
The Buddy-Tree:
An Efficient and Robust Access Method for Spatial Data Base Systems *

BERNHARD SEEGER+ and HANS-PETER KRIEGEL
PRAKTISCHE INFORMATIK, UNIVERSITY OF BFtEMEN, D-2800 BREMEN 33, WEST GERMANY

In this paper, we propose a new multidimensional access
method, called the buddy-tree, to support point as well as
spatial data in a dynamic environment. The buddy-tree
can be seen as a compromise of the R-tree and the grid
file, but it is fundamentally different from each of them.
Because grid files loose performance for highly correlated
data, the buddy-tree is designed to organize such data very
efficiently, partitioning only such parts of the data space
which contain data and not partitioning empty data space.
The directory consists of a very flexible partitioning and
reorganization scheme based on a generalization of the
buddy-system. As for B-trees, the buddy-tree fulfills the
property that insertions and deletions are restricted to
exactly one path of the directory. Additional important
properties which are not fulfilled in this combination by
any other multidimensional tree-based access method are:
(i) the directory grows linear in the number of records,
(ii) no overflow pages are allowed, (iii) the data space is
partitioned into minimum bounding rectangles of the
actual data and (iv) the performance is basicly
independent of the sequence of insertions. In this paper,
we introduce the principles of the buddy-tree, the
organization of its directory and the most important
algorithms. Using our standardized testbed, we present a
performance comparison of the buddy-tree with other
access methods demonstrating the superiority and
robustness of the buddy-tree.

Permission to copy without fee all or part of this material is

granted provided that the copies arc not made or distributed for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is given

that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise. or to republish. requires a fee

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

In non-standard database applications, such as geographic
information processing or CAD/CAM, access methods
are required that support efficient manipulation of
multidimensional geometric objects on secondary
storage. Moreover, efficient access methods are an
essential part in knowledge-based systems [HCKW 903.
We can basicly distinguish between point access methods
(PAMs) and spatial access methods (SAMs) which are
designed to handle multidimensional point data, e.g.
records ordered by a multidimensional key, and spatial
data, e.g. polygons or rectangles, respectively.

First of all, these access methods must be dynamic, i.e.
they should support arbitrary insertions and deletions of
objects without any global reorganizations and without
any loss of performance. Moreover they should
efficiently support a large set of queries, such as range,
partial match, join and nearest neighbor queries,

The basic principle of all multidimensional PAMs is to
partition the data space into page regions, shortly
regions, such that all records of a data page are taken
from one region. We classify according to the following
three properties of regions: the regions are pairwise
disjoint or not, the regions are rectangular or not and the
partition into regions is complete or not, i.e. the union
of all regions spans the complete data space or not,
Obviously, this classification yields six classes, four of
which are filled with known PAMs. Without going into
detail, in table 1 we present well known PAMs according
to these three criteria.

All of the PAMs in class (C 1) perform rather efficient
for uniform and uncorrelated data. However, for highly
correlateddatatheirperformance degenerates.

(*) This work was supported by grant no. Kr 670/4-3 from
the Deutsche Forschungsgemeinschaft DFG (German
Research Society) and by the Ministry of Enviromental
and Urban Planning of Bremen
(+) B.Seeger has a one year leave of absence from the
University of Bremen which he presently spending at the
University of Waterloo, Canada. fiiancially supported by
a Post Doctoral Fellowship from the DFG

590

class
property

PAM
rectangular complete disjoint

interpolation hashing wur 831. MOLHPE m 861.
quartile hashing [KS 891. PLOP-hashing [KS 881.
k-d-B tree [Rob 813. multidimensional extendible

(Cl) x X X hashing [Tam 82,Oto 841, balanced multidimensional
extendible hash tree [Oto 861. grid file [NHS 841.
Zlevel grid file [Hin 851. interpolation-based
grid file [Ouk 851

C2) x

(C3> x

K4)

X

X

twin grid file [HSW 881

X buddy tree, multilevel grid file IwK 851

X
B+-tree with z-o&z [OM 841, BANG file [Fre 873.
hB-tree [LS 891

Table 1 : Classification of multidimensional PAMs.

Therefore other PAMs like the BANG-file or hB-tree
have been proposed allowing more general shapes of
regions which are constructed by difference and union of
rectangles.

Quite a different approach for the efficient organization
of highly correlated data is the buddy-tree. The most
important characteristic is that the union of all regions
does not span the complete data space. Thus the buddy-
tree avoids partitioning empty data space. Instead the
buddy-tree uses a similar concept as the R-tree [Gut841
and the R*-tree [BKSS 901 for spatial data, but differs
from the R-tree variants by avoiding overlap in the tree
directory. In comparison to previously proposed tree
structures such as the K-D-B-tree, the buddy-tree guaran-
tees a more efficient dynamic behavior.Moreover, indirect
splits which cause low storage utilization and high
insertion costs in the K-D-B-tree, are completely avoided.
Therefore, the same properties are fullidled as for B-trees
[BM 72]:deletions, insertions and exact match queries are
restricted to one path of the directory. ‘Ibis behavior is
guaranteed by using a generalization of the buddy system
which was originally proposed for the grid file. Due to
this concept, the performance of the buddy-tree is almost
independent of the sequence in which data is inserted.

Furthermore, we propose a special implementation
technique for the buddy-tree which can be generalized to
other access methods, such as the R-tree variants. From
this the buddy-tree gains a high fan out of the directory
nodes. Thus the height of the tree and the retrieval cost
are reduced. Most SAMs assume that geometric objects
are approximated by a minimal bounding rectangle

whose sides are parallel to the axes of the data space. One
technique to generate such a SAM from a PAM is the
transformation of d-dimensional rectangles into 2d-
dimensional points where for example the first d
components represent the center, the remaining d
components represent the extension of the rectangle
([Hin85], [SK88]). These 2d-dimensional points are
highly correIated and occupy only a small part of the data
space. In particuhu for such distributions the buddy-tree
performs very efficiently.

In the paper we will use the following notations: The
parameter d, d2 1, specifies the dimension of the data
space D. The data space D is composed of the domains
Di, 1 I i I d, of the i-th axis. On these domains an order
relation should be well defined. Without loss of
generality we assume that D is given by the d-
dimensional unit square [O,l)d The parameters b, b > 1,
and c, c > 1, denote the capacity of a data page and
directory page, respectively.

The paper is organized as follows. In section 2 we
introduce the principles and the properties of the buddy-
tree on a more informal level. In section 3 we present a
formal description of the structure of the buddy-tree and
in section 4 we propose a generally applicable
implementation technique for increasing the fan out of
directory nodes. Section 5 contains a description of the
essential algorithms of the buddy-tree. Finally, in section
6 we present an experimental performance comparison
which demonstrates the superiority of the buddy-tree to
other PAMs, such as the hB-tree, the BANG-file and the
grid file.

591

of the @J&IV Tra -
The buddy-tree organizes data using a tree-based directory
where each axis is treated equally. In contrast to the K-D-
B-tree Rob811 (one of the first multidimensional trees),
the buddy-tree performs well in a highly dynamic
environment, i. e. insertions, deletions and a change of
the data distribution do not affect performance. This
property is achieved by applying a modified version of the
so-called buddy-system which is well-known from the
grid file [NHS84] to the buddy-tree. Additionally, the
performance of the buddy-tree is almost independent of the
sequence of insertions which is an essential drawback of
previous tree-structures, like the K-D-B-tree or hB-tree
lLS891.

Another important feature of the buddy-tree is that it
does not partition empty data space. Therefore queries,
such as partial match queries, where the query region
intersects with empty data space, can be performed much
faster than by conventional structures partitioning the
complete data space. This property is very similar to the
variants of the R-tree, originally designed for spatial data
Con&u-y to the R-tree, the buddy-tree does not allow
overlap in the directory nodes and can therefore guarantee
that insertions, deletions and exact match queries are
restricted to one path of the directory. Additionally, we
incorporate an implementation technique in the buddy-tree
which in-creases the fan out of the directory nodes (see
section 4).

The following catalogue summarizes the design
properties of the buddy-tree:

l empty data space is not partitioned
l insertion and deletion of a record is restricted to

exactly one path
l no overflow pages
l directory grows linear in the number of records
l performance is basicly independent of the sequence of

insertions
l efficient behavior for insertions and deletions
l very high fan out of the directory nodes

With the following example we intend to visualize the
basic properties of the buddy-tree:

Let the dimension be d = 2, the capacity of a directory
page be c = 5 and the capacity of a data page be b = 4.
Then the following snapshots depict the growth of the
buddy-tree starting with the empty file. In the data pages
the actual points are stored. Minimum bounding
rectangles of at most 4 points are represented in the
directory pages indicated by a light fill pattern. The white
area corresponds to empty data space which is not
managed by the buddy-tree (important design property).
The first line in our example shows states of the buddy-
tree with an overflowing data page depicted by a dark fill
pattern. In the second line the corresponding subsequent
state after the page split is depicted. The rightmost
overflow of a data page implies an overflow of the one
and only directory page resulting in a buddy-tree of height
two.

592

.

Additionally to the above design properties the following
technical properties can be seen from the above
snapshots:
l partitions into minimum bounding rectangles of

points and subrectangles in directory pages
l rectangles in directory pages am disjoint
. pointers are disjoint

Following these basic ideas the formal description of the
structure of the buddy-tree and of its algorithms is
presented in the next three sections.

. .
3. Formal of the Ihddy Tree s
The nodes of the tree-directory consist of a collection of
entries (El, . . . , Ek),k>2.EachentryEi, 1 <ilk,is
given by a tuple Ei = (Ri, pi) where Ri is a d-dimensional
rectangle and pi is a pointer referring to a subtree or to a
data page containing all the records of the file which are
in the rectangle Ri. In this paper, a rectangle is always
assumed to be parallel to the axis of the d-dimensional
data space. In particular to support the dynamic behavior,
the set of rectangles in a directory node must be a regular
B-partition of the data space. An exact description of that
condition is given by the following definitions.

Definition 1;
Given two d-dimensional rectangles R, S with R c S, R
is called a B-recta& of S, iff it can be generated by
successive halfing of S.

9
t

Figure 3.1: The rectangles RI and R2 are B-rectangles
of D and R3 is not a B-rectangle of D.

In this definition the sequence of axes where halting is
performed is irrelevant. Notice that S may be the given
data space D. In figure 3.1 we have depicted three
rectangles Rl, R2, R3, where RI and R2 are B-rectangles
of the data space D and R3 does not fulfil the property of
a B-rectangle.

of B-rectangl%r
1. If R, S are B-rectangles of the dam space D and R &

S, then R is a B-rectangle of S.
2. If A is a B-rectangle of D and we double D in

direction of an arbitrary axis (naming the new data
space D2) then A is also a B-rectangle of l$.

3. For an arbitrary rectangle R c D, there exists a
smallest B-rectangle of D such that R 5 B. We call
such a B-rectangle them of R, short B(R).
Such a B-region also exists for a union of rectangles
RIuR2 U...URk,k>l.

Asetofd-dimensionalrectangles (RI, Rk), k 2 1,
iscalleda&pg&iQBofthedataspaceD,
iff B (Ri)nB @j)= 0 V i, j E (1, k), i 4

Let (S, q) be an entry of an inner node of the buddy-tree
where q refers to the node ((RI, pl) ,.., (Rk, pk)) , k 2 2.
Then we require that the set of rectangles (R 1, . . . ,Rk) is
a B-partition of B(S). From definition 2 it follows that if
(Rl, . . . ,Rk) is a B-partition, all sets (Tl, Tk) are B-
partitions where Ri c Ti s B(Ri), 1 < i I k. In
particular (B&), B(Rk)) iS a B-partition, also called
the maximum B-partition. Which B-partition should be
used in an implementation is discussed in a later section.

An important feature of a multidimensional access
method is its efficient dynamic behavior. To obtain that,
it must be possible to merge without destroying the order
preservation. The buddy-tree merges two pages, if the
resulting partition in the father node is again a B-
partition. For this, the regions of the pages must be
buddies, which is formalized in definition 3.

Let V = (R1, Rk) a B-partition, k > 1, and let
S, T EV, S#T.Therectangles S,Tarecalled~,
iffB(S u T) A B(R)= 0 V R E V\ (S, T]

An important criterion for the efficiency of the dynamic
behavior is the number of possibilities for a merge. In
case of the buddy-tree this results in the question how
many buddies exist. Let us first mention that in case of
the grid file the maximum number of merge candidates is
d, whereas for the K-D-B-tree only regions which result
from a split are allowed to be merged, i. e. there is only
one candidate for a merge. Before we present a bound for
the buddy-tree, we need the definition of the level of a B-
partition.

593

. .
Let V be a B-partition and lengthi (R) the length of the
segment ni (B(R)), R E V, 1 I i 5 d, where fli (S) is the
projection of the rectangle S E D onto the i-th axis.
The &al level of the i-th axis is given by

levi := max log2 (lengthi / lengthi)
REV

Let z denote the axis with the highest local level.
Then the w L of the B-partition is given by

L := d (lev,-l)+z.

em L .

Let lev > 0, 1Wi = lev for 1 i i s d, and V be a B-
partition of level L = lev * d. Then the maximum number
M of buddies for an arbitrary region R E V is M 2 min
{IV I - 1, d + (lev - 1) d (d - 1)/2}

Proof.: see [See 891

The efficient dynamic behavior of the buddy tree results
from a considerably higher number of candidates for
performing a merge operation, as it can be seen from the
following table 3.2:

I PAM
I

number of candidates
for a merge I

hB-me hB-me 0 0

K-D-B-tree K-D-B-tree 1 1

grid file grid file d d

buddy-tree buddy-tree >d >d

Table 3.2

Another serious problem of the original K-D-B-trees, also
occurring in R+-trees [FSR 871, is that a split of a
directory page may produce an indirect split of subtrees.
In figure 3.3 we have depicted a B-partition of a directory
node. If we assume a directory capacity of 4, this node
must be split into two which is performed by finding an
axis and a hyperplane perpendicular to this axis dividing
the directory entries into two disjoint sets of directory
entries. This could not be achieved without cutting a
rectangle in the directory page. A first approach suggested
for the K-D-B-tree is to split all nodes belonging to such
an intersected region into two, resulting in a possibly low
storage utilization. Obviously, storage utilization will get

out of control. Another drawback is that a split and
therefore an insertion is not anymore restricted to one
path of the tree. For the buddy-tree we avoided these draw-
backs by allowing only a special class of B-partitions,
called regular B-partitions.

Fig. 3.3: A B-partition is given for which each of the
hyperplanes cuts a B-region

Let V = (Rl, . . . , Rk), k 2 2, be a B-partition. V is
called reeulat. iff all B-rectangles B (Ri), 1 I i I k, can
be represented in a kd-trie.

Fig. 3.4: For d=2 and L=5, we have illustrated
the buddies T1 ,T2 and T3’ of S

2

2

& I

s

Fig. 3.5: Two kd-trie representations of the B-partition
of fig. 3.4

594

A kd-trie [Ore821 is a binary digital tree where the internal
nodes consist of an axis and two pointers referring to
subtrees. In the leaves of the tree the rectangles of a B-
partition are represented. Each internal node represents a
B-rectangle and the root represents the complete region. In
the left or right subtree of such a node, all rectangles are
represented which are in the left or right half of the B-
rectangle with respect to the corresponding axis,
respectively. On the left hand side of figure 3.5 we have
depicted a kd-trie corresponding to the B-partition of
figure 3.4. Let us mention that there is no unique kd-trie
representation of a B-partition. For example, the kd-trie
on the right hand side of figure 3.5 represents also the B-
partition of figure 3.4.

Considering regular B-partitions, we can also find a
split axis which does not intersect with any rectangle of
the B-partition. This can be done by using one of the axes
denoted in the root of the kd-tries. The test, whether a B-
partition is regular, costs quite a bit CPU-time and should
not be performed often. The buddy-tree uses the test,if and
only if two pages should be merged. After a split this test
does not need to be executed, because in such a situation a
leaf of the corresponding kd-tries is split into two and an
internal node is added to the tree structure referring to
these leaves. Let us mention that the grid file uses a very
similar concept for detecting deadlocks. However, in case
of the buddy-tree deadlocks cannot occur, because empty
data space is not represented, i. e. rectangles without
containing a record are not represented in the directory.

One shortcoming of the buddy-tree as well as of the R-
tree is the relatively low fan out of the directory nodes,
because both structures store sets of d-dimensional
rectangles in their directory nodes. In this section, we
suggest a representation of the rectangles which is similar
to that of the so-called hash-trees ([Oto86], [Ouk85]). The
basic idea is to use a d-dimensional orthogonal grid with
a dynamicly varying resolution for each node. Only those
rectangles are accepted which can be exactly mapped onto
such a grid. These rectangles are represented by two cells
matching the lower left and upper right comer of the
rectangles. The cells are addressed using a hashing
function. Therefore, instead of two d-dimensional points,
only two hash values are necessary for the representation
of the rectangles. Thus the fan out will increase. For the
representation of rectangles by hash-values we decided to
use z-values [OM83].

Another important characteristic of the buddy-tree is that
the grid belonging to a directory node does not partition
the minimal bounding rectangle M into equal sized cells,
but partitions the B-region of M. The partition of the
minimum bounding rectangle by a grid would lead to
severe problems. If we merge two nodes, a completely
new computation of the new grid must be performed.
More seriously, we cannot guarantee a unique
identification of the rectangles in the merged node.
However, if we partition B-regions, the grids of the two
merged regions are part of the common grid, which
follows from the properties of B-regions, see section 3.
If V and W are B-partions of their B-regions B(V) and
B(W)with B(V)n B(W)=0, thenVandWamalsoB-
partitions of B(V u W). For a unique identification of the
rectangles in a B-partition, it is necessary that the level of
the z-values must be at least the same as the level of the
B-partition.

Obviously, a shortcoming of a grid representation is
that we do not maintain the minimal property of the
rectangles in the directory. The rectangles only enclose the
minimal rectangles. At first glance, we will expect more
disk accesses for retrieval operations. However, we have
gained a high fan out in the directory nodes. For
example, let us assume 2-dimensional keys where each
component requires 4 bytes. Then for an entry consisting
of a rectangle and a pointer 4*4+2=18 bytes are necessary
for the exact representation where 2 bytes are used for the
pointer referring to the subtree. For a grid representation
generally two bytes per z-value are sufficient. Therefore
the fan out increases by the factor 18 : 6. This factor will
be even better for higher dimensions. The improvement
of the fan out is more important for the performance of
the buddy-tree than giving up part of the minimal
Property.

Dl Dl

Fig. 4.1: Representation of the minimal rectangles
Rl,..,R5 in the buddy-tree (left side) and in the multi
level grid file.(right side)

595

Our approach for the organization of the directory is
similar to that of the multi-level grid file [KW85]. One
difference is that in case of the multi-level grid file (mlgf)
only B-regions can be represented in the directory, whereas
the representation of the buddy-tree is more exact by
using two z-values, see figure 4.1. The buddy-tme comes
closer to the minimal property than the mlgf.

. 5. AlgQdms
In the following we describe the algorithms of the buddy-
tree for an exact match query, range query and insertion.
We decided to describe the algorithms in a programming
language, in our case in Modula-2, because in our
opinion it is more exact than to use pseudo language. For
the sake of ease of understanding we have introduced some
modifications to Modula-2. We have tried to use only
some special type definitions and avoid the pointer
concept at all. Therefore the description of types and
procedures is quite different compared to the real
implementation.

TYPE
Key = ARRAY [l..d] OF KeyType; (* KeyType is an
atomar type where the operation ‘>’ is well defined. *)

DataRec = RECORD’ K: Key; info: ARRAY OF BYTE
END; (* The info part of the type DataRec is not of
interest *)

Rectangle = RECORD lowhigh: Key END;
(* A rectangle is described by its lower left and right
upper comer. *)

DirEntry = RECORD R: Rectangle; next: FilePos END,
(* next is an address of a block stored on secondary
storage *)

BuddyNode = RECORD
pas : SHORTCARD;
CASE dir: BOOLEAN OF

TRUE:dimode: ARRAY OF DirEntry
FALSE:datanode:ARRAY OF DataRec

END;
(* For a node in the tree pos is the number of actually
stored entries (dii = TRUE) or records. *)

First of all, we introduce the definitions of types. In our
types BuddyNo& and DataRec we have not specified the
size of the arrays, because it will not be of interest for the
description of the algorithms. In our algorithms we use

Get-functions to return some derived information from a
node. More exactly, Get-Position (node, (rectangle or
key), pos) returns the position (which is larger than the
input parameter pos) of the first rectangle or data record in
a node intersecting with the key or rectangle given as
input. If no such position is found, 0 will be returned.
The functions Get-Entry (node,pos), Get-Record (node,
pos) and Get-Node (node, pos) provide for a given node
and a position the corresponding entry, record and (son)
node, respectively. Using these functions the algorithms
Emq and RQ performing exact match and range query are
completely described in the following.

PROCEDURE Emq (VAR node: BuddyNode; VAR
pos: SHORTCARD, K: Key);
(* returns the last node and the position of the touched
entry where the search finishes *)

BEGIN
pos := Get_Position(node, K, 0);

(* pos = 0 c=> no entry found *)
lF(pos#O)ANDnode.dirTHEN

node := Get-Node(node, pas);
Emq(nde, pas, K)

EM);
END Emq;

PROCEDURE RQ(nodez BuddyNode; R: Rectangle);
(* performs a range query, where answers are written on
output *)
VAR pas: SHORTCARD;

BEGIN
pos := Get_Position(node, R, 0);
wH.ILEpos#oDo

IF nodedir THEN
RQGet_Node(node, pas). R)

ELSE
(* Output the record returned by
Get-Record(node,pos) *)

END,
pos := Get_Position(node, R, pos)

END;
END RQ;

Let us mention that an exact match query is restricted to
one path of the tree which can be easily seen in the
algorithm Emq. Considering the algorithms, there is not
much difference between the algorithms Emq and RQ. For
the Emq algorithm we assume that at most one answer is
allowed, whereas the RQ algorithm can obviously
deliver a set of answers.

596

For the Inrert algorithm more explanations are necessary.
First of all, there are some functions requiring a node as
input. The function SecAddress returns an address on
secondary storage for the node and the function Overflow
checks whether the node contains overflow records or
entries. An entry or a record is inserted in a given node
using the procedure Put-Entry or Put-Record,
respectively. A procedure Mergeable asks a given node,
whether entry (specified by its position) can be merged
with an arbitrary other entry in the node. Finally, the
procedure Merge executes a merge where the modified
entry is stored at the position newpos (see algorithm
Insert).

PROCEDURE Insert (VAR node: BuddyNode; drec:
DataRec);
VAR newnode: BuddyNode;

Pas : SHORTCARD;
enUy : DirEntry;

BEGIN
Emq(node, pos, drec.K);
WHILE nodedir DO

entry.R.low := drec.K; entry.R.up := drec.K;
entry.next := SecAddress(newnode);
Put-Entry(node, entry);
(* insertion of an entry in a node *)
newpos := nodepos;
IF Mergeable(node, newpos) THEN

Merge(node, newpos);
node := Get-Node(node, newpos)

ELSE
IF Overflow(node) THEN Split(node) END;
newnode.dir := FALSE; newnodepos := 0;
node := newnode

END (* IF *)
END (* WHILE *);
IFpos#OTHEN

WriteErrorMsg(“Record exists in the file”);
ELSE

Put_Record(node,dmc);
(* insertion of a record in a node *)
IF Overflow(node) THEN Split(node) END;

END;
END Insert:

The most difficult case for an insertion appears, if the
exact match query ends in a directory node. In this case, a
new directory entry is created where the rectangle is
described by the point which should be inserted. For this
degenerated rectangle we search for a buddy where the
corresponding node is not completely filled to accomodate

an additional entry or rectangle (Mergeable = TRUE).
Then we try to insert the record into this node, see figure
5.1. If no mergeable node can be found, a new data page
is allocated where the record is inserted.

4 1

Fig 5.1: Solving the problem of an insertion where the
record K falls into non-partitioned data space

In comparison to the multilevel grid file the buddy-tree
avoids directory nodes with one entry and thus the buddy-
tree is not balanced. However, we want to emphasize that
this unbalanced directory reduces the cost for all
operations in comparison to an artificially balanced
directory! ‘Ibis is exactly the reason why the buddy-tree
guarantees a linear growth of the directory in the number
ofrecords.

PROCEDURE Split (VARnodez BuddyNode);
VAR fnode~~wnodez BuddyNode;

entry : DirEntry;
axis : [l..dl;
POS : SHORTCARD;

BEGIN
ComputeFather(fnode, node, pos);
axis := Get-Splitaxis(node);
DivideEntries(node, axis, newnode);
entry.R := GetJJBB(node);
entry.next :=,SecAddress(node);
Update~Entry(entry fpos);
entry.R := GetJvIBB(newnode);
entrynext := SecAddress(newnode);
Put_Entry(fnode,entry);
(* insertion of an entry in the node *)
IF Overflow(fnode) THEN

Split(fnode)
ELSE

Minimize(fnode)
END;

END Split;

597

The insertion of a record is restricted to one path of the
buddy-tree. This will be more clear by considering the
split algorithms. Similar to B-tree algorithms a split can
propagate up to the root, but cannot leave the top-down
search path,

Since the split is the most complicated algorithm of the
buddy-tree, we will go through the algorithm step by
step. At first, the father node is evaluated for a given
node named split node, by calling the procedure
ComputeFather. Additionally, in the father node the
position of the entry referring to the split node is
computed. This procedure has to handle two exceptions.
The first occurs if the split node is the root, Then a new
root is created and filed with one entry referring to the
split node. The second exception occurs, if the split node
is a data node not stored on the deepest level of the buddy-
tree. In this case a new father node is created with one
entry referring to the original split node. Thus the level of
the split node is incremented.

In the second step, the axis is determined in which the
split should be executed. If we have several possibilities
for the choice of a split axis, that one is selected where
the margin of both resulting rectangles is the smallest.
Then the procedure DivideEntries divides the records or
entries into two groups corresponding to a hyperplane
which is perpendicular to the split axis. More exactly, the
hyperplane is determined by halfing the B-rectangle B(R)
where R belongs to the entry in the father node which
refers to the split node. One group of records or entries
remains in the old node and the other group is stored in a
new node. There is only the guarantee that the groups
contain at least one entry or record. Similar to the grid
file, the split strategy of the buddy-tree depends on the
data space, but not on the stored data. Thus one of the
advantages of the buddy-tree is that performance will be
almost independent of the sequence of insertions.

The next four statements in the procedure Split describe
the update of the old and the insertion of the new entry in
the father node. The procedure Get-MBB computes the
minimal bounding box of all rectangles in a given node.
At last, the father node is checked for an overflow record
and it is possibly split. In the other case the procedure
Minimize is called which guarantees the minimal
property of all possibly affected rectangles on the path.
This is done at most once per level.

PROCEDURE Minimize (node: BuddyNode);
VAR mode : BuddyNode;

entry : DirEntry;
pas : SHORTCARD;

BEGIN
IF IS-Root(node) THEN RETURN END;
ComputeFather(fnode, node, pos);
entry := Get-Entry(fnode,pos);
IF entry.R # Get-MBB(node) THEN

entry.R := GetMBB(node);
Update_Entry(fnode,enntry,pos);
Minimize(fnode);

END,
END Minimize;

We have not yet described one important feature of the
split algorithm. If the distribution of the entries is rather
uneven (e.g. one node is filled at most 30 %), then we
will look for a buddy which can possibly be merged with
the underfilled node.

In this paper, we do not present the deletion algorithm.
But let us emphasize that, as it is true for insertion,
deletion is restricted to one path of the buddy-tree.

. Cm
In the following, we give a brief summary of our
standardized testbed of PAMs described in detail in
[KSSS89]. For justifying the choice of PAMs selected
for our comparison we refer to the classification of
multidimensional PAMs in table 1. Considering class
Cl, the most promising structures definitely are the
interpolation-based grid file and the balanced
multidimensional extendible hash tree. However, both
structures can be obtained as a special case of the buddy-
tree by restricting the properties of the regions. Therefore
these two PAMs need not to be implemented. We do not
include the best multidimensional dynamic hashing
scheme without directory, PLOP hashing, since it is
efficient only for weakly correlated data, but not for
strongly correlated data. From class C 1 we selected the
2-level grid file because its efficient fine-tuned and well
tested Modula-2 implementation by Klaus Hinrichs [Hin
851 is generally available which we thankfully
acknowledge.

From class C 4 we omitted the B+-tree storing z-values
from our comparison. Instead, we decided to implement
the BANG file and the hB-tree, because they are both
improvements of the basic B+-tree storing z-values.
Obviously, we decided to implement the buddy-tree (class
C 3) due to its non-complete partition of the data space
which results in avoiding to partition empty data space.
Since the concept of the twin grid file (class C 2) of
organizing two dependent grid files at the same time is

598

generally applicable to any PAM, we did not include it in
our comparison. It might be worth investigating the
application of this principle to the winners of our
comparison. As a measuring stick we use our buddy-tree.

We ran our comparisons on SUN workstations (3160)
using Modula-2 implementations of the selected PAMs.
We took seven different data files (Fl) - (F7) of 2-
dimensional records into account where due to space
limitation the distributions of the data are described by the
plotted points, see figure 6.1. The 7th data file (M)
contains uniformly distributed data. Each of the data files
with the exception .of one contains 100,000 records. The
file (F6) belonging to the distribution RealData consists

of 85,549 records of real cartography data representing
the elevation lines in a “rolling-hill-type” area in the
Sauerland, West Germany. The points are obtained as
interpolation points of the elevation lines. Since the data
is originally stored in a quad-tree, it is inserted in a sorted
sequence which is due to the partitioning sequence of the
quad-tree. We thankfully acknowledge receiving this data
from the Landesvermessungsamt NRW, Bonn, West
Germany. Let us emphasize that the Bit Distribution (F3)
bit(z), & z II, was included with the choice of x=0.15,
because it is the worst case distribution of the buddy-tree
when z becomes small.

,’
/

,’
/’

,/- /’ I

,/’

(Fl) Diagonal (F2) Sinus Distribution
(F3) Bit Distribution

(F4) x - Parallel (F5) Cluster Points (F6) Real Data

Fig. 6.1: Data distributions

To demonstrate the performance for range queries we
generated five groups of 20 range queries. The regions of
the first three groups are squares varying in size from OJ
%, 1 % to 10 % relatively to the data space. The 4th and
5th group are partial match queries where the y- and x-
value are unspecified, respectively. For all operations, we
have measured the number of disk accesses per operation.

In table 6.2 for the parameters star (average storage
utilization) and insert (average cost for an insertion) we
computed the unweighted average over all seven data files.
As an indicator for the average query performance, we

present the parameter query average which is averaged
(unweighted) over all five query types for each
distribution and then averaged over all seven distributions.
The goal of this indicator is to help make things more
clear, at fast glance; however, we are aware that such an
average implies a loss of information. The loss of
information is considerably less in table 6.3 where the
parameter query is displayed for each distribution as an
average over all five types of queries. For the detailed
description of all experiments and all results the interested
reader is referred to [KSSS 891.

599

hB-tree

BANG-file

grid file

buddy-tree

query
aversge
164.1

131.9

148.5

100.0

store Insert

56.6 2.80

67.9 2.49

58.3 2.56

64.9 2.78

Table 6.2: unweighted average over all 7 distributions

h B-tree

BANG-file

grid file

buddy-tree

Table 6.3: unweighted average over all 5 types of queries depending on the distribution

In order to keep the performance comparison manageable
(we already had more than 2.7 million insertions), we
have chosen the page size for data pages and directory
pages to be 512 bytes which is at the lower end of
realistic page sizes. Using small page sizes, we obtain
similar performance results as for much larger file sizes,
e.g. a doubling of the page size can accomodate an eight
times higher file size within the same directory height for
tree-based directories (BANG file. HB-tree, buddy-tree).
We want to emphasize that the grid file implementation
[Hin 853 always keeps the 1st level grid directory in main
memory whereas for the other PAMs only the root page
of the directory is main memory resident. Since it was
crucial to change the grid tile implementation to allowing
only one root page of the directory in main memory, we
accepted that the relative ranking of tbegrid file is too
good in comparison to the other structures. To clarify
this: for the Diagonal Distribution the 1st level grid
directory needed 45 directory pages in main memory,
which is sufficient for BANG file and buddy-tree to keep
the complete directory in main memory. Thus the rating
of the grid file in a comparable environment would be
considerably worse. Due to the main memory-resident
directory, increasing page size implies that the relative
performance of the grid file will decrease in comparison to
the other structures.

Considering table 6.2 the buddy-tree offers itself to be
the winner of our comparison. It is interesting to observe
that the buddy-tree does’ not fulfill the often cited rule

“best storage utilization - best query performance”. Let us
take a closer look at the different distributions in table
6.3. The only distributions where the buddy-tree is not
the winner are the Uniform Distribution and the Bit
Distributions. As mentioned before the Bit Distribution
is the worst case distribution for the buddy-tree. Even for
its worst case distribution the buddy-tree is better than the
grid file. This underlines the robustness of our structure.
For the Uniform Distribution the buddy-tree is within a
3% margin of the grid file, the winner. This is surprising
for a scheme designed for nonuniform data incorporating
the complex structural concept of not partitioning empty
data space. In all distributions, with the exception of the
Uniform and Bit Distribution, the buddy-tree is the clear
winner in the average query performance. Summarizing
we can state that the buddy tree clearly outperforms its
competitors if at least one of the following two data
characteristics occur: (Cl) densely populated and
unpopulated areas vary over the data space, (C2) sorted
data is inserted. Sorted insertions frequently occur in real-
life applications, either sorted by some local ordering
such as clusters or quadrants or by lexicographical
ordering. First results in a performance comparison with
rectangles underlign the superiority of the buddy-tree.

. 7. Conclaslons Work
In this paper, we proposed the buddy-tree, a new dynamic
multidimensional access method. Contrary to previously
suggested point access methods, the buddy-tree generates
the rectangular regions in its directory as minimal as

600

possible. Therefore, the data space is not completely
covered by these regions. In particular empty data space is
not reflected in the directory. Moreover, the buddy-tree
avoids overlap in the directory nodes using a
generalization of the so-called buddy-system.
Additionally, we propose a general implementation
technique for the directory increasing the fan out of the
directory nodes. Using our standardized testbed, we
present a performance comparison of the buddy-tree with
other access methods demonstrating the superiority and
robusmess of the buddy-tree.

Our current and future work in the area focuses in the
following tasks:

We examine whether a controlled overlap in the
directory (e.g. the twin technique [HSWSS]) can
improve storage utilization
A pack algorithm is integrated in our implementation
avoiding underfilled data nodes
Different techniques to generate SAMs based on the
buddy-tree will be implemented and investigated.

. Beferenca

[BKSS90] Beckmann. N.. Kriegel. H.P.. Schneider, R.,
Seeger, B.: ‘The R*-tree: An efficient and robust access
method for points and rectangles’, in Proc. ACM SIGMOD
International Conference on Management of Data ,
May 23-25, 1990, Atlantic City, USA. 322-331, 1990
[BM72] Bayer,R., McCreight, E.: Organization and
maintenance of large ordered indexes, Acta Informatica 1.3
173-189,1972
[Bur83] W.A. Burkhard: ‘Interpolation-based index
maintenance’, BIT 23. 274-294, 1983
[FSR87] C. Faloutsos. T. Sellis. N.Roussopoulos: ‘Ana-
lysis of object oriented spatial access methods, Proc. ACM
SIGMOD Int.Conf. on Management of Data.426-439, 1987
[Fre87] M. Freeston: The BANG file: a new kind of grid
file’, Proc. ACM SIGMOD Int. Conf. on Management of
Data, 260-269. 1987
[Gut841 A. Guttmsn: ‘R-trees: a dynamic index structure
for spatial searching’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, 47-57, 1984
[HCKW90] E. Hanson, M. Chaabouni. C.-H. Kim, Y.-W.
Wang:‘A predicate matching algorithm for database rule
systems’, ACM SIGMOD 90, 271-280. 1990
[Hi11851 K.Hinrichs:‘The grid file system:implementation
and case studies for applications’, Dissertation No.7734,
Eidgenossische Technische Hochschule(ETH). Zuerich.
1985
[HSWSS] A. Hutflesz, H.-W. Six, P. Widmayer: Twin grid
files:space optimizing access schemes’,Proc.ACM SIGMOD
Int. Conf. on Management of Data, 183-190. 1988
[K r 1841 H.P. Kriegel: ‘Performance comparison of index
structures for multikey retrieval’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, 186-196, 1984

[KS861 H.P. Kriegel. B. Seeger: ‘Multidimensional order
preserving linear hashing with partial expansions’, Proc.
Int. Conf. on Database Theory, Lecture Notes in
Computer Science 243, 203-220. 1986
[KS881 H.P. Kriegel, B. Seeger: ‘PLOP-Hashing: a
grid file without directory’, Proc. 4th Int. Conf. on Data
Engineering, 369-376. 1988
[KS891 H.P. Kriegel. B. Seeger: ‘Multidimensional
quantile hashing is very efficient for non-uniform
distributions’, in Information Sciences 48, 99-l 17, 1989
[KSSS89] H.P. Kriegel. M. Schiwietz, R. Schneider, B.
Seeger:Performance comparison of point and spatial access
methods,Proc.Symp. on the Design and Implementation of
Large Spatial Databases, Santa Barbara, July 17-18.1989.
Lecture Notes in Computer Science 409, 89-l 14, 1989.
[LS89] D.B. Lomet, B. Salzberg: The l&tree: A robust
multiattribute search structure, in Proc. of the Fifth Int.
Conf. on Data Engineering, Feb. 6-10, 1989. LosAngeles,
also available as Technical Report TR-87-05, School of
Information Technology, Wang Institute of Graduate
Studies.
[NHS84] J. Nievergelt, H. Hinterberger, K.C. Sevcik:
The grid file: an adaptable, symmetric multikey file
structure’, ACM Trans. on Database Systems, Vol. 9, 1,
38-71. 1984
[Ore821 J.A. 0renstein:‘Multidimensional tries used
for associative searching’, Inf. hoc. Letters 14. 4, 1982.
150-157
[OM84] J.A. Grenstein, T.H. Merrett: ‘A class of data
structures for associative searching’, Proc 3rd ACM
SIGACT-SIGMOD Symposium on Principles of Database
Systems, 181-190. 1984
[Oto84] E. J. Otoo: ‘A mapping function for the
directory of a multidimensional extendible hashing’, Proc.
10th Int. Conf. on Very Large Databases, 491-506. 1984
[Oto86] E. J. Otoo. : ‘Balanced multidimensional
extendible hash tree’, Proc. 5th ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, 110-l 13,
1986
[Ouk85] M. Guksel: The interpolation based grid file’,
Proc. 4th ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, 1985
[Rob811 J. T. Robinson: The K-D-B-tree: a search
structure for large multidimensional dynamic indexes’,
Proc. ACM SIGMOD Int. Conf. on Management of Data,
10-18. 1981
[See891 B. Seeger.: ‘Design and implementation of
multidimensional access methods’ (in German), PhD thesis,
Department of Computer Science, University of Bremen.
[SK881 B. Seeger. H. P. Kriegel: ‘Design and
implementation of spatial access methods’. Proc. 14th Int.
Conf.on Very Large Databases, 360-371. 1988
[Tam821 M. Tamminen: The extendible cell method
for closest point problems’, BIT 22. 27-41. 1982
[WKSS] K.-Y. Whang, R. Krishnamurthy: ‘Multilevel grid
files’, Technical Report, IBM Research Lab., Yorktown
Heights, 1985

601

