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Abstract. Traditionally, integrity constraints in database 
systems are maintained either by rolling back any transac- 
tion that produces an inconsistent state or by disallowing 
or modifying operations that may produce an inconsistent 
state. An alternative approach is to provide automatic “re- 
pair” of inconsistent states using production rules. For each 
constraint, a production rule is used to detect constraint 
violation and to initiate database operations that restore 
consistency. 

We describe an SQL-based language for defining integrity 
constraints and a framewcrk for translating these constraints 
into constraint-maintaining production rules. Some parts of 
the translation are automatic while other parts require user 
intervention. Based on the semantics of our set-oriented pro- 
duction rules language and under certain assumptions, we 
prove that at the end of each transaction the rules are guar- 
anteed to produce a state satisfying all defined constraints. 
We apply our approach to a good-sized example. 

1 Introduction 

In database systems, an integrity constraints facility 
permits logical specification of those database states 
that are considered acceptable, or consistent. In cur- 
rent systems, mechanisms for defining and enforcing in- 
tegrity constraints are limited. Most relational database 
systems support only specific types of constraints, such 
as uniqueness of keys and referential integrity, rather 
than supporting arbitrary predicates. Furthermore, 
when constraints are violated, “repair” of the database 
state usually is limited to fixed reversal actions, such as 
rolling back the current operation or the entire transac- 
tion. (Consequently, for increased flexibility, integrity 
constraints often are encoded within applications, usu- 
ally in an ad-hoc manner.) An improved approach to 
constraint enforcement allows definition of compensat- 
ing actions that correct violation of each constraint ac- 
cording to a well-understood, application-dependent se- 
mantics. 

Most research in the area of integrity constraints has 
focused on efficiently determining actual or potential 
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constraint violation, sometimes considering quite gen- 
eral constraints (such as arbitrary predicates). In this 
paper, we also consider general constraints, but ‘we fo- 
cus on the issue of constraint enforcement. A lan- 
guage is proposed for specifying constraints on relational 
databases. We then provide a framework for translat- 
ing constraint specifications into production rules that 
maintain the constraints. Production rules in database 
systems allow specification of data manipulation opera- 
tions that are automatically executed whenever certain 
events occur &d/or certain conditions are met [DE89, 
Han89, KMSSO, SJ*90, WF90]. The usefulness of incor- 
porating production rules into database systems is welI 
accepted [EC’i’5,MD89,Mor83], particularly in the con- 
text of constraint enforcement. However, we know of 
no automatic (or semi-automatic) method for specifying 
general constraints in a high-level, non-procedural lan- 
guage, then deriving lower-level production rules that 
maintain the constraints. We describe such a method. 

The constraint and rule languages’ we use are based 
on an extended version of SQL [HF*89, IBM88], al- 
though our work could easily be adapted for alternate 
languages. Constraints are expressed as predicates over 
the database state: if the predicate is true in a partic- 
ular state, then the constraint is violated and the state 
is inconsistent.’ Constraints may be ordered, specify- 
ing that certain constraints will be enforced earlier than 
(and therefore may be assumed valid by) other con- 
straints. The production rule language is described in 
[WF90]. Prior familiarity with this rule language is not 
necessary; an overview is provided. 

Production rules enforce constraints by issuing ac- 
tions to correct violation. In many cases, several possi- 
ble actions may correct a given constraint violation, and 
which action is most appropriate may depend on the ap 
plication. Thus, for each constraint, the compensating 
actions are specified by the application designer. How- 
ever, several other necessary components of the deriva- 
tion can be performed automatically. We envision an 
interactive system for deriving rules from constraints 
with a structure as illustrated in Fig. 1. The automatic 
portions of the derivation include: 

l Producing rule templates from constraints: Rule 
templates enumerate all operations that may cause 
constraint violation (these form the triggering com- 

‘For our framework, it is more convenient for constraints 
to specify the inconsistent rather than the consistent states. 
This choice does not affect expressiveness, since the alter- 
native semantics can be achieved simply by negating each 
constraint. 
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Figure 1: Interactive System for Rule Derivation 

ponents of the constraint-enforcing rules) and in- 
clude rule conditions. Rule actions are provided by 
the user. 

l Detecting potential cycles in rule activation: As the 
number of rules increases and rules become more 
complex, there is increasing possibility of infinite 
triggering behavior. This component detects the 
potential for such behavior and provides warnings 
to the user. 

l Rule optimization: The system automatically op- 
timizes rules derived from constraints, preserving 
their constraint-maintaining semantics. 

Each automatic component is described in some de- 
tail. We also describe those tasks that must be per- 
formed by the users of the system. Finally, a theorem is 
proven stating that under certain assumptions regarding 
the users’ obligations (such as correctness of compensat- 
ing actions and finite triggering behavior), the final set 
of production rules is guaranteed to maintain all defined 
constraints. That is, at the end of every transaction, 
rule execution terminates in a consistent state. 

1.1 Related Work 

As mentioned above, most work involving integrity con- 
straints in database systems has addressed-in a va- 
riety of settings-the problem of efficiently detecting 
constraint violation [BBC80,HMN84,HI85,KP81,Nic82, 
QS87,Sto75]. Some of this work describes algorithms for 
detecting in advance that an operation may cause con- 
straint violation; such operations are not permitted to 
proceed. In other work, inconsistent states are detected 
as they occur; consistency is restored by performing 
undo or rollback operations. In our approach, inconsis- 
tent states may occur and are detected, but consistency 
is restored by issuing corrective actions that depend on 

the particular constraint violation. 
Approaches similar to ours are taken in [CTF88, 

Mor84, UD90, UD91], but in restricted settings. In 
[CTF88], only referential integrity and inclusion depen- 
dency constraints are considered. The user may define 
compensating actions (drawn from a restricted set) to 
be executed when constraints are violated. In [Mor84], 
the focus is on a very high-level language for express- 
ing inter-relational constraints. The set of expressible 
constraints is a subset of those expressible using arbi- 
trary predicates. In many cases, specific compensating 
actions may be derived automatically from constraints, 
subject to certain “hints” provided by the constraint 
definer. In [UD90,UD91], analysis of constraints is con- 
sidered in an object-oriented environment. Constraints 
are represented using Horn logic (again permitting only 
a subset of arbitrary predicates). Constraint analysis re- 
veals the effects of constraints on object manipulation, 
determines possible constraint violations, and suggests 
propagation actions for correcting violations. 

Several other papers also extend the standard ap- 
proaches to constraint definition and enforcement. In 
[CG88], logic programming is used to express and eval- 
uate constraints. At run-time, a given transaction can 
be checked to verify that it wilI maintain consistency 
with respect to a set of constraints. If consistency 
is not guaranteed, the system can explain which con- 
straints are violated and can suggest qompensating ac- 
tions. A similar approach is described in [SMS87], how- 
ever this work considers a compile-time rather than run- 
time environment. When transactions are determined 
to have potential for constraint violation, feedback is 
provided to the user in the form of suggested tests and 
updates to be added to the transaction. In [WalSS], 
constraint definitions include both conditions on the 
state (which are checked) and additional actions that 
are automatically executed after certain operations to 
help maintain consistency. This is similar to defining 
constraints directly as the rules that enforce them, as 
in [SK84]. In our approach, constraints are defined at 
a higher, non-procedural level, from which constraint- 
maintaining rules are derived. 

1.2 Outline of Paper 

Preliminary material is presented in Section 2: a case 
study is introduced, serving as a source of examples 
throughout the paper, and an overview of the rule lan- 
guage is given. Section 3 presents the syntax and se- 
mantics of the constraint language. Section 4 describes 
the derivation of a rule for enforcing a single constraint, 
including automatic generation of those operations that 
may cause constraint violation. Section 5 then consid- 
ers the set of rules for maintaining multiple constraints; 
in particular, it shows how potential cyclic behavior in 
such rule sets can be detected. Rule optimization is 
covered in Section 6. Section 7 considers system execu- 
tion, showing that termination in a consistent state is 
guaranteed under certain assumptions. Finally, in Sec- 
tion 8, we conclude, discuss general use of the facility, 
and describe future work. 
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2 Preliminaries 

2.1 Case Study 

Examples throughout the paper are drawn from a case 
study concerning a Power Distribution Design System, a 
database application supporting the design and mainte- 
nance of electricity networks.2 Due to space limitations, 
only portions of the study are included in this paper; 8ll 
details appear in the technical report [CW90]. Note that 
many of the constraints considered in the study cannot 
be supported in conventional database systems. 

Briefly, a power network connects a collection of 
plants to a collection of users, possibly through inter- 
mediate nodes. The network designer determines the 
location of plants, nodes, and users. Also specified by 
the designer is the power produced by each plant, the 
power required by each user, and the power loss incurred 
at each intermediate node. The designer places directed 
wires between plants, users, and nodes, specifying for 
each the wire type along with the voltage and power to 
be carried by that wire. 

Multiple wires may be placed between any two points, 
and each set of wires is enclosed within a tube. Place- 
ment of tubes is not difficult: there is at most one 
tube between any two points, a tube should be pro- 
tected if it contains high voltage wires, and tubes should 
have large enough cross sections to enclose their wires. 
Tube placement can, in fact, be specified solely in terms 
of constraints-tubes are then automatically inserted 
and deleted by the rules that maintain the constraints. 
Thus, once appropriate constraints are defined, the de- 
signer need not consider tubes at all. 

Further constraints specify that the power output re- 
quired for each plant should not exceed the produced 
power, the power output required for each node should 
not exceed the deliverable power (based on input), and 
each user should receive at least its required power. For 
reliability, each user should be connected to at least two 
plants. Using capitalization to denote primary keys, the 
relational schema for t.he case study is: 

plant(PLANT-ID, location, power) 
nser(USER-ID, location, power) 
node(NODE-ID, location, loss) 
aire(WIlU-ID, fr, to, type, voltage, power) 
tnbe(TlJBB-ID, fr. to, type) 
wire-type(TYPE. mar-voltage, mar-power 

cross-section) 
tube-type(TYPE, protected, cross-section) 

ID’s for plants, users, and nodes all are drawn from the 
same domsin-a constraint will specify that these are 
not duplicated. Attributes fr and to of tables aire and 
tube take their values from this domain. 

2.2 Production Rules 

We provide a brief overview of the set-oriented, SQL- 
based production rules language used in the remainder 
of the paper. Further details and numerous examples 

2Tbis problem was presented to author Ceri by L. Dalle 
in the context of a joint study between ENEL-the Italian 
Electric Energy Agency-and the Politecnico di Milano. 

appear in [WF90]. W e consider a relational database 
system with an integrated production rules fscility. The 
system has all the usual database functionality; in addi- 
tion, a set of production rules may be defined. In gen- 
eral, production rules specify actions to be performed 
when certain events occur or conditions are met. In our 
language, each rule contains three components: a tran- 
sition predicate, which controls rule triggering, a condi- 
tion, which is checked before the rule may execute its 
action, which is a sequence of data manipulation oper- 
ations or a rollback request. Production rules are not 
activated until the commit point of each transaction, at 
which time all triggered rules 8re considered. The data 
manipulation operations executed 8s part of a rule’s ac- 
tion may trigger additional rules. Once there are no 
triggered rules left to consider, the transaction is com- 
mitted. Further details follow. 

Rules are based on the notion of transitions. A transi- 
tion is a database state change resulting Corn execution 
of a sequence of data manipulation operations. We con- 
sider the net efect of transitions, meaning that: (1) if 
a tuple is updated several times, we consider only the 
composite update; (2) if a tuple is updated then deleted, 
we consider only the deletion; (3) if a tuple is inserted 
then updated, we consider this 8s inserting the updated 
tuple; (4) if a tuple is inserted then deleted, it is not 
considered at all. 

The syntax for defining production rules is: 

create ml4 n4me 
whon transition predicate 
[ if condition] 
than action 

A rule is triggered by a given transition when its 
transition predicate holds with respect to that tran- 
sition. Transition predicates specify operations on 
particular tables and columns. The permitted forms 
are: inserted into t, deleted from t, and updated 
t .c, where t is a table name and c is 8 column of t8- 

ble t. A transition predicate lists one or more such 
specifications, and the predicate holds with respect to 8 
transition if at least one of the specified operations oc- 
curred in the net effect of the transition. Once 8 rule is 
triggered, it may be chosen for evaluation (as described 
below). At this point, the rule’s condition is checked- 
rule conditions are arbitrary predicates on the database 
state. If the condition is true, the action is executed. 
An action may specify a list of SQL data manipulation 
operations to be executed or it may request a rollback 
of the current transaction. 

The condition and action parts of a rule may refer 
to the current State of the database through embedded 
SQL select operations. In addition, these components 
may refer to transition tables. A transition table is a log- 
ical table reflecting changes that have occurred during 
a transition. At the end of a given transition, transition 
table inserted t refers to those tuples of table t in the 
current state that were inserted by the transition, tran- 
sition table deleted t refers to those tuples of table t in 
the pre-transition state that were deleted by the tran- 
sition, transition table old updated t refers to those 
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tuples of table t in the pre-transition state for which 
column c was updated by the transition, and transition 
table neu updated t .c refers to the current values of 
the same tuples. Transition tables may be referenced 
in the from clauses of select operations in the usual 
way. As a restriction, a rule may only refer to those 
transition tables corresponding to its transition predi- 
cate. For example, a rule may refer to old updated 
t . c and neu updated t . c only if updated t . c is in- 
cluded in its transition predicate; similarly for inserted 
and deleted. 

Finally, we describe rule execution. First, a user or 
application executes a transaction-a sequence of SQL 
operations; rules are considered at the commit point of 
the transaction. The state change resulting from this 
initial transaction creates the first relevant transition, 
and some set of rules are triggered by this transition. 
One rule is chosen from this set for evaluation. To in- 
fluence rule selection, rules may be partially ordered, 
whereby a rule will be chosen such that no other trig- 
gered rule is higher in the ordering. The condition part 
of the selected rule is checked; if it does not hold, a new 
triggered rule is selected for evaluation. If the rule’s 
condition does hold, its action is executed. (If no trig- 
gered rule with a true condition is found, rule execution 
terminates.) Let R (say) be the rule whose action is 
executed, and assume its action is not rollback. After 
execution of R’s action, all rules not previously evalu- 
ated are now triggered only if their transition predicate 
holds with respect to the composite transition created 
by the initial transaction and subsequent execution of 
R’s action. That is, these rules consider R’s action as if 
it were executed as part of the user-generated, transac- 
tion. Rules already evaluated have already “processed” 
the initial transaction; thus, they are triggered again if 
their transition predicate holds with respect to the tran- 
sition created by R’s action. Rule R will be triggered 
a second time only if future rule execution produces a 
new net effect satisfying its transition piedicate. 

Consider now an arbitrary point in rule processing. 
A given rule is triggered if its transition predicate holds 
with respect to the (composite) transition since the 
point following its most recent execution. If, at last 
evaluation, the rule’s condition was found to be false, 
then the rule is considered with respect to the transition 
since that point of evaluation.8 If a rule has not yet been 
evaluated, it is considered with respect to the transition 
since the start of the initial transaction. One rule is cho- 
sen from the set of triggered rules; if its condition holds, 
its action is executed, otherwise another triggered rule 
is selected. If a rollback action is encountered, the sys- 
tem rolls back to the start of the initial user-generated 
transaction and no rules are triggered. Otherwise, rule 
processing terminates when the set of triggered rules is 
empty or when no triggered rule has a true condition; 
the entire transaction is then committed. 

3Here, we deviate somewhat from the semantics as pre- 
sented in [WFgO], where a rule is considered with respect to 
the transition since before its last execution. It should be 
possible iu the rule system to permit both interpretations. 

3 Constraint Language 

We define a general language for expressing integrity 
constraints. A constraint has two parts: a table list, 
specifying tables relevant to the constraint, and an un- 
restricted SQL predicate, which must hold in exactly 
those states violating the constraint. As an introduc- 
tory example, consider the constraint “each wire’s volt- 
age does not exceed the maximum for its wire type”. In 
the proposed language, this is expressed as: 

uira: voltage > any (select mar-voltage 
from uire-type 
sh0re type = ujle.type) 

(We must use “> any” here rather than the more natu- 
ral 5” since the right side of the comparison is a single- 
ton set, not a single value.) Remember that a constraint 
specifies the inconsistent states, Thus, a state violates 
this constraint if any tuple in table wire has a voltage 
exceeding the max-voltage for its wire type. A com- 
plete syntax and semantics follows. 

3.1 Syntax 

A grammar for the constraint language is given in Fig. 2; 
many examples are provided below. The core of the 
language is a variation on the usual SQL syntax for 
predicates, similar to that used in the if clause of our 
production rules [WF90]. Several advanced features are 
included, such as boolean types, tuple constructors, and 
user-defined functions. In [CWSO], we also include table 
ezpcpressions (as described with respect to the Starburst 
database system in [HF*89]); space considerations have 
forced their omission here. In the grammar’s produc- 
tions, we use T; to denote table names, Vi to denote 
table variable names, and Ci to denote column names. 
Repetition is represented explicitly by enumerating n 
terms (n > 0). Optional terms are enclosed in square 
brackets. (In our examples, we permit several straight- 
forward abbreviations to the syntax.) 

3.2 Semantics 

The semantics of our constraint language is straight- 
forward: a constraint is violated in a state iff one or 
more tuples in the Cartesian product of the listed ta- 
bles satisfies the specified predicate. Constraints may be 
partially ordered: the user may specify for any pair of 
constraints that one constraint is to be enforced before 
the other (as long as there is no cycle in the prioriti- 
zation). Constraint ordering allows the user to safely 
assume that some higher priority constraint will be sat- 
isfied whenever some lower priority constraint is consid- 
ered. For example, in the constraint “each wire’s voltage 
does not exceed the maximum for its wire type” (speci- 
fied above), it is assumed that the constraint “each type 
in the wire table appears in the wire-type table” (spec- 
ified below) already holds. 

3.3 Examples 

The referential integrity constraint “each type in the 
wire table appears in the wire-type table” is expressed: 

airs: type not in (select type from IiiXe-t~e) 
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1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

22. Cal- Name 
23. Connector 

24. Set- Op 
25. Camp- Op 
26. Agg- Fn 

27. Fn 

Constraint 
Table-List 
Predicate 

..- ..- 

..- ..- 

..- ..- 

Select- Exp 

Val- Exps 

Val- Exp 

From- List 
Item- Exp 

..- ..- 

..- ..- 

..- ..- 

..- ..- 

..- ..- 

Table-List : Predicate 
TI [VI]. . . . . T, [V,] 
exists Select. Fxp 
Item-Exp Cr.nqeEtor Select-Exp 
Item- Expl G’omp- Op Item- Exm 
Predicate1 and Predicate2 
Predicate1 or Predicate2 
not Predicate1 
(Predicate1 ) 
select [distinct] Val-Exps 
from From-List [where Predicate] 
Select-Expl Set-Op Select-Exps 
(Select-Expl) 
* 
Val- Expl , . . . , Val- Exp,, 
Col- Name 
constant 
Fn( Val-Expl, . . . , Val-Ezpn) 
T1 PI], . ..s T, [V,] 
Val- Exp 
< Val-Expl , . . . , Val-Exp,> 
63elect 

Agg-Fn( [distinct] Col-Name) 
from From-List 
[where Predicate]) 

P.1 C 
in 1 not in 

Camp- Op my 1 Comp- Op all 
union 1 intersect 1 minus 
=I !=I<I>I<=I>= 
sum 1 min 1 max 1 avg 1 count 
user-defined aggregate function 
+I-l*l/ 
user-defined function 

Figure 2: Conslraini Language Syntax 

The constraint “each set of wires fits into its tube”, 
with an interpretation that the sum of the wires’ cross- 
sections must not exceed 80% of the cross-section of the 
tube, is expressed as: 

tube: (select sum(cross-section) 
from wire. wire-type 
where aire.<fr,to> = tube.<fr,to> 
and wire.type = wire-type.type) > any 

(select 0.8 * cross-section 
from tube-type where type = tube.type) 

Finally, the constraint “each plant has only outgoing 
tubes” can be expressed quite simply: 

plant, tube: plant-id = tube.to 

4 Deriving Constraint-Maintaining 
Rules 

Once one or more constraints are defined using the lan- 
guage of the preceding section, the system automati- 
cally produces rule templates-portions of the produc- 
tion rules necessary for constraint enforcement. We 
first describe how, for a given constraint, a set of in- 
validating operations is derived. This set includes ev- 
ery data manipulation operation whose execution (in 

a consistent state) may result in a state violating the 
constraint-these become the triggering operations for 
the constraint-maintaining rule. We provide exam- 
ples, describe optimirations to the derivation, and fi- 
nally present the full form of rule templates, from 
which the user produces a preliminary set of constraint- 
maintaining rules. 

4.1 Deriving Invalidating Operations 

Given a constraint, we want to derive automatically the 
set of operations that may cause constraint violation. 
We achieve this through purely static analysis of the 
constraint. However, because semautic information is 
not incorporated, the set may be conservative: some 
operations in the set may not have real potential for 
constraint violation. (This does not affect correctness 
of constraint enforcement, but it may affect efficiency.) 
We provide optimizations to minimize the possibility of 
such extraneous operations. 

The set of invalidating operations contains elements 
of the form inserted into t, deleted from t, and 
updated t . c, where t is a table name and c is a column 
of table t. (These translate directly into the when com- 
ponents of constraint-maintaining rules.) For a given 
constraint, the set is generated by analyzing the con- 
straint’s.syntactic structure, based on the grammar of 
Fig. 2. We first give a method for deriving the iuvalidat- 
ing update operations, then a method for deriving the 
invalidating insert and delete operatidns. In practice, 
all invalidating operations can be derived in the same 
syntactic analysis (parse) of the constraint. 

4.1.1 Update Operations 

To enumerate the invalidating update operations, we 
must determine every column for which, if the value of 
that column is changed in one or more tuples, then the 
constraint predicate may become true for some tuple(s) 
in the Cartesian product of the constraint’s table list. 
Two types of column references may appear in a con- 
straint: 

1. Columns whose individual values are used directly 
in evaluating the constraint. With respect to the 
grammar of Fig. 2, these are columns appearing as 
part of an Item-Exp: as single values (productions 
19 and 15), in constructed tuples (production 20), 
or as objects of functions or aggregate functions 
(productions 17 and 21). 

2. Columns forming part of a set (due to inclusion 
in the result of a select operation). These are 
columns appearing in the Val-Exps part of a Seleci- 
Exp (production 10). 

Any update to a column of the first type can certainly 
affect the value of the constraiut predicate. 

l If t .c4 is a column name appearing in the con- 
straint as part of an Item-Exp, then updated t .C 

‘The grammar allows use of table variables; it also al- 
lows a column to appear without its table name. In both 
cases, there is an understanding that the relevant table can 
unambiguously be inferred. 
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is an invalidating operation. 

Invalidating update operations also are generated for 
the second type of reference, except if the Select-Exp 
appears as the direct or indirect object of an exists, 
when the actual values of the tuples are unimportant.5 
(A SelecGExpis a direct object ofan exists if exists is 
applied to the set generated by the Select-Exp. A Select- 
Exp is an indirect object of an exists if it and one or 
more other Select-Exp’s are connected by Set-Op’s, with 
exists applied to the result.) Thus: 

l If t .c appears in the Vul-Exps portion of a Select- 
Exp, and the Select-Exp is not a direct or indirect 
object of an exists, then updated t . c is an inval- 
idating operation. When Val-Ezps is “*“, updated 
t . c is an invalidating operation for every column 
c of every table t appearing in the corresponding 
From-List 

4.1.2 Insert and Delete Operations 

Generating the invalidating insert and delete opera- 
tions requires more thorough, context-dependent syn- 
tactic analysis. Consider, for example, a constraint def- 
inition including a deeply nested select operation. We 
want to determine whether inserts or deletes performed 
on the tables in the select may cause the constraint’s 
predicate to become true. To do this, we (effectively) 
construct a parse tree for the constraint. A top-down 
labeling of the tree is performed, using labels I, D, and 
ID. The labels ultimately considered are those appear- 
ing on the table-name leaves of the parse tree-these 
labels indicate the invalidating operations. If a node for 
table t is labeled I, then inserted into t is an invali- 
dating operation for the constraint, if the node is labeled 
D, then deleted from t is an invalidating operation, 
and if the node is labeled ID, then both inserted into 
t and deleted from t are invalidating operations. 

We provide a rigorous description of the labeling pro- 
cess using an attribute grammar-a formalism speci.fi- 
tally designed for defining how labels (attributes) are 
assigned to the nodes of a parse tree [ASUSS]. The 
labeling scheme we use defines an inherited attribute, 
meaning that an initial label is assigned to the start 
symbol of the grammar (i.e., to the root of the tree); 
for each grammar production, labels for the symbols on 
the right-hand side are computed based on the label for 
the symbol on the left-hand-side (i.e., each child’s label 
is computed as a function of its parent’s label). In com- 
puting labels, we use the function Opp (for opposite), 
defined as: Opp(I) = D, Opp(D) = I, Opp(ID) = ID. 

The equations for computing labels are given in Fig. 3; 
explanations are provided below. The equations corre- 
spond to the productions of the grammar in Fig. 2, with 
certain omissions and changes. Since we ultimately con- 
sider only the labels on table-name nodes, we ignore 

“Of course, an update to a column t . c may affect whether 
tuples satisfy the where clause of the select (thus generating 
fewer or more tuples in the set over which exists is applied), 
but this happens only when the column actually appears 
in the where clause. In this case, updated t .c is already 
generated, since t .c must appear as part of an Item-Exp. 

1. 
2. 
3. 

4a. 
4b. 

6,7. 

a. 
9. 

10. 

lla. 

llb. 

12. 
18. 
21. 

Predicate.label = I 
T;.label = I i = 1 ..n 
Select-Ezp.label = Predicote.label 
Select-Ezp.label = Predicate.label 
Select-Ezp.label = Opp( Predicate.label) 
Predicate1 .label = Predicatelabel, 
Predicates.label = Predicatc.label 
Predicate1 .label = Opp( Predicote.label) 
Predicatel.label = Predicatehbel 
From-List.label = Select-Ezphbel, 
Predicate.label = Select-Ezp.label 
Select-Ezpl.label = Select-Ezplabel, 
Select-Em.label = Select-Ezp.label 
Select-Ezpl.label = SeIect-Ezp.label, 
Select-Ezpl.label = Opp(Select-EzpJabel) 
Select-ET1 .label = Select-Ezplabel 
Ti.label = From-Ltit.label i = 1 ..n 
From-List.label = ID, Predicaklabel = ID 

Figure 3: Syntaz-Directed Labeling Scheme 

any nonterminal that cannot eventually produce such a 
node. Thus, we eliminate from consideration nontermi- 
nals Val-Ezp(s), Col-Name, Connecior, SeCOp, Comp- 
Op, Agg-Fn, and Fn. We also need not provide labels 
for any terminal symbols other than table names. The 
grammar is rewritten slightly to facilitate the labeling: 
we distinguish two classes of Connector’s, and we sep- 
arate minus from the other two Set-Op’s. Productions 
4, 11, and 23 are modified as follows: 

4a. Predicate ::= 
4b. I 

lla. Select-Ezp ::= 
I 

lib. 
23a. Connecton ::= 

I 
23b. Connectora ::= 

Item- Ezp Connecton Select-Ezp 
Item-Ezp Connectora Select-Eap 
Select-Ezpl nnion Select-Em 
Select-Ezpl intersect Select-E* 
Select-Ezpl minus Select-Em 
in/= anyI != all 
< any I> any I<= any I>= any 
not in 1 != anyI= all 
< all 1 > all 1 <= all 1 >= all 

Finally, because the right-hand-side labels for produc- 
tions 1, 2, and 21 are defined irrespective of the left- 
hand-side labels, we need not consider nonterminals 
Consiraid, Table-List, and Item-Ezp. 

We explain many of the labeling rules (by number). 
The remainder are left for the reader, and examples are 
provided below. As a general principle, an I label on 
a Select-Exp indicates that if an operation causes ad- 
ditional tuples in the select, then the constraint may 
become violated; a D label indicates that violation may 
occur if fewer tuples are in the select. On a Predicate, 
an I label indicates that operations making the pred- 
icate more likely to hold may cause the constraint to 
become violated, while a D label indicates that opera- 
tions making the predicate less likely to hold may cause 
violation. 

1. The I label on Predicate indicates that if the pred- 
icate is more likely to hold, then the constraint is 
more likely to be violated. 

2. Insertions into top-level tables may cause new tu- 
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3. 

4a. 

10. 

18. 

21. 

ples in the cross-product to satisfy the constraint 
predicate, violating the constraint. The I la- 
bels here imply that for every top-level table t, 
inserted into t is generated as an invalidating 
operation. 

If additional tuples are in the Select-Ezp, then the 
exists is more likely to hold. If fewer tuples are 
in the Select-Ezp, then the exists is less likely to 
hold. Thus, the Select-Exp label is the same as the 
Predicate label. 

For connectors such as in, = any, != all, . . . , if 
additional tuples are in the Select-Exp, then the 
predicate is more likely to hold. If fewer tuples are 
in the Select-Exp, then the predicate is less likely 
to hold. 4b is the reverse. 

If additional tuples are in the tables of the From- 
List or if the Predicate is more likely to hold, then 
additional tuples may be in the Select-Exp. Simi- 
larly for fewer tuples. 

The label passed from the From-List to the ta- 
ble name indicates the invalidating operation(s) for 
that table. 

For aggregate functions, both insertions and dele- 
tions (respectively, both predicates more likely and 
less likely to hold) may cause a change in the value 
of the result. Thus, both may cause the constraint 
to become violated. 

We have now fully described how a set of invalidating 
operations is derived from a constraint definition. Note 
that a given constraint may be expressed in several dif- 
ferent ways. We would like our algorithm to produce the 
same set of invalidating operations for any two equiv- 
alent constraints. In the technical report [CW90], we 
discuss several classes of equivalence, showing that our 
algorithm does produce equivalent invalidating opera- 
tions. 

4.2 Examples 

Consider again the constraint “each wire’s voltage does 
not exceed the maximum for its wire type”: 

wire: voltage > any (clelect max-voltage 
from vire-type 
where type = wire.type) 

The columns appearing in the constraint as Item-Exp’s 
are wire. voltage, wire-type. type, and wire. type; 
the only column appearing in the Val-Exps part of a 
Select-Exp is wire-type .max-voltage. Thus, the in- 
validating update operations are: 

updated wire.voltage, updated wire.type. 
updated wire-type.type, 
updated wire-type.max-voltage 

For inserts and deletes, our algorithm first labels the 
constraint predicate and table wire with I (equations 1 
and 2 in Fig. 3). Then, by equation 4a (since > any is 
a Connectoq), label I is passed to the select expres- 
sion and subsequently to table wire-type. Hence, the 
invalidating insert and delete operations are: 

inserted into wire, inserted into wire-type 

As a second example, consider the constraint “each 
tube contains at least one wire”, expressed as: 

tube: not exists (select l from wire 
where <tr.to> = tnbe.<fr,to>) 

Since the select operation is the object of exists, we 
need not enumerate as invalidating update operations 
all columns in table wire. Considering all other men- 
tioned columns, the invalidating update operations are: 

updated wire.fr, updated wire.to, 
updated tube.fr, updated tube.to 

For inserts and deletes, table tube and the predicate 
are initially labeled with I. Table wire inherits label 
D, however, since the appearance of “not” causes prop 
agation of the opposite label (equation 8). Thus, the 
invalidating insert and delete operations are: 

inserted into tube, deleted from mire 

4.3 Labeling Optimisation for Aggregate 
Functions 

When an aggregate function appears in a constraint, our 
labeling procedure for generating insert and delete op- 
erations assigns ID to the relevant From-List and Pred- 
icate (equation 21 in Fig. 3). This is necessary because 
both insertions and deletions (respectively, predicates 
more likely and less likely to hold) may cause a change 
in the result of the aggregate. For certain aggregate 
functions in combination with certain comparison op 
erators, however, we can determine that only one op- 
eration with respect to the From-List (insert or delete) 
can change the value of the entire expression; similarly 
for the Predicate. For example, consider the following 
expression: 

(select mu ( Cal- Name) 
from From-List where Predicate) > Item-Ezp 

Our labeling algorithm assigns ID to the From-List and 
the Predicate, independent of the label inherited by the 
expression. By the monotonicity of function mar, how- 
ever, only insertions into the tables of the From-List or 
a Predicate more likely to hold can increase the value of 
max (making the entire expression more likely to hold); 
deletions or a Predicate less likely to hold can only de- 
crease the max. Therefore, if the expression inherits la- 
bel I, the From-List and Predicate can be labeled I. 
Symmetrically, if the expression inherits D, the From- 
List and Predicate can be labeled D. When the From- 
List or Predicate is complex, this optimization may sig- 
nificantly reduce the number of invalidating operations. 

Similar optimizations apply for several other combi- 
nations of aggregate functions and comparison opera- 
tors. Consider any expression of the form “Item-Exm 
Comp-Op Item-ExR” or of the form “Item-Expl Con- 
nector Select-Exp”, where Item-Exn is an aggregate. 
Let L denote the label inherited by the expression. The 
table in Fig. 4 summarizes all applicable optimizations 
based on the particular aggregate function (column 1) 
and the particular comparison operator or connector 
(column 2). Column 3 indicates how the components 
of the aggregate select operation are to be labeled, 
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AGGR. 
- m3.n 

lain 
mar 
max 

count 
count 

sum 
sum 

OPERATOR/CONNECTOR 
<, <=, < auy,<= My,< all,<= all 
>, >=, > any, >= any,> all,>= all 
<, <=, < any,<= any,< all,<= all 
>, >=,a (Lny,>= eny,> all,>= all 
<, <=, < any,<= auy,< all,<= all 
>,>=,> any,>= My,> all,>= all 
<,<=,< My,<= My,< all,<= all 
>, >=, > any,>= auy,> all,>= all 

LABEL 

OPh 
OPP(L) 

L 
OPPGL) 

L 
OPP(L) 

L 

Figure 4: Labeling Optimization for Aggregates 

based on the inherited label L. We include optimiza- 
tions for function sum, although these assume that only 
positive values are considered. No opbimizations apply 
to function avg or to operators = and !=. If, in an ex- 
pression of the form “Item-Expl Camp-Op Item-Expa”, 
Item-Ex- is an aggregate, then the optimizations are 
the same as in Fig. 4, inverting the comparison opera- 
tors appropriately (e.g., < becomes > and >= becomes 
<=). If both Item-Expl and Item-Ex- are aggregates, 
optimizations can independently be applied to each. 

These optimizations are relevant to several of the con- 
straints in our case study. Consider, for example, the 
constraint “the total outgoing power for each plant does 
not exceed the produced power”, expressed as: 

plant: power < (select sum(porrer) from vim 
where fr = plant-id) 

Without optimization, the labeling algorithm produces 
as invalidating insert, and delete operations: 

inserted into plant, inserted into wire, 
deleted from rrire 

However, since power takes on only positive v&es, we 
apply the optimization for aggregate function sum, elim- 
inating deleted from wire as an invalidating opera- 
tion. 

Other, more complex, labeling optimizations are also 
possible--there is certainly room for future work here. 
(For further discussion, see [CWSO].) 

4.4 Rule Templates and 
Constraint-Maintaining Rules 

Once the set of invalidating operations is generated for 
a given constraint, the system can produce a rule tem- 
plate. The rule components that are completed auto- 
matically in the template are the transition predicate 
and the condition (recall Section 2.2). The user must 
provide a name and an action. 

Consider a constraint of the form Table-List: 
Predicate. From this constraint, a set Inv-Ops (say) 
of invalidating operations is derived. The rule template 
produced for this constraint has the form: 

create rule CNAHEB) 
when Znv- Ops 
if exists ?:(select + from Xable-List 

where Predicate) 
then <ACTION> 

The set of invalidating operations is translated directly 
into the rule’s transition predicate: we want the rule to 

be triggered whenever any operation occurs that may 
cause the constraint to be violated. Once the rule is 
triggered, we want, it to check if the constraint actually 
is violated. This behavior is achieved by translating the 
constraint definition into the if clause of the rule. The 
translation, illustrated above, is based on the semantics 
of our constraint language: the constraint is violated if 
there exists any tuple in the Cartesian product of the 
Table-List satisfying the Predicate. The select oper- 
ation here is (automatically) labeled T as a matter of 
notational convenience. Often, in the action part of the 
rule, the user wants to refer to this particular set, since 
it contains exactly those tuples violating the constraint. 
We allow references to logical table T in the action, with 
an interpretation equivalent to textual expansion. 

As an example, consider the constraint “each wire is 
contained within a tube”, expressed as: 

mire: not exists (select l from tube 
where <fr,to> = uire.<fr.to>) 

The rule template produced for this constraint is: 

create rule CNAMD 
when inserted into mire. updated wi.re.fr, 

updated aire.to, deleted from tube, 
updated tube.fr, up&ted tube.to 

if exists T:(select + from air8 
rrhsre not exiatr 

(select l from tube 
where <fr,to> = vire.<fr,to>)) 

then <ACTION> 

Suppose the user decides that the appropriate compen- 
sating action here is to first delete all wires whose tubes 
were deleted, then to insert new tubes for remaining 
“tubeless” wires. To complete the template, the user 
gives the rule a <NAME>, and replaces <ACTIOB> by: 

/* delete wires whose tubes were deleted */ 
delete from uire where 

sire-id in (select vire-id from T) 
and <fr,to> in (select ft. to 

from deleted tube); 
/e assign tubes to remaining wire6 e/ 
insert into tube 

(select new-tube-id(), X.f. X.t, 
default-tube-type 

from X(f,t):(select distinct fr, to from T)) 

In the first part of the action, logical table T and tran- 
sition table “deleted from tube" are used to iind all 
wires whose tubes have been deleted; these wires are’ 
deleted. In the second part, logical table T is referenced 
again-recall the interpretation is textual expansion- 
within a table expression6 that generates all fr, to pairs 
with “tubeless” wires. For each such pair, a tube is in- 
serted with a new identifier and a default type. If the 
default type turns out to be inadequate, rules enforc- 
ing constraints on tube types will be triggered and will 
update the type appropriately. 

When multiple constraints are defined, one con- 

'This table expression should be self-explanatory; for de- 
tails on the construct see [CW90,HF*89]. 

573 



straint-maintaining rule is produced for each.’ If con- 
straints are partially ordered, ordering is automatically 
transferred to the rules. That is, if a constraint Cl is to 
be enforced before a constraint C2, then rules Ri and 
Rz-for enforcing constraints Ci and C2 respectively- 
are ordered so that if both are triggered, RI will be 
considered first. 

Finally, although we have been assuming a scenario 
in which a single user defines a number of constraints in 
Uone sitting” , our rule derivation facility easily can be 
used at multiple times and by multiple users, with ap- 
propriate integration. This is further discussed in Sec- 
tion 8. 

5 Rule Analysis 
When multiple rules are defined, execution of one rule’s 
action may trigger a number of other rules. This behav- 
ior is crucial to enforcing multiple constraints, as dis- 
cussed in detail in Section 7. Unfortunately, this behav- 
ior also produces the possibility of cyclic, infinite rule ex- 
ecution: rules may trigger each other indefinitely. (This 
will certainly happen, in fact, if the user tries to enforce 
conflicting constraints.) Although we do not attempt to 
determine whether given sets of rules are guaranteed to 
terminate-this problem almost certainly is undecidable 
in the general case-we do perform simple, conservative 
analysis of rule sets, indicating subsets of rules for which 
infinite triggering is possible. In many cases, the warn- 
ings produced may not be relevant. It may be known, 
for example, that once one rule’s action is executed, all 
other rules’ conditions will not hold. However, the user 
should validate for each potential cycle that termination 
in finite time is guaranteed. 

We use a straightforward method for detecting poten- 
tial cycles in rule triggering behavior. For a given set 
of rules, a triggering graph is constructed. The nodes 
of the graph correspond to the rules in the set. There 
is a directed edge from node & to node Rj iff execu- 
tion of rule a’s action can trigger rule Rj. Edges are 
determined by simple syntactic analysis: l& can trigger 
Rj, i # j, if any data manipulation operation in Ri’s 

. action corresponds to an operation listed in Rj’s transi- 
tion predicate. Once the triggering graph is constructed, 
each cycle indicates potential for nontermination. 

The user should inspect each cycle in the triggering 
graph, determining whether infinite triggering is actu- 
ally possible. If so, relevant rules should be modified to 
eliminate this possibility. A triggering graph has been 
built for the preliminary rule set in our case study; the 
graph contains a number of cycles. All cycles except 
two are clearly not relevant. It is interesting to note, 
however, that for the two cases in which infinite trig- 
gering is possible, this fact was revealed only by formal 
analysis-we were unaware of the problem in our initial 
definition of the rules. (See [CW90] for details.) 

‘We may want to extend oux facility to allow multiple 
rules enforcing a given constraiut. This accommodates the 
possibility that different compensating actions may be ap- 
propriate for different invalidating operations. We plan to 
incorporate this extension. 

More sophisticated rule analysis is certainIy possi- 
ble. It would involve additional syntactic analysis of 
the rules in each cycle, perhaps incorporating semantic 
information as well. The goal would be to determine 
automatically, in as many cases as possible, that infi- 
nite triggering will not occur. This is a topic for future 
research. 

6 Rule Optimization 

The rule analysis phase is complete when all neces- 
sary modifications have been made to prevent infinite 
rule triggering. At this point, we have a “final” set of 
constraint-maintaining rules. As illustrated in the sys- 
tem structure diagram of Fig. 1, these rules may further 
be processed by a rule optimizer. Here, as in other parts 
of the system, varying degrees of analysis can be per- 
formed with varying quality of results. We describe one 
fairly straightforward optimization, applicable to a wide 
class of rules derived from constraints. 

The condition parts of constraint-maintaining rules 
are produced by a simple transformation on constraint 
definitions. Thus, rule conditions are static predicates 
on the database state. Sometimes, however, it is possi- 
ble to evaluate a rule’s condition only over the changes 
that have occurred since the constraint was last con- 
sidered. (This may correspond to only a fraction of 
the database.) For example, suppose a constraint may 
be violated when tuples are inserted into a table. It 
may be sufficient for the condition part of the rule en- 
forcing the constraint to inspect only those tuples that 
have been inserted, rather than inspecting the entire 
table. (References in the rule’s action to pre-defined 
table T, derived from the condition, consequently also 
are improved.) We describe an automatic method for 
transforming rule conditions to incorporate this kind of 
optimization. The optimized conditions use the transi- 
tion table feature of our rule language, which provides 
a mechanism for referring to database changes (recall 
Section 2.2). 

Let R be the rule enforcing a constraint C. For the 
optimization, we consider the tables from C’s table list, 
transforming references to these tables appearing in R’s 
condition into references to appropriate transition ta- 
bles. Here, we consider the case in which the table list 
contains one table; the generalization to multiple tables 
is straightforward and appears in [CW90]. 

Consider a rule R derived from a constraint with one 
table t in its table list. R’s condition thus looks like: 

if exists 1: (select + from t vharo Predicate) 

Our optimization is applicable to this condition if: 

1. all operations listed in R’s transition predicate are 
operations on table t; 

2. table t does not appear in the from clause of any 
nested select operation in the Predicate. 

(Note that by the second requirement and our algorithm 
for generating invalidating operations, deleted from t 
cannot appear in R’s transition predicate.) If these re- 
quirements are met, then the from clause reference to 
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t in the condition part of the rule can be replaced by 
the union of all transition tables corresponding to op 
erations in R’s transition predicate. That is, let R’s 
transition predicate be: 

ahen inserted into t , 
updated t.cl, . . . . updated t.cn 

After optimization, R’s condition becomes: 
if exists 1: (select + 

from t:(inserted t 
union new updated t.cl 

. . . 
union nev updated t.cn) 

where Predicate) 

Notice that we use the neu values of the updated tu- 
ples. Also, the union in the from clause is named t 
so that references to t within the Predicate are han- 
dled appropriately. 8 Assuming that the inserted and 
updated tuples form only a small portion of the origi- 
nal table t, this transformation can yield significant im- 
provement in rule condition evaluation. Improvement 
may also be gained in the rule’s action, since references 
to logical table T inherit the optimization. Correctness 
of the transformation is proven formally in [CW90]. 

The restrictions for applying our optimization may 
seem rather limiting, but in fact rules derived from con- 
straints often meet the requirements. (Exactly half of 
the rules in our case study are eligible.) As an exam- 
ple, again consider the constraint “each wire’s voltage 
does not exceed the maximum for its wire type”. The 
enforcing rule’s transition predicate and condition are:Q 

when inserted into wire, updated aire.type, 
updated sire.voltage 

if exists T:(select * from wire 
where voltage > any 

(select mar-voltage 
from wire-type 
where type = aire.type)) 

Here, in the condition, voltage is checked for all wires in 
the database. However, after optimization the condition 
is transformed to: 

if exists T:(select + 
from wire: 

(inserted into wire 
union new updated aire.type 
union new updated vire.voltage) 

where . . . 

Here, the only wires checked are those that have been 
inserted or whose type or voltage has changed. 

7 System Execution 

So far, we primarily have considered the static aspects 
of our facility. Constraint definition, rule derivation, 

‘Strictly speaking, we should assign a new name and an 
appropriate column list to this table expression, changing 
references accordingly. The details are not particularly in- 
teresting and therefore are omitted. 

'Invalidating operations on table wire-type have been 
omitted since, in the case study, this table is considered read- 
only [CW90]. 

rule analysis, and optimization all are performed prior 
to system execution. Although execution time is not the 
focus of our study, we still must ensure that derived rules 
will behave as desired-that consistency with respect to 
all constraints is guaranteed. 

Since rules are activated at the end of each transac- 
tion, we consider an arbitrary transaction, showing that 
rule execution will terminate and, when it does, all con- 
straints will be valid. To do this, we must make certain 
assumptions about those aspects of the constraints-to- 
rules translation performed by the user. Correctness 
requires proving that consistency is restored-this obvi- 
ously relies on appropriate compensating actions. Thus, 
we assume that the rule created by a user from the rule 
template for a given constraint, considered in isolation, 
does indeed restore consistency for that constraint: 
Assumption 7.1 (Compensating Actions) 
Let C be a constraint and let R be the rule enforcing 
that constraint. Following any database transition trig- 
gering rule R, if R’s condition holds and its action is 
executed, then the resulting state is consistent with re- 
spect to C. 

When many constraints are enforced, rules executed 
to restore one constraint may cause others to be vio- 
lated (and therefore additional rules to be triggered). 
This behavior is acceptable as long as it cannot proceed 
indefinitely. We prove that termination is guaranteed, 
under the assumption that the user properly validates 
all cycles produced by the rule analyzer: 
Assumption 7.2 (Cycle Termination) 
Every potential rule triggering cycle will execute only 
a finite number of times. 

7.1 Termination 
Consider system execution when a set of constraint- 
maintaining rules Rr, . . . , R,, iz defined. To prove that 
rule execution terminates at the end of every transac- 
tion, we first provide a formal description of system ex- 
ecution. Execution is modeled by a sequence: the first 
symbol in the sequence is T, denoting the initial trans- 
action. Each subsequent symbol is an &, 1 < i 5 n, 
denoting execution of rule &‘s action. After each sym- 
bol in the sequence, we insert the set of rules triggered 
at that point. Recall from Section 2.2 that a rule is con- 
sidered with respect to the net effect of the transition 
since the rule was last executed (or evaluated), or since 
the start of the transaction if it has not yet been eval- 
uated. Thus, through the sequence, rules may appear 
and disappear from the set of triggered rules before their 
action is executed. When a rule finally is executed, we 
say it was “initially triggered by” the symbol preceding 
its most recent uninterrupted appearance in the set of 
triggered rules. 

Now suppose, for the sake of a contradiction, that 
an execution sequence is infinite. We show that the 
sequence must then contain some triggering cycle ex- 
ecuted infinitely often, contradicting Assumption 7.2. 
The following lemma is used: 
Lemma 7.3 Let u be an infinite string over a finite 
alphabet. For any k > 0, there is a substring s of Q 
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such that 1.91 = h and an infinite number of disjoint 
occurrences of 3 appear in u. 

Proof: Partition ti into substrings of length L. Since 
there are only a finite number of strings of length Ic, 
some k-length substring must appear in cr an infinite 
number of times. q 

Applying this lemma to our execution sequence with a 
sufficiently large L, we obtain the desired result. First, 
we modify the execution sequence model to explicitly 
contain “triggered by” information. Each element in the 
sequence (except the first) becomes a pair: the second 
half of the pair indicates the executed rule, while the 
first half--r or a rule-indicates the symbol initially 
triggering the executed rule. 

Theorem 7.4 (Termination) Let Q be an infinite se- 
quence representing rule execution. Some rule trigger- 
ing cycle appears infinitely often in u. 

Proof: Since each rule can be triggered by T at most 
once, eventually in u symbol T no longer appears. Con- 
sider any infinite tail 0’ of c for which this is true. Each 
symbol in u’ is an (a, Rj) pair (i # j), where Rj was 
triggered by &. A simple counting argument shows that 
if we consider any subsequence of u’ of length CyZ1 ni, 
where n is the number of rules, the subsequence must 
contain a triggering cycle. Now, by Lemma 7.3, there is 
some subsequence s of u’ such that Is] = X:=1 ni and 
3 appears infinitely often in u’. Since 3 must contain a 
cycle, some cycle appears infinitely often in 6. 0 

7.2 Correctness 

Now that we know the constraint-maintaining rules are 
guaranteed to terminate, we must prove that they al- 
ways terminate in a consistent state. Again, consider an 
arbitrary initial transition and subsequent rule execu- 
tion. Since we assume that each transaction begins in a 
consistent state (the constraint-maintaining rules ensure 
this for all but some “first” transaction-see [CWSO] for 
details), any rollback action trivially guarantees cor- 
rectness. Thus, assume no rollback action is executed. 

We again use a sequence model of system execution. 
In this case, we need not include triggering information, 
but we do need to include all rules evaluated, not just 
those whose actions are executed. Thus, execution is 
represented by a sequence in which the first symbol is 
T and each subsequent symbol is an &, 1 5 i 5 n, 
denoting evaluation of rule I&. By Theorem 7.4, every 
such execution sequence is finite.‘O Hence, we only must 
show that, at the end of the sequence, all constraints are 
valid. 

Theorem 7.5 (Correctness) Consider any finite se- 
quence representing system execution. At the end of 
the sequence, all constraints are valid. 

Proof: At the end of the sequence, there are no trig- 
gered rules with true conditions. Thus, if a rule R; 

“Actually, for Theorem 7.4 we considered only the exe- 
cuted rules, not all rules evaluated. However, the result may 
be applied directly to show that these sequences also are 
guaranteed to be finite. 

enforcing a constraint Ci is triggered, then its condition 
does not hold; hence Ci is valid. Consider a rule Rj (for 
a constraint Cj) that is not triggered at the end of the 
sequence. We consider two cases: 

1. Rj does not appear in the execution sequence: Rj 
was never evaluated; hence, at the end of the se- 
quence, Rj is considered with respect to the tran- 
sition since the start of the initial transaction. If 
the net effect of this transition includes any oper- 
ations that might invalidate Cj, then Rj would be 
triggered. Thus, Cj cannot have been invalidated 
since the start of the transaction. 

2. Rj does appear in the execution sequence. Then, 
at the end of the sequence, Rj is considered with 
respect to the transition since it was last executed 
or-if its condition was most recently false-since 
it was last evaluated. By Assumption 7.1, in either 
case validity of Cj was established. If Cj could have 
been invalidated since then, Rj would be triggered. 
Hence Ci must still be valid. 0 

8 Conclusions and Future Work 

We have described a general framework for transform- 
ing constraints into constraint-maintaining production 
rules. The facility allows users to define general con- 
straints at a natural, conceptual level-as predicates on 
database states-and to systematically derive “lower- 
level” rules guaranteed to enforce the constraints. 

The constraints-to-rules process has been described 
as if one user defines all constraints (and consequently 
derives all rules) at one time. Actually, it is equally 
possible for constraints to change over time: some ini- 
tial set of constraint-maintaining rules iz derived; later, 
additional rules may be added and existing rules may 
be removed. The only point to note is that whenever 
new rules are derived, rule analysis must be applied to 
the entire set of rules (new and old), since, at execution 
time, all rules coexist and interact. If multiple users are 
defining constraints for a particular application, an au- 
thorization facility might be useful, since it may not be 
desirable to have all constraints and rules accessible to 
all users. 

We plan to implement the basic components of the 
facility and begin experiments. This should not be too 
difficult; most of our algorithms are based on syntactic 
analysis and transformation so parser-generator tools 
can be used. The next step will be to implement a 
convenient user-interface-the Constraints Editor and 
Rules Editor shown in Fig. 1. We also plan to continue 
work on extending the functionality of the system, as 
improvements can be made in many respects. In par- 
ticular, we would like to: 

l incorporate additional labeling optimizations for 
less conservative derivation of invalidating insert 
and delete operations; 

0 perform more complete rule analysis to eliminate 
trivially impossible cycles; 

l define additional rule optimizations; 

576 



0 allow multiple rules enforcing a single constraint. 

Finally, as 8 broad area of future research, we plan 
to explore the possibility of automatically (or semi- 
automatically) deriving compensating actions. 
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