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The capacity and performance of database man- 
agement system (DBMS) using a conventional (von 
Newmann-type) computer are limited by the total 
I/O channel bandwidth, the aggregate processing 
power, and the amount of main memory. With the 
advent of micro-processor, memory, and communi- 
cation technology, it is econominally feasible to 
develop a parallel database computer system. The 
parallel processing techniques are employed to utilize 
the available resources in a coordinated fashion to 
solve the DBMS capacity and performance prob- 
lems. Relations in such an environment are declus- 
tered into fragments and spreaded across computers. 
To achieve the optimal performance in data proc- 
essing, it is essential for each computer to have a 
perfectly balanced load (i.e., identical amount of 
data). However, fragment sizes may vary due to 
insertions to and deletions from a relation. To retain 
good performance, the system needs to periodically 
rebalance data loads among the computers. 

In this paper, we present an adaptive data place- 
ment scheme which balances computer work loads 
during query processing. The entire scheme is built 
on top of the popular grid file structure (but not 
limited to grid file). The adaptivity of the scheme 
and its relevant features are discussed. The cost of 
load rebalancing is estimated. The result shows that 
under our assumptions, it is always beneficial to 
perform load rebalancing before performing a join 
on skewed data. 
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1. INTRODUCTIOW 

In a database processing environment, the fact 
that disk I/O is the main bottleneck has been a con- 
sensus according to researches in the past. As the 
speed of microprocessors improves rapidly with the 
development of RISC technology, the problem 
becomes even more serious. It is more than likely 
that in the foreseeable future, this situation will not 
change. This problem is usually addressed today by 
data declustering in which each relation is partitioned 
into fragments and spread equally among all disk 
drives in the system. For instance, a hashed strategy 
is employed in the Teradata DBC/1012 ]T’er88]. A 
randomizing function is applied to the key attribute 
of each tuple to select a storage unit A similar 
approach is used by the Grace database machine 
[Kit84]. This storage structure is very ellicient for 
relational operations such as JOIN. However, it 
supports some of the other operations, such as 
Range-SELECT, very poorly. Gamma [Dew861 
offers more flexibility by allowing a relation to be 
partitioned in any of three ways: round-robin distrib- 
ution, hashed or range partitioned. As implied by its 
name, round-robin distributes the tuplcs among all 
storage units in a round-robin fashion. The hashed 
strategy is similar to that used in the Teradata 
DBC/1012. In the range partitioned strategy, each 
computing unit is assigned a range of key values in 
such a way that the partition of the relation based on 
the key attribute will result in a balanced data load at 
each computing unit. 

The data placement strategies discussed so far are 
built around the ideas of hashing and sorting of 
relations so that relational operations applied on the 
partitioning attribute can be performed very effi- 
ciently. These storage structures, however, would 

l Author’s current address: University of Central 
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SPJ (supplier-number, part-number, 
project-number, quantity) 

S (supplier-number, supplier-name, S-city, status) 

P (part-number, part_name, color, weight, P-city) 

J (project-number, project-name, J-city) 

Let’s consider the following queries: 

Ql: Find names and cities of those suppliers who 
supply parts with quantity 2 50 in any 
project. 

Q2: Find names, colors and weights of those parts 
that are supplied by a supplier located in New 
York City. 

not be able to support effectively queries that involve 
non-partitioning attributes. For instance, for the fol- 
lowing database: 

To perform Q 1, two relations, S and SPJ need to be 
joined over supplier number. To perform 42, S 
and P need to be joined with SPJ over attributes 
supplier-number and part-number. If the relations 
SPJ and S were partitioned into data fragments by 
hashing on the common attribute supplier-number, 
then Ql will perform very efficiently. On the other 
hand, since part-number is not the partitioning attri- 
bute of SPY, performing Q2 will require :I re-hash on 
part-number and data redistribution, assuming hash- 
join is used. This process is typically very expensive. 
Similarly, there are queries that need to join P and 
SPJ, to join J and SPJ, and to join S, P, J and 
SPJ, etc. Therefore, not only the partitioning attri- 
bute supplier-number, but also the other attributes 
part-number, and project number of relation SPJ 
are used frequently in the Fin queries. Another dis- 
advantage is that retrieving tuples using a non- 
clustering index may involve excessive disk I/O’s. In 
the worst case, the retrieval operation can result in k 
pages read, where k is the number of qualified tuples. 
These drawbacks of the horizontal partitioning 
schemes have placed a limit on the performance 
improvement of existing parallel database computers. 

In this paper, we will present a data placement 
scheme in which a relation is declustered into data 
fragments and distributed across multiple processing 
nodes using multiple attributes of the relation. The 
technique used to manage the partitioning informa- 
tion is based on the grid file structure originally pro- 
posed in [Nie84]. This file structure has the 
following key advantages over conventional file 
structures: 

Since the data partitioning is based on mul- 
tiple attributes, relational operations that 
involve any of the partitioning attributes can 
perform very efftciently. 

Since the tuples are clustered on multiple 
indices, the number of I/O’s is small even for 
secondary key accesses. 

We extended this file concept to control data place- 
ment in a multiprocessor environment. 

Since effective data placement is an important 
lever for load balancing, it is normally the deter- 
mining factor for the performance of a multi- 
processor system. In our design, an initial 
distribution algorithm is used to distribute the parti- 
tioned data fragments to the storage units. The 
primary objective of this distribution algorithm is to 
provide a balanced data load for each computing 
unit in the system. As time goes on, the initially 
balanced load may become disrupted due to data 
insertions and deletions. We provide a data redis- 
tribution algorithm for the data reorganization in 
order to correct this data skew problem. Data reor- 
ganization is typically very expensive. Eue to its 
high cost, it may be even more desirable to operate 
the system in the data skew conditi.on than to 
perform the data rebalancing. In Bubba [CopM], 
the system estimates the data reorganization cost and 
decides whether to tolerate the skewed data or to 
perform the data redistribution. In this paper, we 
will present a data reorganization technique that 
minimizes the redistribution cost so that the system 
can rebalance its data load more frequently to avoid 
serious data skew. In addition, a split algorithm was 
designed, and can be used should the data reorgan- 
ization algorithm fail to rebalance the data load due 
to an extremely nonuniform distribution of data in 
the data space. A merge algorithm is also provided 
to combine “adjacent” data fragments whose sizes 
drop below a certain threshold due to data deletions. 
In the following sections, we will discuss the algo- 
rithms in details. 

This paper is organized as follows. The design 
environment and assumptions are described in 
Section 2. The load balancing scheme, including the 
initial distribution algorithm and the data reorganiza- 
tion algorithm, is introduced in Section 3. The split 
and merge algorithms that make our load balancing 
more adaptive to a changing environment are pre- 
sented in Section 4. In Section 5, we report on an 
estimation of savings on redistribution of data for 
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load balancing. Finally, in Section 6, we summarixe 
this research and briefly discuss some future work. 

2. EWVIROWMEWT AND ASSUMPTIONS 

There are basically three different architectures 
for multiprocessor database machines: Shared Every- 
thing (SE), Shared Disk (SD), and Shared Nothing 
(SN) [Bhi88]. In SE architecture, all disks and 
memory modules are shared by processors. Data are 
equally accessible from all processors. In SD archi- 
tecture, each processor can directly access any disk, 
but each processor has its own private memory. In 
SN architecture, each processor has its own private 
memory and dedicated disk devices. There has been 
debate about which architecture is superior to the 
others, although people generally agree that SN 
architecture is more scalable to achieve high system 
throughput. For ease of illustration, in this paper we 
assume that SN arcbitedure is used as the system 
architecture. However, one should note that the 
load balancing scheme and its adaptivity are not 
limited to the type of architecture being used. 

We will call each processor with its associated 
private memory and disk system a processing node 
(PN). A pool of these PNs are interconnected 
through an interconnection network. A relation is 
partitioned based on the grid fde concept and distrib- 
uted into the PNs. As proposed in [Nie84], a grid 
file mainly contains two parts: a number of linear 
scales and a multi-dimensional directory. In this 
paper, this file structure is used to hold the parti- 
tioning information for a SN multiprocessor system. 
The linear scales are used to specify the key ranges in 
each of the dimensions (keys). The directory con- 
tains a number of cells that are formed by parti- 
tioning the data space based on the 
multi-dimensional key ranges. Each cell thus repres- 
ents a cluster of tuples based on the multi-key data 
partitioning strategy. Our management scheme is 
different from the original grid file [Nie84] in that the 
cell entries contain information about a data frag- 
ment (e.g., a file) and its host PN instead of the 
address of a disk allocate unit (e.g., a page). Each 
cell in our directory therefore has two entries: 

Cell Size: A number that indicates the number 
of tuples being assigned to the cell as 
a result of the data partitioning. 

ID: The Identification of a PN which cur- 
rently has the tuples being assigned to 

I 

Figure 1. A 2-key partitioning directory 

the cell. We will use PNi to denote 
the PN whose ID is i. 

For instance, a two-key (i.e., only two of the attri- 
butes are critical to the application) partitioning 
directory is given in Figure 1. In this example, the 
directory indicates that there are 4,464 tuples that 
satisfies the partitioning predicate: 

and these tuples are currently residing in PNM. For 
convenience, we will use a large (small) cell to mean 
a directory cell with a large (small) number of tuples 
assigned to it, and a large (small) PN to signify a PN 
that has many (few) tuples assigned to it. Note that 
the linear scales are not necessarily divided into equal 
intervals. 

In this paper, we focus on the data partitioning 
problem in a multiprocessor system. Once a relation 
has been declustered into partitions, how each parti- 
tion is structured locally in a storage system of a PN 
is beyond the scope of this paper and will not be dis- 
cussed. In general, any uniprocessor file structure 
(e.g., conventional indices, grid files) can be used in 
conjunction with the proposed partitioning scheme 
to implement a complete file system for a multi- 
processor database computer. 

In the subsequent sections, we will discuss the 
management of the partitioning directory and its use 
for load balancing in a multiprocessor system. For 
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conciseness in presentation, we assume that each 
tuple of a relation is equally likely to be accessed by 
a transaction or a query. However, one should note 
that the presented algorithms can easily be mod&d 
for the case of access skew, a situation in which 
some of the tuples are being accessed more fre- 
quently than other tuples. 

3. THE LOAD BALANCING SCHEME 

These notations will be used in the following 
sections: 

np: 

d: 

lW’;ll : 

&: 

Number of processing nodes in the 
system. 

Number of dimensions in the direc- 
tory. 

Number of tuples that have been 
allocated to PNi. 

Number of intervals in the ith dimen- 
sion. 

IlCi, . , idI1 : Number of tuples in cell c;,, . . , id, 
where 1 I 4 I Zj. 

IlC’ijll : Number of tuples in the jth largest 
cell in PNiv,. 

3.1 The Initial Distribution Algorithm 

A simple initial distribution scheme is to divide 
the linear scales into evenly spaced intervals, and to 
assign each cell to a distinct PN. This simple 
scheme has a serious problem. If the data are not 
uniformly distributed in the data space as in the case 
shown in Figure 2, some PNs will have more data 
than the other PNs (i.e., data skew). One solution 
may be to adjust the partition intervals on the linear 
scales so that the cell sixes are about the same. The 
complexity of this approach, however, explodes 
exponentially as the number of dimensions and the 
number of intervals increase. 

Alternatively, one can partition the relation into 
a much higher number of cells. These cells then can 
be assigned to the PNs so as to balance the data load 
for each PN. A greedy algorithm to achieve this 
goal is given in the box titled “Initial Distribution 
Algorithm”. 

Conceptually, The allocation algorithm is exe- 
cuted by first sorting in descending order the cell 
sixes in the incomplete directory (i.e., the ID entries 

I-- 
6 

72 162 

3 4 
6s 63 

4 

Figure 2. A partitioning example using a simple algo- 
rithm 

- Initial Distribution Algorithm 

1. For each dimension, partition the linear scale 
into np equally spaced intervals; 

2. Compute llG ,,... id 11 for 1 I 4 I Zi and 1 rj I d; 

3. Sort the list of IIGl,...i, 11, where 1 < ii 1~ Ij and 
1 <j < d, into descending order. Let LC be 
the sorted list. 

4. LA IlNPill = 0, 1 I is np; 

5. Repeat-Until LC is empty 

a. Find a PNi where llNP,j = l~@v (I1NPjll); 
/* If there are more than-one PNs that 
satisfy this condition, select one arbitrarily. 
*‘I 

b. Assign the fust (i.e., largest) cell, c ,,..., iA 
from LC, to the PNi ; 

C* LC= LC\ (C,.....id}; I+ b-nave Gl.....,,, 

from LC +I 

d* IlNPill = IlNf’ill + llG,, ._., idI ; 
End-Repeat; 

are yet missing). The cells are then assigned to the 
PNs in the sorted order. The assignment is done by 
allocating the currently largest cell in the sorted list 
to the currently smallest PN. The cell is then 
removed from the list. This process is repeated until 
the sorted list becomes empty. 

An application of this algorithm is illustrated in 
Figure 3. In this example, we again assume that the 
dimension of the directory is two for clarity. Step 1 
of the algorithm divides the directory into 16 cells. 
There are four PNs in this example. Note that the 
directories shown in Figure 2 and Figure 3 are 
assumed to be for the same relation (i.e., same data 
distribution in the data space). After sorting the cell 
sixes into descending order as stated in steps 2 and 3 
in the algorithm, the process of assigning the cells to 
PNs as described in step 4 of the algorithm is illus- 
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Result 
: Allocate the commpor 

data fragmrnt to thr 

Figure 3. An example of the initial distribution algorithm 

trated in Figure 3. The largest cell (i.e., cell size = 
74) is first assigned to PN,; the second, third, and 
fourth largest cell are then assigned to PN2, PN3 and 
PN, respectively. In this example, PN* now becomes 
the smallest PN, and therefore the next (i.e., fifth) 
largest cell (i.e., cell siie = 32) is allocated to it. 
This process is continued until the smallest cell (i.e., 
cell size = 3) is assigned to PN2. 

We see that the proposed algorithm balances the 
data load very well for this particular example. In 
general, we expect this algorithm to perfi>rm very 
well when the number of cells in the diiectory is rel- 
atively larger than the number of PNs. In Section 4, 
we will present adaptive algorithms (i.e., Split/Merge 
algorithms) that decide how many intervals each 
dimension should have. These algorithms will also 
remove the restriction that the lineCar SC&S are parti- 
tioned into evenly spaced intervals. Permitting dif- 
ferent interval sizes on linear scales allows us to 
handle the non-uniformity in the distribution of data 
in the data space. 

3.2 The Data Rebalancing Algorithm 

As insertions and deletions occur to the local 
data in each PN, the size of local files may change so 
that gradually, a tortured distribution of file sizes will 
appear. This causes unbalanced disk load (i.e., data 
skew) to the PNs and degrades overall system per- 
formance. In this situation, a redistribution of data 
is necessary to resume good system performance. 
However, the cost of rebalancing may even be higher 
than the cost of processing data in a skewed circum- 
stance. For example in Bubba’s design, a simple 
data redistribution (was called reorgan&tion in the 
original paper) algorithm was proposed. In their 
algorithm, the cost of redistribution is estimated 
before data in PNs are redistributed. If it is higher 
than the cost of processing data under skewed situ- 
ation, the redistribution will not be performed. In 
other words, the system will tolerate a possibly high 
cost on processing skewed data simply because redis- 
tribution of the entire relation would cost higher. In 
their design, however, the redistribution process did 
not take advantage of the already balanced part of 
the data within PNs but reshuflle data fragments 
entirely. In the proposed algorithm, we minimize 
the cost of redistribution so that the system can re- 
balance its PN load before data are seriously skewed. 
The algorithm is given in the box titled “Data Redis- 
tribution Algorithm”. 

The main objective of this algorithm is to rebal- 
ance the PN loads at as little cost as possible. Bas- 
ically, the algorithm fust sorts the cell sizes in each 
PN into sorted lists. The second step is an iteration 
process. In each iteration, the largest PN (i.e., has 
the most data) is determined, and its size (i.e., the 
count of retained data records) is used as the basis 
for the other PNs to add some more of t,heir own 
cells to the respective retaining lists in order 1.0 
balance their loads with the largest PN. The priority 
for adding cells to a retaining list is to select the 
larger cells first. This iteration process continues 
unt.il some PN runs out of cells. The remaining cells 
are then merged into a single sorted list and they are 
allocated to the PNs using the initial distribution 
algorithm. We see that this algorithm tries lo leave 
as many larger cells at their current host PN as pos- 
sible. Only those smaller cells arc moved between 
PNs. The attempt to retain the larger cells to their 
host PNs provides us a low cost data rebalancing 
algorithm. This issue will be treated in more detail 
in Section 5. 
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- Data Rebalancing Algorithm -_____ 

Phase I: 

1. Each PN sorts their cell sizes into descending 
order. Let Li be the sorted list generated by 
PNi: L = {IIC’i,~llv .-., IlCi,kll}. 

2. V’i, PNj sends L to a designated coordinator. 

Phase II (performed by the coordinator): 

1. LetL’i=4andsumi=OforlIiInp 

2. Repeat-Until 3, 1 I i I np, 3 I, = 4 

Pind j such that sum, = lyj;z(sumJ 

/* If there are more then one j that 
satisfy this condition, select one arbi- 
trarily. *I 

For i= 1 toj- 1 and j+ 1 to np do 

Repeat-Until (sumi 2 sumi) or 
(3, 1 I i I np, 3 l+ = 4) 

SUmi = SUtTli + IlC’i,lll; 

L’i = L’i IJ {Cj,,>; 

L = L \ {C’i,l}; /* Remove C’i,r 
from L +/ 

For each llC’i,~ll E L, rename it to 
/c'i.(k - t)l\; 

End-Repeat; 

End-For; 

End-Repeat; 

Phase III (performed by the coordinator except 
Step 3): 

1. Merge L, 1 ZG i < np into a single sorted list 
LC; 

2. IlNPill = sumi for 1 5 i I np; 

3. Apply step 5 of the initial distribution algo- 
rithm to l,c; 

We give an example to illustrate how the algo- 
rithm works. Shown in Figure 4 is still a two- 
dimensional directory with 16 cells. Let us assume 
that it represents the same fde as in Figure 3 after 
some number of insertions and deletions to that file. 
For example, the upper-left cell originally contained 
18 records. It now contains 7 records. This figure 
shows a data skew example in which llNPzll4 IINPdI 
(8 1 tuples V.S. 134 tuples respectively). 

In Figure 5, we show the rebalancing process and 
the fmal result: 

I- 

Figure 4. A data skew example 

Phase lz Each PNi sorts its cell sizes to generate 
the sorted lists: I,, = (S8! 46, 13) 
LQ = {37,28, 133) LJ = {79,31, 13,7,4} 
4 = {64,32, 11,8}. Each PNi then sends its 
list Li to a designated coordinator, say PNi. 

Phase II: 

Iteration 1: After deciding to keep the largest 
cell (i.e., 79) in its host PN (i.e., PN3 ), other 
PNs add their larger cells to their retaining 
list in such a way as to balance with the 
number of tuples in PN3. 

Iteration 2: After Iteration 1, PN, becomes the 
largest PN (it has 58 + 46 = 104 tuples). 
Other PNs then continue to add to their 
retaining lists the remaining larger cells with 
the attempt to balance their sizes with the 
current maximum (i.e., TI = 104). At the 
end of this iteration, Phase II is terminated 
because PN2 runs out of cells to continue 
this phase. 

Phase III: We apply the initial distribution algo- 
rithm to the leftover cells.. 

Result: 

l PN, has 3 cells and 112 tuples. 

l PN2 has 7 cells and 114 tuples. 

l PN3 has 2 cells and 110 tuples. 

l PN4 has 4 cells and 111 tuples. 

Note that the communication required during 
the entire redistribution process is only the transfer 
of sorted lists of numbers (i.e., cell sizes, not real 
tuples) to the designated coordinator and of some 
smaller data buckets (containing real tuplcs) among 
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: Allowto ttw cornaponding dda fmgment to 
the PN. 

Figure 5. A data rebalancing example 

PNs. As shown in Figure 5, the smaller data 
buckets transferred include two 13-tuple buckets 
transferred from PN, and PN, to PN,, one 8-tuple 
bucket from PN4 to PN,, one 7-tuple bucket from 
PN, to PN,, and one 4-tuple bucket from PN, to 
PNI. Larger data buckets are retained to their host 
PNs. 

Also note that there are a few adjustments that 
can be made to further reduce the redistribution cost. 
For instance, the coordinator for computing the 
redistribution process can be assigned to a PN which 
has the most number of cells (not necccssarily the 
largest PN). In this strategy, since we avoid 
transfering the largest sorted list (of cell size), a small 
performance improvement is achieved. 

4. ENVIRONMENT ADAPTATION ALGORITHMS 

Data distribution changes in real-world applica- 
tions. There is a possible situation, although it does 
not occur frequently, that the data rebalancing algo- 
rithm could fail to restore the system to a load- 
balanced state. This would be the case when we 
encounter extremely nonuniform data distribution. 

For instance, if the largest cell as shown in Figure 4 
was 279 instead of 79, it would be imposible to 
rebalance the load by simply transfering data frag- 
ments among PNs, since 279 is much larger than any 
other cells in the directory. In this situation, a 
split(s) on the largest cell(s) is necessary before the 
data rebalancing algorithm can produce a satisfactory 
environment for parallel processing. Unlike the ori- 
ginal grid file (Nie84) in which a split is triggered by 
the overflow of a data bucket, in our environment a 
split is primarily a preprocessing procedure that com- 
plements the data rebalancing algorithm in the case 
of extremely nonuniform data distribution. 

As the data distribution changes, an earlier dense 
area in the data space may become sparse later. For 
efficiency, the intervals (i.e., cross sections) split 
when an area is dense need to be merged when it 

becomes sparse. A merge algorithm is designed 
accordingly. Interestingly, the split and the merge 
algorithms can accomadate the grid partition to the 
environment. In the next two sections, we will 
present the algorithms. The following additional 
notations will be used in the presentation: 

RIfi : The Relative Importance Factor of the attri- 
bute corresponding to the dimension i. For 
instance, RIF, could be determined based on 
the frequency of reference. 1 RI&= 1. 

l_<i<d 

llC,,,,,Jl : The size of the largest cell Cmu in the direc- 
tory. 

R m.” : The set of cells that lie in the hyper-rectangle 
that contains a set of cells located in the nth 
interval of the mth dimension. Rm, = 
(Cl, . . . . id 1 i,,, = n and 1 I b < Zk for k # m}. 

iR,,J : The total number of tuples in the hyper- 
rectangle, R,,,,. 

P. t*. . . . . id * The identification of the PN currently - 

assigned the cell CiI....,i,. Note that 
1 I Pi,. .,_, id I v- 

Also, the following binary expression will be used in 
the algorithms: 

Equal (Pi,. . . . . i,+ f’jl, . . . . jd) = 0, if Pi*,....i,g = Pjl.....jd 

1, otherwise 

4.1 The Split Algorithm 

A split strategy for grid partitioning was dis- 
cussed in [Nie84] which favors some presumably 
more important attribute(s) by splitting the corre- 
sponding dimension(s) more often than others. Our 
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- Split Algorithm -- 

1. Find i such that 

2. If i is umque 

then select the ith dimension as the split 
dimension 

else the split dimension is selected as the 
one with highest RIF among the 
dimensions found in Step 1; 

3. Find the largest cell C,,,,, in the directory; 

4. In the split dimension, determine the split 
interval as the one in which C,,, is located; 

5. Within the split interval, choose the split 
point so as to split C,., into two cells of 
equal size; 

6. In the directory, split at the split point all the 
cells that lie in the split interval. 

1 

split policy is a little more sophisticated. The pro- 
posed algorithm takes into consideration the current 
number of intervals (i.e., Ii) on each dimension in 
addition to the relative importance factors (i.e., 
RZFs) of the attributes. The split dimension i is 
determined. as: 

RIfi 
-7= max I<j<d 

llisd 

This expression states that the split dimension 
should be chosen as the one that has relatively the 
least number of intervals for its relative importance. 
The complete algorithm is given in the box titled 
“Split Algorithm”. 

The computation of the split algorithm can be 
performed by a single PN (i.e., the coordinator). 
The split point information can then be broadcast to 
all the PNs which in turn can update their local 
directories (if the directory is replicated on all PNs), 
and split the data fragments accordingly. Ntema- 
tively, the algorithm can be executed on all PNs to 
avoid the communication overhead. This approach, 
however, ties up the PNs, impeding other useful 
work. 

In practice, the split process should be needed 
rarely. The majority of nonuniform data distribution 
cases would involve many cells and the data place- 
ment strategy as described in Section 3 should be 
adequate for most situations. 

4.2 The Merge Algorithm 

Before we present the algorithm, the merge cri- 
teria need to be clarified. First, in order to find out 
which intervals on what dimension should be 
merged, we define 

RIF, RIFZ RIFd 
-c--x . . . = - 

11 12 Id 
(1) 

This expression states that the number of intervals 
on a dimension should be proportional to the RlF 
of the corresponding attribute. We define that: 

1 <i<d 

where llcll is the ideal number of records each cell 
should have. For instance, llcll can be selected as: 

IICII = 
disk I/O unit 

tuple size 

for efficient I/O performance. Expression (2) speci- 
fies that we would like the size of each cell to be 
roughly IlCll. Solving expressions ‘(1) and (2), we 
obtain that: 

IIRII 

This is the number of intervals we would like to 
have for dimension i given the relation size IlRll and 
the RIFs of the partition attributes. 

In order to determine if two adjacent intervals 
need to be merged, we need to develop a threshold 
for the capacity of each interval in the dimension: 

The term llRll/li represents an average number of 
records that locate in each interval of the ith dimen- 
sion. q is a coefficient. In a growing database, it is 
unwarranted to merge adjacent int.ervals as soon as 
possible. q should be chosen so as to allow a tem- 
porarily shrinking interval to grow back to a satisfa?- 
tory size. In the related paper [Nie84], the respective 
9 was selected to be 70%. This same number would 
be appropriate for our purpose. By substituting (3) 
into (4), we obtain: 
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- Merge Algorithm 

Form= 1 to d Do 

Repeat-~t~~ Irma I II&Al + IL+ III < &I = 4 
For-n= I to (Zm- I) Do 

c,,= $ . . . 
&l--l ‘In+1 

1 C 
il = 1 im-l=l (,+]=I 

..a f$ (Equal(Pi, ,..., ,,,,-1.~~,+l,... ,ldsf’il,..., ~,-l,n+l.~,+1,..., iJ 
z=A(llc II ,..., ,,-~,n,~,+~.....idl,Il~*,....i,-1..+1.i~+*.....idl) 1; 

Find min such that Cmin = I,“$- jG); 
Fornfmin and l<nsdand~si,sI,Do 

VfllG, ,..., im-~,min,i,+~ ,..., idI 5 IlC, q ,..., im-l,min+i,i,+~ ,..., J 
then Assiw ceu Gl...., fnr-],min,i,,,+1,.... fd to pil ,..., I,-l.min+l.t,,,+l ,..., id 

else Assign Cd G,, . . . . im - 1, min + 1. i,,, + ,. . . . . id to f’. r*, . . . . in - 1, min. im + 1. . . . . id 9 

Fornfmin and Isnsdand lsbsf,Do 

IlC, ,..., i,-l,min,i,+l,..., Jl = IlG, ,..., im-~,min.l,+~ ,..., tdl + IIG, ,..., ~m-~,min+I.i,+~ ,_.., i dl* 9 

For k = min + 1 to (I,,, - 1) Do Rename R,,,,k to R,,,,k _ l; 

I, = Z” -1; 

End-Repeat; 

End-For; 

1 

llR,l(’ -+ > l llcll l n 
d 

RI5 

f3f=tf- 
1 ljrd > 

RI& 
.-.-- (5) 

In the merge algorithm, we merge t.wo adjacent cross 
sections R, and Rig+, if the sum of their number of 
tuples is less then Oi (i.e., llRi,pJl + IlR,, + 111 <Z h’i). 

The main idea of the algorithm is to find a pair 
of adjacent intervals that satisfy the merge condition, 
and whose cost to merge is the least among all merge 
candidates. In each iteration, a pair of such intervals 
is found and merged. The cost of merging two inter- 
vals is determined by the amount of data to be trans- 
ferred. Therefore, for a pair of adjacent cells, if their 
data are currently located in the same PN, the cost 
will be minimum (i.e., 0). The iteration process pro- 
ceeds until none of the adjacent intervals satisfy the 
merge condition. In the merge algorithm, although a 
cell may get reassigned several times to different PNs 
during the computation, the reassignments merely 
represent the states of the computation. The actual 
data transfer needs to be performed only once, after 
the merge algorithm has completed and, preferably, a 
data rebalancing process has been done In other 
words, by comparing the images of the directory 

before and after the application of the merge and 
data rebalancing algorithms, one can determine the 
final destination of the data fragments. In this 
fashion, the partition can be refmed with minimal 
data transfer cost. 

5. AN ESTIMATIOW OF SAVINGS ON LOAD 
BALANCE . 

In this section, we estimate the savings of using 
our algorithm to rebalance the skewed data in PNs 
before a join operation. The estimate is obtained by 
calculating the load rebalance cost and subtracting it 
from the difference of costs of performing join on 
skewed data and performing join on non-skewed 
(uniformly distributed) data. We compute the 
savings for a wide range of skew degrees, and the 
results are compared against two simple algorithms. 
It is interesting that the cost of our proposed load 
rebalancing algorithm is so low that it can be consid- 
ered as a pre-processing phase in performing a join 
operation, if data skew has appeared. fu the fol- 
lowing, we first present an evaluation mc&l. Algo- 
rithms and derivation of cost functions are illustrated 
next. Finally, the results of comparisons and expla- 
nations are described. 
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5.1 Evaluation Model System Parameters 

In the evaluation, we compute the cost of joining 
two relations, R, and R,. For simplicity, we assume 
both of the relations are partitioned on a two- 
dimensional 16* 16 grid. Also, for ease of illustration 
and simplicity in computation, we assume the cells 
in column i are assigned to PN,. Join is performed 
on the attribute on the horizontal axis. The parti- 
tion intervals in this dimension for both R, and R, 
are exactly the same. According to this assumption, 
there will be no need to exchange tuples between 
PNs during the execution of join. Each PN will 
only process its private data. Note that use of any 
other way to assign cells to PNs could not only 
complicate the estimation task but also cause extra 
communication cost for exchanging data. This 
simply increases the join cost which in turn enlarges 
the savings of rebalancing the load before performing 
join operations. Therefore, these assumptions do 
not prejudice our case. 

P: 

Oj$ 

The CPU processing rate in bfIPS. 

The I/O bandwidth between processor 
and secondary storage. 

~COPlZl4 The communication channel bandwidth 
between PNs. 

I C-NJ: The CPU pathlength for processing a 
tuple in any step of query processing. 

Measurement Parameters 

The time cost in seconds for disk 
accesses. 

T COPt4 The time cost in seconds for t.ransferring 
data between PNs. 

T CPU: The CPU cost in seconds for processing 
tuples. 

C(Lc): The total cost of the L,C algorithm 
(given later). 

C(RR): The total cost of the RR algorithm 
(given later). 

In the join operation, we further assume that the 
partitions of R, have data skew, but not those of R,. 
Tuples of R2 are uniformly distributed among the 
cells. Distribution of R, tuples is a step function, in 
which the first column (i.e., data stored in PNI) of 
the grid has data skew with a degree of cr x 100X, 
where u (0 I 0 I 1) is called the degree of skew. In 
other words, the fast column of the cells contains 
0 x 100% more tuples than each of the other 
columns has. Tuples within each cohlmn are still 
uniformly distributed. 

C(RH): The total cost of the Rfl algorithm 
(given later). 

G,,(Jw: The total cost of join execution on 
skewed data. 

C&JI\?: The total cost of join execution on 
uniformly distributed data. 

A set of parameters is designed for cost evaluation. 
The parameters are similar to those used in [L&38] 

Parameters 

l Workload Parameters 

The relation size is assumed to be 1 million 
tuples for each relation. The size of each tuple is 
200 bytes. CPU MIPS of each PN is 20. The 
bandwidth of disk I/O is 5 MBytes/set and that of 
each communication channel among PNs is 10 
MBytes/set. The CPU pathlength for processing a 
tuple in any step costs 500 instructions. 

Finally, note that in the cost computation, the 
split and merge costs will not be considered in any 
algorithms because they are not expected to be per- 
formed frequently in a real-world application. 

IlRll: 

r: 

IICM 

IIWI: 

6: 

The relation size in tuples of both 
relation R, and Rz. 

The size of a tuple in bytes. 

The size of each cell in tuples of the 
skewed (first) column in the directory of 
RI* 
The size of each cell in tuples of the 
unskewed columns in the directory of 
RI- 
The decree of data skew. which is 

llal - IlCl”ll ’ defined as 0 = - 
IICLII - 

5.2 Derivation of Cost Functisns 

In this subsection, we derive cost functions of 
several data rebalancing algorithms. Since the cost 
of our proposed algorithm has been demonstrated to 
be low, it is abbreviated as I,C (Low Cost) algorithm 
hereafter for the sake of convenience. We also give 
two other algorithms, range readjust (RR) and 
rehash (RH) algorithms, and derive their cost func- 
tions. The join costs with and without data skew 
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are also computed. These costs are t.hcn used to 
compute the savings on performing rebalancing on 
skewed data. 

(1) cost of LC Algorithm. 
Recall the LC algorithm presented in Section 3.2 

that at the end of phase II, each PN will retain as 
much private data as possible and the leftover data 
will be distributed evenly to all the PNs. Under the 
skew assumption in Section 5.1, all Cl, cells are 
retained in their current host PNs. Let xl be the 
number of Cl, cells remaining unassigned at the end 
of phase II of the algoirthm. We then have 

During phase III, these cells are assigned to the 
appropriate PNs according to step 5 of the initial 
distribution algorithm. Let x2 be the number of Cl, 
cells that are kept in PN, by phase III. We then 
have 

Assuming the cost of computing the LC algorithm is 
regligeable comparing to the disk I/O’s and data 
transfer cost, we can derive the rebalance cost as 

C(LC) = max t 
(16 - (x, + ~2)) x IlCl,ll x r -- Wi” , 

’ (16 - (xl + x2jj x pxli x r -____- 
Wcomm 

> 

The first term is the cost to load the tuples to he 
transferred, and the second term is the communi- 
cation cost for transferring those tuples. Since these 
two operations can be performed in parallel, the 
maximum of them is counted. Note that the cost to 
store tuples back to disks in the receiving PNs is not 
in the expression because it is identical to the cost of 
loading them in the sending PN, and these two 
actions are performed in parallel. 

(2) Cost of RR algorithm. 
The range readjust algorithm is less intelligent 

than the L,C rebalancing algorithm. In this algo- 
rithm, the rebalance is accomplished by shifting the 
boundaries of the ranges so that data located in each 
partition interval are of equal size. Since we have 
assumed in this particular example that data of each 
column in the directory are mapped to one PN, PN 
load will be balanced when the data sizes of the 
directory cohunns are equal. This algorithm 

- Range Readjust Algorithm ~.------ 

1. Each PN builds in parallel a local tuple dis- 
tribution table which describes the number 
of tuples located within each small pre- 
determined range; 

2. Each PN sends its tuple distribution table to 
a designated coordinator; 

3. After receiving the local tables from all PNs, 
the coordinator finds the new ranges of 
tuples that each PN should contain; 

4. These new ranges are broadcast to all PNs; 
5. Using the newly defined range information, 

each PN checks in parallel if any tuples need 
to be transferred to other PNs. If so, transfer 
them to appropriate PNs. 

achieves that by surveying the current, unbalanced 
tuple distribution in each PN and readjusting the 
range of each PN properly. Tuples not belonging to 
the newly defined range need to be transferrecl to the 
proper destinating PNs. They determine the com- 
munication cost required in this RR algorithm. 
Note that the main difference between this algorithm 
and the L,C algorithm is that repartitioning of tuples 
based on new ranges is required. This is in general 
an expensive step. For ease of understanding, a 
more detailed English-like description of the algo- 
rithm is provided in the box titled “Range Readjust 
Algorithm”. 

There are two main tasks in the algorithm. The 
first task is to load tuples from disk to build a dis- 
tribution table in each PN. The second task is to 
load the tuples that need to be transferred and send 
these tuples to the proper PNs. We have 

C(RR) = 
16 x IlCldl x r 

Wia t 

( 

16 x (IlClsII - Ilcll) x I 
max _. . . _ __ _ 

Wio , 

16 x #XII - II@ x r 
Wcomm 

The first term represents the cost for loading tuples 
from disk to build the dist.ribution table; the second 
term is the cost of loading the affected luples and 
sending them to the proper PNs. The G!‘U time is 
ignored in this expression. The communication time 
for transferring the distribution table and broad- 
casting the new range information is also assumed to 
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be negligible. The derivation of the expression is 
based on the fact that C(RR) is dictated by the bot- 
tleneck PN,, which has skewed data. 

(3) Cost of RI1 algorithm. 
This algorithm solves the data skew problem by 

rehashing tuples in each PN using a new hash func- 
tion. More specifically, when a rebalance of load 
needs to be performed, each PN will load its data 
and hash them into buckets using a pre-determined 
hash function. The number of buckets is identical to 
the number of PNs in the system. We assume that 
the hashing is perfect so that bucket sizes are equal 
within each PN. After the hashing stage, buckets are 
transferred to their corresponding PNs and the load 
of each PN is in perfect balance. Since hashing tech- 
niques are often seen in the literature, we presume 
that readers can figure out the necessary processes 
without a detailed algorithm being provided. 

The cost of this algorithm is derived as follows. 

(4) Cost of Join under Data Skew. 
Since a general hash algorithm is faatcr than the 

other (e.g., sort-merge join and nested-block join) 
algorithms for join operation under most conditions 
[DewX4], we will simply use hash-join as the algo- 
rithm in our performance study. Note that use of 
any slower algorithm will enlarge the savings, which 
is in favor of us as will be seen later, for doing load 
rebalancing. 

As in other papers [Dew86], we separate a join 
operation into two phases: a hash phase and a probe 
phase. In the hash phase, tuples of one relation are 
hashed and a hash table is built. In the probe phase, 
tuples of another relation are used to probe the hash 
table. Satisfied tuples will be selected as result. 
These two phases are performed sequentially. All 
PNs, however, perform each of these two phases in 
parallel. The bottleneck PN is still the one having 
data skew. Since hash-join algorithms are well- 
known, a detailed description is omitted here. The 
join cost is computed below. 

C(RZ-I) = max(Tj,,Tc~~,Tcomm) 

T 16 x IlCLll x lcpu 
CPU = 

P 

T 15 IIRllxr 
C”rnrn = -jg- x - 

Wcomm 

Similar to the previous algorithms, these 
equations are obtained by assuming all PNs perform 
hash in parallel. Thus, the PN that has data skew 
(PN,) causes the bottleneck and dominates the cost 
of the algorithm. In the equations, Ti” is the time 
cost to load tuples from disk for hashing. We have 
assumed that hashed data are stored in a set of com- 
munication blocks, each corresponding to a PN. 
During the hash process, once a communication 
block is full, it is immediately transferred to t.he cor- 
responding PN, not written back to the disk. TQ” is 
the cost of building hash table in memory. T,,, is 
the cost to transfer buckets. Since we have assumed 
that this hash is a perfect randomization process, 
every tuple will have l/l6 possibility to be kept in 
the original PN; or, 1 S/ 16 possibility to be hashed to 
those buckets that will be transferred to other PNs. 
In total, therefore, there are ( 15/16)x ]]A]] tuples 
transferred from their original PN to other PNs. 

7’horh = maX( Thorh_io.Tho,hmcpu) 

T hash_io = 2 X 
16 x ]]Cl,]] x f 

Wio 

,- 16 :~ ll(~4l x r ~. 
(I'i. 

T 16 x IICLII x ICPU + 16 x ]]C2,,]] x zcpu 
hash_cpu = 

-_-___ 
P 

T proba = maX( Tprak.io.Tprona_=pu) 

T 
16 x ]]Clr]] x r 

probbr_io = 
Wio 

+ 16 x IlCLll y r 
Wio 

T 
16 x ]]Cl~]] x ZCFU + 16 x ]]CrrU]] x ZCPU 

probc_cpu = 
--~- 

F 

(5) Cost of Join Without Data Skew. 
In this case, since the size of each cell in the 

directory is equal to ]]C2,]] for both relations, the cost 
of join can be obtained by replacing ]]Cl,]] of 
C&,#(ZN) with ]]C2.]]. The result is as follows. 

where “unit’ stands for uniform distribution. 
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Tmecpu = 16 x Ilc2yll x ICPO + 16 x ll~ull x ICPU ----- 
P 

T 
16 x IlCLII x r 

probe-h = 
16 x IICUI x r : -- 

mie Rio 

T 
16 x IlnUll x bw + 16 x IlCZtII x ICPU 

probe-cpu = 
--- 

P 

5.3 Comparisons And Explanation 

Figure 6 shows the cost (in seconds) of per- 
forming various rebalancing algorithms versus the 
degree of data skew cr. The result shows that the LC 
algorithm is consistently the one of least cost among 
various algorithms. The RI-1 curve shows a constant 
cost within a wide range of u, because T,,, term 
dominates C(R7I) for medium and small o’s, and 
T wmm does not vary with u. Only when the degree of 
skew is extremely large will the T, be petformed 
mostly in one PN so as to dominate C(RH). The 
RR algorithm performs better than RIJ when Q is 
not too high. This is because both the 7’i, and T,,, 
in C(M) are low for small 0. When cr is high, the 
cost for building the distribution table in the data 
skew PN swamps the algorithm’s performance. 

Another curve shown in Figure 6 is the effect of 
skew, which is defined as Crt&hr) - Cu.&./N). This 

is the extra cost in the execution of join under data 
skew. Savings can be accordingly defmed a:; follows: 

savings = (C,,.,(JiV) - C&JN)) - C(mhalunce) 

where C(rebalunce) is the cost of rebalance. There 
will be positive savings if a curve of rebalancing cost 
is under the curve of skew effect. As shown in 
Figure 6, the proposed LC algorithm will always 
provide some savings for a join operation. RR 
cannot provide any savings until 0 is larger than 
0.55. Similarly, RH can provide saving:; only if u is 
greater than 0.76. Note that because LC algorithm 
consistently provides savings, it can be used as a pre- 
processing step before a join on skewed data. 

0.1 03 OJ 0.4 0.6 0.0 0.7 0.0 OJ 1.0 
Degree of doto skew 

mi RR lc . . . . . . . . . . . . . . -- skmv> 

igure 6. Cost comparison of various rebalancing strate 
gies and skew effect on JOIN 

6. COWCLUSION AND EXTERSIOH OF THIS WORK 

In this paper, we present a data-to-processor 
mapping and an adaptive load-balancing scheme 
within a multi-processor environment. Details of the 
algorithms are presented. Our scheme adopts the 
well-known grid file concept. However, we have 
extended the concept to the allocation of data on 
processors, in addition to the originally proposed 
idea for data partitioning. We also propose an adap- 
tive threshold and a way to measure the proper 
number of intervals in each grid dimension, under a 
changing environment, for grid split and merge proc- 
esses. More importantly, application of our scheme 
is not limited to the original grid file only. We 
choose the traditional grid fde simply for the ease of 
presenting our idea. Any similar grid file structures, 
such as [Kit89. Kri88] can be used to implement the 
proposed scheme. 

We have also evaluated the load-rebalance costs 
of the proposed scheme and two other less intelligent 
schemes. The result shows that the proposed 
scheme can always provide some savings for join 
under any degree of data skew. This suggests that 
the algorithm can be used as a pre-processing phase 
in performing a join operation. For the other 
schemes, rebalancing is worth being perlormed only 
under medium or high degree of skew. 

Currently, we are working on some extensions of 
this research. First, a more complex evaluation 
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model for performance comparison needs to be 
designed to provide more accurate estimation of the 
savings of the rebalancing process. Secondly, WC 
have assumed in this research that for each tuple, the 
probability of being accessed by queries,/transactions 
is identical. This probability can be obt:lirled by col- 
lecting statistical information from query/transaction 
processing. IIowever, it may be more practical to 
collect statistics for each block of data (,or a cell of 
tuples in our case) rather than for each tuple. An 
open issue is whether to dynamically balance PN 
load during run time by giving the access probability 
for each cell and the cell sizes. The issue can be 
further generalized to consider the multiple join cast, 
in which rebalancing the load for each join operation 
may not give a better performance than only rebal- 
ancing the load for some joins (a typical local 
optimum vs. global optimum issue). This is due to 
the fact that the accumulated overhead for rebal- 
ancing processes can be high. Also, the problem can 
be more complex if the number of PNs a.vaiiable for 
each join is different. 
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