
The C-based Database Programming Language Jasmine/C

M. AOSHIMA, Y. IZUMIDA * , A. MAKINOUCHI**, F. SUZUKI * , and Y. YAMANE
Fujitsu Laboratories Ltd. * Fujitsu Ltd.: 1015 Kamikodanaka, Nakahara-ku,
Kawasaki 211, JAPAN ** Kyushu University, Department of Computer Science and
Comm. Eng.: 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812, JAPAN

ABSTRACT
Jasmine/C is a C-based database proqramninq

language that allows the handling of persistent
objects in Jasmine databases. The language is
used to write methods for objects and
application programs. Both navigational and
associative access to objects are supported. Dot
notation is used for Jasmine/C queries.
Attributes of different (but linked) objects
are concatenated in SQL-like queries free of
from-clauses. This allows the joining of
objects without explicit join-predicates.
Several new features are introduced into the
architecture of Jasmine. Memory KB is a memory-
based database where each object is accessed via
a pointer. Tuples in XDE (the lower layer of
Jasmine), when in database buffers, can also be
accessed via pointers. NF2 tables are supported
for clustering values for multiple-valued
attributes; these allow faster execution of
Jasmine/C programs.

1. Introduction
Jasmine/C is a C-based database programing

language that allows the handling of persistent
objects in Jasmine databases. It was designed
and developed so that users of Jasmine/C
databases may define, retrieve, and manipulate
persistent objects in the same way as they
define and manipulate C structured data. It is
used to write methods for objects as well as
application programs. It is also used to write

Permission to copy uithout fee all or part oi‘ this matcliai is

granted provided that the copich arc not made or dihtrihutcd t’o~

direct commercial advantage. Ihe VLDB copyright notice and

the title ot’thr publication and its date appear. and notice ih Fi\cn

that copying is by permission ol the Very Large Dat;~ ISac

Endowment. To copy otherwise. or to rcpuhlish. rcquirc :I l’cc

and/or special permission from the Endo~mc~~t.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

non-database application programs. For such
applications, users may take advantage of the
object-oriented programming style.

Jasmine is an object-oriented database
system. The system was designed to meet three
requirements: (1) to provide AI people with the
means to manage a large amount of knowledge,
(2) to provide DB people with the means to model
complex objects [KIMW87] used in engineering
environments, and (3) to define and manipulate
persistent objects as easily as structured data
in the C language.

The first requirement suggests the use of
the frames [MINS75] for knowledge
representation. The frame is a data structure to
which procedures, called demons', can be
attached for integrity maintenance and
reasoning. Many knowledge representation
languages have been frame-based, and some were
actually implemented [STEF86]. One early
example is Loops. In this language, different
programming styles such as rule-based
programning and access-oriented prograrrnning are
integrated using the object-oriented paradigm.
Other current AI shell languages follow this
trend so that static data structures,
procedures, and rules can be mixed to model
domain knowledge CSTEF841.

A drawback of such languages is that they do
not provide appropriate facilities for managing
a large amount of shared knowledge. The factual
knowledge stored in databases may be accessed
via the usual database commands, but it is not
integrated in the knowledge representation
framework, and thus cannot be managed
uniformly.

The success of the relational data model is
due to the simplicity of the model, and easy-to-
use associative query languages. In the model,
relations perform the double duties of data
specification and data container. Users may
retrieve data by searching the containers. The
search itself can be specified with conditions

539

which the data to be retrieved must satisfy. In
designing Jasmine/C, we thought that these basic
ideas should be inherited, for the reason that
in shared large databases without condition-
based search, users become easily lost before
accessing the data they require. This led us to
the integration of SQL-like but simplified
'where-clauses' into C. This necessitates set-
oriented handling of objects - a designe
problem, since C is not a set-oriented language.

In programs, complex objects are usually
represented by structured data types, where a
structure may be defined in terms of other
structures. This facility is augmented by
pointers or references without which recursive '
data types can not be implemented. Similarly,
references to persistent objects are supported
by Jasmine/C. Objects are identified and
referenced using object identifiers (OIDs).
OIDs play the same role as the pointer values
(addresses) by which program data are
referenced. This allows users to describe
persistent complex objects and to navigate from
object to object via OID linkages. This
correspondence between C structured data and
Jasmine/C persistent objects satisfies the
above-mentioned requirement (3), and helps
bridge the gap between programming in C and
programing in Jasmine/C.

However, there are three differences between
the C structured data and the Jasmine/C
persistent objects. The first is that functions
in the sense of the C language can be
constituent members of persistent objects while
in the C strucure they can not. The second is
that associative retrieval of persistent
objects is provided in Jasmine/C as a basic
facility. The third is that each member of a
persistent object can be annotated as are slots
in a frame. This gives Jasmine/C a modeling
capability as powerful as that of frame-based
AI languages.

In this paper, examples are used to clarify
the discussion. They are borrowed from CATKI871
with slight modification, and represent the
functionality that any database programming
language is expected to support.

2. Classes and Types
Classes in Jasmine are collections of

similar objects. Jasmine distinguishes two kinds
of object: one is immediate and the other is
referential. Numbers and character strings are

immediate. Immediate objects do not have
separate OIDs, but 'represent themselves'. They
can be copied to any location in the database.
In contrast, referential objects have separate
OIDs. OIDs are not changed during the lifetime
of their objects. A referential object can not
be copied without changing its OID. Users of
Jasmine/C may use OIDs to refer to objects that
have them.

Attributes of an object are defined as
functions in the sense of the functional data
model [SHIP811 . Functions in Jasmine are-
defined in terms of two classes, domain and
range. Objects of the domain class are
arguments of functions, and objects of the range
class are the values returned by functions.
Fig. 1 illustrates a sample database. Attribute
Sno is defined as a function whose domain and
range are classes SUPPLIER and INTEGER,
respectively. Attribute Supply's domain class
is SUPPLIER and its range class is BASEPART. In
principle, functions in Jasmine have only one
argument. This is different from the functional
data model, where Cartesian products of sets
can be the domain.

2 -iliiGsIRING T f Im todt
PART IhTEm

,7 ,’ r-...
,’ ..__

,’ -.._

Ir;\e

,,’
0 A/ sembljcost

IImm

\
CCWUXITE- I-

cos PART sIncrement

P&S
L (zcil&sedof Itmm

1mmCaaponent I

Fig.1 PARIS database. Classes of referential objects are
shohn with circles. Named arrows denote attributes.
Bold arrows denote procedural attributes. Superclasses
are indicated by dotted arrows.

In Jasmine/C programs, a dot I.' is used to
denote 'an application of attribute (i.e;,
function)' to an object or a collection of
objects in the domain class. We use the term
'set' for a collection, although it allows the

540

duplication of members. For example, if 's'
represents a supplier, 's.Supply' means
'Supply(s)'. We call an object such as 's' a
'receiver', and say that message 'Supply' is
sent to it [G&D83].

void tieatePartsDb() {
K8 part&b;
lllANs mvtrans;
cuss $wtcls, bpartcls, cpartcls, suppliercls;
mrtskb=KB. Ollen(PAI?Ts) ;
i@ran.s~. Begin() ;
partc1s=cL4s. LNew(

kb partskb
IUUePART
superamiBITE
property I- Pm mandatory

constraint {/* See Fig. 6 for the def. */ }
SIRING Pname
I- stock
if qxiated {/* See Fig. 7 for the def. */ }) ;

QJartcls-(
kb partskb
rmme EilsEART
super pamIs
orooertv INfEGER Cost . .~ .

INITL;ER %ss
instance method VOID Delete inherited - after tin lninheritable

I/* See Fig.8 for the def.*/ });
cpartcls~. Newt

kb partktl
name CQupoGITEPAKT
super partcls
property INfFM Assen&l$wt

INfEGlS FBssIncrement
CQWOSITICN Compw&X multiple

instance~method INlEIZ Cost0
[/* See Fig. 3 for the def. */ }

I= ,!hss()
{/* lbe definition is olmitted.*fi 1;

suppliercls=CLAS. New(
kbmrtkb
nami SWPLJIB
super CCWOSITE
prbperty IWECER Sno mandatory

BASWART slslply multiple
SIRING hame);

- /+ Code for class arPOSITICN is anitted */

mytrans. Ehd() ;
prtskb. Close(1;

Fig.2 A Jasmine/C program to create classes of the sample
database shown in Fig. 1. For simplicity, only part
of the code is shown.

The value that an attribute returns is
either an object or a set of objects. The
returned value is called an attribute value. An
attribute is either single-valued or multiple-
valued. A multiple-valued attribute may return
the empty set. The empty set means nothing' and
is denoted in Jasmine/C as ' (1 '. Although we
define a class as a set (i.e., extension) of
objects, the set of objects making up an
attribute value is not a class.

‘y-~s;’ I

C@KMTION’~ts multiple, cnpt;
SCAN scan;
PART part;
aLlst=o;
cmpts=self. C4xnposedDf;
scanqts. rJpensc!an() ;
while(!(scan=VOID))) {

cnlpt=scall. Next () ;
part=uQt. Caaponent;
if (part.Class = GasePart>)

cost+=part. cost*c!lrQt. Quantity;
else

i
ccst+=part.Gxt()*aupt.Quantity;

scan. Closet) ;
ccst+=self. AssemblyCost;
retum(cost) ;

1

Fig.3 ‘he definition of instance method Cost,
a rewrsive function. -

In Jasmine, there are two ways to define
attributes. One way is to enumerate all
possible pairs of receiver and attribute value.
An attribute defined in this way is called an
attribute by enumeration or a 'property'.
Properties can not be defined on classes of
immediate objects such as INTEGER. That is,
such classes can not be domains for property
type functions. A reverse function can be
defined from a property if the property is
defined as a function between two classes of
referential objects. Its domain and range
classes are the range and domain classes of the
property, respectively. Since a reverse function
is a function, it is, by definition, an
attribute of the domain class of the reverse
function. For example, the reverse attribute of
Supply, notated '-Supply', is defined on class
BASEPART. Definition by enumeration is the
traditional way to define values in databases.

The other way to define attributes is to
write a C-style procedure or function. The
value of the attribute is obtained by executing
the procedure..Such an attribute is called a
procedral attribute. Procedural attributes are
equivalent to methods in object-oriented
programming languages. The methods are written
in Jasmine/C, an extension of the C language.
The attribute 'Cost' defined on CCMPOSITEPART,
shown in Fig.2, is an example. The procedure
body is defined in Fig.3. This makes Jasmine
'computationally complete' [ATKI89], whereas the
functional data model [SHIP811 is not, for it
presupposes a restricted query language with
which derived functions are defined.

541

We have two kinds of attributes, property
and procedural attributes, which are defined in
different ways. We can also classify attributes
according to the mapping between receivers and
attribute values: (1) one-to-one, (2) one-to-
many, (3) many-to-one, and (4) many-to-many. To
discuss this more formally, let us assume that d
I (i=l, 2,..., n) and r, (j=l, 2,...,m) are
objects in the domain and range classes of
attribute f, respectively. We will use ' { 1 '
to denote a set. We may formalize the four
classifications as follows: (1) d, .f = r,
(one-to-one), (2) d, .f = {rl, r2,..., rm 1
(one-to-many), (3) {dl, d2,..., d, 1 .f = r,
(many-to-one), and (4) (dl, dz,..., d, 1 .f = (
rh r2,..., rm 1 (many-to-many)

Procedural attributes may be of any of the
four classifications, but properties must be
one-to-one or one-to many. However, an
attribute, either property or procedural, can
be applied to a set of objects in a way
different from the many-to-one and many-to-many
mappings explained above. This makes it
possible for properties to simulate many-to-
many mappings in a restricted way: (5) Idl,
d2,. . . , dn) .f = {rl, r2,..., rn 1 , where
for each.i, rl = d, .f. These semantics enable
the simulation of (and therefore the
elimination of) loops of the following form:
'for (i=l; i<=n;;) t... ri =d, .f; . . . 1 '.
Note that in (4), r, is not necessarily equal
to di .f.

The difference in implementation between (4)
and (5) is stated as follows. In the case of
(4) (and (3)), the procedural attribute f is
called once. When it is called, the procedure
takes the receiver, a set of objects, as its

argument and processes it. In the case of (S),
attribute f is called for each receiver d j to
return value r ,. From this observation, (4) is
expected to show better performance than (5)
due to the overhead in calling procedures.

To realize (3) and (4), Jasmine/C
distinguishes instance-methods and set-methods
for procedural attributes. In instance-methods,
variable 'self' receives an object representing
the receiver, while in set-methods, it receives
a set of objects. For example, the system-
defined variable 'self' in instance-methods Mass
and Cost, defined on class COMPOSITEPART in
Fig.2, is supposed to receive an object of
class COMPOSITEPART. This does not mean,
however, that they cannot be applied to a set
of objects, as mentioned above. In contrast, a
set-method is also applicable to an object. An
object is interpreted as a set with one member.

The set-method of type (3) is needed to
implement aggregate functions such as Sum, Max,
Count, and Average. They are all applied to a
set of numbers and return a number. The sort
function is of type (4). It takes a set of
objects and returns a sorted setof objects.

As a third method, the class-method is
introduced in contrast with instance- and set-
methods. A class-method is defined on a class.
When the class is designated at the place of the
receiver of a message invoking the method, the
receiver is not objects of the class, but the
class itself. This is necessary to write methods
such as 'New'. 'CLASS.New()' in Fig.2 and
'C@iPOSITEPART.New()' in Fig.5 are examples in
which instance objects are created for the
classes CLASS and CCMPOSITEPART. Note that if
these'New's are defined as being either a
instance-method or a set-method, they are

Fig.4 A part of the Jasmine class hiem*.

542

applied to all instance objects of CLASS or
COMPOSITEPART following (3), (4), or (5)
semantics.

A class can be divided into subclasses. In
relation to its subclasses, the divided class
is called a 'superclass'. A subclass inherits
all attributes of its superclass. A subclass
can have attributes which its superclass does
not have. Subclasses can be further divided,
creating a class hierarchy.

The only class hierarchy that Jasmine allows
is a tree structure, and thus, multi-
inheritance is not permitted. In this way, we
avoid needless semantical and implementation
complexity - we have not found any useful and
practical application for which it was
necessary.

The topmost class of the hierarchy is
OBJECT, followed by IHDIATE and REFERENTIAL as
shown in Fig.4. The distinction between the
last two classes comes from whether their
objects have OIDs or not, as explained already.
Other differences are: (a) Properties can not
be defined on IMMEDIATE and its subclasses
(i.e., hereafter, the term 'subclasses' will
refer not only to direct subclasses but also
descendant subclasses). (b) Classes under
REFERENTIAL are containers or clusters of
objects which maybe searched. 1mnediat.e object
classes being but types are not.

Henceforth, we will focus on referential
objects, and will use the terms 'object' and
'class' to mean 'referential objects' aqd
'referential class', unless stated otherwise.

The Jasmine class hierarchy is also a set-
inclusion hierarchy. This means a class contains
its own instance objects as well as the objects
contained by its subclasses. In other words,
the contained objects are said to belong to or
to be members of the containing class. An
object is born as an instance object of a class
when the message 'New()' is sent to the class.

The type of a class is defined to be the set
of the attributes (i.e., functions) applicable
to the class. The type of an object is the type
of the class of which it is an instance.

Any attribute can be annotated, in the same
manner as slotes in a frame are annotated by
facets [MINS75]. Facets such as 'if-needed',
'if-updated', and so on that attach 'demon'
procedures to an attribute are very useful for
maintaining integrity of databases. In Jasmine,
users can control the inheritance of each facet

separately from the attribute inheritance.
These topics are discussed in Section 4.

3. Navigation and Associative Retrieval
One of the characteristics of object-

oriented database systems is that objects can
be directly referred to by their identifiers.
In Jasmine/C, object identifiers (OIDs) are
returned when creating new objects or
retreiving objects from the databse. They are
assigned to object variables just as values in
C programs are assigned to variables.
Declaration of object variables and naviqation

An object variable is declared with a class.
When the keyword 'multiple' follows the
declaration, a set of objects can be assigned
to the variable; the variable is then said to
be multiple-valued. Otherwise, the variable is
called single-valued. Let us suppose x to be an
object variable declared as 'C x;', where C is a
class. The declaration states that x represents
some object belonging to class C. If x is
declared as 'C x multiple;', any me&r of the
assigned value of x belongs to class C. As
stated in the former section, objects belonging
to a subclass of C belongs to C; too. So, in
Jasmine/C, the type of an object variable
declared using a certain class is the union of
the types of the class and its subclasses. For
example, the declaration 'PART x;', where PART
is a class shown in Fig.1, declares variable x
as one to which either part, basepart, or
composite part objects (its OIDs) may be
assigned.

First, let us create the sample database of
Fig.1. The program for this is shown in Fig.2
In Jasmine, the logical storage space unit is
called KB, an abbreviation of Knowledge Base.
(Recall that the space is used to store
frames.) A KB is a segment within which classes
are created. Any number of KB can be used. A
class cannot be extended over more than one KB,
but a tree of classes can be. A KB is created
and managed by class KB. 'KB.Open(PARTS)' opens
the already-created KB named PARTS, and returns
its OID. The OID is assigned to variable
partskb. The variable can be used in other
statements to identify the object PARTS.

In Jasmine, everything is an object. For
example, a transaction is an object of TRANS, a
system-defined class. 'TRANS.begin()' starts a
transaction and returns its OID. The OID is used
by 'mytrans.End()' to close the transaction.

543

Classes PART, BASEPART, and COMPOSITEPART
are created by sending messages to class CLASS.
CLASS is a system-defined class that holds meta-
information concerning classes, including
itself. 'New' is a procedural attribute defined
on CLASS as a class-method. The attribute
returns the OID of the created class. PART is

.the superclass of both BASEPART and
COMPOSITEPART. Variable partcls is passed as a
keyword parameter in message 'New' to denote
this fact. Sometimes, it is preferable to use
names instead of variables. For example, users
can write 'partcls = CLASS.New(...super PART...)
*' to indicate that the superclass is PART. This
description leads to runtime overhead in
searching class CLASS for the PART object.
Taking full advantage of direct reference while
preserving reference by value is one design
strategy for Jasmine/C.

void Ne&onposite() (
KB partskb;
llt4M mytrans;
WITGER prtmnn, qmnt, asscost, incrmass;
SIRING partname;
PART newpart, anpltpart;
COIUWGITION newcomp;

r

Interaction to users (1)
Pno, Pname, Assembly&t, and MassIncrement are taken
as input and assigned to partmn, pname, asast, and
incrrmw.

partskb=KB. Open(P.MTS) ;
mytransw. Begin() ;
nehpart=alwwTEPAKr. New(Pno partnull) ;
lwqart.AsseablyCost=asscost;
newpart. Incrementalhss=incrroass;
nehplrt.Pneme=partname;
pwtmm=O; /* ‘0’ can not be any part nunber. */
- Interaction to users (2)
Pno and Quantity of each caponent part of the coup-
site part in question are read into partmao and quant.

iihile (par- !== 0) /* ‘0’ means ‘no more ampcnents’ */
[captpah=PAlzT where PART. ho = partnu;

if (cqntpart==VOID) /+ VOID means nothing. */
{ /* Code for error lmndling is omitted. */)

newq&XWTION. New() ;

Fig. 5 An application prcqam in Jasmine/C M&h creates
objects for c(MposITIBW and gives values to their
attributes.

Instance objects are created by 'New' as
shown in Fig.5. This 'New' is a procedural

attribute defined on class REFERENTIAL and is
inherited by all its subclasses. The more local
'New's of classes KB and CLASS override this
more general one. In Jasmine, as described in
Section 4, creating an object involves the
insertion of a tuple into a table. The common
functionality of the three 'New's is the
insertion of such tuples. In addition, the
'New' of KB prepares storage space, and that of
CLASS creates a table for the new class.

Fig.5 shows a Jasmine/C program that
contains statements to create objects and to
assign values to their attributes. Variable
newpart is declared to be of class PART, and is
assigned the OID of the newly created object
that is returned by expression
'C@iPOSITEPART.New(Pno partnum)'. The dot I.'
in this expression and those in the assignment
statements following the expression are used to
designate an object attribute. This dot notation
is'chosen due to the similarity with the
notation used to indicate a member of a C
structure. With this notation, C programmers can
manipulate persistent objects as if they were
structured data. However, the semantics of the
dot notation is extended to indicate the
application of functions. This extension makes
it possible to have procedures as constituent
members of object structures. 'CU+OSITEPART.New
(Pno partnum)' may be considered as a call to a
C function named New, which is defined as a
member of structure COMPOSITEPART. This makes
Jasmine/C persistent objects different from C
structures.

Multiple-valued attributes allow the
introduction of new syntax for appending
members to sets, or removing members from sets.
The operators '+=I and '-=I are used for
appending and removing, respectively. The
statement 'newpart.ComposedOf += newcomp' in
Fig.5 is an example.

Dots are also used to navigate from object
to object. For example, let x be a variable,
declared as 'SUPPLIER x;', and let a supplier
object be assigned to it. Then 'x.Supply.Cost'
denotes the cost of the basepart which x
supplies. In general, two attributes
concatenated by a dot are said to form a
composed attribute. The composed attribute is
the composed function in the sense of the
functional data model .
Associative retrieval

It is important for a database programming

544

language to have associative retrieval
capability, since to know where the required
data is to be retreived from and how to
retrieve it in the large shared database is
practically inpossible without this capability.
The success of the relational database model is
mainly due to its associative retrieval
languages. Our decision while designing
Jasmine/C was to incorporate the concepts
embodied in relational query languages such as
SQL into the framework of C, using the object-
oriented paradigm. These concepts are: (1)
C1asse.s are containers of objects, and are
searched for objects satisfying a given
predicate-based 'where-clause' conditions.
Classes in Jasmine play the same role of
relations in the relational model. (2) Multiple-
valued variables are introduced, so that
variables may be assigned to more than one
object satisfying a given condition. Such a
variable can be used as a container of objects
from which objects are associatively retrieved.
This is similar to the relational algebra,
where the result of an operation, a relation,
can be used as an operand for other operations.
(3) Explicit join-predicates can be used in
where-clauses. Note that dots sometimes
represent implicit equi-joiwpredicates.

We shall now explain how these concepts are
embodied in Jasmine/C, using examples. The
following lines of Jasmine/C program retrieve
all suppliers whose name is "Fuji", in the
database of Fig.1:

SUPPLIER fujis multiple; /* Multiple-valued
variable fujis */

fujis = SUPPLIER where SIRPLIER.Sname
= "Fuji";

If fujis is declared as a single-valued
variable, only one supplier from among the
retrieved suppliers is assigned to it. In this
example, the dot in 'SUPPLIER.Sname' is used to
designate the SUPPLIER attribute Sname, whose
value is checked against "Fuji". SUPPLIER
indicates the search space where objects are
checked against the predicate.

After this assignment, variable fujis can be
used in two ways. First, it can be used to
represent those objects having the name "Fuji".
So, 'fujis.Sno' denotes the objects' Sno, and
its value is a set of integers. This set can be
assigned to a multiple-valued INTEGER variable,
as in 'INTEGER snos multiple; snos = fujis.Sno;
'. Similarly, the set of baseparts supplied by

suppliers named "Fuji" is obtained from
'baseparts = fujis.Supply;', where 'baseparts'
is a rmltiple-valued BASEPART variable.

Second, variable fujis can be used as a search
space denoting a subset of the class with which
the variable is declared. The following
statement is to retrieve those basepart objects
whose cost is more than $10, and are supplied
by suppliers named "Fuji".

baseparts = fujis.Supply
where fujis.Supply.Cost > 10;

This statement retrieves a set of objects (1) I
x.Supply I x.Supply 3 y.Oid and y.Cost > 10)

where x and y are variables over fuji, a
iubset of SUPPLIER, and BASEPART, respectively,
and Oid is an object attribute whose value is
OID. The symbol' 3' , ‘meaning set membership,
is used, since Supply is a multiple-valued
attribute having a set as its value. A similar
statement, but with different meaning, can be
written:

baseparts = BASEPART
where fujis.Supply.Cost > 10;

This creates the set of basepart objects (2) 1 y
I x.Supply3 y.Oid and y.Cost > lp1 . The

difference between (1) and (2) becomes clear if
a Fuji supplier supplies two baseparts whose
cost are $3 and $11. (2) includes only the
basepart whose cost is $11 while (1) includes
both. The reason is that (1) is read as 'Get all
baseparts supplied by each supplier x such that
x supplies at least one basepart whose cost is
over $10'. (2) means 'Get all baseparts whose
cost is over $10 and for each of which there is
some supplier.' This shows that the use of dot
notation in the target part (i.e., the part
that comes before the where-clause) extends the
relational query language.

Explicit join predicates are permitted in
where-clauses in Jasmine/C. The predicate
'fujis.Supply.Cost > 10' can be written as
'fujis.Supply == BASEPART.Oid and BASEPART.Cost
> 10'. We use I==' (i.e., equality) instead of
' 31, but the meaning is kept the same.
Explicit join predicates are needed in such
applications as the decision support system
where asking ad hoc queries is common and
essential. Consider the following example:
'SUPPLIER suppliers multiple; suppliers =
SUPPLIER where SUPPLIER.Sname ==
SUPPLIER.Supply.Pname'. This query is to
retrieve those suppliers supplying baseparts
whose name is identical to that of the

545

supplier.
Procedural attributes can appear wherever

properties can appear. This is a natural
consequence of having adopted the functional
data model as the basis of Jasmine data model.
However, syntactically different notation must
be used for procedural attributes, since we
follow the C language syntax for calling
functions. Parentheses are always needed. As
will be explained in the next section,
attributes Cost and Mass of COMPOSITEPART are
procedural. They return the cost and mass of a
composite part object, which are computed from
the cost and mass of the object's components.
The following query is to retrieve composite
parts whose cost is less than $50:
'COMPOSITEPART compositeparts multiple;
compositeparts = COMPOSITEPART where
COMPOSITEPART.Cost() < 50;'. The syntax is
inconvenient when it involves polymorphism
[STEF84]. Let us suppose that parts, either
basepart or c-site, having cost less than $40
are to be listed. Since PART contains both
BASEPART and CCMPOSITEPART, the following query
is valid if attribute Cost of BASEPART is
procedural: 'PART parts multiple; parts = PART
where PART.Cost() < 40;'. The procedural
attribute to be added to class BASEPART is
'INTEGER'Cost() 1 return self.Cost;) I.

Note that in the example in Fig. 1, Cost is
not an attribute of class PART, although PART is
expected to contain the objects having this
attribute. A query of the form 'parts = PART
where PART.Cost < 50;' Is called incomplete in
the sense that the query is incomplete in terms
of attribute description. Incomplete queries
are very convenient when the user's kmledge on
the objects is incomplete or partial. Such
situations often occur whenever we use databases
made by others. Jasmine/C transforms incomlete
queries into complete queries during compile
time. Thus, the equivalent complete query 'parts
= BASEPART where BASEPART.Cost < 50;' is
substituted.

System programmers often use lists where
structured data of different types are chained.
They need to check the type of each structure
so that it is processed correctly. A similar
situation arises in handling persistent objects.
In fact, a multiple-valued variable may contain
objects of different types, as mentioned
earlier. To allow the dynamic checking of object
types, the attribute 'Class' is defined for all

objects. The attribute returns the OID of the
class of which the object is an instance. See
Fig.3 for an example.

Jasmine/C balances static type reasoning and
dynamic type checking. Static type reasoning is
useful for restricting the search space of
associative retrieval. Dynamic type checking is
needed for multiple-type characteristics of
Jasmine/C object variables.

4. Recursive Queries
Lack of recursive query capability has been

considered as a drawback of relational database
systems. The deductive database, combining
logical reasoning with the relational data
model, was proposed to extend the model to allow
recursive query formulation [BRYF89].
Enhancement of SQL to allow recursive queries
has also been proposed. We followed a third
approach to recursive queries in designing
Jasmine/C.

The basic idea is to utilize the recursive
function call mechanism of the C language. The
advantage of this approach is that new notation
for writing recursive queries is unnecessary; C
programmers can write recursive queries the same
way they write recursive functions.

The procedural attributes Cost and Mass of
COMPOSITEPART are recursive (see Fig.3 for
Cost). This simply means that in each of the
function bodies, a call to itself appears. In
these programs, neither special operators nor
new control structures for recursion are used.

We shall explain the object variable 'scan'
and its related operations, although they do not
have to do with recursion. They are necessary
for retrieving one member of a set of objects.
They are similar to the scan of System R
[ASTR76] in concept, but are different in
implementation. Scan objects are instances of a
system-defined class SCAN. The class is created
when a Jasmine/C program starts and is deleted
when the program ends. As such, the class is
temporary. The procedural attribute '@enscan()
I, defined on class OBJECT, returns a scan
object. 'Next01 advances the scan.

5. Integrity and Annotation
Jasmine/C allows the annotation of

attributes by demons, so that users may write
procedures for maintaining integrity of the
&t&S~.

There are two types of demon: before-demons

546

and after-demons. The before-demon is invoked
before a specified action, such as an update, is
made. The after-demon is invoked after the
action. Not only properties, but also procedural
attributes may be annotated.
Annotation of properties

Constraint, If-needed, If-updated, If-
removed, and If-added are demons which are used
to annotate properties. The Constraint demon, a
before-demon, checks the validity of new values.
Consider the annotation of Pno of class PART in
Fig. 2, and the procedure in Fig. 6. The
annotation says that Pno must be unique. (The
unique Pno is introduced in the database for
human communication. OID, although unique, is
not appropriate for this.) The Constraint demon
checks the uniqueness of the given nun&r, and
returns TRUE or FALSE depending on the result.
Attempts to change the value fail if FALSE is
returned. The variable 'value' is used to store
the new value. The variable is multiple-valued
when the annotated property is multiple-valued.

constraint {
PART parts multiple;
parts=PART *re PMT.Pno = value;
if (parts = (}) /* null set? */

return(TRW;
else return(FAISE);)

Fig.6 ‘lhe constraint on attribute Pno.
The given value must be new.

The If-updated, If-removed, and If-added
demons monitor the value of the property, and
are invoked when the value is updated, removed,
or added, respectively. If-removed and If-added
demons are associated only with multiplevalued
properties. An If-needed demon annotating a
property is invoked when the requested value is
undefined (i.e., NIL).

prcperty INlTGl3 St&
if updated (

awX neworder; /+ CWDl3 is a class */
if (self.Class = tBASWART> /* R4SFPAJtT? */

I%& self.Stot%=2D)
(neworder=CRDIB. LhyParts(self.Stodc*l. 2);)

else
if (self. Class r- <CCWUSITEPART> /* COFPOSITEPART? */

i% self.Stock <= 30)
{ neworder=ORDER~hufactureParts(self.StodcLl. 5) ;)

1

Fig. 7 Attribute Stock is defined WI clans PART. See Fig. 2.
The deiwn defined here lxcoms active hen the Stock
value is updated to be less than specified values.

Fig.7 shows a demon annotating property
Stock defined on PART. (See Fig.2.) The demon
monitors the Stock property of each object in

PART. If the value is modified to be less than a
certain quantity, an order is given, either to
buy or to manufacture the part in question. In
this example, we assume such orders are stored
and managed under class ORDER in the database.
Annotation of procedural attributes

Procedural attributes are useful to maintain
some types of integrity that must hold even
after databases are changed. For example, the
mass of a composite part changes whenever one
of its components is changed. This relationship
always holds because the mass of the composite
part is computed from those of the components
whenever needed. This is the case when the
composition of the part (i.e., component parts
and number of each part used) is modified.
However, when a component is deleted for some
reason, something has to be done to prevent
reference to the ghost object. This is known as
the referential integrity problem of the
relational databases [DATE81]. In programming
languages, a similar anomaly occurs when data
referenced by a pointer is deleted.

instance method Delete inherited
after-demon uninheritable

{ SWPLIER supplier, sppls multiple; ’
scANscan;
SpplS=SLPPL.II3 where SUPPLIER. Supply==self;
scan=sppls. Openscan() ;
tiile(! (scan==VOID)) (

suppl ier=scao. Next() ;
supplier. Supply-=&f;
/* ftemoval of self from set Supply. */

1
scan. Close() ;

1

Fig.8 ‘The definition of the after-demon annotating method
Delete of class BASENiT, as show in Fig.2. Ihe
method is inherited. ‘Ihe annotation is not inheritable;
it is valid only for class MSEPAKf.

In Jasmine/C, annotating procedural
attributes with demons helps maintain the
integrity of databases vulnerable to such
anomalies. For example, when a basepart is to be
deleted from class BASEPART, the object's OID
must be removed from the value of attribute
Supply (actually a set of OIDs) of the basepart
suppliers. 'Delete', a procedural attribute
defined on class REFERENTIAL, is used to delete
any referential object. Consequently, in the
definition of the procedure, behavior for a
specific situation such as the one described
above, cannot be programmed, A 'trick' is
needed so that the generic Delete procedure can
be applied adaptively to any situation. In the
definition of class BASEPART in Fig. 2, an

547

after-demon annotates instance-method Delete,
which is actually inherited from REFERENTIAL.
The annotation is valid only for BASEPART,
since the demon is 'uninheritable'. The demon is
invoked after the basepart object receiving the
Delete message is deleted (See Fig.8).

The concept of a demon is well known in AI,
and demons are implemented in AI shell languages
[STEF86]. On the other hand, in the field of
database systems, the counterpart of the demon
is the 'trigger'. But, to the best of our
knowledge, there are no database systems which
support it. The reason seems to be twofold.
First, supporting triggers is costly. Second,
the capabilities of computationally complete
programming languages rather than relationally
complete query languages are needed to support
general integrity. The Jasmine database system
could overcome the second obstacle by providing
Jasmine/C as a tool with which to write demons.
The first concerns the implementation of
database systems, in general, and the
implementation techniques of addressing
persistent objects, in particular. This will be
discussed in the next section.

6. Implementation Issues
Architecture

The architecture of Jasmine is shown in
Fig.9. A Jasmine/C program is compiled by the
Jasmine/C compiler. The compiler then translates
it into a C program. During the compilation
(that is, preprocessing), the compiler accesses
the database for information needed for type
cheking, transformation of incomplete queries,
and code generation.

Object lbhqement Subsystem]

Fig.9 ‘he Architecture of Jasmine.

Jasmine is implemented using XDE [YAMA891,
an extended database engine that was developed
for it. It runs under the UNIX TM operating
system.

XDE supports NF2 tables (i.e., relations).
The interface consists uf C functions which
implement join, selection, and other relational

operations. Three kinds of table organization
are supported: sequential, hash, and B-tree-
like index. Indices on tables are not supported
by XDE. They can be implemented using (possibly
index-type) tables having one field containing
tuple identifiers (TIDs). The TID is one of the
field types recognized by XDE. Other field types
are fixed-length-byte and variable-length-byte.

One consequence of using XDE is the reliance
of Jasmine on value-based join operations
instead of physical pointers, for not only set-
oriented associative retrieval, but also for
navigational access of objects. In fact, each
persistent object is stored as one tuple in a
table. The table forms the class of which the
object is an instance. The tuple has a special
field, the OID field, which contains a system-
defined unique value labelling the object.
Therefore; navigation from object to object
involves either join operations or selections.
The latter are used when an object is accessed
via an object variable. Since the variable
holds the OID, it is used to select the tuple
having the same value in the OID field. When an
index on the field is available, it is used
preferentially.

Some advantages of this implementation are:
(1) Because OID are independent of physical
organization, linkages using OIDs between
objects are not affected by any database
reorganization, often needed in practical
applications. (2) The meaning of object access
using OIDs is clear and understandable. This
helps users respond correctly when problems
arise during navigation. Consider the
difficulties programmers confront when an
addressing exception occurs while manipulating
pointers.

One disadvantage might be inefficiency.
Direct access using TIDs or disc physical
address could be an alternative. We believed
that indexing on the OID field could shorten
the access time.
Memory KB space

We introduced the memory KB (i.e., DB) space
where users can create, destroy, and apply-any
relational operation to tables in the same
manner as for disk-based tables. The memory KB
space is used to keep temporal tables for
temporal classes. Their lifetimes cannot be
longer than that of the process which creates
them. Tuples of a temporal table are addressed
using memory addresses, so the access time is

548

far shorter than that of disk-based tables.
The introduction of memory KB space is

justified when frame-based AI applications such
as expert systems are considered. These
applications are characterized as database
intensive as well as corrputation intensive. They
retrieve information from a large database and
reason based on the information. During the
reasoning process, they need to create,
manipulate, and delete frames that store
intermediate information. These frames do not
have to be persistent.
Addressinq tuples in the DB buffers

In XDE, a disk-based table is composed of
pages whose size is either 4, 8,16, 32, or 64
kbytes. A tuple is addressed by its TID, which
is derived from its logical page number and its
offset within the page. To access a tuple in a
buffer, first find the buffer storing the page.
Second, compute the memory address of the tuple
using the buffer address and the offset of the
tuple. If the tuple is refered to several times
in a program, it is possible to improve the
performance by saving the memory address of the
tuple when it is first accessed, and using the
saved address for the following accesses. This
idea is implemented for the single-valued
'self' variables in methods written in
Jasmine/C. The variables retain the OID of the
receiver object and its memory add,ress,
whenever the address is available.

The advantage of this implementation is that
high-speed access to such a tuple becomes
possible while allowing the application of the
relational operations of XDE to the tuple. One
of the demerits is that dynamic checking of the
validity of the tuple address is necessary.
Another is the necessity of fixing the buffer
containing the tuple during program execution.
This may require a large buffer area if the
program refers to many persistent objects.

The last remark is connected with the reason
why XDE supports NF* tables. The answer is
simple: NFZ tables are needed for multiple-
valued properties. For example, Supply of class
SUPPLIER is multiple-valued, so the value is a
set of OIDs of baseparts. The value is stored in
each tuple representing a supplier object. This
natural clustering ensures higher speed for
navigational and associative retrieval
involving multiple-valued properties than does
non-clustering in 1NF tables. Classes having
attributes of type TDPLE are also mapped onto NF

' tables. This is not discussed further because
we are running out of space.

7. Conclusion
This paper described the main features and

the design principles of the database
programming language Jasmine/C. It is designed
and implemented as an integrated part of the
object-oriented database system Jasmine.
Jasmine and Jasmine/C are interdependent; one
cannot be used without the other.

In the design, many ideas were borrowed from
and shared with other works: the functional
data model with DAPLEX [SHIP81], IRIS [FISH871
[LYNG87], and GENESIS [BATO88], the object-
oriented approach with GemStone [MAIE86], ORION
[BANE871 [KIMW871, and 02 [LECL881, and the
database programing concepts of VBASE [ANDR87]
and OH [AGRA891. Here, we limit our discussion
to works that are closely related to our work.

IRIS is similar to Jasmine in its model and
its architecture. Both are based on the
functional data model, have type hierarchy, and
allow attribute inheritance. One minor
difference is that IRIS permits multiple
inheritance. Another is that,'whereas both
systems are built on top of a relational
database engine, Jasmine's engine, XDE, supports
NF2 tables but IRIS’s does not. A major
difference resides in their approaches to query
languges. For Jasmine, we start with the C
programming language, and extend it so that it
can handle persistent objects in a relationally
complete fashion. The language is used to write
not only queries, but also methods, and
application programs. This makes Jasmine
computationally complete [ATKI89]. OSQL of IRIS,
an extention of SQL, is provided. Foreign
functions can be written in C and are called in
the where-clauses of OSQL. However, IRIS does
not provide a uniform but versatile database
programing language such as Jasmine/C.

VBASE supports two languages: TDL, a schema
definition language, and COP, a C-based
operation description language. They are not
unified, whereas Jasmine/C is a unified
language. A more important distinction is that
COP does not have associative retrieval
capability. The basic way to handle objects in
VBASE is in a one-object-at-a-time fashion.

0++ is a unified database programming
language that is used to define and manipulate
objects in Ode databases. The language is an

549

extension of C*. The distinguished feature of
OH is that persistency is a property of object
instances. In -Jasmine, classes are persistent.
The set-processing constructs which DH provides
is a 'for' loop enabling the iterative
processing of objects in clusters. This is also
a one-object-at-a-time method. Jasmine/C
supports multiple-valued variables, to each of
which associatively retrieved objects are
assigned. Any attribute (i.e., function)
applicable to it can be applied collectively.
Thus, the 'loop' mechanism is hidden in the
semantics of the dot notation of Jasmine/C.

[ATKI89] gives a list of features that any
object-oriented database system must have. The
current Jasmine has, we believe, ten of the
twelve mandatory features. Concurrency and
recovery, features that the current version of
Jasmine does not have, will be implemented in
the second version. Jasmine/C, which is the
topic of this paper, gives Jasmine computational
completeness, the 7th feature in the list.

Acknowledgments
We wish to thank H. Ishikawa and M.

Miyagishima for contribution to the design and
implementation of an early version of Jasmine,
and F. Kozakura for implementing part of XDE.
Our special thanks go to J. Tanahashi, who
supported our efforts from the management side.
This work is,supported in part as the AIST/MITI
large-scale project on Interoperable Database
Systems by NED0 (New Energy and Industrial
Technology Development Organization).

References
[AGRA89] Agrawal,R. and Gehani,N.H. Rationale

for the Design of Persistence and Q
uery Processing Facilities in the
Database Programming Language DH.
Proc. 2nd Int. Workshop on Database
Programming Languages, Oregon Coast,
June 1989

[ANDR87] Andrews,T. and Harris,C. Combining
Language and Database Advances in an
Object-Oriented Development
Environment. Proc. 2nd OOPSLA Conf.
Orlando, FL., Oct. 1987, 430-440

[ASTR76] Astraham,M.M., et al. System R:
Relational Approach to Database
Management. ACM TODS, Vol.1, No.2,
June 1976

[ATKI87] Atkinson,M.P. and Buneman,O.P. Types

and Persistence in Database
Programming Languages. ACM Computing
Surveys, Vol. 19, No. 2, June 1987,
105- 190

[ATKI891 Atkinson,M.P., Bancilhon,F.,
DeWitt,D., Dittrich,K., Maier,D. and
Zdonik,S. The.Cbject+iented Database
System Manifesto. Proc. 1st Int.
Conf. on DOCD, Kyoto, Japan, Decetir
1989,4D-57

[BANC871 Bancilhon,F, Briggs,T.,
Khoshafian,S.,and Valduriez,P. FAD, a
Powerful and Sirrple Database Language.
Proc. 13th Int. Conf. VLDB, Brighton,
England, Sept. 1987, 97-105

[BANE871 Banerjee, J., Chou,H., Garza, J. F.,
Kim,W., Woelk,D., Ballou,N., and
Kim,H. Data Model Issues for Object-
Oriented Applications. ACM Trans.
Office Info. Syst., Vol. 5, No. 1,
Jan. 1987, 3-26

[BAT0881 Batory,D., Leung,T.M., and Wise,T.E.
Implementation Concepts for an
Extensible Data Model and Data
Language. ACM Trans. Database Syst.,
Vol. 13, No. 3, Sept. 1988, 231-262

[BLOO871 Bloom T. and Zdonik, S.B. Issues in
the Design of Object-Oriented Database
Programming Languages. Proc. 2nd
CCPSLA Conf. Orlando, FL., 1987, 441-
451

[BRYF89] Bry,F. Query Evaluation in Recursive
Databases: Bottom-up and Top-Down
Reconciled. Proc. 1st Int. Conf. on
DOOD, Kyoto, Dec. 1989, 20-39

[CARE881 Carey,M. J., Dewitt,D. J., and
Vandenberg,S.L. A Data Model and
Query Language for EXODUS. Proc. 1988
SI(;Mw> Conf., Chicago, IL., June 1988,
413-423

[COPE841 Copeland,G. and Maier,D. Making
Smalltalk a Database System. Proc.
1984 SI@lOD Conf., June 1984, 316-325
[DATE811 Date,C.J. Referential
Integrity. Proc.7th VLDB Conf.,
Cannes, France, Sept. 1981, 2-12

CFIKE851 Fikes,R. and Kehler,T. The role of
Frame-based Representation in
Reasoning. C.ACM, Vol. 28 No. 9, 9D4-
920

[FISH871 Fishman,D.H., Beech,D., Cate,H.P.,
Chow,T., Connors,T., Davis, J. W.,
Derrett,N., Hoch,C.G., Kent,W.,

550

Lyngbeak,P., Mahbod,B., Neimat,M.A.,
Ryan,T.A., and Shan,M.C. Iris: An

- Object-Oriented Database Management
System. ACM Trans. Office Info. Syst.
Vol. 5, No. 1, Jan. 1987, 48-69

[GOLD831 Goldberg,A. and Robson,O. SMALLTALK-
80: T.he Language and its
Implementation. Addison-Wesley,
Reading, Mass., 1983

[KERN781 Kernigham,B.W. and Richie,O.M. The C
Programming Language. Prentice-Hall,
London, 1978

[KIMW87] Kim,W., Chou,H., and Banerjee, J.
Operations and Implementation of
Complex Objects. Proc. 1987 IEEE Data
Engineering Conf., Los Alamitos, CA.,
1987, 626633

[LECL88] Lecluse,C.,Richard,P., and Velez,F.
02, an Object-Oriented Data Model.
Proc. 1988 SIGMOD Conf., Chicago,
IL., June 1988, 424-433

[LYNG87] Lyngbeak,P. and Vianu,V. Mapping a
Semantic Database Model to the
Relational Model. Proc. 1987 SIGMOD
Conf., San Francisco, 1987, 132-142

[MAIE86] Maier,D., Stein, J., Otis,A, and
Purdy,A. Development of an Object-
Oriented DBMS. Proc. 1st OOPSLA Conf.,
Portland, OR., 1986, 472-484

[MINIS751 Minsky,M. A Framework for Representing
Knowledge. In 'The Psychology of
Conputer Vision', McGraw-Hill, Editted
by Winston,P.H., 1975

[MoRG83] Morgenstern,M. Active Databases as a
Paradigm for Enhanced.Computing
Environments. Proc. 9th VLDB Conf.,
Florence, Italy, Oct. 1983

[ROTH881 Roth,M.A., Korth,H.F., and
Silverschatz,A. Extended Algebra and
Calculus for Nested Relational
Databases. ACM Trans. Database Syst.
Vol. 13, No. 4, Dec. 1988. 389-417

[SHIP&] Shipman,D.W. The Functional Data Model
and the Data Language DAPLEX. ACM
Trans. on Database Systems, Vol. 6
No. 1, March 1981, 140-173

[STEF84] Stefik,M. and Bobrow,D.G. Object-
Oriented Programming: Themes and
Variations. The AI Magagine, Vol.6
No.4, 40-62

[STEF86] Stefik,M., Bobrow,D.G., and Kahn,K.M.
Integrating Access-Oriented
Programming into a Multiparadigm

Environment. IEEE Software, Vol. 13
No. 1, Jan. 1986, lo-18

[YAMA Yamane,Y. Narita,M., Kozakura,F., and
Makinouchi,A. Design and Evaluation of
a High Speed Extended Relational
Database Engine, XRDB. Proc. 1st Int.
Symposium on DASFAA, Seoul, Korea,
April 1989, 52-60

[ZANI83] Zaniolo,C. The Database Language GEM.
Proc. 1983 SICMOD Int. Conf., May 1983

551

