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ABSTRACT 
Referential integrity underlies the relational 
representation of objeceoriented structures. The con- 
cept of referential integrity in relational databases is 
hindered by the confusion surrounding both the con- 
cept itself and its implementation by relational data- 
base management systems (RDBMS). Most of this 
confusion is caused by the diversity of relational 
representations for object-oriented structures. We 
examine the relationship between these representa- 
tions and the structure of referential integrity con- 
straints, and show that the controversial structures 
either do not occur or can be avoided in the rela- 
tional representations of object-oriented structures. 

Referential integrity is not supported uniformly 
by RDBMS products. Thus, referential integrity con- 
straints can be specified in some RDBMSs non- 
procedurally (declaratively) , while in other RDBMSs 
they must be specified procedurally. Moreover, some 
RDBMSs do not allow the specification of certain 
referential integrity constraints. We discuss the 
referential integrity capabilities provided by three 
representative RDBMSs, DB2, SYBASE, and INGRES. 

I. INTRODUCTION 

The database design process involves specifying the 
objects and object connections relevant to the data- 
base application. In relational databases objects are 
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represented by relation tuples, while object connec- 
tions are represented by references between tuples. 
Such references are enforced in relational databases 
by referential integrity constraints [2]. There are two 
approaches to the specification of these constraints in 
relational databases. In the Universal Relation (UR) 
approach [ll], referential integrity constraints are 
implied by associating different relations with com- 
mon attributes; the referential integrity meaning of 
relations sharing common attributes is defined by a 
set of rules, called UR assumptions. The UR assump- 
tions make the description of object structures 
extremely difficult and not entirely reliable, mainly 
becaise they require excessively complex attribute 
name assignments. 

A different approach to the specification of 
referential integrity constraints is ‘to associate expli- 
citly a foreign-key in one relation with the primary- 
key of another relation [5]. Such constraints are a 
special case of inclusion dependencies 141. Every 
explicit referential integrity constraint is usually 
associated with a referential integrity rule which 
defines the behavior of the relations involved in the 
constraint under insertion, deletion, and update. 
Explicit referential integrity constraints are easier to 
specify and understand than the implicit referential 
integrity constraints of the UR approach, because 
they are closer to the way users describe object struc- 
tures. However, the referential integrity concept is 
still surrounded by confusion, as illustrated by the 
successive modifications of the original definition of 
[2] (e.g. see [3], [5]). Thus, certain referential 
integrity structures have unclear semantics, and 
therefore must be ‘treated with caution’ [6]. Obvi- 
ously, a non technical user cannot be expected to 
manage the complexities of such a task. 

In this paper we examine the characteristics of 
referential integrity constraints involved in the rela- 
tional representation of object-oriented structures. 
We show that the controversial structures discussed 
in [6] can be avoided without any effect on the capa- 
bility of relational schemas to represent object struc- 
tures. We explore the characteristics of referential 
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integrity constraints in the context of relational sche- 
mas representing Eztended Entity-Relationship (EER) 
object structures. We have selected the EER model 
because of its widespread use in designing relational 
databases [19]. However, our results apply to any 
object-oriented data model that supports generaliza- 
tion and aggregation [g]. 

We have shown in [15] that an EER schema 
can be represented by a Boyce-Codd Normal Form 
(BCNF’) relational schema of the form (R, F IJ I ), 
where R denotes a set of relation-schemes, and F and 
I denote sets of key and inclusion dependencies, 
respectively. Informally, relation-schemes represent 
object-sets, and inclusion dependencies represent the 
existence dependencies inherent to object connec- 
tions. The inclusion dependencies in these schemas 
are key-based, that is, are referential integrity con- 
straints, and relation-schemes correspond to either 
unique or multiple (embedded) object-sets. In [12] we 
have shown that the mapping process involved in 
representing EER schemas by relational schemas, can 
be expressed as the composition of (i) the mapping of 
EER schemas into a relational schemas, where every 
relation-scheme corresponds to a unique EER object- 
set, followed by (ii) relation-scheme mergings, that 
result in relation-schemes representing multiple 
object-sets. 

We examine the structure of referential 
integrity constraints involved in relational schemas 
whose relation-schemes represent unique. EER 
object-sets. We show that in such schemas referential 
integrity constraints can be associated with one out 
of four possible referential integrity rules. Next, we 
examine the effect of merging on the structure of 
referential integrity constraints, and show that merg- 
ing entails associating some referential integrity con- 
straints with an additional, fifth, referential integrity 
rule. In contrast, seven referential integrity rules are 
defined in [3] and [5]; we show that the two extra 
rules are not needed for representing EER object 
structures. 

Currently, several relational database manage- 
ment systems (RDBMS), notably IBM’s DB2, SYBASE, 
and INGRES, provide support for referential 
integrity. Interestingly, these systems provide 
different capabilities for specifying referential 
integrity constraints. Thus, DB2 [7] allows non- 
procedural (declarative) specifications of referential 
integrity constraints, but with certain restrictions on 
the allowed structures. Conversely, SYBASE [18] 
and INGRES [8] do not support declarative 
specifications of referential integrity constraints, and 
provide instead mechanisms (triggers in SYBASE and 

rules in INGRES) for specifying such constraints pro- 
cedurally. We discuss in this paper the referential 
integrity capabilities of DB2, SYBASE, and INGRES. 
We show that some of the restrictions imposed by 
DB2 are too stringent. We compare the SYBASE and 
INGRES mechanisms for specifying referential 
integrity constraints, and discuss their limitations. 

The paper is organized as follows. In section 2 
we briefly review the relational and EER concepts 
used in this paper, and the relational representation 
of EER schemas. In section 3 we examine two contr- 
oversial foreign-key structures in the context of rela- 
tional schemas representing EER object structures. 
The semantics of referential integrity rules in the 
context of relational schemes representing EER sche- 
mas, is explored in section 4. In section 5 we exam- 
ine the effect of merging relations on the structure of 
referential integrity constraints. The referential 
integrity capabilities of DB2, SYBASE, and INGRES 
are examined in section 6. We conclude with a sum- 
mary. The procedures for mapping EER schemas 
into relational schemas, and for merging relation- 
schemes in relational schemas are given in the appen- 
dix. 

II. PRELIMINARY DEFINITIONS 

In this section we review briefly the relational and 
Extended Entity-Relationship (EER) concepts used in 
this paper, and the representation of EER object 
structures using relational constructs. 

2.1 Relational Concepts. 

We use letters from the beginning of the alpha- 
bet to denote attributes and letters from the end of 
the alphabet to denote sets of attributes. We denote 
by t a tuple and by t[ w] the sub-tuple of t 
corresponding to the attributes of W. 

A relational schema is a pair (R,A), where R is 
a set of relation-schemes and A is a set of dependen- 
cies over R. We consider relational schemas with 
A = F u I, where F and I denote sets of functional 
and inclusion dependencies, respectively. A relation- 
scheme is a named set of attributes, R,(Xi), where Ri 
is the relation-scheme name and Xi denotes the set of 
attributes. Every attribute is assigned a domain, and 
every relation-scheme, Ri(Xi), is assigned a relation 
(value), ri. Th e ro ‘ec iota p 3 t of such a relation, r;, on 
a subset of GUI, W, is denoted zw(ri), and is equal to 
{t[W] 1 t E ri>. ‘I’ wo attributes are said to be com- 
patible if they are associated with the same domain, 
and attribute sets X and Y are said to be compatible 
iff there exists .a one-to-one correspondence of compa- 
tible attributes between X and Y. 
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Let Ri(Xi) b e a relation-scheme associated 
with relation ri. A junctional dependency over Ri is 
a statement of the form Ri: Y-Z, where Y and Z 
are subsets of Xi; Ri: Y-+Z is satisfied by ri iff for 
any two tuples of ri, t and t ‘, t[ Y] = t ‘[r] implies 
t[z] = t ’ [Z]. A key associated with Ri is a subset 
of Xi, Ki, such that Ri : Ki~Xi is satisfied by any 
ri associated with Ri and there does not exist any 

proper subset of Ki having this property. A 
relation-scheme can be associated with several candi- 
date keys from which one primary-key is chosen. 

Let R,(Xi) and Ri(Xj) be two relation- 
schemes associated with relations 7; and rj, respec- 
tively. An inclusion dependency is a statement of the 
form Ri[ YJ _C Rj[Z], where Y and Z are compatible 
subsets of Xi and Xi, respectively; R;[Y] _C Rj[Z] is 
satisfied by ri and rj iff STY (Vi) C “2 (rj). If Z is 
the primary-key of R j then Ri[ Y] & R j[Z] is said 
to be key-based, and Y is called a foreign-key of 
Ri. Key-based inclusion dependencies are rejerential 

integrity constraints ((21, [5]). 

2.2 The Extended Entity-Relationship Model. 

The basic concepts of the Entity-Relationship 
model, (entity, relationship, attribute, entity-set, 
relationship--set, value-set, entity-identifier, weak 
entity-set, relationship cardinality, role) have been 
repeatedly reviewed (e.g. [19]) since their original 
definition in (11. We refer commonly to entities and 
relationships as objects. The Extended Entity- 
Relationship (EER) model considered in this paper 
has two additional abstraction mechanisms, generali- 
zation and full aggregation. Generalization ((91, (191) 
is an abstraction mechanism that allows viewing a 
set of entity-sets as a single generic entity-set. The 
inverse of generalization is called specialization. The 
full capability of aggregation is provided in the EER 
model by allowing relationship-sets to associate any 
object-set, rather than only entity-sets. 

j INSTRUCTOR /e 
1 

gL&Tp=& 
Fig.1 An Extended Entity-Relationship Schema. 

An EER schema can be represented as an acy- 
clic directed graph, called EER diagram: entity-sets, 
relationship-sets, and attributes, are represented by 
rectangle, diamond, and ellipse shaped vertices, 
respectively; and the connection of EER object-sets 
and attributes is represented by directed edges. Thus, 
there are directed edges: from relationship-sets to the 
object-sets they associate, labeled by a cardinality 
(1 (one) or M (many)); from weak entity-sets to the 
entity-sets on which they depend for identification, 
labeled ID; from specialization entity-sets to generic 
entity-sets, labeled ISA; and from object-sets to their 
attributes. The acyclicity of EER diagrams is 
implied by certain restrictions satisfied by EER sche- 
m= WI, P51). A self-explanatory EER diagram 
example is shown in figure 1. 

2.3 Relational Representation of Extended 
Entity-Relationship Schemas. 

Relational schemas representing EER object 
structures are of the form (R, F U I), where R, F, 
and I denote sets of relation-schemes, functional 
dependencies, and inclusion dependencies, respec- 
tively’ [15]. Informally, relation-schemes represent 
EER object-sets, inclusion dependencies represent the 
existence dependencies inherent to object-set connec- 
tions, and functional dependencies represent entity- 
identifiers and relationship cardinalities. In [15] we 
have shown that an EER schema can be represented 
by a BCNF’ relational schema, such that every 
relation-scheme corresponds to a unique object-set, 
functional dependencies are key dependencies, and 
inclusion dependencies are key-based, that is, are 
referential integrity constraints. 

Relation- Primary Object-Set EER Attribute 
Scheme Key : Attribute 
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Ro Pel I E R4 IA+1 Re I+ 1 E R, I&: 
R, I+ 1 S R2 lAzl I R,lA,21 E R&a, 
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RoL$l C R&e11 Ro lAo21 G R7 l-472 

Fig.2 Relational Schema for EER Schema of Fig.1. 
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A procedure for mapping EER schemas into 
relational schemas based on the algorithms developed 
in [15], called Rmap, is given in the appendix, and is 
exemplified in figure 2. Concerning the assignment 
of names to relational attributes, various techniques 
can be employed [16]. In order to keep Rmap 
independent of a specific name assignment for rela- 
tional attributes, we use only symbolic names for 
attributes (e.g. Ad2 represents the second attribute of 

the fourth relation). 

III. PARTLY NULL AND OVERLAPPING KEYS 

In [6] Date discusses the problems caused by overlap- 
pingt (foreign and primary) keys, and partly null t 
foreign-keys, and points out their obscure semantics. 
We show below that in relational schemas represent- 
ing EER object structures overlapping keys do not 
occur, and partly null foreign-keys can be avoided. 

3.1 Overlapping Keys. 

As mentioned in the previous section, the rela- 
tional schema representation of an EER object struc- 
ture is of the form (R, F U I ), where R, F, and I 
denote sets of relation-schemes, functional dependen- 
cies, and inclusion dependencies, respectively. The 
following proposition shows that relational schemas 
generated by Rmap do not involve overlapping keys. 

Proposition 1. Let RS = (R, F lJ I) be a rela- 
tional schema generated by Rmnp. Let Ri(X~) be a 
relation-scheme of R, and let FKi denote the union 
of all foreign-keys, Fl(i,, associated with Ri. Then 

every foreign-key FKi, associated with Ri satisfies 
the following conditions: FKi, is either included in, 
or disjoint with, the primary-key of R;; and FK;, is 
either equal to, or disjoint with, every other foreign- 
key of Ri. 

Proof: see proposition 4.1 of [14]. n 

3.2 Partly Null Foreign-Keys. 

We examine below the EER modeling of miss- 
ing information, and then show how partly null 
foreign-keys can be avoided in relational schemas 
representing EER object structures. 

The EER modeling of missing information 
involves allowing attributes to have unknown or 
inapplicable values, and allowing partially specified 

t Two sets of attributes, X and Y, are said to be overlap- 
ping ifi (X - Y), (Y -X), and (X fl Y) are not empty. 

t A foreign-key of a relation-scheme R,, Z, is said to be 
partly null if subtuples t[Z] of relations associated with R,, are al- 
lowed to contain both null and non-null values. 

relationships, that is, allowing objects involved in 
relationships to be unknown or inapplicable. Con- 
sider the EER schema of figure 1, where entity-set 
FACULTY is associated with attribute RANK; the value 
of RANK can be unknown for some faculty members. 
If RANK, however, is associated with entity-set PER- 
SON, then for a person who is not a faculty member, 
the RAM value is inapplicable. 

Partially specified relationships are needed for 
representing embedded real-world associations. For 
example, suppose that a ternary relationship-set 
ASSIGNED involves entity-sets FACULTY, DEPART- 
MENT, and COURSE, and represents the assignment of 
faculty members to courses offered by departments; 
then in ASSIGNED relationships representing courses 
that are offered by departments, but that are not 
assigned to a faculty member, the FACULTY entity is 
unknown. Inapplicable attribute values and partially 
specified relationships can be avoided as follows: 

- if an attribute A associated with entity-set E has 
inapplicable values for some entities of E, then A 
can be associated with a (possibly newly defined) 
specialization of E, E ‘, so that A is always applica- 
ble for the entities of E ‘; for example, if attribute 
FUNK above is associated with FACULTY (as shown 
in figure l), then RANK is always applicable. 

- if a relationship-set includes partially specified 
relationships, then it can be decomposed into 
independent or related (by aggregation) 
relationship-sets involving only fully specified rela- 
tionships (note that binary relationship-sets consist 
only of fully specified relationships); for example, 
relationship-set ASSIGNED above can be decom- 
posed into relationship-sets OFFER and TEACH (as 
shown in figure 1) that involve only fully specified 
relationships. 

Consequently, only unknown attribute values are 
needed for the EER modeling of missing information, 
while partially specified relationships and inapplica- 
ble attribute values can be avoided. Note that for 
convenience entity-identifier attributes are usually 
not allowed to have unknown values. 

Relational modeling of missing information 
employs special purpose null values. The various 
meanings associated with nulls are generally 
compressed into two [3]: inapplicable values and unk- 
nown (but applicable) values. From the discussion 
concerning the EER modeling of missing informa- 
tion, it follows that nulls representing inapplicable 
values can be avoided in databases associated with 
schemas representing EER object structures. Nulls 
representing unknown values, however, can represent 
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in such databases either an unknown EER attribute 
value or an unknown (relational) foreign-key attri- 
bute value. In relational schemas such as those gen- 
erated by Rmap, in which every relation-scheme 
corresponds to a unique object-set, primary-keys and 
foreign-keys are not allowed to have null values; 
these constraints represent the restrictions of not 
allowing object-identifiers to have unknown values, 
and not allowing relationships to be partially 
specified. Note that for foreign-keys these con- 
straints are stronger than the rejerential-integrity 
constraint specified in [2]. However, in [3] Codd 
states that nulls should not be allowed for foreign- 
keys in most cases, but only when ‘there exists a 
strong reason to depart from this discipline’. We 
show in section 5 that such an exception is needed 
only for relations that correspond to multiple, rather 
than single, object-sets. 

IV. REFERENTIAL INTEGRITY RULES 

In this section we discuss the existence dependencies 
inherent to object-oriented structures, and examine 
the referential integrity rules in the context of rela- 
tional schemas representing such structures. 

4.1 Existence Dependency Types. 

Object-oriented structures imply certain 
existence dependencies that must be satisfied by 
updates. In an object-oriented environment an ele- 
mentary update consists of modifying an attribute 
value, removing an object from an objecbset, or 
adding a new object to an object-set. In order to 
satisfy the existence dependencies, usually an object 
z that is existence dependent on another object y, 
cannot be added before y is added, and y cannot be 
removed before z is removed. Intuitively, y blocks 
the addition of z, and z blocks the removal of y; 
therefore the existence dependency of z and y is said 
to be of type block. We propose an additional, type 
of existence dependency, called trigger: if an object z 
is trigger existence dependent on another object, y, 
then the removal of y triggers the removal of z 
(instead of z blocking the removal of y). Yote that 
existence dependencies between objects do not affect 
attribute modifications, since such modifications are 
local to the objects. 

The two types of existence dependency above 
are specified for pairs of object-sets, rather than pairs 
of individual objects, and can be represented in EER 
diagrams as follows: the block existence dependenq 
is considered the default ty-pe. and therefore is not 
explicitly represented: the riistence dependency of 
type trigger is represented by associating the edges 

connecting the corresponding object-sets with a ‘v' 
label (see figure 1). 

4.2 Referential Integrity Rules. 

Let Ri(Xi) and Ri(Xj) be two relation-schemes 
associated with relations ri and rj, respectively. A 
referential integrity constraint Ri[ y] C Rj[Kj] is 
associated with a referential integrity rule consisting 
of an insert-rule, a delete-rule and an update-rule 
[5]. There is a unique insert-rule, restricted, which 
asserts that inserting a tuple t into ri can be per- 
formed only if the tuple of rj referenced by t already 
exists. The delete and update rules define the effect 
of deleting (resp. updating the primary-key value in) 
a tuple t ’ Of ‘j : a restricted delete (resp. update) 
rule asserts that the deletion (resp. update) of t ’ can- 
not be performed if there exist tuples in ri referenc- 
ing t’; a cascades delete (resp. update) rule asserts 
that the deletion (resp. update) of t ’ implies deleting 
(resp. updating the subtuple t[q in) the tuples of ti 
referencing t ’ ; and a nullifies delete (resp. update) 
rule asserts that the deletion (resp. update) of t ’ 
implies setting to null the subtuple t[ v in all the 
tuples’t of Ti referencing t ’ 

Procedures mapping EER sch.emas into rela- 
tional schemas, such as Rmap, usually assume that 
existence dependencies are of type block. The seman- 
tics of such existence dependencies is expressed by 
associating the corresponding referential integrity 
constraints with restricted insert and delete rules. 
The new type of existence dependency introduced 
above, entails associating referential integrity con- 
straints corresponding to trigger existence dependen- 
cies with cascadea delete-rules. Finally, the preserva- 
tion of existence dependencies under attribute 
modifications in object-oriented environments, is 
expressed by associating referential integrity con- 
straints with cascades update-rules. Thus, the 
referential integrity constraints in figure 2, for exam- 
ple, must be associated with restricted insert-rules 
and cascadea update-rules; the delete-rules are re.s- 
tricted for all the constraints with the exception of 
R8jA8,] C R,[A, ; and R,IA,2j 2 R(A,i, for which 2 
the delete-rules are cascade.s. 

The mapping of EER schema.5 into relational 
schema.5 can be straightforwardly extended with the 
explicit generation of referential integrity rules. 
Thus, procedure Rmap is extended by associating 
every referential integrity constraint ref with a res- 
tricted insert-rule and a cascades update-rule; the 
delete-rule depends on the type of existence depen- 
dency corresponding to ref: if the type of the 
existence dependency is block then ref is associated 
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with a restricted delete-rule, otherwise (if the type is 
trigger) ref is associated with a cascades delete-rule. 

4.3 Conflicting Existence Dependencies. 

Objects can block or trigger the removal of 
other objects with which they are involved in 
existence dependencies not only directly, but also 
transitively. Thus, an object y can trigger the remo- 
val of an object z if y can trigger the removal of an 
object z on which z is trigger existence dependent; 
conversely, if z is block existent dependent on t then 
2 blocks the removal of y. For example, suppose 
that in the EER schema of figure 1 the existence 
dependencies of INSTRUCTOR on STUDENT, STUDENT 
on PERSON, and FACULTY on PERSON, are of type 
trigger, while the existence dependency of INSTRUC- 
TOR on FACULTY is of type block; then an INSTRUC- 
TOR entity blocks the removal of a PERSON entity 
(via FACULTY), while a PERSON entity can trigger the 
removal of an INSTRUCTOR entity (via STUDENT). 

If an object z blocks the removal of an object y 
which, in turn, can trigger the removal of z, then the 
result of removing y is unpredictable. In the example 
above, for instance, removing a PERSON entity 
depends on the order in which the removal is per- 
formed (i.e. first via FACULTY, or first via STUDENT). 
Consequently, objects should not be allowed to block 
the removal of objects that can trigger their removal. 
In terms of the EER object structure, this restriction 
can be stated as follows: 

Let Oi be an object-set of an EER schema I%, and 
let Trig(Oi) be the set of object-sets of ES consist- 
ing of all the objectrsets that are trigger existent 
dependent (directly or transitively) on Oi t. The.1, 
for every Oi of ES, object-sets of Tr<g(Oi) are not 
allowed to be (directly) block existent dependent 
either on Oi or on other object-sets of Trig(Oi). 

In the example above, for instance, 
Trn’g(PERSON) consists of FACULTY, STUDENT, and 
INSTRUCTOR, therefore the existence dependency of 
INSTRUCTOR on FACULTY cannot be of type block. 

The following proposition defines the effect of 
the restriction above on the referential integrity rules 
involved in relational schemas representing EER 
object structures. 

Proposition 2. Let RS = (R, F U I ) be a rela- 
tional schema generated by Rmup. Let G, = (V, H) 
be the referential integrity graph associated with RS, 
defined as follows: V = R, and H = (Ri+Rj 1 
Ri[YI C Rj[Z] E I). Let Casc(Ri) be the subset of R 

7 In EER diagram terms, every object-set of Trig(0,) is 
connected to 0, by a directed path consisting of V-labeled edges. 

consisting of all the vertices that are connected to Ri 
in G1 by directed paths consisting of edges that 
correspond to referential integrity constraints associ- 
ated with cascades delete-rules. Then for every Ri of 
R, the referential integrity constraints corresponding 
to the edges of G, that connect vertices of Casc(Ri) 
with Ri or other vertices of Casc(Ri), are not allowed 
to be associated with restricted delete-rules. 

Proof Sketch . Rmap generates referential integrity 
constraints associated with a referential integrity 
graph, GI, that is isomorphic to a subgraph of the 
corresponding EER diagram (proposition 4.1 in [Id]). 
The condition of the proposition follows from the 
restriction above specified for EER schemas. n 

V. THE EFFECT OF MERGING ON REFERENTIAL 
INTEGRITY CONSTRAINTS 

In this section we examine the effect of merging rela- 
tions on the structure of foreign-keys and referential 
integrity constraints. 

Merging brings about the need to allow certain 
foreign-key attributes to have null values. We have 
shown in [12] that merging relations requires the 
introduction of additional null constraints [lo] for 
restricting the way in which null values appear in 
merged relations. A procedure for merging relations 
in relational databases that preserves the 
information-capacity and the normal form of the 
corresponding schemas, has been proposed in [12]. 
The merging procedure developed in [12] may gen- 
erate inclusion dependencies that are not key-based, 
that is, are not referential integrity constraints. We 
consider below a merging procedure that generates 
only key-baaed inclusion dependencies and involve 
only simple null constraints, that indicate the attri- 
butes that are not allowed to have null values. 

A restricted version of the procedure proposed 
in [I21 for merging relation-schemes in relational 
schema, called Rmergc, is given in the appendix. 
Given a schema RS = (R, F lJ 1) generated by 
Rmap, and a subset R of R, such that the primary- 
keys associated with the relation-schemes of R are 
pairwise compatible, Rmerge maps RS into a new 
relational schema, RS’=(R ‘, F ‘U I’), where R ’ 
results by replacing the relation-schemes of E with a 
new relation-scheme, R,, and F ’ and I’ consist of 
adjusted key and inclusion dependencies, respec- 
tively. Merging is achieved by outer-joining the rela- 
tions associated with the relation-schemes of E, so 
that the relation associated with R,, r,,,, includes 
tuples corresponding to every object represented in 
the merged relations. The dependencies associated 
with R, ensure that the relations involved in 
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merging can be reconstructed from r,,,, so that the 
schema generated by Rmerge, RS ’ , has equivalent 
information-capacity with RS. An example of merg- 
ing is shown in figure 3, where Rmerge is applied on 
the relational schema of figure 2 in order to merge 
relation-schemes R,, Rs and Rg into R ;. 

Following merging, the referential integrity 
constraints involving the relation-schemes of R are 
replaced with referential integrity constraints involv- 
ing the new relation-scheme, R,, and some of the 
foreign-keys associated with R, are allowed to have 
null values. Clearly, the referential integrity con- 
straints involving R, must be associated with t-e,+ 
t&ted insertrrules and cascades update-rules, like 
the corresponding referential integrity constraints 
involving relation-schemes of x. Concerning the 
delete-rules, Rmcrge assumes that the referential 
integrity constraints involving relation-schemes of E 
are associated with restricted delete-rules, and there- 
fore the referential integrity constraints involving R, 
are also associated with restricted delete-rules. If cas- 
cades delete-rules are also considered, then Rmerge 
must be extended as follows: 

- if a referential integrity constraint involving R,, 
ref, is derived from a referential integrity con- 
straint associated with a cascades delete-rule, then 
ref is associated either with (a) a nullifies delete- 
rule, if ref involves a foreign-key of R, that is 
allowed to have null values, or (b) a cascades 
delete-rule, otherwise. 

For example, referential integrity constraint 
R %%,I S RI[AIJ in the relational schema of figure 

3, is associated with a nullifies delete-rule (because it 
corresponds to a referential integrity constraint asso- 
ciated with a cascades delete-rule and As, is allowed 

to have null values), while the other referential 
integrity constraints involving relation-scheme R + in 
this schema are associated with restricted delete- 

Reletion- Primary Referential Integrity 
Scheme Key Constraints 

4@,l) A11 R,Phl G R,I-%J 

R2 64~~ 1 A21 R5 IAsl I _C RI b$ I 

R, (Aa1 ) A31 Wbll C &I+1 

R, b$A% 1 A4L Re l-h1 I G R5 I+ I 
R5 (AsI ) A51 R ; l&l I C R2 IA21 I 

‘We1 1 A% RW21 E R&1l 
R; (A,1r h2p A$ A*ol ) A72 R;lA,J C R,I4.& 

R; h1 I G Re I-Q I 
m : l nulls are allowed for A,, and Aol. 

Fig. 3 Relational Schema of Fig. 2 after Merging. 

rules. 

The effect of merging on the structure of 
foreign-keys and referential integrity constraints is 
captured by the following proposition. 
Proposition 3. Let RS = (R, F IJ I ) be a rela- 
tional schema generated by Rmap, and let 
RS’= (R ‘, F’U I’) be the result of applying Rmcrgc 
on RS. Then (a) RS ‘satisfies the conditions of propo- 
sitions 1 and 2. (b) In every relation-scheme R i(XI) 
of R ‘, if a foreign-key FK I, is allowed to have null 
values then FK:, consists of a single attribute that 

does not appear in any other foreign or primary key 
of R ‘,.. (c) If th ere exists a directed cycle in the 
referential integrity graph G,a associated with RS: 
then at least one of the referential integrity con- 
straints corresponding to the edges of this cycle: 
(i) involves a foreign-key that is allowed to have null 
values, and.(ii) is associated with either a restricted 
or a nullifies delete-rule. 

Proof Sketch. (a) The proof follows the specification 
of Rmerge. (b) See proposition 4.2 in [14]. (c) Rmop 
generates referential integrity constraints associated 
with a referential integrity graph, G,, that is iso- 
morphic to a subgraph of the corresponding EER 
diagram. Since EER diagrams are acyclic (see [15]) 
GI is also acyclic. Cycles in G,a may result from 
merging relation-schemes in RS, and the proof is 
based on the conditions of proposition 1 and the 
specification of Rmergc. n 

The proposition above shows that merging does 
not alter the properties of propositions 1 and 2. 
Thus, relational schemas undergoing merging are still 
free of the undesirable foreign-key and referential 
integrity structures discussed in sections 3 and 4. It 
can be verified that proposition 3 is valid not only 
for the restricted merging procedure considered 
above, but also for extended merging procedures such. 
as that defined in [12]. 

Several remarks concerning the referential 
integrity rules involved in the relational representa- 
tion of object-oriented structures, are in order. Only 
restricted insert-rules, restricted delete-rules, and 
caseadea update-rules are required for representing 
existence dependencies of type block between objece 
sets. Cascades delete-rules are required for 
representing existence dependencies of type trigger, 
and nullifies delete-rules are required only if relations 
are allowed to represent multiple object-sets (e.g. fol- 
lowing merging). The referential integrity con- 
straints involved in relational schemas representing 
object-oriented structures are always associated with 
cascades update-rules, therefore nullifies and restrict 
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update-rules can be discarded. Cascades update- 
rules become superfluous if updates of primary-key 
attributes are not allowed. While such a restriction is 
unreasonable for regular relational attributes, this 
restriction underlies the definition of surrogate attri- 
butes [2]. Consequently, if surrogate attributes are 
used as primary and foreign key attributes, then cas- 
cades update-rules are not necessary. 

VI. REFERENTIAL INTEGRITY IN RELATIONAL 
DATABASE MANAGEMENT SYSTEMS 

Referential integrity is currently supported by 
several relational database management systems 
(RDBMS), notably IBM’s DB2 [7], SYBASE [18], and 
INGRES [8]. The referential integrity capabilities of 
these three RDBMSs are briefly examined below. A 
more detailed analysis is provided in [13]. 

6.1 IBM's DB2. 

In DB2 referential integrity constraints are 
specified non-procedurally (declaratively), but with 
certain restrictions. We examine below these restric- 
tions and their effect on the relational representation 
of object-oriented structures. 

Let RS = (R, F lJ I ) be a relational schema, 
where R, F, and I consist of relation-schemes, key 
dependencies, and referential integrity constraints, 
respectively; let G1 be the referential integrity graph 
associated with RS. The referential integrity con- 
straints of I must satisfy the following restrictions in 
DB2: 

1. Every referential integrity constraint of I is con- 
sidered to be associated (by default) with a res- 
t&ted update-rule. 

2. Let I’ be a subset of I that consists of referen- 
tial integrity constraints corresponding to edges 
forming a directed cycle in G,. If I’ consists of 
a single constraint, then this constraint must be 
associated with a cascades delete-rule. If I’ 
consists of two or more constraints, then at least 
two constraints of I’ must be associated with 
restricted or nullifies delete-rules. 

3. Let Casc(Ri) be defined as in proposition 2 of 
section 4. For every pair of vertices of R, Ri 
and Rj, if Rj is connected in Gf by multiple 
edges to vertices of ( Casc(Ri) U {Ri}), then the 
referential integrity constraints corresponding to 
these edges must be associated with identical, 
restricted or cascades, delete-rules. n 

Note that DB2 allows the specification of partly 
null foreign-keys and overlapping keys. We contrast 
below the DB2 restrictions above with the conditions 

satisfied by the referential integrity constraints of 
relational schemas representing EER object struc- 
tures: 

G) 

(ii) 

(iii) 

(iv) 

DB2 does not support the cascades update-rules 
involved in the relational schemas representing 
EER object structures. 

Restriction (2) above treats cycles consisting of 
single edges differently from cycles consisting of 
multiple edges. This apparent contradiction does 
not exist for the referential integrity constraints 
of relational schemas representing EER object 
structures (see condition (c) of proposition 3). 

Restrictions (2) and (3) above are stronger than 
the conditions of propositions 1, 2, and 3. First, 
note that if every relation-scheme corresponds to 
a unique object-set, then restrictions (2) and (3) 
above are trivially satisfied. However, if 
relation-schemes are allowed to correspond to 
multiple object-sets (e.g. following mergings), 
then restrictions (2) and (3) above might not be 
satisfied. Consider, for example, the relational 
schemas of figures 4(ii) and 4(iv), generated by 
Rmap and Rmerge, from the EER schemas of 
figures 4(i) and 4(iii), respectively. If the two 
existence dependencies of ' SUPERVISE on 
EMPLOYEE in the EER schema of figure 4(i) are 
both of type block (resp. trigger), then the 
referential integrity constraint in the relational 
schema of figure 4(ii) is associated with a res- 
tricted (resp. nullifies) delete-rule; consequently 
this schema does not satisfy restriction (2) 
above, while it satisfies the condition (c) of pro- 
position 3. 

Conversely, the referential integrity constraints 
of the relational schema of figure 4(iv) satisfy 

(ii) RI (All, AI12 1, R,[A,J CRIIA,I] (Primary Key: AlI) 

(iv) R, (All, Aal2 1, R,[A,J C R21A21] (Primary Key: A,> 

R, h1 11 R,lA.+l C R,lA,Il (Primary Key: A2J 

Notes: All relational attributes correspond to SSN 
* Nulls are allowed 

Fig. 4 Relational Schema Examples. 



8.2 

restriction (2) of the definition above, only if all 
the existence dependencies in the EER schema of 
figure 4(iii) are of type block; however, if the 
existence dependencies are of type trigger, then 
RI&I C %[+I is associated with a nullifies 

delete-rule, while R,[A,I] C RIIAII] is associated 
with a cascades delete-rule; therefore, restriction 
(2) above is not satisfied, while condition (c) of 
proposition 3 is satisfied. 

SYBASE and INGRES. 

SYBASE [18] and INGRES (81 do not allow 
declarative specifications of referential integrity con- 
straints. Instead, they provide mechanisms for speci- 
fying procedurally such constraints. We examine 
below the main characteristics and limitations of 
these mechanisms. 

The mechanism provided by SYBASE for 
implementing referential integrity constraints 
involves triggers. Triggers are a special kind of 
stored procedures that are activated (fired) when a 
relation is affected by a data manipulation (i.e., an 
insertion, deletion, or update). A trigger procedure is 
associated with a unique relation, say ri, and 
employs two system provided relations, called deleted 
and inserted : the deleted relation consists of tuples 
of ri that are going to be deleted or updated; the 
inserted relation consists of tuples that are going to 
be inserted into r;, or newly updated tuples of ri. 
SYBASE allows the specification of three trigger pro- 
cedures per relation: an insert, a delete, and an 
update trigger procedure. Given relation ri associ- 
ated with relation-scheme Ri, the trigger procedures 
for ri are executed in order to enforce the referential 
integrity constraints involving Ri. SYBASE imposes 
certain (rather arbitrary) technical limitations, such 
as the number of levels allowed for nesting triggers. 
Another limitation concerns the implementation of 
referential integrity constraints associated with cas- 
cades update-rules: a cascades update-rule can be 
implemented only if updates of primary-key attri- 
butes are restricted to single tuples at a time, that is, 
only if the inserted and deleted relations consist of 
single tuples. 

The INGRES rule mechanism [8] is conceptually 
similar to the SYBASE trigger mechanism. The 
differences, which are mainly of a technical nature, 
are summarized below: 

(i) Unlike SYBASE, INGRES does not restrict the 
number of triggers per relation, nor the depth of 
rule nesting. 

(ii) 

(iii) 

While SYBASE triggers are set-oriented (i.e. are 
activated for sets of tuple manipulations), 
INGRES rules are tuple-oriented (i.e. are 
activated for single tuple manipulations); 
accordingly, INGRES rules present no problem in 
implementing cascades update-rulea. 

INGRES provides a more evolved mechanism for 
handling errors and messages, and INGRES’s 
Embedded SQL employed for specifying rules is 
more flexible than SYBASE’s Transact-SQL 
employed for specifying triggers. 

Overall, the INGRES rule mechanism is techni- 
cally superior to the SYBASE trigger mechanism. 
However, both the SYBASE trigger and the INGRES 
rule mechanisms are extremely cumbersome. The use 
of SQL, compounded in SYBASE by certain syntactic 
limitations, make trigger and rule procedures very 
large and hard to comprehend. The manual 
specification of trigger and rule procedures is a tedi- 
ous and error-prone process that tends to discourage 
users from specifying them for non-trivial databases. 

VII. SUMMARY. 
We have examined the concept of referential 
integrity in the context of relational schemas 
representing EER object structures. We have 
explored the effect of different relational representa- 
tions of EER schemas on the structure of referential 
integrity constraints. Our analysis shows that the 
referential integrity concept can be simplified, and 
that the controversial referential integrity structures 
can be avoided without affecting the capability of 
relational schemas to represent EER object struc- 
tures. 

We have discussed the referential integrity 
capabilities of three relational database management 
systems (RDBMS), DB2, SYBASE, and INGRES. We 
have shown that some restrictions imposed by DB2 
on the structure of referential integrity constraints 
limit the capability of defining in DB2 relational sche- 
mas representing EER object structures. We have 
compared the mechanisms provided by SYBASE and 
INGRES for the procedural specification of referential 
integrity constraints. We have shown that although 
conceptually similar, these mechanisms have techni- 
cal differences, with the INGRES rule mechanism 
being more flexible and less restrictive than the 
SYBASE trigger mechanism. 

Finally, we have pointed out the difficulty of 
using SYBASE triggers and INGRES rules. Using 
these mechanisms is labor-intensive and error-prone, 
therefore users should be insulated from them by a 
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high-level interface that would allow non-procedural 
specifications of referential integrity constraints, and 
that would detect erroneous referential integrity 
structures. We have implemented such an interface 
as part of a Schema Design and Translation (SDT) 
tool [17]. SDT generates (i) abstract relational sche- 
mas from EER schemas, and (ii) RDBMS schema 
definitions from abstract relational schemes. 
Currently, SDT targets DB2, SYBASE, and INGRES. 
We have employed SDT for the generation of 
SYBASE and INGRES schema definitions from EER 
schemas consisting of approximately twenty object- 
sets. The difficulty of specifying SYBASE triggers 
and INGRES rules is illustrated by the amount of 
code (over one thousand lines) generated by SDT for 
the trigger and rule procedures involved in these 
definitions. 
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APPENDIX 

In this appendix we present two procedures, for map- 
ping EER schemas into relational schemas, and for 
merging relation-schemes in relational schemas 
representing EER schemas. 

A.1 Mapping EER Schemas. 

The procedure for mapping EER schemas into 
relational schemas is based on procedures developed 
in [15]. We refer below to generalization-sources, 
which denote entity-sets that are not specializations 
of other entity-sets, and independent entity-sets, 
which denote generalization-sources that are not 
weak entity-sets. We assume that EER schemas 
satisfy certain welt-definedness properties, such as 
the acyclicity of EER diagrams and the uniqueness of 
generalization-sources for specializations; these 
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properties are discussed in (151 (see also (91 for a 
related discussion). 

Definition - Rmap. 

Input: a well-defined EER schema; 

Outprt: a relational schema of the form (R, F u I). 

1. Value-Sets. Every value-set is mapped into a 
relational domain. 

2. Independent Entitg-Sets. An independent entity- 
set Ei is mapped into a relation-scheme, Ri(Xi), 
such that: attribute set Xi is in a one-to-one 
correspondence with the EER attributes of Ei; 
every attribute A of Xi is assigned the domain 
corresponding to the value-set of the EER attri- 
bute of Ei corresponding to A. The subset Zi of 
Xi that is in a one-to-one correspondence with the 
identifier of Ei, is specified as the primary-key of 
Ri, and key dependency Ri: Zi~Xi is added to F. 

3. Aggregation Object-Sets. Let object-set Oi be 
the aggregation of (not necessarily distinct) 
object-sets Oi,, l<j<rn, and let object-sets Oi 
correspond to relation-scheme Ri,( Yi,), l<j<rn: 

respectively. Object-set Oi is mapped into 
relation-scheme Ri(Xi), and inclusion dependencies 
Ri[FKi,I C Ri,[KiJ, l<j<m, are added to I. 
Attribute set Xi is the union of two disjoint sets of 
attributes, Xi and X’I, such that: (a) X: is in a 
one-to-one correspondence with the EER attributes 
of Oi, where the correspondence is specified as in 
(2) above; (b) X’\=Ui”,lFKi,, is a set of foreign- 
key attributes, where every foreign-key FKi, is in 
a one-to-one correspondence with primary-key Ki,, 
llj<m, such that every attribute A of FK<, is 
assigned the domain associated with the attribute 
of Kil corresponding to A. 

If Oi is a weak entity-set and Zi is the subset of 
Xi that is in a one-to-one correspondence with the 
identifier of Ei, then ZiX’I is specified as the 
primary-key of Ri, and key dependency 
Ri: ZiX’:~Xi is added to F. If Oi is a 
relationship-set then if all the cardinalities of the -- 
objectcsets involved in Oi are many, then X’l is 
specified as the primary-key of Ri, and key depen- 
dency Ri : X’+Xi is added to F; else 
(X’\ -FKiJ is specified as the primary-key ofz 

where FKi, is the foreign-key referencing the 

relation-scheme corresponding to an object-set that 
has cardinality one in Oi, and for every object-set 
OiI which has cardinality one in Oi, key depen- 
dency Ri: (X’: -FKi,)--tFKi, is added to F. 

4. Specialization Entity-Se&J. Let entity-set Ei be 
the specialization of entity-sets Ei,, 15 j<m, and 
Ek be the (unique) generalization-source of Ei. Let 
Ek correspond to relation-scheme Rl(Y& and 
entity-sets Eil correspond to relation-schemes 

Ri,( K,), 1%&m, respectively. Entity-set Ei is 

mapped into relation-scheme Ri(Xi), and inclusion 
dependencies Ri[FKi,] C Ri,[Ki,], 15 j<m, are 
added to I. Attribute set Xi is the union of two 
disjoint sets of attributes, Xl and X’l, such that: 
(a) Xl is in a one-to-one correspondence with the 
EER attributes of Ei, where the correspondence is 
specified as in (2) above; (b) X’: is in a one-to-one 
correspondence with the primary-key of Rk, where 
the correspondence is specified as in (3.b) above; 
and (c) every foreign-key FKi,, 15 j<m, is equal to 
Xl\. X’: is specified as the primary-key of Ri, and 
key dependency Ri: X1:-+X;, is added to F. w 

A.2 Merging Relations. 

The merging procedure below is a restricted 
version of the procedure developed in [12]. In the 
definition of this procedure we use the relational 
algebra operations of total projection, renaming, and 
outer equi-join [lo]. 

Let Ri(Xi) be a relation-scheme associated with 
relation ri, and W be a subset of Xi. The total pro- 
jection of ri on W is denoted rlw(r,+), and is equal 
to {t [ w] 1 t E ri and t consists of non-null values}. 

Let Ri(Xi)t ri, and W be defined as above, and 
let Y be an attribute set compatible with W. 
Renaming W to Y in ri is denoted 
rename( ri; W+- Y), and is equal to {t ’ 1 t E rj, 
t’[Xi-W]=t[X;-Wl, t’[Yl=t[W]}. 

Let Ri(Xi) and Rj(Xj) be two relation-schemes 
associated with relations ri and tj, respectively; let Y 
and Z be two compatible and disjoint subsets of Xi 
and Xi, respectively; let ki and kj denote the number 
of attributes in Xi and Xi, respectively. We denote 
by o a null value, and by wk a tuple consisting of k 
null values. The outgr-equi-join of ri and rj on 
( Y=Z) is denoted ri uDCJrj, and is equal to the union 

of three relations: ri = {t 1 t[Xi] E ri, t[Xj] E rj, 
t[q=t[Z]}; r2 = {t 1 t[Xi]=Wk’T t[Xj] E rj, 8 t’E ri 
s.t. t ’ [ Yj=t[Z]}; and r3 = {t 1 t[Xi] E r;, t[Xj]=Wk’p 
g t”E rj S.t. t[q=t”[Z]}. 
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Definition - Rmerge. 

Inprt : a relational s_chema RS = (R, F u I), and a 
subset of R, R, such that 

(a) the primary-keys of the relation-schemes of 
E are pairwise compatible; 

(b) there exists a relation-scheme R,(XP) in R 
such that for every Ri of R, i # p, 
Ri[KiI C Rp[Kpl E I; 

(c) every relation-scheme Ri(Xi) of R, i # p : 
(i) has exactly one non primary-key attri- 
bute; (ii) cannot be involved in the right- 
hand side of any inclusion dependency of I; 
and (iii) can be involved in the left-hand side 
of at most two inclusion dependencies, one 
involving R, (see (b) above), and one of the 
form Ri[Xi-Ki] C Rj[Kj]. 

Output: a relational schema RS’= ( R : F’U I’). 

Rmergc (a) applied on RS generates RS ’ as follows: 

1. R ‘results by replacing the relation-schemes of E 
in R with relation-scheme R,(X,,,), such that 
K ,,, := KP, X,,, := Km UR,(X,) E K (xi - Ki), 
where the attributes of (X,-X,) are allowed to 
have null values; 

2. F ’ results by replacing in F all the key dependen- 
cies involving primary-keys associated with the 
relation-schemes of E , with key dependency 
R, : K,,,-*X,,,; 

3. I’ results by replacing Ri with R, and Ki with 
K,,,, in every inclusion dependency of I that 

involves a relation-scheme Ri of K. 

Rmergc (E) is associated with two state mappings, 1 
and q’, where q maps a state r of RS into a state r ’ 
of RS ’ , and q ’ maps a state r ’ of RS ’ into a state 
r of RS, as follows: 

q is the identity for the relations of r that_are ass* 
ciated with relation-schemes of (R-R); and 
maps the set of relations {ri 1 ri E r,ri is associ- 
ated with Ri E 8) into T, as follows: 

(i) r,,, := rr; and 

(ii) for each Ri of (E-{R,}) - 

q ’ is the identity for every relation of (r ‘-{r ‘,}); 
and maps relation r ‘,,, of r ’ into relations 6 as 
follows: 

ri - := rename( *IK,,,(x,-K,) (r ‘, 1, Km+Ki), 

where Ri(Xi) is a relation-scheme of K. n 
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