
Deriving Production Rules for Constraint Maintenance

Stefano Ceri *
Jennifer Widom

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120
ceriOcs.stanford.edu, widomOibm.com

Abstract. Traditionally, integrity constraints in database
systems are maintained either by rolling back any transac-
tion that produces an inconsistent state or by disallowing
or modifying operations that may produce an inconsistent
state. An alternative approach is to provide automatic “re-
pair” of inconsistent states using production rules. For each
constraint, a production rule is used to detect constraint
violation and to initiate database operations that restore
consistency.

We describe an SQL-based language for defining integrity
constraints and a framewcrk for translating these constraints
into constraint-maintaining production rules. Some parts of
the translation are automatic while other parts require user
intervention. Based on the semantics of our set-oriented pro-
duction rules language and under certain assumptions, we
prove that at the end of each transaction the rules are guar-
anteed to produce a state satisfying all defined constraints.
We apply our approach to a good-sized example.

1 Introduction

In database systems, an integrity constraints facility
permits logical specification of those database states
that are considered acceptable, or consistent. In cur-
rent systems, mechanisms for defining and enforcing in-
tegrity constraints are limited. Most relational database
systems support only specific types of constraints, such
as uniqueness of keys and referential integrity, rather
than supporting arbitrary predicates. Furthermore,
when constraints are violated, “repair” of the database
state usually is limited to fixed reversal actions, such as
rolling back the current operation or the entire transac-
tion. (Consequently, for increased flexibility, integrity
constraints often are encoded within applications, usu-
ally in an ad-hoc manner.) An improved approach to
constraint enforcement allows definition of compensat-
ing actions that correct violation of each constraint ac-
cording to a well-understood, application-dependent se-
mantics.

Most research in the area of integrity constraints has
focused on efficiently determining actual or potential

*On leave from University of Modena

constraint violation, sometimes considering quite gen-
eral constraints (such as arbitrary predicates). In this
paper, we also consider general constraints, but ‘we fo-
cus on the issue of constraint enforcement. A lan-
guage is proposed for specifying constraints on relational
databases. We then provide a framework for translat-
ing constraint specifications into production rules that
maintain the constraints. Production rules in database
systems allow specification of data manipulation opera-
tions that are automatically executed whenever certain
events occur &d/or certain conditions are met [DE89,
Han89, KMSSO, SJ*90, WF90]. The usefulness of incor-
porating production rules into database systems is welI
accepted [EC’i’5,MD89,Mor83], particularly in the con-
text of constraint enforcement. However, we know of
no automatic (or semi-automatic) method for specifying
general constraints in a high-level, non-procedural lan-
guage, then deriving lower-level production rules that
maintain the constraints. We describe such a method.

The constraint and rule languages’ we use are based
on an extended version of SQL [HF*89, IBM88], al-
though our work could easily be adapted for alternate
languages. Constraints are expressed as predicates over
the database state: if the predicate is true in a partic-
ular state, then the constraint is violated and the state
is inconsistent.’ Constraints may be ordered, specify-
ing that certain constraints will be enforced earlier than
(and therefore may be assumed valid by) other con-
straints. The production rule language is described in
[WF90]. Prior familiarity with this rule language is not
necessary; an overview is provided.

Production rules enforce constraints by issuing ac-
tions to correct violation. In many cases, several possi-
ble actions may correct a given constraint violation, and
which action is most appropriate may depend on the ap
plication. Thus, for each constraint, the compensating
actions are specified by the application designer. How-
ever, several other necessary components of the deriva-
tion can be performed automatically. We envision an
interactive system for deriving rules from constraints
with a structure as illustrated in Fig. 1. The automatic
portions of the derivation include:

l Producing rule templates from constraints: Rule
templates enumerate all operations that may cause
constraint violation (these form the triggering com-

‘For our framework, it is more convenient for constraints
to specify the inconsistent rather than the consistent states.
This choice does not affect expressiveness, since the alter-
native semantics can be achieved simply by negating each
constraint.

Proceedings of the 16th VLDB C’on~erencc
Brisbane. Australia 1990

566

Constraint Definitions

c
Rule Template Generator (System)

I
Rule Templates

I

Final Rules Potential Cycles

Optimized Rules

Figure 1: Interactive System for Rule Derivation

ponents of the constraint-enforcing rules) and in-
clude rule conditions. Rule actions are provided by
the user.

l Detecting potential cycles in rule activation: As the
number of rules increases and rules become more
complex, there is increasing possibility of infinite
triggering behavior. This component detects the
potential for such behavior and provides warnings
to the user.

l Rule optimization: The system automatically op-
timizes rules derived from constraints, preserving
their constraint-maintaining semantics.

Each automatic component is described in some de-
tail. We also describe those tasks that must be per-
formed by the users of the system. Finally, a theorem is
proven stating that under certain assumptions regarding
the users’ obligations (such as correctness of compensat-
ing actions and finite triggering behavior), the final set
of production rules is guaranteed to maintain all defined
constraints. That is, at the end of every transaction,
rule execution terminates in a consistent state.

1.1 Related Work

As mentioned above, most work involving integrity con-
straints in database systems has addressed-in a va-
riety of settings-the problem of efficiently detecting
constraint violation [BBC80,HMN84,HI85,KP81,Nic82,
QS87,Sto75]. Some of this work describes algorithms for
detecting in advance that an operation may cause con-
straint violation; such operations are not permitted to
proceed. In other work, inconsistent states are detected
as they occur; consistency is restored by performing
undo or rollback operations. In our approach, inconsis-
tent states may occur and are detected, but consistency
is restored by issuing corrective actions that depend on

the particular constraint violation.
Approaches similar to ours are taken in [CTF88,

Mor84, UD90, UD91], but in restricted settings. In
[CTF88], only referential integrity and inclusion depen-
dency constraints are considered. The user may define
compensating actions (drawn from a restricted set) to
be executed when constraints are violated. In [Mor84],
the focus is on a very high-level language for express-
ing inter-relational constraints. The set of expressible
constraints is a subset of those expressible using arbi-
trary predicates. In many cases, specific compensating
actions may be derived automatically from constraints,
subject to certain “hints” provided by the constraint
definer. In [UD90,UD91], analysis of constraints is con-
sidered in an object-oriented environment. Constraints
are represented using Horn logic (again permitting only
a subset of arbitrary predicates). Constraint analysis re-
veals the effects of constraints on object manipulation,
determines possible constraint violations, and suggests
propagation actions for correcting violations.

Several other papers also extend the standard ap-
proaches to constraint definition and enforcement. In
[CG88], logic programming is used to express and eval-
uate constraints. At run-time, a given transaction can
be checked to verify that it wilI maintain consistency
with respect to a set of constraints. If consistency
is not guaranteed, the system can explain which con-
straints are violated and can suggest qompensating ac-
tions. A similar approach is described in [SMS87], how-
ever this work considers a compile-time rather than run-
time environment. When transactions are determined
to have potential for constraint violation, feedback is
provided to the user in the form of suggested tests and
updates to be added to the transaction. In [WalSS],
constraint definitions include both conditions on the
state (which are checked) and additional actions that
are automatically executed after certain operations to
help maintain consistency. This is similar to defining
constraints directly as the rules that enforce them, as
in [SK84]. In our approach, constraints are defined at
a higher, non-procedural level, from which constraint-
maintaining rules are derived.

1.2 Outline of Paper

Preliminary material is presented in Section 2: a case
study is introduced, serving as a source of examples
throughout the paper, and an overview of the rule lan-
guage is given. Section 3 presents the syntax and se-
mantics of the constraint language. Section 4 describes
the derivation of a rule for enforcing a single constraint,
including automatic generation of those operations that
may cause constraint violation. Section 5 then consid-
ers the set of rules for maintaining multiple constraints;
in particular, it shows how potential cyclic behavior in
such rule sets can be detected. Rule optimization is
covered in Section 6. Section 7 considers system execu-
tion, showing that termination in a consistent state is
guaranteed under certain assumptions. Finally, in Sec-
tion 8, we conclude, discuss general use of the facility,
and describe future work.

567

2 Preliminaries

2.1 Case Study

Examples throughout the paper are drawn from a case
study concerning a Power Distribution Design System, a
database application supporting the design and mainte-
nance of electricity networks.2 Due to space limitations,
only portions of the study are included in this paper; 8ll
details appear in the technical report [CW90]. Note that
many of the constraints considered in the study cannot
be supported in conventional database systems.

Briefly, a power network connects a collection of
plants to a collection of users, possibly through inter-
mediate nodes. The network designer determines the
location of plants, nodes, and users. Also specified by
the designer is the power produced by each plant, the
power required by each user, and the power loss incurred
at each intermediate node. The designer places directed
wires between plants, users, and nodes, specifying for
each the wire type along with the voltage and power to
be carried by that wire.

Multiple wires may be placed between any two points,
and each set of wires is enclosed within a tube. Place-
ment of tubes is not difficult: there is at most one
tube between any two points, a tube should be pro-
tected if it contains high voltage wires, and tubes should
have large enough cross sections to enclose their wires.
Tube placement can, in fact, be specified solely in terms
of constraints-tubes are then automatically inserted
and deleted by the rules that maintain the constraints.
Thus, once appropriate constraints are defined, the de-
signer need not consider tubes at all.

Further constraints specify that the power output re-
quired for each plant should not exceed the produced
power, the power output required for each node should
not exceed the deliverable power (based on input), and
each user should receive at least its required power. For
reliability, each user should be connected to at least two
plants. Using capitalization to denote primary keys, the
relational schema for t.he case study is:

plant(PLANT-ID, location, power)
nser(USER-ID, location, power)
node(NODE-ID, location, loss)
aire(WIlU-ID, fr, to, type, voltage, power)
tnbe(TlJBB-ID, fr. to, type)
wire-type(TYPE. mar-voltage, mar-power

cross-section)
tube-type(TYPE, protected, cross-section)

ID’s for plants, users, and nodes all are drawn from the
same domsin-a constraint will specify that these are
not duplicated. Attributes fr and to of tables aire and
tube take their values from this domain.

2.2 Production Rules

We provide a brief overview of the set-oriented, SQL-
based production rules language used in the remainder
of the paper. Further details and numerous examples

2Tbis problem was presented to author Ceri by L. Dalle
in the context of a joint study between ENEL-the Italian
Electric Energy Agency-and the Politecnico di Milano.

appear in [WF90]. W e consider a relational database
system with an integrated production rules fscility. The
system has all the usual database functionality; in addi-
tion, a set of production rules may be defined. In gen-
eral, production rules specify actions to be performed
when certain events occur or conditions are met. In our
language, each rule contains three components: a tran-
sition predicate, which controls rule triggering, a condi-
tion, which is checked before the rule may execute its
action, which is a sequence of data manipulation oper-
ations or a rollback request. Production rules are not
activated until the commit point of each transaction, at
which time all triggered rules 8re considered. The data
manipulation operations executed 8s part of a rule’s ac-
tion may trigger additional rules. Once there are no
triggered rules left to consider, the transaction is com-
mitted. Further details follow.

Rules are based on the notion of transitions. A transi-
tion is a database state change resulting Corn execution
of a sequence of data manipulation operations. We con-
sider the net efect of transitions, meaning that: (1) if
a tuple is updated several times, we consider only the
composite update; (2) if a tuple is updated then deleted,
we consider only the deletion; (3) if a tuple is inserted
then updated, we consider this 8s inserting the updated
tuple; (4) if a tuple is inserted then deleted, it is not
considered at all.

The syntax for defining production rules is:

create ml4 n4me
whon transition predicate
[if condition]
than action

A rule is triggered by a given transition when its
transition predicate holds with respect to that tran-
sition. Transition predicates specify operations on
particular tables and columns. The permitted forms
are: inserted into t, deleted from t, and updated
t .c, where t is a table name and c is 8 column of t8-

ble t. A transition predicate lists one or more such
specifications, and the predicate holds with respect to 8
transition if at least one of the specified operations oc-
curred in the net effect of the transition. Once 8 rule is
triggered, it may be chosen for evaluation (as described
below). At this point, the rule’s condition is checked-
rule conditions are arbitrary predicates on the database
state. If the condition is true, the action is executed.
An action may specify a list of SQL data manipulation
operations to be executed or it may request a rollback
of the current transaction.

The condition and action parts of a rule may refer
to the current State of the database through embedded
SQL select operations. In addition, these components
may refer to transition tables. A transition table is a log-
ical table reflecting changes that have occurred during
a transition. At the end of a given transition, transition
table inserted t refers to those tuples of table t in the
current state that were inserted by the transition, tran-
sition table deleted t refers to those tuples of table t in
the pre-transition state that were deleted by the tran-
sition, transition table old updated t refers to those

568

tuples of table t in the pre-transition state for which
column c was updated by the transition, and transition
table neu updated t .c refers to the current values of
the same tuples. Transition tables may be referenced
in the from clauses of select operations in the usual
way. As a restriction, a rule may only refer to those
transition tables corresponding to its transition predi-
cate. For example, a rule may refer to old updated
t . c and neu updated t . c only if updated t . c is in-
cluded in its transition predicate; similarly for inserted
and deleted.

Finally, we describe rule execution. First, a user or
application executes a transaction-a sequence of SQL
operations; rules are considered at the commit point of
the transaction. The state change resulting from this
initial transaction creates the first relevant transition,
and some set of rules are triggered by this transition.
One rule is chosen from this set for evaluation. To in-
fluence rule selection, rules may be partially ordered,
whereby a rule will be chosen such that no other trig-
gered rule is higher in the ordering. The condition part
of the selected rule is checked; if it does not hold, a new
triggered rule is selected for evaluation. If the rule’s
condition does hold, its action is executed. (If no trig-
gered rule with a true condition is found, rule execution
terminates.) Let R (say) be the rule whose action is
executed, and assume its action is not rollback. After
execution of R’s action, all rules not previously evalu-
ated are now triggered only if their transition predicate
holds with respect to the composite transition created
by the initial transaction and subsequent execution of
R’s action. That is, these rules consider R’s action as if
it were executed as part of the user-generated, transac-
tion. Rules already evaluated have already “processed”
the initial transaction; thus, they are triggered again if
their transition predicate holds with respect to the tran-
sition created by R’s action. Rule R will be triggered
a second time only if future rule execution produces a
new net effect satisfying its transition piedicate.

Consider now an arbitrary point in rule processing.
A given rule is triggered if its transition predicate holds
with respect to the (composite) transition since the
point following its most recent execution. If, at last
evaluation, the rule’s condition was found to be false,
then the rule is considered with respect to the transition
since that point of evaluation.8 If a rule has not yet been
evaluated, it is considered with respect to the transition
since the start of the initial transaction. One rule is cho-
sen from the set of triggered rules; if its condition holds,
its action is executed, otherwise another triggered rule
is selected. If a rollback action is encountered, the sys-
tem rolls back to the start of the initial user-generated
transaction and no rules are triggered. Otherwise, rule
processing terminates when the set of triggered rules is
empty or when no triggered rule has a true condition;
the entire transaction is then committed.

3Here, we deviate somewhat from the semantics as pre-
sented in [WFgO], where a rule is considered with respect to
the transition since before its last execution. It should be
possible iu the rule system to permit both interpretations.

3 Constraint Language

We define a general language for expressing integrity
constraints. A constraint has two parts: a table list,
specifying tables relevant to the constraint, and an un-
restricted SQL predicate, which must hold in exactly
those states violating the constraint. As an introduc-
tory example, consider the constraint “each wire’s volt-
age does not exceed the maximum for its wire type”. In
the proposed language, this is expressed as:

uira: voltage > any (select mar-voltage
from uire-type
sh0re type = ujle.type)

(We must use “> any” here rather than the more natu-
ral 5” since the right side of the comparison is a single-
ton set, not a single value.) Remember that a constraint
specifies the inconsistent states, Thus, a state violates
this constraint if any tuple in table wire has a voltage
exceeding the max-voltage for its wire type. A com-
plete syntax and semantics follows.

3.1 Syntax

A grammar for the constraint language is given in Fig. 2;
many examples are provided below. The core of the
language is a variation on the usual SQL syntax for
predicates, similar to that used in the if clause of our
production rules [WF90]. Several advanced features are
included, such as boolean types, tuple constructors, and
user-defined functions. In [CWSO], we also include table
ezpcpressions (as described with respect to the Starburst
database system in [HF*89]); space considerations have
forced their omission here. In the grammar’s produc-
tions, we use T; to denote table names, Vi to denote
table variable names, and Ci to denote column names.
Repetition is represented explicitly by enumerating n
terms (n > 0). Optional terms are enclosed in square
brackets. (In our examples, we permit several straight-
forward abbreviations to the syntax.)

3.2 Semantics

The semantics of our constraint language is straight-
forward: a constraint is violated in a state iff one or
more tuples in the Cartesian product of the listed ta-
bles satisfies the specified predicate. Constraints may be
partially ordered: the user may specify for any pair of
constraints that one constraint is to be enforced before
the other (as long as there is no cycle in the prioriti-
zation). Constraint ordering allows the user to safely
assume that some higher priority constraint will be sat-
isfied whenever some lower priority constraint is consid-
ered. For example, in the constraint “each wire’s voltage
does not exceed the maximum for its wire type” (speci-
fied above), it is assumed that the constraint “each type
in the wire table appears in the wire-type table” (spec-
ified below) already holds.

3.3 Examples

The referential integrity constraint “each type in the
wire table appears in the wire-type table” is expressed:

airs: type not in (select type from IiiXe-t~e)

569

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22. Cal- Name
23. Connector

24. Set- Op
25. Camp- Op
26. Agg- Fn

27. Fn

Constraint
Table-List
Predicate

..- ..-

..- ..-

..- ..-

Select- Exp

Val- Exps

Val- Exp

From- List
Item- Exp

..- ..-

..- ..-

..- ..-

..- ..-

..- ..-

Table-List : Predicate
TI [VI]. T, [V,]
exists Select. Fxp
Item-Exp Cr.nqeEtor Select-Exp
Item- Expl G’omp- Op Item- Exm
Predicate1 and Predicate2
Predicate1 or Predicate2
not Predicate1
(Predicate1)
select [distinct] Val-Exps
from From-List [where Predicate]
Select-Expl Set-Op Select-Exps
(Select-Expl)
*
Val- Expl , . . . , Val- Exp,,
Col- Name
constant
Fn(Val-Expl, . . . , Val-Ezpn)
T1 PI], . ..s T, [V,]
Val- Exp
< Val-Expl , . . . , Val-Exp,>
63elect

Agg-Fn([distinct] Col-Name)
from From-List
[where Predicate])

P.1 C
in 1 not in

Camp- Op my 1 Comp- Op all
union 1 intersect 1 minus
=I !=I<I>I<=I>=
sum 1 min 1 max 1 avg 1 count
user-defined aggregate function
+I-l*l/
user-defined function

Figure 2: Conslraini Language Syntax

The constraint “each set of wires fits into its tube”,
with an interpretation that the sum of the wires’ cross-
sections must not exceed 80% of the cross-section of the
tube, is expressed as:

tube: (select sum(cross-section)
from wire. wire-type
where aire.<fr,to> = tube.<fr,to>
and wire.type = wire-type.type) > any

(select 0.8 * cross-section
from tube-type where type = tube.type)

Finally, the constraint “each plant has only outgoing
tubes” can be expressed quite simply:

plant, tube: plant-id = tube.to

4 Deriving Constraint-Maintaining
Rules

Once one or more constraints are defined using the lan-
guage of the preceding section, the system automati-
cally produces rule templates-portions of the produc-
tion rules necessary for constraint enforcement. We
first describe how, for a given constraint, a set of in-
validating operations is derived. This set includes ev-
ery data manipulation operation whose execution (in

a consistent state) may result in a state violating the
constraint-these become the triggering operations for
the constraint-maintaining rule. We provide exam-
ples, describe optimirations to the derivation, and fi-
nally present the full form of rule templates, from
which the user produces a preliminary set of constraint-
maintaining rules.

4.1 Deriving Invalidating Operations

Given a constraint, we want to derive automatically the
set of operations that may cause constraint violation.
We achieve this through purely static analysis of the
constraint. However, because semautic information is
not incorporated, the set may be conservative: some
operations in the set may not have real potential for
constraint violation. (This does not affect correctness
of constraint enforcement, but it may affect efficiency.)
We provide optimizations to minimize the possibility of
such extraneous operations.

The set of invalidating operations contains elements
of the form inserted into t, deleted from t, and
updated t . c, where t is a table name and c is a column
of table t. (These translate directly into the when com-
ponents of constraint-maintaining rules.) For a given
constraint, the set is generated by analyzing the con-
straint’s.syntactic structure, based on the grammar of
Fig. 2. We first give a method for deriving the iuvalidat-
ing update operations, then a method for deriving the
invalidating insert and delete operatidns. In practice,
all invalidating operations can be derived in the same
syntactic analysis (parse) of the constraint.

4.1.1 Update Operations

To enumerate the invalidating update operations, we
must determine every column for which, if the value of
that column is changed in one or more tuples, then the
constraint predicate may become true for some tuple(s)
in the Cartesian product of the constraint’s table list.
Two types of column references may appear in a con-
straint:

1. Columns whose individual values are used directly
in evaluating the constraint. With respect to the
grammar of Fig. 2, these are columns appearing as
part of an Item-Exp: as single values (productions
19 and 15), in constructed tuples (production 20),
or as objects of functions or aggregate functions
(productions 17 and 21).

2. Columns forming part of a set (due to inclusion
in the result of a select operation). These are
columns appearing in the Val-Exps part of a Seleci-
Exp (production 10).

Any update to a column of the first type can certainly
affect the value of the constraiut predicate.

l If t .c4 is a column name appearing in the con-
straint as part of an Item-Exp, then updated t .C

‘The grammar allows use of table variables; it also al-
lows a column to appear without its table name. In both
cases, there is an understanding that the relevant table can
unambiguously be inferred.

570

is an invalidating operation.

Invalidating update operations also are generated for
the second type of reference, except if the Select-Exp
appears as the direct or indirect object of an exists,
when the actual values of the tuples are unimportant.5
(A SelecGExpis a direct object ofan exists if exists is
applied to the set generated by the Select-Exp. A Select-
Exp is an indirect object of an exists if it and one or
more other Select-Exp’s are connected by Set-Op’s, with
exists applied to the result.) Thus:

l If t .c appears in the Vul-Exps portion of a Select-
Exp, and the Select-Exp is not a direct or indirect
object of an exists, then updated t . c is an inval-
idating operation. When Val-Ezps is “*“, updated
t . c is an invalidating operation for every column
c of every table t appearing in the corresponding
From-List

4.1.2 Insert and Delete Operations

Generating the invalidating insert and delete opera-
tions requires more thorough, context-dependent syn-
tactic analysis. Consider, for example, a constraint def-
inition including a deeply nested select operation. We
want to determine whether inserts or deletes performed
on the tables in the select may cause the constraint’s
predicate to become true. To do this, we (effectively)
construct a parse tree for the constraint. A top-down
labeling of the tree is performed, using labels I, D, and
ID. The labels ultimately considered are those appear-
ing on the table-name leaves of the parse tree-these
labels indicate the invalidating operations. If a node for
table t is labeled I, then inserted into t is an invali-
dating operation for the constraint, if the node is labeled
D, then deleted from t is an invalidating operation,
and if the node is labeled ID, then both inserted into
t and deleted from t are invalidating operations.

We provide a rigorous description of the labeling pro-
cess using an attribute grammar-a formalism speci.fi-
tally designed for defining how labels (attributes) are
assigned to the nodes of a parse tree [ASUSS]. The
labeling scheme we use defines an inherited attribute,
meaning that an initial label is assigned to the start
symbol of the grammar (i.e., to the root of the tree);
for each grammar production, labels for the symbols on
the right-hand side are computed based on the label for
the symbol on the left-hand-side (i.e., each child’s label
is computed as a function of its parent’s label). In com-
puting labels, we use the function Opp (for opposite),
defined as: Opp(I) = D, Opp(D) = I, Opp(ID) = ID.

The equations for computing labels are given in Fig. 3;
explanations are provided below. The equations corre-
spond to the productions of the grammar in Fig. 2, with
certain omissions and changes. Since we ultimately con-
sider only the labels on table-name nodes, we ignore

“Of course, an update to a column t . c may affect whether
tuples satisfy the where clause of the select (thus generating
fewer or more tuples in the set over which exists is applied),
but this happens only when the column actually appears
in the where clause. In this case, updated t .c is already
generated, since t .c must appear as part of an Item-Exp.

1.
2.
3.

4a.
4b.

6,7.

a.
9.

10.

lla.

llb.

12.
18.
21.

Predicate.label = I
T;.label = I i = 1 ..n
Select-Ezp.label = Predicote.label
Select-Ezp.label = Predicate.label
Select-Ezp.label = Opp(Predicate.label)
Predicate1 .label = Predicatelabel,
Predicates.label = Predicatc.label
Predicate1 .label = Opp(Predicote.label)
Predicatel.label = Predicatehbel
From-List.label = Select-Ezphbel,
Predicate.label = Select-Ezp.label
Select-Ezpl.label = Select-Ezplabel,
Select-Em.label = Select-Ezp.label
Select-Ezpl.label = SeIect-Ezp.label,
Select-Ezpl.label = Opp(Select-EzpJabel)
Select-ET1 .label = Select-Ezplabel
Ti.label = From-Ltit.label i = 1 ..n
From-List.label = ID, Predicaklabel = ID

Figure 3: Syntaz-Directed Labeling Scheme

any nonterminal that cannot eventually produce such a
node. Thus, we eliminate from consideration nontermi-
nals Val-Ezp(s), Col-Name, Connecior, SeCOp, Comp-
Op, Agg-Fn, and Fn. We also need not provide labels
for any terminal symbols other than table names. The
grammar is rewritten slightly to facilitate the labeling:
we distinguish two classes of Connector’s, and we sep-
arate minus from the other two Set-Op’s. Productions
4, 11, and 23 are modified as follows:

4a. Predicate ::=
4b. I

lla. Select-Ezp ::=
I

lib.
23a. Connecton ::=

I
23b. Connectora ::=

Item- Ezp Connecton Select-Ezp
Item-Ezp Connectora Select-Eap
Select-Ezpl nnion Select-Em
Select-Ezpl intersect Select-E*
Select-Ezpl minus Select-Em
in/= anyI != all
< any I> any I<= any I>= any
not in 1 != anyI= all
< all 1 > all 1 <= all 1 >= all

Finally, because the right-hand-side labels for produc-
tions 1, 2, and 21 are defined irrespective of the left-
hand-side labels, we need not consider nonterminals
Consiraid, Table-List, and Item-Ezp.

We explain many of the labeling rules (by number).
The remainder are left for the reader, and examples are
provided below. As a general principle, an I label on
a Select-Exp indicates that if an operation causes ad-
ditional tuples in the select, then the constraint may
become violated; a D label indicates that violation may
occur if fewer tuples are in the select. On a Predicate,
an I label indicates that operations making the pred-
icate more likely to hold may cause the constraint to
become violated, while a D label indicates that opera-
tions making the predicate less likely to hold may cause
violation.

1. The I label on Predicate indicates that if the pred-
icate is more likely to hold, then the constraint is
more likely to be violated.

2. Insertions into top-level tables may cause new tu-

571

3.

4a.

10.

18.

21.

ples in the cross-product to satisfy the constraint
predicate, violating the constraint. The I la-
bels here imply that for every top-level table t,
inserted into t is generated as an invalidating
operation.

If additional tuples are in the Select-Ezp, then the
exists is more likely to hold. If fewer tuples are
in the Select-Ezp, then the exists is less likely to
hold. Thus, the Select-Exp label is the same as the
Predicate label.

For connectors such as in, = any, != all, . . . , if
additional tuples are in the Select-Exp, then the
predicate is more likely to hold. If fewer tuples are
in the Select-Exp, then the predicate is less likely
to hold. 4b is the reverse.

If additional tuples are in the tables of the From-
List or if the Predicate is more likely to hold, then
additional tuples may be in the Select-Exp. Simi-
larly for fewer tuples.

The label passed from the From-List to the ta-
ble name indicates the invalidating operation(s) for
that table.

For aggregate functions, both insertions and dele-
tions (respectively, both predicates more likely and
less likely to hold) may cause a change in the value
of the result. Thus, both may cause the constraint
to become violated.

We have now fully described how a set of invalidating
operations is derived from a constraint definition. Note
that a given constraint may be expressed in several dif-
ferent ways. We would like our algorithm to produce the
same set of invalidating operations for any two equiv-
alent constraints. In the technical report [CW90], we
discuss several classes of equivalence, showing that our
algorithm does produce equivalent invalidating opera-
tions.

4.2 Examples

Consider again the constraint “each wire’s voltage does
not exceed the maximum for its wire type”:

wire: voltage > any (clelect max-voltage
from vire-type
where type = wire.type)

The columns appearing in the constraint as Item-Exp’s
are wire. voltage, wire-type. type, and wire. type;
the only column appearing in the Val-Exps part of a
Select-Exp is wire-type .max-voltage. Thus, the in-
validating update operations are:

updated wire.voltage, updated wire.type.
updated wire-type.type,
updated wire-type.max-voltage

For inserts and deletes, our algorithm first labels the
constraint predicate and table wire with I (equations 1
and 2 in Fig. 3). Then, by equation 4a (since > any is
a Connectoq), label I is passed to the select expres-
sion and subsequently to table wire-type. Hence, the
invalidating insert and delete operations are:

inserted into wire, inserted into wire-type

As a second example, consider the constraint “each
tube contains at least one wire”, expressed as:

tube: not exists (select l from wire
where <tr.to> = tnbe.<fr,to>)

Since the select operation is the object of exists, we
need not enumerate as invalidating update operations
all columns in table wire. Considering all other men-
tioned columns, the invalidating update operations are:

updated wire.fr, updated wire.to,
updated tube.fr, updated tube.to

For inserts and deletes, table tube and the predicate
are initially labeled with I. Table wire inherits label
D, however, since the appearance of “not” causes prop
agation of the opposite label (equation 8). Thus, the
invalidating insert and delete operations are:

inserted into tube, deleted from mire

4.3 Labeling Optimisation for Aggregate
Functions

When an aggregate function appears in a constraint, our
labeling procedure for generating insert and delete op-
erations assigns ID to the relevant From-List and Pred-
icate (equation 21 in Fig. 3). This is necessary because
both insertions and deletions (respectively, predicates
more likely and less likely to hold) may cause a change
in the result of the aggregate. For certain aggregate
functions in combination with certain comparison op
erators, however, we can determine that only one op-
eration with respect to the From-List (insert or delete)
can change the value of the entire expression; similarly
for the Predicate. For example, consider the following
expression:

(select mu (Cal- Name)
from From-List where Predicate) > Item-Ezp

Our labeling algorithm assigns ID to the From-List and
the Predicate, independent of the label inherited by the
expression. By the monotonicity of function mar, how-
ever, only insertions into the tables of the From-List or
a Predicate more likely to hold can increase the value of
max (making the entire expression more likely to hold);
deletions or a Predicate less likely to hold can only de-
crease the max. Therefore, if the expression inherits la-
bel I, the From-List and Predicate can be labeled I.
Symmetrically, if the expression inherits D, the From-
List and Predicate can be labeled D. When the From-
List or Predicate is complex, this optimization may sig-
nificantly reduce the number of invalidating operations.

Similar optimizations apply for several other combi-
nations of aggregate functions and comparison opera-
tors. Consider any expression of the form “Item-Exm
Comp-Op Item-ExR” or of the form “Item-Expl Con-
nector Select-Exp”, where Item-Exn is an aggregate.
Let L denote the label inherited by the expression. The
table in Fig. 4 summarizes all applicable optimizations
based on the particular aggregate function (column 1)
and the particular comparison operator or connector
(column 2). Column 3 indicates how the components
of the aggregate select operation are to be labeled,

572

AGGR.
- m3.n

lain
mar
max

count
count

sum
sum

OPERATOR/CONNECTOR
<, <=, < auy,<= My,< all,<= all
>, >=, > any, >= any,> all,>= all
<, <=, < any,<= any,< all,<= all
>, >=,a (Lny,>= eny,> all,>= all
<, <=, < any,<= auy,< all,<= all
>,>=,> any,>= My,> all,>= all
<,<=,< My,<= My,< all,<= all
>, >=, > any,>= auy,> all,>= all

LABEL

OPh
OPP(L)

L
OPPGL)

L
OPP(L)

L

Figure 4: Labeling Optimization for Aggregates

based on the inherited label L. We include optimiza-
tions for function sum, although these assume that only
positive values are considered. No opbimizations apply
to function avg or to operators = and !=. If, in an ex-
pression of the form “Item-Expl Camp-Op Item-Expa”,
Item-Ex- is an aggregate, then the optimizations are
the same as in Fig. 4, inverting the comparison opera-
tors appropriately (e.g., < becomes > and >= becomes
<=). If both Item-Expl and Item-Ex- are aggregates,
optimizations can independently be applied to each.

These optimizations are relevant to several of the con-
straints in our case study. Consider, for example, the
constraint “the total outgoing power for each plant does
not exceed the produced power”, expressed as:

plant: power < (select sum(porrer) from vim
where fr = plant-id)

Without optimization, the labeling algorithm produces
as invalidating insert, and delete operations:

inserted into plant, inserted into wire,
deleted from rrire

However, since power takes on only positive v&es, we
apply the optimization for aggregate function sum, elim-
inating deleted from wire as an invalidating opera-
tion.

Other, more complex, labeling optimizations are also
possible--there is certainly room for future work here.
(For further discussion, see [CWSO].)

4.4 Rule Templates and
Constraint-Maintaining Rules

Once the set of invalidating operations is generated for
a given constraint, the system can produce a rule tem-
plate. The rule components that are completed auto-
matically in the template are the transition predicate
and the condition (recall Section 2.2). The user must
provide a name and an action.

Consider a constraint of the form Table-List:
Predicate. From this constraint, a set Inv-Ops (say)
of invalidating operations is derived. The rule template
produced for this constraint has the form:

create rule CNAHEB)
when Znv- Ops
if exists ?:(select + from Xable-List

where Predicate)
then <ACTION>

The set of invalidating operations is translated directly
into the rule’s transition predicate: we want the rule to

be triggered whenever any operation occurs that may
cause the constraint to be violated. Once the rule is
triggered, we want, it to check if the constraint actually
is violated. This behavior is achieved by translating the
constraint definition into the if clause of the rule. The
translation, illustrated above, is based on the semantics
of our constraint language: the constraint is violated if
there exists any tuple in the Cartesian product of the
Table-List satisfying the Predicate. The select oper-
ation here is (automatically) labeled T as a matter of
notational convenience. Often, in the action part of the
rule, the user wants to refer to this particular set, since
it contains exactly those tuples violating the constraint.
We allow references to logical table T in the action, with
an interpretation equivalent to textual expansion.

As an example, consider the constraint “each wire is
contained within a tube”, expressed as:

mire: not exists (select l from tube
where <fr,to> = uire.<fr.to>)

The rule template produced for this constraint is:

create rule CNAMD
when inserted into mire. updated wi.re.fr,

updated aire.to, deleted from tube,
updated tube.fr, up&ted tube.to

if exists T:(select + from air8
rrhsre not exiatr

(select l from tube
where <fr,to> = vire.<fr,to>))

then <ACTION>

Suppose the user decides that the appropriate compen-
sating action here is to first delete all wires whose tubes
were deleted, then to insert new tubes for remaining
“tubeless” wires. To complete the template, the user
gives the rule a <NAME>, and replaces <ACTIOB> by:

/* delete wires whose tubes were deleted */
delete from uire where

sire-id in (select vire-id from T)
and <fr,to> in (select ft. to

from deleted tube);
/e assign tubes to remaining wire6 e/
insert into tube

(select new-tube-id(), X.f. X.t,
default-tube-type

from X(f,t):(select distinct fr, to from T))

In the first part of the action, logical table T and tran-
sition table “deleted from tube" are used to iind all
wires whose tubes have been deleted; these wires are’
deleted. In the second part, logical table T is referenced
again-recall the interpretation is textual expansion-
within a table expression6 that generates all fr, to pairs
with “tubeless” wires. For each such pair, a tube is in-
serted with a new identifier and a default type. If the
default type turns out to be inadequate, rules enforc-
ing constraints on tube types will be triggered and will
update the type appropriately.

When multiple constraints are defined, one con-

'This table expression should be self-explanatory; for de-
tails on the construct see [CW90,HF*89].

573

straint-maintaining rule is produced for each.’ If con-
straints are partially ordered, ordering is automatically
transferred to the rules. That is, if a constraint Cl is to
be enforced before a constraint C2, then rules Ri and
Rz-for enforcing constraints Ci and C2 respectively-
are ordered so that if both are triggered, RI will be
considered first.

Finally, although we have been assuming a scenario
in which a single user defines a number of constraints in
Uone sitting” , our rule derivation facility easily can be
used at multiple times and by multiple users, with ap-
propriate integration. This is further discussed in Sec-
tion 8.

5 Rule Analysis
When multiple rules are defined, execution of one rule’s
action may trigger a number of other rules. This behav-
ior is crucial to enforcing multiple constraints, as dis-
cussed in detail in Section 7. Unfortunately, this behav-
ior also produces the possibility of cyclic, infinite rule ex-
ecution: rules may trigger each other indefinitely. (This
will certainly happen, in fact, if the user tries to enforce
conflicting constraints.) Although we do not attempt to
determine whether given sets of rules are guaranteed to
terminate-this problem almost certainly is undecidable
in the general case-we do perform simple, conservative
analysis of rule sets, indicating subsets of rules for which
infinite triggering is possible. In many cases, the warn-
ings produced may not be relevant. It may be known,
for example, that once one rule’s action is executed, all
other rules’ conditions will not hold. However, the user
should validate for each potential cycle that termination
in finite time is guaranteed.

We use a straightforward method for detecting poten-
tial cycles in rule triggering behavior. For a given set
of rules, a triggering graph is constructed. The nodes
of the graph correspond to the rules in the set. There
is a directed edge from node & to node Rj iff execu-
tion of rule a’s action can trigger rule Rj. Edges are
determined by simple syntactic analysis: l& can trigger
Rj, i # j, if any data manipulation operation in Ri’s

. action corresponds to an operation listed in Rj’s transi-
tion predicate. Once the triggering graph is constructed,
each cycle indicates potential for nontermination.

The user should inspect each cycle in the triggering
graph, determining whether infinite triggering is actu-
ally possible. If so, relevant rules should be modified to
eliminate this possibility. A triggering graph has been
built for the preliminary rule set in our case study; the
graph contains a number of cycles. All cycles except
two are clearly not relevant. It is interesting to note,
however, that for the two cases in which infinite trig-
gering is possible, this fact was revealed only by formal
analysis-we were unaware of the problem in our initial
definition of the rules. (See [CW90] for details.)

‘We may want to extend oux facility to allow multiple
rules enforcing a given constraiut. This accommodates the
possibility that different compensating actions may be ap-
propriate for different invalidating operations. We plan to
incorporate this extension.

More sophisticated rule analysis is certainIy possi-
ble. It would involve additional syntactic analysis of
the rules in each cycle, perhaps incorporating semantic
information as well. The goal would be to determine
automatically, in as many cases as possible, that infi-
nite triggering will not occur. This is a topic for future
research.

6 Rule Optimization

The rule analysis phase is complete when all neces-
sary modifications have been made to prevent infinite
rule triggering. At this point, we have a “final” set of
constraint-maintaining rules. As illustrated in the sys-
tem structure diagram of Fig. 1, these rules may further
be processed by a rule optimizer. Here, as in other parts
of the system, varying degrees of analysis can be per-
formed with varying quality of results. We describe one
fairly straightforward optimization, applicable to a wide
class of rules derived from constraints.

The condition parts of constraint-maintaining rules
are produced by a simple transformation on constraint
definitions. Thus, rule conditions are static predicates
on the database state. Sometimes, however, it is possi-
ble to evaluate a rule’s condition only over the changes
that have occurred since the constraint was last con-
sidered. (This may correspond to only a fraction of
the database.) For example, suppose a constraint may
be violated when tuples are inserted into a table. It
may be sufficient for the condition part of the rule en-
forcing the constraint to inspect only those tuples that
have been inserted, rather than inspecting the entire
table. (References in the rule’s action to pre-defined
table T, derived from the condition, consequently also
are improved.) We describe an automatic method for
transforming rule conditions to incorporate this kind of
optimization. The optimized conditions use the transi-
tion table feature of our rule language, which provides
a mechanism for referring to database changes (recall
Section 2.2).

Let R be the rule enforcing a constraint C. For the
optimization, we consider the tables from C’s table list,
transforming references to these tables appearing in R’s
condition into references to appropriate transition ta-
bles. Here, we consider the case in which the table list
contains one table; the generalization to multiple tables
is straightforward and appears in [CW90].

Consider a rule R derived from a constraint with one
table t in its table list. R’s condition thus looks like:

if exists 1: (select + from t vharo Predicate)

Our optimization is applicable to this condition if:

1. all operations listed in R’s transition predicate are
operations on table t;

2. table t does not appear in the from clause of any
nested select operation in the Predicate.

(Note that by the second requirement and our algorithm
for generating invalidating operations, deleted from t
cannot appear in R’s transition predicate.) If these re-
quirements are met, then the from clause reference to

574

t in the condition part of the rule can be replaced by
the union of all transition tables corresponding to op
erations in R’s transition predicate. That is, let R’s
transition predicate be:

ahen inserted into t ,
updated t.cl, updated t.cn

After optimization, R’s condition becomes:
if exists 1: (select +

from t:(inserted t
union new updated t.cl

. . .
union nev updated t.cn)

where Predicate)

Notice that we use the neu values of the updated tu-
ples. Also, the union in the from clause is named t
so that references to t within the Predicate are han-
dled appropriately. 8 Assuming that the inserted and
updated tuples form only a small portion of the origi-
nal table t, this transformation can yield significant im-
provement in rule condition evaluation. Improvement
may also be gained in the rule’s action, since references
to logical table T inherit the optimization. Correctness
of the transformation is proven formally in [CW90].

The restrictions for applying our optimization may
seem rather limiting, but in fact rules derived from con-
straints often meet the requirements. (Exactly half of
the rules in our case study are eligible.) As an exam-
ple, again consider the constraint “each wire’s voltage
does not exceed the maximum for its wire type”. The
enforcing rule’s transition predicate and condition are:Q

when inserted into wire, updated aire.type,
updated sire.voltage

if exists T:(select * from wire
where voltage > any

(select mar-voltage
from wire-type
where type = aire.type))

Here, in the condition, voltage is checked for all wires in
the database. However, after optimization the condition
is transformed to:

if exists T:(select +
from wire:

(inserted into wire
union new updated aire.type
union new updated vire.voltage)

where . . .

Here, the only wires checked are those that have been
inserted or whose type or voltage has changed.

7 System Execution

So far, we primarily have considered the static aspects
of our facility. Constraint definition, rule derivation,

‘Strictly speaking, we should assign a new name and an
appropriate column list to this table expression, changing
references accordingly. The details are not particularly in-
teresting and therefore are omitted.

'Invalidating operations on table wire-type have been
omitted since, in the case study, this table is considered read-
only [CW90].

rule analysis, and optimization all are performed prior
to system execution. Although execution time is not the
focus of our study, we still must ensure that derived rules
will behave as desired-that consistency with respect to
all constraints is guaranteed.

Since rules are activated at the end of each transac-
tion, we consider an arbitrary transaction, showing that
rule execution will terminate and, when it does, all con-
straints will be valid. To do this, we must make certain
assumptions about those aspects of the constraints-to-
rules translation performed by the user. Correctness
requires proving that consistency is restored-this obvi-
ously relies on appropriate compensating actions. Thus,
we assume that the rule created by a user from the rule
template for a given constraint, considered in isolation,
does indeed restore consistency for that constraint:
Assumption 7.1 (Compensating Actions)
Let C be a constraint and let R be the rule enforcing
that constraint. Following any database transition trig-
gering rule R, if R’s condition holds and its action is
executed, then the resulting state is consistent with re-
spect to C.

When many constraints are enforced, rules executed
to restore one constraint may cause others to be vio-
lated (and therefore additional rules to be triggered).
This behavior is acceptable as long as it cannot proceed
indefinitely. We prove that termination is guaranteed,
under the assumption that the user properly validates
all cycles produced by the rule analyzer:
Assumption 7.2 (Cycle Termination)
Every potential rule triggering cycle will execute only
a finite number of times.

7.1 Termination
Consider system execution when a set of constraint-
maintaining rules Rr, . . . , R,, iz defined. To prove that
rule execution terminates at the end of every transac-
tion, we first provide a formal description of system ex-
ecution. Execution is modeled by a sequence: the first
symbol in the sequence is T, denoting the initial trans-
action. Each subsequent symbol is an &, 1 < i 5 n,
denoting execution of rule &‘s action. After each sym-
bol in the sequence, we insert the set of rules triggered
at that point. Recall from Section 2.2 that a rule is con-
sidered with respect to the net effect of the transition
since the rule was last executed (or evaluated), or since
the start of the transaction if it has not yet been eval-
uated. Thus, through the sequence, rules may appear
and disappear from the set of triggered rules before their
action is executed. When a rule finally is executed, we
say it was “initially triggered by” the symbol preceding
its most recent uninterrupted appearance in the set of
triggered rules.

Now suppose, for the sake of a contradiction, that
an execution sequence is infinite. We show that the
sequence must then contain some triggering cycle ex-
ecuted infinitely often, contradicting Assumption 7.2.
The following lemma is used:
Lemma 7.3 Let u be an infinite string over a finite
alphabet. For any k > 0, there is a substring s of Q

575

such that 1.91 = h and an infinite number of disjoint
occurrences of 3 appear in u.

Proof: Partition ti into substrings of length L. Since
there are only a finite number of strings of length Ic,
some k-length substring must appear in cr an infinite
number of times. q

Applying this lemma to our execution sequence with a
sufficiently large L, we obtain the desired result. First,
we modify the execution sequence model to explicitly
contain “triggered by” information. Each element in the
sequence (except the first) becomes a pair: the second
half of the pair indicates the executed rule, while the
first half--r or a rule-indicates the symbol initially
triggering the executed rule.

Theorem 7.4 (Termination) Let Q be an infinite se-
quence representing rule execution. Some rule trigger-
ing cycle appears infinitely often in u.

Proof: Since each rule can be triggered by T at most
once, eventually in u symbol T no longer appears. Con-
sider any infinite tail 0’ of c for which this is true. Each
symbol in u’ is an (a, Rj) pair (i # j), where Rj was
triggered by &. A simple counting argument shows that
if we consider any subsequence of u’ of length CyZ1 ni,
where n is the number of rules, the subsequence must
contain a triggering cycle. Now, by Lemma 7.3, there is
some subsequence s of u’ such that Is] = X:=1 ni and
3 appears infinitely often in u’. Since 3 must contain a
cycle, some cycle appears infinitely often in 6. 0

7.2 Correctness

Now that we know the constraint-maintaining rules are
guaranteed to terminate, we must prove that they al-
ways terminate in a consistent state. Again, consider an
arbitrary initial transition and subsequent rule execu-
tion. Since we assume that each transaction begins in a
consistent state (the constraint-maintaining rules ensure
this for all but some “first” transaction-see [CWSO] for
details), any rollback action trivially guarantees cor-
rectness. Thus, assume no rollback action is executed.

We again use a sequence model of system execution.
In this case, we need not include triggering information,
but we do need to include all rules evaluated, not just
those whose actions are executed. Thus, execution is
represented by a sequence in which the first symbol is
T and each subsequent symbol is an &, 1 5 i 5 n,
denoting evaluation of rule I&. By Theorem 7.4, every
such execution sequence is finite.‘O Hence, we only must
show that, at the end of the sequence, all constraints are
valid.

Theorem 7.5 (Correctness) Consider any finite se-
quence representing system execution. At the end of
the sequence, all constraints are valid.

Proof: At the end of the sequence, there are no trig-
gered rules with true conditions. Thus, if a rule R;

“Actually, for Theorem 7.4 we considered only the exe-
cuted rules, not all rules evaluated. However, the result may
be applied directly to show that these sequences also are
guaranteed to be finite.

enforcing a constraint Ci is triggered, then its condition
does not hold; hence Ci is valid. Consider a rule Rj (for
a constraint Cj) that is not triggered at the end of the
sequence. We consider two cases:

1. Rj does not appear in the execution sequence: Rj
was never evaluated; hence, at the end of the se-
quence, Rj is considered with respect to the tran-
sition since the start of the initial transaction. If
the net effect of this transition includes any oper-
ations that might invalidate Cj, then Rj would be
triggered. Thus, Cj cannot have been invalidated
since the start of the transaction.

2. Rj does appear in the execution sequence. Then,
at the end of the sequence, Rj is considered with
respect to the transition since it was last executed
or-if its condition was most recently false-since
it was last evaluated. By Assumption 7.1, in either
case validity of Cj was established. If Cj could have
been invalidated since then, Rj would be triggered.
Hence Ci must still be valid. 0

8 Conclusions and Future Work

We have described a general framework for transform-
ing constraints into constraint-maintaining production
rules. The facility allows users to define general con-
straints at a natural, conceptual level-as predicates on
database states-and to systematically derive “lower-
level” rules guaranteed to enforce the constraints.

The constraints-to-rules process has been described
as if one user defines all constraints (and consequently
derives all rules) at one time. Actually, it is equally
possible for constraints to change over time: some ini-
tial set of constraint-maintaining rules iz derived; later,
additional rules may be added and existing rules may
be removed. The only point to note is that whenever
new rules are derived, rule analysis must be applied to
the entire set of rules (new and old), since, at execution
time, all rules coexist and interact. If multiple users are
defining constraints for a particular application, an au-
thorization facility might be useful, since it may not be
desirable to have all constraints and rules accessible to
all users.

We plan to implement the basic components of the
facility and begin experiments. This should not be too
difficult; most of our algorithms are based on syntactic
analysis and transformation so parser-generator tools
can be used. The next step will be to implement a
convenient user-interface-the Constraints Editor and
Rules Editor shown in Fig. 1. We also plan to continue
work on extending the functionality of the system, as
improvements can be made in many respects. In par-
ticular, we would like to:

l incorporate additional labeling optimizations for
less conservative derivation of invalidating insert
and delete operations;

0 perform more complete rule analysis to eliminate
trivially impossible cycles;

l define additional rule optimizations;

576

0 allow multiple rules enforcing a single constraint.

Finally, as 8 broad area of future research, we plan
to explore the possibility of automatically (or semi-
automatically) deriving compensating actions.

Acknowledgements

We are grateful to Bruce Lindsay, for useful discussions
and comments on a preliminary draft, to Guy Lohman,
for carefully reading a “final” draft, to Alex Aiken, for
assistance in proving Theorem 7.4, to She1 Finkelstein,
for pointing out the correct interpretation of logical ta-

ble T, and to Raymond Lorie, for suggesting the idea of
constraints-to-rules translation some time ago.

References

[ASU86]

[BBC801

[CGSS]

[CTF88]

[CW90]

[DE891

[EC751

[Hm89]

[HF*89]

[HI851

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers:
principles, techniquer, and tools. Addison-Wesley,
1986.

P.A. Bernstein, B.T. Blaustein, and E.M. Clarke.
Fast maintenance of semantic integrity assertions
using redundant aggregate data. In Proc. of S&h
VLDB, pages 126-136, October 1980.

S. Ceri and F. Gareotto. Specijication and Man-
agement of Database Integrity Constraints through
Logic Programming. Technical Report 88-025, Dip.
di Elettronica, Politecnico di Milano, 1988.

M.A. Casanova, L. Tucherman, and A.L. Furtado.
Enforcing inclusion dependencies and referential
integrity. In Proc. of Fourteenth VLDB, pages 38-
49, August 1988.

S. Ceri and J. Widom. Deriving Production
Rules for Constraint Maintenance. IBM Research
Report RJ7348, IBM Almaden Research Center,
March 1990.

L.M.L. Delcambre and J.N. Etheredge. The Re-
lational Production Language: a production lan-
guage for relational databases. In Expert Database
Systems-Proc. jrom the Second Znt. Conference,
pages 333-351, Benjamin/Cummings, 1989.

K.P. Eswaran and D.D. Chamberlin. Functional
specifications of a subsystem for data base in-
tegrity. In Proc. of First VLDB, pages 48-67,
September 1975.

E.N. Hanson. An initial report on the design of
Ariel: a DBMS with an integrated production rule
system. SIGMOD Record, 18(3):12-19, September
1989.

L.M. Haas, J.C. Freytag, G.M. Lohman, and H. Pi-
rahesh. Extensible query processing in Starburst.
In Proc. of ACM-SIGMOD, pages 377-388, May
1989.

A. Hsu and T. Imielinski. Integrity checking for
multiple updates. In Proc. of ACM-SIGMOD,
pages 152-168, May 1985.

[HMN84] L.J. Henschen, W.W. McCune, and S.A. Naqvi.
Compiling constraint-checking programs from
first-order formulas. In Advances in Database The-
ory, Volume 2, pages 145-169, PlenumPress, 1984.

[IBM881

[KMSSO]

[KP81]

[MD891

[Mor83]

[Mor84]

[Nic82]

[QSW

[SJ*90]

[SK841

[SMSS’I]

[St0751

[UD90]

[UD91]

[Wa189]

[WF90]

IBM Systems Application Architezture, Com-
mon Programming Interface: Data-bare Reference.
IBM Form Number SC264348-1, October 1988.

J. Kieman, C. de Maindreville, and E. Simon.
Making deductive databases a practical technol-
ogy: a step forward. In Proc. of ACM-SIGMOD,
pages 237-246, May 1990.

S. Koenig and R. Paige. A transformational frame-
work for the automatic control of derived data. In
Proc. of Seventh VLDB, pages 306-318, September
1981.

D.R. McCarthy and U. Dayal. The architecture of
an active database management system. In hoc.
of ACM-SIGMOD, pages 215-224, May 1989.

M. Morgenstem. Active databases as a paradigm
for enhanced computing environmenta. In Proc. of
Ninth VLDB, pages 34-42, October 1983.

M. Morgenstem. Constraint equations: declara-
tive expression of constraints with automatic en-
forcement. In Proc. of Tenth VLDB, pages 291-
300, August 1984.

J.-M. Nicolas. Logic for improving integrity check-
ing in relational data bases. Acta Injormatica,
18:227-253, 1982.

X. Qian and D.R. Smith. Integrity co;t;aint
reformulation for eflicient validation. r .
of Thirteenth VLDB, pagea 417-425, September
1987.

M. Stonebraker, A. Jhingran, J. Goh, and S.
Potamianos. On rules, procedures, caching and
views in data base systems. In Proc. of ACM-
SIGMOD, pages 281-290, May 1990.

A. Shepherd and L. Kerschberg. Prism: a knowl-
edge based system for semantic integrity spec-
ification and enforcement in database systems.
In Proc. of ACM-SIGMOD, pages 307-314, May
1984.

D. Stemple, S. Mazumdar, and T. Sheard. On
the modes and meaning of feedback to transaction
designers. In Proc. of ACM-SIGMOD, pages 374-
386, May 1987.

M. Stonebraker. Implementation of integrity con-
straints and views by query modification. In hoc.
of ACM-SIGMOD, pages 65-78, May 1975.

S.D. Urban and M. Deaiderio. Translating con-
straints to rules in CONTEXT: a CONstrainT EX-
planation Tool. Manuscript, 1990.

S.D. Urban and L.M.L. Delcambre. Constraint
Analysis: a design procese for specifying opera-
tions on objects. To appear in ACM Transactions
on Data and Knowledge Engineering, 1991.

J.A. Wald. Implementing constraints in a knowl-
edge base. In Ezpert Database Systems-Proc.
from the Second Int. Conjerence, pages 163-183,
Benjamin/Cummings, 1989.

J. Widom and S.J. Finkelstein. Set-oriented pro-
duction rules in relational database crystems. In
Proc. of ACM-SIGMOD, pages 259-270, May
1990.

577

