suggested above, we will still
get some line segments that do not intersect the specified line
segment. See Fig. 5. The problem is that even though we
have ensured that the infinite extension of a retrieved line
segment, such as AB in Fig. 5. does intersect the specified
query line segment, PQ. the range condition we have set is too
weak. Consequently, some excess line segments. such as AB,
are retrieved.

Consider the region between the lines corresponding to the
end-points of the query segment in the transform plane. Each
point in this region corresponds to an (infinite) line that
intersects the given line segment. This intersection is at a
point, which has a single X-coordinate (and Y-coordinate). A
line segment with the corresponding slope and intercept will
intersect the query segment iff its X range includes this
intersection X-coordinate (or Y range includes the intersection
Y-coordinate). Therefore, rather than specifying a range of
value along the X (or Y) axis, we can actually compute and
specify a unique X (or Y) coordinate value for each slope-
intercept pair. Thus, the query region becomes a two-
dimensional manifold in the three dimensional space.

A line segment intersects a specijkd query line segment if
and only if its transjbrm intersects the manifold obtained as
above.

What does this manifold look like? For every value of the
slope, there is a range of values of intercepts, and a
corresponding range of values of intersection points for line
segments that intersect the query segment. For example, the
dashed line in Fig. 4c corresponds to a set of parallel lines
between the two dashed lines in Fig. 4a. The intersection
point is simply P. at the bottom end of the dashed line in Fig.
4c, with a corresponding X coordinate. At the top end of the
dashed line, the intersection point is Q. with a corresponding X
coordinate. Between these two ends. as the intercept value is
changed, the X coordinate of the intersection point also
changes - linearly. The equation is derived in the Appendix.
A similar argument applies for every choice of slope value.
The X value for the intersection point, is cOnstam along the P
line, being the coordinate of the point P itself. Similarly, it is
constant along the Q line. Imagine a scroll, or a window
blind, with a stiff top and bottom. Pull the bottom out a little
so that it is not in alignment with the top. This is roughly
what our manifold looks like.

Turn now to the case of Fig. 4b. The same arguments
applies as above. The only difference is that as the slope gets

618

closer to the slope of the query segment. the range of
permissible intercept values gets smaller and smaller, while the
range of Y (or X) coordinates is not altered. When the slope
exactly equals the slope of the query segmen& only one
intercept value is permitted, and that is the intercept value of
the query segment itself. For this choice of slope and
intercept the entire range of Y (or X) coordinate values of the
query segment are acceptable. You could imagine twisting the
bottom end of the scroll around, while still keeping both top
and bottom perfectly horizontal, so that in the middle of the
twist there is a point where the scroll is vertical.

4.4.3 Intersecting a Specified (Infinite) Line

Lines with every slope and intercept will intersect any
given infinite line query object. The only interesting selection
we can apply is in terms of the range coordinate. The
intersection point of any line (specified in terms of its slope
and intercept), with the query line, can be determined
uniquely2. We thus obtain a two-dimensional manifold in our
three-dimensional attribute space. We must retrieve the
transformed vertical line segments that intersect this manifold,
in response to the query.

Another way of thinking about this problem is to take the
end points of a query line segmenL move them infinitely apart
and solve the line segment intersection problem above. The
manifolds described above would still be of the same basic
form, but would simply get stretched (in the intercept and
range dimensions). Since the given database has some linite
bounds on the coordinates, and hence intercepts of the line
segments in is we need perform the retrieval only on a 6nite
portion of the infinitely stretched manifold

. ...*.* . *a.....*. ,...,,,,.

Figure 6. A pixel and its neighbors. 1. 2. and 3 pixels away

4.5 Close to a Specified Point

Due to noise or error in the image creation, it may often be
the case that a line that is “supposed” to go through a point
actually does not do so. Similarly, in a printed circuit board
layout, design rules may require a minimum gap between a
trace and a via, as a safety margin. When queried for line
segments that pass through a specified point, one may therefore
wish to include line segments that “nearly” go through the
point From a purely geometric viewpoint, we may be
interested in line segments that pass a distance no greater than
6 away from a given poinb essentially requiring the retrieval of
all line segments that pass through a circular region. However,
in the digital domain, one has discrete pixels, and error is more
appropriately measured in number of pixels away. Using the
standard convention of each pixel having four neighbors, Fig.

6 shows all pixels upto one pixel away, upto two pixels away,
and upto three pixels away from a specified point (pixel).
Observe that each of these k-pixel neighborhoods, for any
positive integer A. is a square rotated through 45’. Therefore,
the problem of interest is to find all line segments that pass
through such a rotated square.

Y

Figure 7. A rotated square query region and a line
intersecting it are shown in the original plane and in
the Hough-Y transform space. Observe that the line
L is in Dx. and intersects the vertical disgonal of the
square (shown dashed), but does not intersect the
horizontal diagonal.

Consider lines with absolute value of slope no greater than
1. These are lines that are closer to the horizontal than 45’. If
any such line intersects a rotated square, then it passes through
the vertical “diagonal” of the square. See Fig. 7. Thus the
problem reduces to lindiig lines that intersect this vertical line
segment. Using the technique of Sec. 4.4, we observe that the
Hough-X transform of the end-points of the vertical line
segment are a pair of parallel lines. (There is no need to take
the Hough-Y transform of this line segment since we are
currently considering only line segments with absolute slopes
less than one). A line segment in Dx intersects a given rotated
square only if the Hot@-X transform of its infinite extension
lies in the region between the two parallel lines obtained by a
Hough-X transform of the top and bottom vertices of the
rotated square. Moreover. a line segment intersects a given
rotated square only if its X-range intersects the X-range of the
rotated square. As in the previous sections, all line segments
in Dx that intersect the given rotated square can be retrieved
by means of a selection on all attributes that arises horn these
conditions. The selected region is a parallelopiped.

Once more, using the simple range selection described in
the preceding paragraph is much too generous. We observe, as
in Section 4.4.2 that a line segment passing through the
rotated square has a specified range of X coordinate values in
the intersection, as a function of its slope and intercept. This
range of coordinate values can Lx described as a piecewise
liar function, continuous but not differentiable each time a
vertex of the rotated square is crossed. The three-dimensional
region thus obtained provides a perfect selection of line
segments that intersect the (interior of) the given rotated square
query region. See the Appendix for the mathematics.

Similar arguments can be applied to line segments in Dr.
using the leh and right end vertices of the rotated square and
its ‘horizontal” diagonal.

619

5. PERFORMANCE ANALYSIS

There are two previous proposals against which we must
compare ours. One is to use rectangular bounding boxes for
each data line segment, and for the query regions, and then to
use an index structure on these boundmg boxes, such as the
R-tree. The other is to use the coordinates of the end-points of
the line segments to map the line segment to a point in a
four-dimensional space, and then to index these points. One
could then use an index structure such as the grid file.

It is easy to see that the selectivity obtained by these two
methods is identical. Since bounding rectangles in two
dimensions are easier to visualize than equivalent structures in
four dimensions, we compare the proposals of this paper
against bounding rectangles in what follows.

Each line segment is stored and indexed by means of four
parameter values, both in our proposal and in pevious
proposals. To this extent, one should not expect the storage
required for the data, or for in&xing. to be very much
different for our technique and its competition.

On the other hand, whereas traditional (end-point or
rectangular boundmg region) techniques retrieve more items
than specified in a selection, we are able to perform a retrieval
of exactly the set of selected items. Through analysis in this
section, we place a quantitative measure on this improvement

Performing an exact retrieval using our technique requires
that we use an index structure that can handle a query region
that is a polyhedron Most indexing techniques today permit
only rectangles or, at the most, polyhedra with specified face
angles [6]. To match available in&x structures, our query
polyhedron will have to be approximated by multiple
rectangular regions that together cover the query region.
Retrievals are then performed on these rectangular regions.
Observe that no additional storage is involved, and that the
data and index structures are not altered due to the query. The
query itself is simply divided into smaller queries that can be
answered efficiently. See [12] for an excellent study of a
similar problem in a different context

Some improvement can be obtained in the traditional
techniques also, if the query region is thus divided up into
smaller rectangles. However, this improvement is small. The
major hurdle is that the data-set still comprises arbitrarily
oriented line segments each of which has a single bounding
rectangle. Selectivity can be improved by using multiple
boundiig rectangles in the data-set as well but this results in
an increased storage and indexing cost, and is not considered
here.

Thii section is organized as follows. In Section 5.1. we
discuss previous proposals that compete with ours. In Section
5.2 we describe the analytic technique used in the rest of this
section. Having established these preliminaries, we discuss the
point (and region) intersection problem in Section 53. and the
line segment intersection problem in Section 5.4. In both
cases, we obtain solutions for the performance of four
techniques:

i. Bounding rectangles for data and for query. Call this
technique B (for Both Bounded).

ii. Bounding rectangle for data items only, but with an
exact query region. Call this technique D (for only Data
items bounded).

iii. Our proposal for an exactly specified search region. Call
this technique E (for Exact).

iv. Our proposal+ with the range axis specified orthogonally.
Call this technique S (for transform space index with
Simplified range condition).

5.1 Analytic Technique

Consider a line segment of a known length d, at a random
angle 8 from the horizontal. Without loss of generality, we
shall assume that 8 is a positive angle: the arguments are
symmetric for negative values of 8. We shall determine what
the position of the lower left end points of the segment must
be for it to intersect the specilied object, where this object may
be a region, a point or another line segment.

Assume that the lower left end-points of the line segments
in the database are uniformly distributed. This is likely to be
true neglecting boundary effects, that is, if the length of a line
segment is a small fraction of the range of values in the
database. Then the area of the region in which the lower-left
end-point must lie, for the line segment to intersect the given
object, is a measure of the selectivity of the given query. (The
!hction of line segments in the answer set is the area of this
region normalized by the area of the entire database).

Similar regions can be computed for the positions of the
lower left end-points that cause a line segment to be retrieved
in response to the query, for any particular indexing method
used. The areas of these regions are again proportional to the
selectivity of the corresponding indexing method, and can be
used to compute the effectiveness of different index strategies,

The results obtained can be integrated over the possible
values of the angle and length of the lines segments, using any
specified (possibly non-uniform) distributions. if desired.

5.2 Intersecting a Region

Consider a rotated square region of side s. The bounding
rectangle of this region is a square of size 2r, as shown in d-

Fig. 8a. A line segment of length d at an angle 8 has a
bounding rectangle that is dcos0 wide and d sine high, as
shown in Fig. 8b. Such a line segment will be retrieved as
potentially intersecting the square, using the bounding
rectangles intersection method, if its lower left end point is
anywhere in the region shown in Fig. 8c. The area of this
region is (6 + dcose) x (+.s + d sine) =
23 + d%inecme + %sdcose + +&sine. If the rotated
square region is represented exactly and not approximated we
save sa, as can be seen from Fig. 8d.

3. The left md-p&r if the line sqmmt is h&at&, and the lower md point
ifitkvaticaL In~othcrusaonccndp<isbDthlow~thnMdtothe
1CftdtkOtk.

620

(4 (4

(4
Figure 8. The region of possible locations for the lower left

end-point of a line segment intersecting a rotated
square query region. (a) The query region and its
bounding rectangle, (b) A typical line segment and
its bounding rectangle, (c) The region found by
bounding rectangles on query and data, (d) The
region found by bounding rectangles on data, but
using the query exactly, (e) The region found by the
exact retrieval technique using our data structure.
and (f) The region found by the simple retrieval
technique using our data structure.

The actual set of lower left end-point values for a line
segment that intersects the region can be obtained by
“sweeping” the region to the left and down at an angle 8 for
a distance d. This region is the one that our technique would
find and is shown in Fig. 8e. The area of this region is
s2 + 6sdcose. which is strictly less than the area obtained
from the bounding rectangles method above. If we use the
simpler range computation technique with our data structure,
then we pay an area penalty of sr as shown in Fig. 8f: there is
a single lar er parallelogram and its area is
-5.r x(d + 2.rhse)xcose. $ Fig. 8 considers the case where
8 < 45 “. so that the line segment belongs to Dx. For line
segments in Dv, the figures would look essentially similar, and
the computations are identical. The only exception is Fig. gf,
where the larger parallelogram has two of its sides horixontal
rather than vertical, since a Y range condition is used isntead
of an X range condition. The extra area due to the simplitkl
range condition is still ~2.

Assuming that the angle 8 is uniformly distributed, we can
integrate over it to obtain an expected area for each method as
shown in the table below. If d is small compared to s, then
the savings from our method is small. Methods that bound the
query region exactly win, by a factor of roughly two. over
methods that using a bounding rectangle for the query region.
However, if s is small compared to d. then the savings from
our method could be a very large factor. For the applications
discussed in Section 2. s is expected to be small, since we
typically want to find line segments that pass close to a point
of interest.

In fact, for the point intersection problem, s goes to zero,
giving us a theoretically unbounded benefit. However,
considering a discrete image, a point is one pixel. So setting
s = 1, we obtain the result that our method outperforms
bounding rectangles by a factor of approximately d, the
expected length of a line segment in the databases, measured

Figure 9. The region of possible locations for the lower left
end-point of a line segment intersecting another line
segment (a) The query region and its bounding
rectangle. (b) A typical line segment and its
bowling rectangle, (c) The region found by
bounding rectangles on query and data, (d) The
region found by bounding rectangles on data, but
using the query exactly, (e) The region found by the
exact retrieval technique using our data structure,
and (I) The region found by the simple retrieval
technique using our data structure.

in pixels.

5.3 Intersecting a Line Segment

Consider a line segment L. of length s at an angle a, as
shown in Fig. 9a. Now we can no longer assume a to be a
positive angle without loss of generality. So we let a range
between -~2 and N2. The bounding rectangle of this line
segment is of width scosjal. and height ssinlal. As
before, the bounding rectangle of L intersects with the
bounding rectangle of a candidate line segment of length d
and positive angle 8, if and only if the lower left end point of
the latter lies in of
(dcos0 + scos I a I) x (d sin0 + sk I ofycee Figs. 9b 2:
5%. If the query line segment is not approximated by a
bounding rectangle, then the search region, as shown in Fig.
9d. saves two triangular regions at the top-right and bottom-left
comers with a combined area of
scoslalxssinlal. for a total area of
dkosfhine + sdsin&m 1 a I + sdcos9si.n I a I .

The actual region in which the lower left end-point of a
line segment intersecting L may he can be obtained once more

by “sweeping” L to the left and down at an angle 8 for a
distance d. ‘lhe result is a parallelogram with sides of length
s and d. as shown in Fig. 9e. The area is sdsin(I 8-a I). A
larger parallelogram is obtained, as shown in Fig. 9f, if we use
our proposal with the simplified range condition. The area is a
little messy to compute and depends on the relative values of
a and 8. For the specific case shown in Fig. 9f, with a4kf3,
the area is
(d +scosIaIkoti)x(ssinIaI +scosIaItane)xcose.
The general solution can be shown through analyzing such
cases, to be

(sd + s2 w)sin(I 0-a I), provided that the data line

segment belongs to Dx. The solution for data line segments in
Dv can be derived:

(sd + s2 .w)sin(I 9-u I).

621

Technique Region Query Line Segment Query

B (Bounding Rectangles) 2.~2 + 4’ksdh + 2dMt dMr + sM + 8sdM

D (Data Bounding Rectangle) s2 + 4’bsdhr + 2d4fr d#c + 8sd&
E (Our Exact Proposal) sa + 2\‘2sdm 2sdh

s (our Simplified Proposal) 23 + Z.&&t 2rdAr+sy~+~)

TABLE . Relative Performance of the Algorithms

Once more, we can assume that the angles 8 and a are
uniformly distributed, and integrate over them to obtain an
expected area for each method as shown in the table. As in
the case of region queries, our proposal always wins, but wins
by the largest margin when d is much larger than s. that is,
when the query line segment is much smaller than most line
segments in the database. The integral for the case of our
simplified proposal is messy to evaluate exactly. Instead, the
vale in the table is an upper bound for the integral. The
actual value will be slightly smaller.

6. EXPERIMENTAL EVALUATION

To confirm the predictions from the analysis in the
previous section. we ran some simulation experiments. All
four techniques discussed in the previous section were
evaluated against both line segment queries and region queries.
Four curves marked ‘B’. ‘D’, ‘S’, and ‘E’. respectively plot the
performance of these techniques in Fig. 10 and 11. ‘B’ for
Both query and data item are approximated by Bounding
rectangles; ‘D’ for only the Data item has a boundmg
rectangle. ‘S’ for our proposal with the Simple range
condition, and ‘E’ for our proposal with the Exact range
condition.

The appropriate performance metric to compare the four
techniques should be the number of disk blocks fetched in
response to different queries. However, the number of disk
blocks fetched depends on the exact physical clustering
strategy used, a subject that is outside the scope of this current
paper. So we use the number of data items fetched as the
measure of performance instead.

Ideally, one should run experiments against the actual
database, or at least a synthetic database with the expected
statistics of the actual. A characterization of the parameters of
a line segment database, and performance studies as these
parameters are varied, are a current topic of research. In the
absence of such characterization, all experiments were run on a
synthetic database of 10.000 line segments that were randomly
generated by choosing each end point coordinate from a
uniform distribution over a range, [-1000.+1000].

Query line segments were randomly generated with the
length controlled as a parameter. Fig. 11 shows a plot of the
relative number of line segments fetched for a query line
segment as the length of the query segment is varied. Each
point in the graph is obtained by computing the number of
items fetched for 100 different random query segments. The
total number of items retrieved is plotted as a multiple of the
number of items that actually satisfied the specified selections.
The selectivity of the query, in terms of the actual fraction of

Number
of Items
Retrieved

200
100
50

20
10
5 1

Length of Query Segment

Figure 10. Relative number of line aegmcnta retrieved by
each technique in response to a line segment
intersection query

line segments that should be retrieved (and are relieved upon
exact selection) varies from leas than 0.05% for very short
query segments to over 10% for very long ones.

For small query segments, we see that our proposals, S &
E. perform a couple of orders of magnitude better than the
competition. Note the log scale of the plot. As the query
segment gets larger, bounding rectangles start performing
relatively much better. However, even for extremely large
query segments, the exact technique, E, is still ahead by a
factor greater than 2.

Nlllllber
of Items
Retrieved

1
I III III 1

2 4 102040 1O@OUOOlOOO

Length of Query Region Diagonal

Figure 11. Relative number of line segments retrieved by
each technique in response to a rotated square
region intersection query

622

Fig. 12 shows the four techniques used against a rotated
square query region, as the size of this square is changed.
Once more, each point is obtained from 100 randomly centered
rotated square query regions of the specified size, and plotted
as a ratio. The selectivity varies from less than 0.05% for a
very small rotated square (effectively a point) to over 3096 for
huge rotated squares that encompass a large fraction of the
database. The trends are very similar to those in Fig. 11. Our
proposals win handsomely for small query regions, and win by
a small margin for large query regions. The simplitied range
criterion technique performs almost as well as the exact
technique except for very large query regions.

Overall, we find that our proposals greatly outperformed
the current techniques in the selectivity provided, as measured
in our simulations.

7. MULTIPLE DIMENSIONS

Thus far we have only looked at line segments in a plane.
This decision is reasonable, since the two-dimensional case is
by far the most important in practice. However, the techniques
we have developed here can conveniently be extended to
multiple dimensions. We briefly diicuss how in this section.

IY Q
P
Figure 12. A line segment PQ in 3-space, and its projections

totheXYandXZplanes

An infinite line has only one degree of freedom irrespective
of the dimension of the space it is in. Given one coordinate of
a point on the line, all the other coordinates can be derived as
(linear) functions of the given coordinate’. For example, in
three-diiensional space a line can be represented as a pair of
equations of the form cy = mxx + 4, z = fix + bz>. These
equations are obtained by projecting the line on the X-Y and
X-Z planes respectively, and then writing down the equation of
the projected line in the two-dimensional plane. If, in addition
to the four parameters in these equations, we also store the X-
range of a line segment, then we have a complete detinition of
a line segment, See Fig. 12.

In k-dimensional space, a line segment is traditionally
represented by a B-tuple comprising the coordinates of its two
end-points. Instead we have a 2k -tuple
enl.6mz.b~ . . . ,m-l.bt-l~~s~m>, where the last two

entries are the range spanned by the line segment on the xk

4. Bming dcgenmte cam. We shortly show how degenente cases can be
rvoidul.

axis, and the remaining entries are the slopes and intercepts of
the projections of the infinite extension of the given line
segment on the x1-a plane, x2-x& plane, etc.

Some slopes could become infInite. for certain lines. and
ranges may not be very meaningful along axes orthogonal to a
given line segment. To avoid such problem cases, we partition
the line segments, as in Section 4. b partitions are created in
kdiiensional space, one corresponding to each axis. Each
line segment is placed in a partition with whose axis it
subtends the smallest angle. This axis is the distinguished axis
against which all the slopes are determined, as well as the
segment range. Since a line cannot be orthogonal to all the
axes in space, we are guaranteed that it will always be able to
lind such an axis, on which a line segment subtends a non-zero
range, and which can be used to define slopes along other
axes. Moreover, since the line is closer to this axis than to
any other axis. in the pro&tion of the line segment to a plane
defined by this axis and another one, the slope of the line
segment will always be less than or equal to one, closer to this
axis than to the other one. Thus all slopes are bounded by fl,
as in the two-dimensional case.

A point in the original space transforms to a line in each
transform space, just as in the two-dimensional case. For any
given value. of slope, in the projection to a pair of axes, one
can determine the appropriate intercept for a line that goes
through the point. These functions of slope and intercept
along k-l different projections, provide A-l orthogonal
projections of a line. From these., a line in k-dimensional
space can be determined uniquely.

Finding all line segments that go through a point once
again involves finding all line segments that transform to a
point on the line (in one of the A transform spaces) obtained
by transforming the poin& and that also satisfy a range
condition.

Finding all line segments that intersect a given query line
segment once again involves taking the transforms of the two
end points of the query segment. These two lines form a
plane, and a region in this plane can be determined as lying
between these lines. as before. The desired line segments all
transform to points in this region.

8. CONCLUSIONS

In this paper we have proposed a data structure to store
line segments in a muhi-dimensional space. The data structure
stores the slope, intercept and range along one axis of a line
segment, rather than storing the end-points. The size of the
storage structure is roughly the same as for conventional
techniques.

We have shown how this proposed storage structure can be
used effectively to retrieve the set of line segments in a
database that (i) pass through a point. (ii) pass close to a point,
and (iii) intersect a given line segment. We have also
demonstrated, through geometric analysis and simulations, that
our method can provide a significant improvement over
traditional techniques that store end-points or use bounding
rectangles.

623

ACKNOWLEDGEMENT

This problem was suggested to me by Larry O’Gorman,
who also provided the references to the image recognition
literature. This problem was also suggested to me
independently by Kyu-Young Whang. I had useful discussions
with Shaul Dar and Larry O’Gorman.

APPENDIX

Intersection Calculations for a Line Segment Query

Consider a query segment with end points P=(xt,yt) and
Q=(xz.,yz). For every value of m E [-1.11, we can compute a
range for the allowable intercepts from the equations:
bl = -xlm + yl and bz = -xm + ~2. Any line that intersects
this query segment has a b value within this range of limits
for every choice of m. Observe that when m = rnh the slope
of the query segmen& then bl = b2 = bb the intercept of the
query segment, and the range becomes a unique point.

A line with slope m and intercept bl intersects the line at
point P. A line with slope m and intercept b2 intersects the
line at point Q. A line with slope m and an intercept b.
between these two limits, intersects the line at a point with X-
coordinate demrmined by a simple ratio: xhwdh =

x1 + $$j+ (b - bl) = x1 + ~ - b-b1 _ b-b0 This
mo-m mo-m’

coordinate, x*m+crpl. must lie within the bounds of the data
line segment under consideration for it to be retrieved using
the exact method. If the query line segment is vertical, ma is
meaningless, but x t = x2 = x*=h.

For data line segments in Dv. similarly, one can compute
bounds on the c values as a function of a specified n value.
And an exact y-h as a function of the c value and n
VidUe.

Intersection Calculations for a Region Query

Consider a query rotated square. centered at a point (x~ya).
with a side of length &. The top vertex of this square has
coordinates (xa,ye + A), and the bottom has coordinates
(x&y0 - k). Considering line segments in Dx. we find that
lines intersecting the “vertical” diagonal between these top
and bottom points must have an intercept b in the range
[yo-mxo-k. ya-m.xe+k]iftheslopeism.

The exact range condition requires that we consider cases.
A line segment in Dx intersects the given rotated square region
only if its right end point is to the right of the left segments of
the rotated square, and its left end point is to the left of the
right segments. In other words, xmu should be greater than or
equaltox~. andx., less than or equal to xti, where xmu and
xh are the X coordinates of the end-points of the candidate
line segments, x6 is the X coordinate of the intersection of (the
inlinite extension of) the line segment with one of the two left
side edges of the rotated square as appropriate, and xti, is
similarly the X coordiite of the right intersection.

The lower left edge of the rotated square has an equation:

Y = x0 + ye - A - x . If this line segment intersects with the
cmdiite line segment: y=mx+b. the intersection
coordinates are (xo+Y;+~~ -b,m*@o+zo-k)+b). Fm

this intersection to occur within the lower left edge, we must
have: XCI-k I xti I xo and ye-k I yri I ye. Due to the linear
relationship between x and y coordinates on this line segment,
we need check this condition only for one of x or y . Using
the constraint on y, we derive the following limits on the
intercept of the candidate line segment:
yo-mro-k Ib Iyo-mxo+mk. The first inequality is
automatically satisfied due to the limits on intercept value
already placed. We thus say. that when the second inequality

is satisfied, we must have xmu 2 y!zg.p.

Performing similar calculations over each of the four edges of
the rotated square, we get the following range conditions:

X-2 YO-b+(xO-k) jfb <yo-m(xo-k)

X-2
yo-by(xo-k)

1 ifb 2 yo - m(xo - k)

X&I PJ-~‘~~O+~) ifb <yo-m(xo+k) m-l
xdI yo-b +(xo+k)

m+l ifb 1yo-m(xo+ k)

A similar set of conditions can be obtained for line
segments in Dv by interchanging x and y. and substituting n
for m and c for b everywhere.

REFERENCES

HI

PI

131

[41

WI

171

PI

I. J. Cox. J. B. Kruskal, and D. A. Wallach, ‘Predicting
and Estimating the Performance of a Sub-pixel
Registration Algorithm,” IEEE Tram. on Patern
Analysis and Machine Intelligence, to appear, 1990.

A. Guttman, “R Trees: A Dynamic Index Structure for
Spatial Searching,” Proc. ACM SIGMOD Int’l Confi on
the Management of Data, 1984.4757.

A. Henrich. H-W. Six, and P. Widmayer, “The LSD
Tree: Spatial Access to Multidimensional Point and
Non-point Objects,” Proc. ISth Id1 Conf on Very
Large Databases, Amsterdam, The Netherlands, 1989,
45-54.

K. Hinrichs and J. Nievergelt. “The Grid File: A Data
Structure to Support Proximity Queries on Spatial
Objects,” Tech. Report 54. Institut fur Informatilc. ETH.
Zurich, July 1983.

P. V. C. Hough, “Method and Means for Recognizing
Complex Patterns,” U. S. Patent No. 3069654, 1962.

H. V. Jagadiih. “Spatial Search with Polyhedra,” Proc.
Sixth IEEE Id1 Co@. on Data Engineering, Los
Angeles, CA, Feb 1990.

R. Kasturi and J. Alemany. “Information Extraction
from Images of Paper-Based Maps,” IEEE Trans. on
Sofiare Engineering, SE-14(5), May 1988.

R. C. Nelson and H. Samet, “A Consistent Hierarchical
Representation of Vector Data,” Computer Graphics,
20(4). Aug. 1986, 197-206.

624

[91

WY

illI

WI

[I31

1141

[151

P61

[I71

WI

J. Nievergelf H. Hinterberger, and K. C. Sevcik, “The
Grid file: An Adaptable Symmetric Multikey File
Structure,” ACM Trans. on Database Systems, 9(l),
1984.

L. O’Gormsn and G. I. Weil. ” “An Approach Towards
Segmenting Contour Line Regions”,” Proc. 8th Int.
Conf. Pattern Recognition, Paris, France, 1986, 254-258.

J. A. Orenstein and T. H. Merett, “A Class of Data
Structures for Associative Searching,” Proc. Third
SIGACT News SIGMOD Symposium on the Principles of
Database Systems, 1984, 181-190.

J. A. Orenstein, “Redundsncy in Spatial Databases,”
Proc. ACM SIGMOD Int’l Cot& on the Management @
Dutu, Portland, OR, May-June 1989.

N. Roussopoulos, C. Faloutsos. and T. Sellis. “An
Efficient Pictorial Database System for PSQL,” IEEE
Trans. Sojiware Engg.. 14(5). May 1988. 611-629.

H. Samet and R. E. Webber, “Storing a Collection of
Polygons Using Quadtrees,” ACM Trans. on Graphics,
4(3). July 1985. 182-222.

H. Samet, “Hierarchical Representation of Collections of
Small Rectangles,” ACM Cquting Surveys, 20(4).
December 1988. 271-309.

T. Sellis, N. Roussopoulos. and C. Faloutsos. “The R+
Tree: A Dynamic Index for Multidiiensional Objects,”
Proc. 13th Int’l Conf on Very Large Databases,
Brighton, U. K.. Sep. 1987. 507-518.

M. Tamminen, “Performance Analysis of Cell-based
Geometric File Organizations.” Computer Vision,
Graphics, and Image Processing, 24. 1983. 160-181.

P. M. Will and K. S. Pennington. “Grid Coding: A
Preprocessing Technique for Robot and Machine
Vision+” Artificial Intelligence, 2(34), 319-329.

625

