
Hybrid-Range Partitioning Skate y: A New
Deelustering Strategy for Multiprocessor 8 atabase Machines

Shahram Ghandeharizadeh
David J. Dewitt

Computer Sciences Department
University of Wisconsin - Madison

Madison, WI 53706

ABSTRACT - In shared-nothing multiprocessor database
machines, the relational operators that form a query are executed
on the processors where the relations they reference are stored. In
general, as the number of processors over which a relation is
declustered is increased, the execution time for the query is
decreased because more processors are used, each of which has to
process fewer tuples. However, for some queries increasing the
degree of declustering actually increases the query’s response
time as the result of increased overhead for query startup, com-
munication, and termination. In general, the declustering strategy
selected for a relation can have a significant impact on the overall
performance of the system. This paper presents the hybrid-range
partitioning strategy, a new declustering strategy for multiproces-
sor database machines. In addition to describing its characteris-
tics and operation, its performance is compared to that of the
current partitioning strategies provided by the Gamma database
machine.

1. Introduction
In shared-nothing [STON86] multiprocessor database

machines, the use of parallelism for all types of queries is not
necessarily a good idea [COPE88]. In particular, when the over-
head associated with using parallelism to execute a particular
query begins to constitute a significant fraction of the execution
time of the query, the overall throughput of the system will actu-
ally be higher than if fewer processors are used. On the other
hand for those queries that consume significant CPU and I/O
resources, the overhead associated with using parallelism is no;
significant. In this case, additional processors can be used to
improve the response time without adversely affecting the
throughput of the system. In addition, the sequential execution of
such queries on a single processor may result in the formation of

This research was partially supported by the Defense Advanced
Research Projects Agency under contract NOGO39-86-C-0578, by the Na-
tional Science Foundation under grant DCR-8512862, by a Digital Equip-
ment Corporation External Research Grant, and by a research grant from
the Tandem Computer Corporation.

Permission to copy without fee all or pan of this material is granted
provided that the copies are not made or distributed for direct commerical
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise. or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

hot spots in a multiuser environment. Clearly, the strategy used to
decluster each relation in such an environment can have a
significant impact on the overall performance of the system.

Garmna [DEWI90] currently provides the database administra-
tor with three alternative declustering strategies when creating a
relation: round-robin hashed, and range partitioned. With the
first strategy, tuples are distributed in a round-robin fashion
among the disk drives. If the hashed partitioning strategy is
selected, a randomizing function is applied to the key attribute of
each tuple to select a storage unit. In the third strategy, the user
specifies a range of key values for each processor. The partition-
ing information for each relation is stored in the database catalog.
For range and hash partitioned relations, the name of the partition-
ing attribute is kept and, in the case of range partitioned relations,
the range of values of the partitioning attribute for each processor
(termed a range table) is also stored. .

With the round-robin declustering strategy, the degree of
&a-query parallelism is equivalent to the number of disks that
the relation is &clustered across. The hash and range decluster-
ing strategies both provide enough information so that the execu-
tion of exact match queries on the partitioning attribute can be
localized to a single node. However, in the case of a selection
with a range predicate on the partitioning attribute (e.g., 10 <
employee.age < 30), while the range declustering mechanism can
localize the execution of the query to only those processors that
contain relevant tuples, the hash declustering strategy must direct
such queries to all the processors (like the round-robin decluster-
ing strategy). If the execution time of such range queries is small,
using only l-2 processors is optimal. However, if the query con-
sumes significant CPU and I/O resources, its response time will
be higher with the range declustering strategy than with the hash
and round-robin strategies.

In this paper we describe a new declustering strategy termed
the hybrid-range partitioning strategy (HRPS). Unlike the
other declustering strategies, the HRPS utilizes the characteristics
of the queries that access a relation to obtain the appropriate
degree of intra-query parallelism. ln particular, the HRPS strikes
a compromise between the sequential execution paradigm of the
range declustering strategy and the load balancing/intra-query
parallelism characteristics of the hash and round-robin decluster-
ing strategies.

With the hybrid-range declustering strategy a relation is
declustered into many small logical fragments such that each frag-
ment contains a distinct range of the partitioning attribute value
(the number of fragments is independent of the number of

481

processors in the configuration). As we will demonstrate below,
this allows the optimizer to execute range queries with miniial
resource requirements on a single processor while directing CPU
and/or I/O intensive queries to a large number of processors. A
central issue to the successful application of the HRPS, is deter-
mining how many tuples each Fragment of a relation should con-
tain. In Section 3, we develop a methodology to answer this ques-
tion by taking into account the following four factors:

(1) The resource requirements of the queries accessing the
relation,

(2) The processing capability of the system,

(3) The overhead of using each additional processor to exe-
cute a query

(4) The cost of searching the range table constructed by the
hybrid-range declustering strategy.

The last factor is very important because it allows the hybrid-
range declustering strategy to degenerate into the range decluster-
ing strategy for those queries with such small execution times that
the time to search the range table becomes significant (e.g., a
Debit-Credit transaction).

The remainder of this paper is organized as follows. In Sec-
tion 2 we describe related previous work . Section 3 describes the
hybrid-range partitioning strategy. The description of the work-
load and the research vehicle used for evaluating the performance
of this partitioning strategy are presented in Sections 4 and 5,
respectively. The performance of the hybrid-range partitioning
strategy is compared with the range and hash partitioning stra-
tegies in Section 6. Section 7 enumerates the other advantages of
the hybrid-range partitioning strategy. Our conclusions appear in
Section 8.

2. Related Work
There have been a number of earlier studies of the problem of

file distribution in multiprocessor database machines. Some have
proposed new declustering strategies [DU82. KIM88, COPE88,
PRAM89], while others have analyzed the impact of alternative
declustering strategies [LIVN87, GHAN90]. Studies that are con-
cerned with the multi-disk architecture [DU82, LIVNS’I] are dif-
ferent and not directly relevant to this study. In order to make this
distinction clear, we use the two dimensional file system of the
XPRS shared-memory multiprocessor database management sys-
tem [STON88] as an example. XPRS uses a disk array for mass
storage (based on the RAID design [PATT88]). It supports intra-
query parallelism by fragmenting a single relation into multiple
files. Like range declustering in Gamma, each relation is Erag-
mented using a distribution criteria [STON88], e.g.:

EMP where age < 20 to file 1
EMP where age >= 20 and age <= 40 to file 2
EMP where age > 40 to file 3

Furthermore, each file is organized as a number of extents. In
traditional file systems, an extent corresponds to a sequential
number of blocks on a disk drive. In XPRS, each extent is two

dimensional: one dimension corresponds to the number of disks
that contain an extent (Wi) while the second dimension
corresponds to the number of tracks on each disk (Si). The choice
of Wi and Si is suggested by the application software [STON88].

In an environment similar to that of XPRS, the hybrid-range
declustering strategy would determine the appropriate number of
files a relation must be fragmented into and not the values of Si or
Wi since the hybrid-range declustering strategy attempts to deter-
mine the appropriate degree of intra-query parallelism for the set
of queries that access the relation. Determining the values of Wi
and Si is a separate problem with a different set of constraints that
is beyond the scope of this paper.

[KIM88, PRAM891 presented an optimal file declustering stra-
tegy for partial match retrieval queries. The major contribution of
this study was the development of a new approach termed FX dis-
tribution which maximizes data access concurrency in the pres-
ence of partial match queries. A limitation of FX distribution is
that it does not provide support for range queries.

[COPE881 examined the problem of data placement in Bubba
[ALEX88, BORA88]. This study introduced concepts such as
Heat and Temperature which are crucial to understandmg the
issues relevant to the problem of data placement. However, the
major thrust of thii study was to maximize the throughput of the
system. In order to achieve this objective, this study focused on
two issues: 1) balancing the load across the nodes in the environ-
ment, and 2) whether to place the data on disk or cache it per-
manently in memory. Due to the complexity of the problem
(NP-complete), a heuristic approach was used to solve the prob-
lem. Thii study did not consider the impact of alternative declus-
tering strategies on the throughput of the system. In addition, the
algorithms presented in [COPE881 do not attempt to minimize the
response time of a transaction.

This paper differs from all of these earlier efforts in that it
describes a new declustering strategy that utilizes the characteris-
tics of the queries that access a relation to decluster it such that
the appropriate degree of intra-query parallelism is obtained for
the queries in the workload.

3. The Hybrid-Range Partitioning Strategy (HRPS)
The HRPS declusters a relation into fragments based on the

following criteria: 1) each fragment contains approximately FC
tuples and 2) each fragment contains a unique range of values of
the partitioning attribute. The variable FC is determined based on
the processing capability of the system and the resource require-
ments of the queries that access the relation (rather than the
number of processors in the configuration). This variable is
described further in Section 3.1.

By declustering a relation using the HRPS, the number of pro-
cessors that participate in the execution of the queries in the work-
load is optimized, resulting in a lower average response time and
a higher average throughput when compared with the previous
declustering strategies. The HRPS locaiizes the execution of
those queries that have minimal resource requirements to a few
processors while directing queries with high resource require-
ments to a large number of processors. Furthermore, it provides

482

effective support for small relations and relations with a non-
uniform distribution of the partitioning attribute values. A major
underlying assumption of this partitioning strategy is that the
selection operators which access the database retrieve and process
the selected tuples using either a range predicate or an equality
Predicate.

Below, we will expand on this brief description and address
the issues involved. We will describe the HRPS in the context of

a mixed workload consisting of n selection queries’. For each
query Qi, the workload defines the CPU processing time (CPU,),
the Disk Processing Time (Diski), and the Network Processing
time (Neti) of that query. Observe that these times are determined
based on the resource requirements of each individual query and
the processing capability of the system. Each query retrieves and
processes (TuplesPerQi) tuples from the database. Furthermore,
we assume that the workload defines the frequency of occurrence
of each query (FreqQi).

Rather than describing the HRPS with respect to each query in
the workload, we deline an average query (Q,,) that is represen-
tative of all the queries in the workload. The CPU, disk and net-
work processing quanta for this query are:

CPU,, = &CP(I, * FreqQi)
i=O

DiskA, = i(Diski * FreqQi)
i=O

Net,,, = fJNeti * FreqQ,)
i=O

TuplesPerQA, = k(TuplesPerjZi * FreqQi)
i=il

We will use this query throughout our discussion. In Section 3.3,
we will expand the presentation of HRPS to include each indivi-
dual query within the workload.

3.1. Computing the Number of Processors to Decluster
a Relation Across

The three principal resources consumed during the execution
of Q,,% are: 1) CPU, 2) disk l/O , and 3) communications. The
amount of each is dependent on the processing capability of the

t In this paper we concentrate on how to obtain the appropriate de-
gree of intra-query parallelism for a selection operator using an index. We
do not consider selection operators that sequentially acan a file because
[GHAN901 demonstrates that the range dcclustering strategy is the best
partitioning strategy for this query type. The major reason for considering
only the selection operator is that it is found in almost all query plans.
Furthemtore, it has a significant impact on the performance of a complex
query as, if the declustering strategy cannot provide the appropriate degree
of intra-query parallelism for a selection operator, the performance and de-
gree of intra-query parallelism of the other operators may be severely lim-
ited. This is especially true for database machines that data flow tech-
niques to execute complex queries. There is nothing restricting the model
from being extended to correspond to a mot-c ccmplex query plan.

system and the resource requirements of the query. Assume that a
single processor cannot overlap the use of two resources for an

individual query’. Thus, the execution time of QA, on a single
processor in a single user environment is:

ExecutionTime = CPU,, + Disk,, + Net,, (1)

As additional processors are used to execute the query, the
response time of the query decreases. However, the overhead
associated with using an additional processor must be incurred
(we term this variable CP). This overhead is primarily in the
form of additional messages to control the execution of the query
on additional processors and is a function of the number of pro-

cessors used.3 For the purposes of this paper we have assumed
thii overhead to be a linear function of the number of processors
since this is the case for Gamma.

The response time (Rr) of a query in terms of the number of
processors (termed M) used to execute it can be defined as fol-

lows:4

RT(M)=
CP(/,, + Disk,, + Net,.,,,

M
+M*CP (2)

The first goal in declustering a relation using the HRPS is to
decluster a relation across M processors in order to minimize the
response time for the query. Setting the lirst derivative of the
function RT (M) to zero one can solve for desired value of M:

(3)

lf the relation is declustered across M processors (where M is
rounded to the nearest integer), the response time for QA, will be
minimized.

While partitioning a relation across A4 processors minimizes
the response time for QA, in a single user environment, it does
not necessarily maximize the throughput of the system in a mul-
tiuser environment. For example, assume that M = 1 (i.e., that the
resource requirements of the queries in the workload are minimal)
and that the selection predicate of each query is applied to the par-
titioning attribute. Consider also the performance of the system
when the relation is declustered across N processors (say N = 5)
using the range partitioning strategy. The range partitioning stra-
tegy, by its nature, will direct the queries in the workload to a sin-
gle processor most of the time. Consequently, the average
response time of query in a single user environment is almost the
same for both partitioning strategies. However, in a multiuser
environment, the range partitioning strategy will distribute the
concurrently executing queries among all five processors, while

a The justification for this assumption is provided in Section 3.3.
a The algorithm used to schedule and commit a multi-processor

query defines this function. For example, if a tree activation protocol is
used, this function will be logarithmic in the number of processors pattici-
pating in the execution of the query. (where the base of the log is the
branching factor of the tree).

4 The linear spccdup results presented in [DEW1901 justify this as-
sumption.

483

the HRPS will always direct them to a single processor. Thus, the
throughput of the system will almost certainly be higher with the
range partitioning strategy.

HOW can the throughput of the system be maximized? The
solution is to change the interpretation of M. Instead of M
representing the number of processors over which a relation
should be declustered, M is used instead to represent the number
of processors that should participate in the execution of QA,.
Since Bw processes TuplesPerQA, tuples, each fragment of the

relation should contain FC =
TuplesPerQA,

M
tuples. Further-

more, each fragment must contain a distinc& non-overlapping
range of the partitioning attribute value.

3.2. Creation of the Fragments and Assignment of the
Fragments to Processors

In order to guarantee that each fragment of a relation contains
a distinct range of values of the partitioning attribute, the relation
must first be sorted on the partitioning attribute. The relation can
then be declustered such that each fragment contains approxi-
mately FC tuples. Finally, the fragments are distributed among
the processors in a round-robin fashion, insuring that M adjacent
fragments will be assigned to different processors (unless N, the
number of processors, is less than M). At each processor all the
fragments of a particular relation are stored in the same physical
file. The assignment of fragments to processors is maintained in a
one dimensional directory termed a range table. This simple
heuristic results in the participation of at least M processors and at
most M + 1 processors in the execution of the query

Since Cardinality (Rel)
FC

may be greater than N, each proces-

sor may contain more than one fragment of the relation. While
this may appear both wasteful and/or unnecessary, it is actually a
desirable property since it insures the participation of an optimal
number of processors in the execution of Q,,=.

In order to contrast the HRPS with the other partitioning stra-
tegies, consider the following example. Assume a 10,000 tuple
relation with unique values for the partitioning attribute ranging
from 0 to 9,999 and that the “average” query accessing this rela-
tion uses a range predicate on the partitioning attribute to retrieve
and process 500 tuples (TuplesPerQ = 500). Also, assume that
the optimal performance is achieved when 5 processors are used
(M = 5). Thus, the cardinality of each fragment is 100 tuples
(Fc = TuplesPerQ

M
= 100) and the relation will be partitioned

into 100 fragments. Finally, assume that the alternative partition-
ing strategies decluster the relation across all the processors.

First, consider the case where N, the number of processors is
equal to 5 (Figure 1.a). Since the HRPS assigns the fragments of
the relation in a round-robin fashion among the processors, the
query will overlap either 5 or 6 fragments. In either case, all the
processors will be used to execute the query. The hash partition-
ing strategy will also use all N processors since it cannot localize
the execution of a range query. The range partitioning strategy
will also decluster the relation into 5 fragments. Since the range
of a query falls within a range of a single fragment most of the

time and overlaps the range of two fragments some of the time,
the query will be. directed to either 1 or 2 processors.

When N, the number of processors is less than M (see Figure
l.b), the HRPS will still use all N processors in the execution of
the query because it enforces the constraint that the M adjacent
fragments be assigned to different processors whenever possible.
Conversely, the range partitioning strategy in this case declusters
the relation into 2 (i.e., N) fragments, significantly increasing the
probability of a query being directed to only one processor.

In the final case, N > M (Figure l.c), the HRPS will distribute
the 100 fragments of the relation across all N processors in order
to insure that all available resources are used in order to maximize
the throughput of the system when executing multiple queries
concurrently. However, since the range of a query will overlap
only 5 or 6 fragments, each individual query is localized to almost
the optimal number of processors. Conversely, the hash partition-
ing strategy will send the query to all N processors, incurring the
startup, communication, and termination overheads associated
with executing the query on more processors than absolutely
necessary. The range partitioning strategy will again execute the
query on only 1 or 2 processors, again using less than the optimal
number of processors.

3.3. Discussion
One simplifying assumption that we have made is that a query

does not use multiple resources on a single node simultaneously.
This is not a realistic assumption. For example, Gamma uses a
read-ahead process to overlap disk and CPU operations. Our
justification for this simplification is that in a multiuser environ-
ment, the probability of overlap within a single query is fairly low
since the total number of resources is relatively small compared to
the multiprogramming level. Thus, while one query is consuming
one of the resources (e.g. the CPU), it is highly likely that other
queries will be consuming the other resources.

For each relation, the HRPS creates a one dimensional direc-
tory that specifies the range of each fragment and the mapping of
fragments to processors. In the worst case, the FC of each frag-
ment will equal one (i.e., the number of entries in the directory
will equal the cardinality of the relation). This might be reason-
able if the resource requirements of the query are extremely high
(e.g., image processing). However, if they are very low, the over-
head of searching the one dimensional directory might become a
significant fraction of the query’s execution time. Thus, this over-
head must be considered when determining the size of each frag-
ment. The number of entries in the one dimensional HRPS direc-

tory is
M * Cardinality (Rel)

TuDlesPerO ’
If a lookup in this directory is

performed using’ a linearsearch, the response time of the query is
defined by the following equation:

RT(M)=
CPU +Disk+Net + M * cp

M

+ M * Cardinality (Rel) * CS
TuplesPerQ

484

hybrid-range

range

hybrid-rangt

range

s

I
I

:

9

I 3
o-

99

loo-199 200-299 300-399 400-499
. . . .
. . . .

96oot9699 97oof9799 98oof9899 9900:9999

a. M=N b. M>N

100-199 200-299 300-399 400-499 500 - 599 600 -699
l

91;9199 92oof9299 93OOf9399 94OOT9499 95;9599 9600~969l

c. M<N

Figure 1

where CS represents the overhead associated with searching a sin-
gle entry in the directory. Hence, the number of processors used
to execute the query is specified by the following formula:

I

M= CPU + Disk + Net
Cp + Cardinality (Rel) * CS (4)

TuplesPerQ

If a binary search algorithm is used instead to process accesses to
the HRPS directory, M becomes:

E),+ (4 * CP * (CPV+Disk+Net))
2*cp

Thus far, we have described how the HRPS declusters a rela-
tion with respect to the resource requirements of a,. We now
expand our discussion and consider the A individual queries that
constitute the full workload for a relation. In this case, the
response time RT (M) becomes:

n CPV,+Disk,+Net,
RT(W= CC M + M * CP) * FreqQi (5)

i=O

and the FC for each fragment is:

900-999
.
.

,9900:9999

l---i cl
9ooo-

999

I

x(TuplesPerQi * FreqQ&
:--o

. - . I

M

In Section 6, we will compare the performance of the HRPS with
that of the range and hash partitioning strategies. First, we will
describe the workload and the research vehicle used for this per-
formance analysis.

4. Workload Definition
We utilized a multiuser workload to evaluate the performance

of the hybrid-range partitioning strategy since the response time
of a query and the processing effort of the system required to exe-
cute the query with each of the alternative partitioning strategies
are not necessarily correlated. For example, consider the execu-
tion of a 1% range selection query that is executed using a
clustered index and whose predicate is applied to the partitioning
attribute. While the hybrid-range partitioning strategy directs the
query to a subset of the processors, the hash partitioning strategy
directs the query to all the processors. Consequently, more
resources will be consumed when the hash partitioning strategy is
used than when the hybrid-range partitioning strategy is
employed. However, the response time of the query will almost
certainly be identical for both declustering strategies since the
overhead of the extra control messages is small compared to the
overall execution time of the query. In such a situation, the mul-
tiuser throughput of the system will reveal the tradeoffs associated
with the different execution paradigms.

For our performance evaluation, we used a database consisting
of 10 relations. Each relation was based on the Wisconsin Bench-
mark relations [BI’IT83] but contained one million 208 byte

485

tuples. A uniform distribution of access to the different relations
was used.

We choose three query types for this performance evaluation.
In order to justify their selection consider Figure 2. In this figure,
space A represents the domain of alI possible queries. The region
marked “Range” represents the region in space A for which the
range partitioning strategy provides the best response time. These
queries primarily consist of queries whose execution requires
minimal CPU and I/O resources since the range partitioning stra-
tegy localizes their execution to a single processor and avoids the
overhead associated with a multi-processor query.

Figure 2

The area marked “Hash” represents the query types for which
the hash partitioning strategy provides the best response time pos-
sible. Ignoring the shaded area for now, this region consists of
queries with high resource requirements since the hash partition-
ing strategy directs such queries to all the processors, thus utiliz-
ing intra-query parallelism effectively to obtain the best possible
response time.

These two regions (again ignoring the shaded area) are disjoint
since the range partitioning strategy does not perform as well as
the hash partitioning strategy for queries with high resource
requirements and, similarly, the hash partitioning strategy does
not perform as well as the range partitioning strategy for queries
with minimal resource requirements.

The shaded region represents those selection queries with an
equality predicate on the partitioning attribute that have minimal
resource requirements. Both the range and hash partitioning stra-
tegies can localize the execution of such queries to a single pro-
cessor.

In order to demonstrate that the HRPS is generally a better
declustering strategy, we must show that it covers a region in
space A that largely subsumes both regions marked “Range” and
“Hash”. Note that we do not have to consider all the different
queries that might occur in either the “Range” or the “Hash’
region in order to achieve this objective. Rather, we must demon-
strate that the HRPS provides approximately the same level of
performance as:

l the range declustering strategy for queries with low
resource requirements

l the hash partitioning strategy for queries with high
resource requirements

0 both partitioning strategies for queries with an equality
predicate and minimal resource requirements.

Finally, in those cases where the mix of queries have conflicting
partitioning requirements, we must demonstrate that the HRPS
provides better performance than both the hash and range parti-
tioning strategies.

For a query with minimal resource requirements, we chose a
0.001% range selection on a 1 million tuple relation using a
clustered in&x. This query retrieves and processes 10 tuples. Its
single processor, single user execution time is 0.08 seconds on
Gamma. For a query with high CPU and I/G requirements, we
selected a 10% range selection on a 1 million tuple relation using
a clustered index. This query retrieves and processes 100.000
tuples and has an execution time of 54.33 seconds. The third
query type is essentially redundant since it is a special case of the
first class of queries (0.001% selection query). As long as the
hybrid-range partitioning strategy performs as well or better than
the range partitioning strategy for the 0.001% range selection
query, it has automatically satisfied the execution requirements of
queries with an equality predicate and minimal resource require-
ments.

In order to demonstrate the superiority of the HRPS in those
cases where the mix of queries have conflicting partitioning
requirements, we chose a workload consisting of a mix of the
0.001% and 10% selection queries. Note that while the execution
of the 0.001% selection must be localized to a single processor to
minimize its execution time, the 10% selection should be exe-
cuted by all the processors. Two cases were considered. In the
lint, we used an equal mix of both query types and varied the
multiprogr amming level. In the second, we fixed the multipro-
gramming level at 50 and varied the mix of the two query types.
As we will demonstrate in Section 6, the HRPS provides superior
performance in such situations.

5. Overview of the Gamma Database Machine
In this section, we present a brief overview of the Gamma

database machine.5 Gamma currently runs on a 32 processor
iPSC/2 Intel hypercube [INTE88]. Each processor is configured
with an Intel 80386 processor, 8 megabytes of memory, and a 330
megabyte MAXTOR 4380 (5 l/4”) disk drive. Gamma is built
upon a custom operating system that provides lightweight
processes with shared memory. File services in Gamma are based
on the Wisconsin Storage System (WiSS) [CHOUSS]. These ser-

vices include structured sequential files, B’ tree indices, byte
stream files as in UNIX, long data items, a sort utility, a scan
mechanism, and concurrency control based on file and page lock-
ing.

Each disk drive has an embedded SCSI controller which pro-
vides a 45K byte RAM buffer that acts as a disk cache on read
operations. In a single user environment, the SCSI cache speeds

’ For a complete description of the Gamma database machine see
[DEWI90].

486

up the execution of sequential scan queries by almost a factor of
two. However, in a multiuser environment, its effect is minimal
because the probability of two disk successive accesses being
sequential is quite low. Furthermore, a disk request that results in
a seek completely invalidates the contents of the cache. In the fol-
lowing section, we will repeatedly see the impact of this cache on
the performance of the different selection queries.

For the performance evaluation presented in the following set-
tion, a 24 processor instantiation of Gamma was used. The
remaining 8 processors in the hypercube were used to simulate
users submitting queries6 Each node in Gamma was configured to
use 8K byte disk pages and a buffer pool of 2 megabytes. The
disk scheduler uses an elevator algorithm [TEOR72]. The buffer
pool replacement policy is LRU.

6. Performance of Alternative Declustering Strategies
In this section, we evaluate the performance of the alternative

declustering strategies using the workload described in Section 4.
The alternative partitioning strategies declustered the relations
across all the processors. The range and hash partitioning stra-
tegies distributed the tuples of each relation uniformly across the
24 processors, while the HRPS resulted in an approximately uni-
form distribution of the tuples across the processors. Before
proceeding to the performance evaluation itself, we first must
describe the execution paradigm for each of the alternative parti-
tioning strategies.

In Figure 3, the BM process acts as a terminal generating
queries which it submits to Gamma for execution. For each new
query, the BM process randomly selects one of the 10 relations in
the database and randomly generates a predicate for the selection
query (both using a uniform random number generator). As
described in Section 1, the Gamma query optimizer utilizes the
information provided by the range, hash, and hybrid-range parti-
tioning strategies in order to limit the number of processors to
which each query is sent whenever possible.

As shown in Figure 3.b, when a query must be executed by
multiple processors, it is first sent to a Query Manager (QM) pro-
cess which assumes responsibility for its execution. The QM pro-
cess sends the query to each processor that the query optimizer
has indicated should participate in its execution. When each pro-
cessor finishes executing the query, it sends a “query done” mes-
sage back to the QM process. If the QM receives a “query done”
message from each processor, it sends a “commit” message to
each processor and closes all of the communication ports.
Finally, it notifies the process that submitted the query of its suc-
cessful execution. If, on the other hand, the query is aborted at a
processor (generally because of a concurrency control deadlock)
that processor sends an “abort” message to the QM. The QM, in
turn, sends an “abort” message to each participating processor and
then notifies the process that submitted the query. On the other

6 Communications between the hypercube and the Unix machine to
which it is attached is too slow to allow a significant workload to be
placed from the outside.

Start Query Query Done

0 CPU

a. Single Processor Query

Private Port

CPU

ii
1

. . .

. l .

b. Multi-Processor Query.

Figure 3

hand, queries that execute on only a single processor are sent
directly to the proper processor for execution, bypassing the QM
process (see Figure 3.a). As illustrated by Figure 3, significantly
fewer messages are required to control the execution of a single
processor query, and as we will see, this difference has a
significant effect on the performance of the alternative partition-
ing strategies.

The benchmark process (BM) and the query manager process
(QM) are two independent entities that are generally located on
different processors, but they were placed on the same processor
for these experiments. In order to simulate multiple concurrently
executing users, one BM and one QM process was employed for
each user. Eight processors were used for running the BM and
QM processes in order to avoid a bottleneck from forming. For
all the experiments presented below, we ensured that the CPU
utilization of each of these 8 processors was less than 100%.

We measured CostOfPart, the overhead of using each addi-
tional processor to execute a query, to be 26 milliseconds in
Gamma. Since operators are scheduled and terminated sequen-
tially, the total overhead is a linear function of the number of par-
ticipating processors. For the range and the hybrid-range parti-
tioning strategies, the optimizer utilizes a binary search algorithm
to search the range-table to determine which processors should
participate in the execution of a query. We measured the over-
head of searching the range table and initializing the query packet
(i.e., CostGfSearch) to be 0.243 milliseconds per range table

487

entry. These parameters are used by the HRPS to determine the
number of fragments for a given relation and the cardinality of
each fragment.

In the following sections, when we refer to the performance of
a specific partitioning strategy for a particular type of query, we
are implying that the selection predicate of the query is applied to
the partitioning attribute.

6.1. 0.001% Selection Using a Clustered Index
With a clustered index, the order of the values in the B-tree

corresponds to the order of the data records in the relation. Two
types of disk requests are made by the range selection queries that
use a clustered index structure: random and sequential. The
traversal of the B-tree to locate the upper and lower limits of the
query with respect to the actual data records is random, while the
retrieval of data records between the lower and upper limit mark-
ings is sequential. In Figure 4, the throughput as a function of the
multiprogramming level of a 0.001% selection query using a
clustered index is presented for each of the alternative decluster-
ing strategies.

The execution time of this query using a single processor is
0.08 seconds. Using equation (4) (and the values of CostOf-
Search and CostOfPart from the previous section), the value of M
for this query was calculated to be 0.057 and hence only a single
processor should be used. The HRPS will decluster each million
tuple relation into 5,700 fragments with approximately 175 tuples
per fragment. Since there are more fragments than processors, the
fragments are distributed in a round-robin fashion among the pro-
cessors.

Throughput (Queries/Second)

360,

324.

288 *

216.

180.

144.

108.

72-

A Hash Declustering

o Range Declustering

+ Hybrid-Range Declustering

36 I!

0 16 32 48 64 80 96 112 128 144 160
Multiprogramming Level

Figure 4: 0.001% Selection

While the optimizer has enough information for the hybrid-
range and range declustering strategies to localize the execution
of this query to 1 or 2 processors, since the query involves a range
predicate, the hash partitioning strategy must direct this query to
all the processors. Consequently, at a multiprogramming level of
one, the throughput with the range and hybrid-range declustering
strategies is almost eight times higher than that of the hash parti-
tioning strategy since the hash partitioning strategy incurs the
overhead associated with a multi-processor query. At a multipro-
gramming level of 20, the CPU of each individual processor
becomes 100% utilized causing the throughput of the system to
level off.

With the range and hybrid-range partitioning strategies, one
might have expected the throughput to increase linearly from a
multiprogramming level of one to twenty four. However, begin-
ning around a multiprogramming level of 12, the increase in
throughput is no longer a linear function of the multiprogramming
level. This is primarily because the random nature of the work-
load cannot guarantee a perfectly uniform distribution of the con-
currently executing queries among the processors. For example,
while 24 processors are being used, at a multiprogramming level
of 12 two or more queries may be executing concurrently on a
single processor because their randomly generated predicates may
overlap [GHAN90].

The throughput with the range and hybrid-range partitioning
strategies is almost identical at all multiprogramming levels (the
maximum difference is less than 2.5%) because both partitioning
strategies localize the execution of the query to a single processor
most of the time. While the hybrid-range partitioning strategy
must search a significantly larger directory (5700 instead of 24
entries) the execution time of the query is high enough to render
this overhead insignificant.

It is essential to observe the impact of the overhead associated
with a multi-processor query. At a multiprogramming level of
160, the throughput for the range and hybrid-range partitioning
strategies is thirty times higher than that of the hash partitioning
strategy. Finally, as these results demonstrate the hybrid-range
partitioning strategy performs as well as the range partitioning
strategy for queries with minimal resource requirements.

6.2. 10% Selection Using a Clustered Index
The throughput for the alternative declustering strategies for a

10% selection using a clustered index is presented in Figure 5.
Using equation 4, the value of M is 90 for this query and the
HRPS declusters each million tuple relation into 895 fragments.
Ideally, 90 processors should be used to execute this query but
since only 24 processors are available, each processor must per-

form approximately 3.7 (i.e., -$$) times the optimal amount of

work (see Section 3.2, Figure 1.b). The HRPS directs this query
to all the processors.

The range partitioning strategy declusters each relation into 24
fragments, each containing a distinct range of partitioning attri-
bute values. Since the range of a 10% selection query will overlap
at most the range of 3 fragments, it will use at most 3 processors
to execute this query.

488

Throughput (Queries/Second)
page most of the time and two disk pages some of the time7.
Thus, the impact of the SCSI cache is minimal for this query.

The 10% range selection query represents the best case
scenario for the hash partitioning strategy and the worst case
scenario for the range partitioning strategy as the hash partitioning
strategy utilizes intra-query parallelism effectively to produce the
best response time and throughput. The hybrid-range declustering
strategy performs as well as the hash partitioning strategy because
it also utilizes parallelism to execute this query.

______--------

* Hash Declustering

0.06 I 0.03

o Range Declustering

+ Hybrid-Range Declustering

0.00~ . 1 - - - - - - - 1
0 5 10 15 20 25 30 35 40 45 50

Multiprogramming Level
Figure 5: 10% Selection

At a multiprogramming level of one, the throughput with the
hash and hybrid-range declustering strategies is 16% higher than
that of the range partitioning strategy because the hash and
hybrid-range declustering strategies utilize intra-query parallelism
effectively while the range partitioning strategy directs the query
to the absolute minimum number of processors and performs the
majority of the work in a sequential manner.

With the range partitioning strategy, the throughput increases
only slightly from a multiprogramming level of one to two
because every time two queries are directed to the same processor
the response time of each query increases significantly as the
SCSI cache becomes ineffective. Since a large number of disk
pages are processed by a query at a single processor, when the
SCSI cache becomes ineffective, the performance of the system
degrades significantly. The throughput of the system increases at
higher multiprogr amming levels as previously idle resources
become more fully utilized.

For the hash and hybrid-range partitioning strategies, the
throughput of the system increases significantly from a multipro-
gramming level of one to two and then drops at a multiprogram-
ming level of three. This affect is again due to the SCSI cache.
At multiprogramming levels higher than three, the throughput of
the system increases due to processor sharing and utilization of
the elevator algorithm at the disk controller [GHAN90].

Why does not the SCSI cache have an impact on the perfor-
mance of the 0.001% selection query (presented in Section 6.1)?
The primary reason is that the 0.001% selection query retrieves
and processes only 10 tuples (compared with 100,000 tuples for
the 10% selection query). Each SK byte disk page contains 36
tuples. Thus, the 0.001% selection query processes a single disk

6.3. A Mixed Workload
For our final experiment, we used a mix workload of queries

consisting of one-half 0.001% selection queries and one-half 10%
selection queries. It is important to note that the partitioning
requirements of these two queries conflict with one another.
While the 0.001% selection should be directed to a single proces-
sor, the response time of the 10% selection will be minimized if
all the processors are used. While neither the range nor hash par-
titioning strategies can resolve the conflicting demands of these
two queries, the HRPS can. The performance of the different
declustering strategies for this mix of queries is presented in Fig-
ure 6.

The hybrid-range partitioning strategy declusters each relation
into 1688 fragments (using equations 5 and 6) which were distri-
buted among the processors in a round-robin fashion. Thus, the

Throughput (Queries/Second)

0.28# /

* Hash Declustering

o Range Declustering

+ Hybrid-Range Declustering

0 5 10 15 20 25 30 35 40 45 50
Multiprogramming Level

Figure 6: Mixed Workload

’ This count of disk pages ignores the random disk requests for the
B-tree index pages since the SCSI cache is ineffective for random disk re-
quests.

489

optimizer has enough information with this partitioning strategy
to direct the 0.001% selection query to a single processor while
using all the processors for the execution of the 10% selection
query. On the other hand, the hash partitioning strategy uses all
the processors for both queries. The range partitioning strategy
directs the execution of the 0.001% selection query to a single
processor and uses at most 3 processors for the execution of the
10% selection query.

At a multiprogramming level of one, the throughput of the
HRPS partitioning strategy is 11% higher than the hash partition-
ing strategy and 46% higher than the range partitioning strategy.
The principal reason why the hash and hybrid-range partitioning
strategies outperform the range partitioning strategy is that the
execution of the 10% selection dominates the computation of the
average throughput. Since both queries occur with equal fre-
quency in this experiment and since the response time of the 10%
query is significantly higher than that of the 0.001% selection
query, those partitioning strategies that maximize the throughput
for the 10% selection also maximize the throughput for the whole
workload. This also explains why the throughput of the hash and
hybrid-range declustering strategies converge at multiprogram-
ming levels higher than four. The impact of the 10% selection
query on the workload is so significant that the savings provided
by the HRPS for the 0.001% selection query is not significant.

We can generalize on the results obtained for this mix of
queries and speculate on workloads consisting of different mixes
of queries. As the frequency of occurrence of queries with
minimal resource requirements (e.g., the 0.001% selection) is
increased, the throughput of the range and hybrid-range partition-
ing strategies converge and outperform the hash partitioning stra-
tegy. Conversely, as the frequency of queries with high resource
requirements (e.g., the 10% selection query) is increased the
throughput of the hash and hybrid-range partitioning strategies
converge and outperform the range partitioning strategy.

To support this hypothesis, we fixed the multiprogramming
level of the system at 50 and varied the mix of 10% and 0.001%
selection queries in the workload. The results are presented in
Figure 7. In this figure, the X axis represents the percentage of
10% selection queries in the workload. For example, at point 80
on the X axis, eighty percent of queries in the workload were 10%
selection queries and the remaining twenty percent were 0.001%
selection queries. The performance of the hash and hybrid-range
partitioning strategies are almost identical when the 10% selection
query constitutes more than ten percent of the workload. The
HRPS outperforms the hash partitioning strategy by a slight mar-
gin since it localizes the execution of the 0.001% selection queries
to a single processor.

At first glance, the hash and hybrid-range partitioning stra-
tegies appear to outperform the range partitioning strategy by a
wider margin when the 10% selection query constitutes ten per-
cent of the workload than when it constitutes more than fifty per-
cent of the workload. This misconception is due to the scale of
the Y axis. In Figure 8, we present the percentage improvement
in throughput provided by the hash and hybrid-range partitioning
strategies relative to the range partitioning strategy. As the per-
centage of the 10% selection queries is increased, the hash and

Throughput (Queries/Second)

4.0 1
3.6-

3.2-

2.8 -

2.4 -

2.0 -

1.6.

1.2-

0.8 -

0.4 -

A Hash Declustering
o Range Declustering
+ Hybrid-Range Declustering

0 10 20 30 40 50 60 70 80 90 100
Percentage of 10% Selection Query

Figure 7: Multiprogramming Level = 50

hybrid-range partitioning strategies outperform the range parti-
tioning strategy by an increasingly widening margin. The percen-
tage improvement levels off when the 10% selection query consti-
tutes forty percent of the queries in workload because the disk has
become 100% utilized at this point.

In Figure 9, we present the throughput of the alternative parti-
tioning strategies at a multiprogramming level of fifty for a
variety of workloads consisting of a very low percentage of 10%
selection queries. (This figure is just an enlargement of the lower
limit of Figure 7.) In this figure, the range partitioning strategy
begins to outperform the hash partitioning strategy when the 10%
selection query constitutes less than five percent of the queries in
the workload because the range partitioning strategy can localize
the execution of the 0.001% selection queries to a single proces-
sor (these queries now constitute more than 95% of the queries in
the workload).

The HRPS outperforms both the range and hash partitioning
strategies by close to thiity percent when the 10% selection query
constitutes five to seven percent of the queries in the workload.
For this range of workloads, neither the range nor the hash parti-
tioning strategy is appropriate. Since the HRPS provides the
appropriate execution paradigm for both queries in the workload,
it can outperform the other two partitioning strategies.

7. Other Advantages of the HRPS

7.1. Support for Small Relations

In database machines with hundreds to thousands of proces-
sors, relations with low cardinalities must be partially declustered
across a subset of processors [COPE88]. The HRPS does a very
good job at supporting small relations since the number of

490

% Improvement Over Range

100
1

90.

$0.

70.

60.

A Hash Declustering

+ Hybrid-Range Declustering

0 10 20 30 40 50 60 70 80 90 100
Percentage of 10% Selection Query

Figure 8: Multiprogramming Level = 50

Throughput (Queries/Second)

40-

36- +
A Hash Declustering

o Range Declustering

+ Hybrid-Range Declustering

0 1 2 3 4 5 6 7 8 9 10
Percentage of 10% Selection Query

Figure 9: Multiprogramming Level = 50

fragments created by the HRPS is dependent on the processing
capability of the system and the resource requirements of the
workload and is independent of the number of processors in the
multiprocessor. If the number of fragments of a relation is less
than the number of processors, then the relation will automatically
be partitioned across a subset of the processors.

What about the case of a database that consists of many small
relations? In tbis case, the relations must be declustered such that
there are approximately the same number of fragments at each
processor with the restriction that each fragment of a relation be
assigned to a different processor. Furthermore, the issue of disk
space utilization also arises as we would like the database uni-
formly distributed among all the processors. Since this is clearly
a bin packing problem (which is NP complete [GARE79]), one
can decluster a relation using a number of alternative heuristics
that approximate the optimal solution. One simple heuristic might
be to assign the next fragment of a relation to that processor that
has the most free disk space available and which does not yet con-
tain any fragments of the relation.

The temperature of an individual fragment of the relation must
also be taken into consideration when assigning the fragments of a
relation to the processors. The heuristic solutions proposed by
[COPE881 appear most promising at this point in time and we
refer the interested reader to that study.

7.2. Support for Relations with Non-Uniform Distribu-
tions of the Partitioning Attribute Values

The HRPS is also capable of declustering relations with non-
uniformly distributed partitioning attribute values since the cardi-
nality of each fragment is not based on the value of the partition-
ing attribute value. Once the HRPS determines the cardinality of
each fragment, it will decluster a relation based on that value. For
example, assume relation R has a cardinality of 100,000 tuples
and assume that 4.000 of these tuples have 2 as their partitioning
attribute value. In addition, assume that the HRPS determines the
cardinality of each fragment should be 1000 tuples. After sorting
the relation on the partitioning attribute, the tuples with a parti-
tioning attribute value of 2 will be distributed among 4-5 frag-
ments which will each be assigned to a different processor. Thus,
if a query with an exact match predicate for value 2 is submitted
to the system, the query will be directed to 4 processors (rather
than one processor, had the relation been declustered using either
the hash or the range partitioning strategy).

8. Conclusions and Future Research Directions
In this paper we have described the design of the hybrid-range

partitioning strategy. This new partitioning strategy declusters a
relation by analyzing the resource requirements of the queries
accessing the relation, the processing capability of the processors
in the multiprocessor configuration, and the overhead of using
additional processors to execute a query. The goal of this parti-
tioning strategy is to decluster a relation such that the appropriate
degree of intra-query parallelism for the queries accessing the
relation is obtained. The design provides effective support for
small relations and relations with skewed distributions of the par-
titioning attribute value.

We implemented the hybrid-range partitioning strategy on the
Gamma database machine and compared its performance to that
of the range and hash partitioning strategies. For query types
where either the range or hash partitioning strategies result in the
best response time and throughput, we demonstrated that the

491

hybrid-range partitioning strategy has equivalent perfomusnce.
For a mixed workload of queries with conflicting partitioning
requirements, we demonstrated that the hybrid-range partitioning
strategy is a better alternative.

It is important to distinguish this study from [COPE88]. The
hybrid-range partitioning strategy and the heuristic solutions
presented in [COPE881 are orthogonal to each other. In this study
we proposed a new partitioning strategy which declusters a rela-
tion into an optimal number of fragments while [COPE881
attempted to strike a compromise between load balancing and the
overall load reduction in the presence of data locality. Once a
relation is declustered into fragments using the hybrid-range parti-
tioning strategy, the fragments can be assigned to the processors
using the heuristic solutions proposed by [COPE88]. In the pres-
ence of update queries and changing workloads, the heuristic used
for file reorganization proposed in [COPE881 can also be used.

A number of open issues remain. First, a major assumption of
the hybrid-range partitioning strategy is that the work performed
by a query can always be parallel&d. This assumption might not
be true for all queries. Second, a major limitation of the hybrid-
range and the existing partitioning strategies is that they are one
dimensional. If the selection predicate of a query is on an attri-
bute other than the partitioning attribute, it must be sent to all the
processors containing the fragments of the relation. This is clearly
a major limitation that requires additional study.

9. Acknowledgments
We wish to acknowledge the contributions of several people.

We would like-to thank Miron Livny for the lengthy discussions
over the performance numbers presented in Section 6. These dis-
cussions significantly enhanced the presentation of this section of
the paper. We also wish to acknowledge Rick Rasmussen who
provided technical support for our research vehicle, the Intel
iPSC/2 hypercube. The performance numbers obtained from the
hypercube would not have been possible without his efforts. We
would also like to thank Mike Carey for reading and providing
useful comments on an earlier draft of this paper.

10. References

[ALEX881 Alexander, W., et. al., “Process and Dataflow Control in Dis-
tributed Data-Intensive Systems,” Proc. ACM SIGMOD Conf., 1988.

[BI’lT83] Bitton D., D.J. Dewitt, and C. Turbyfill, “Benchmarking Data-
base Systems - A Systematic Approach,” Proceedings of the 1983
VLDB Conference, October, 1983.

[BORA84] Boral, H. and Dewitt, D. J., “A Methodology for Database
System Performance Evaluation,” Proc. ACM SIGMOD Conf., 1984.

[BORA88] Boral, H., “Parallelism and Data Management,” Proceedings
of the 3rd int’l. Conf. on Data and Knowledge Bases, June 1988.

[BULT89] Buhzingsloewm, G, V., “Optimizing SQL Queries for Parallel
Execution,” ACM Sigmod Record, Vol. 18, No. 4, Dec., 1989.

[CHOUSS] Chou, H-T, Dewitt, D. J., Katz, R., and T. Klug, “Design and
Implementation of the Wisconsin Storage System (Was)” Software
Practice and Experience, Vol. 15. No. 10, October, 1985.

[COPE881 Copeland. G., Alexander, W., Boughter. E.. and T. Keller,
“Data Placement in Bubba,” Proc. ACM SIGMOD Conf., 1988.

[DEWI86] Dewitt, D., Gerber, B., Graefe, G., Heytens, M., Kumar, K.
and M. Muralikrishna, “GAMMA - A High Performance Dataflow

Database Machine,” Proceedings of the VLDB Conf., 1986.
[DEW1881 Dewitt, D., Ghandeharizadeh, S., and D. Schneider, “A Per-

formance Analysis of the Gamma Database Machine”, Proc. ACM
SIGMOD Conf., June 1988.

[DEWI90] Dewitt, D., Ghandeharizadeh. S., Schneider, D., Bricker, A.,
Hsiao, II.. R. Rasmussen, “The Gamma Database Machine Project,”
IEEE Transaction on Knowledge and Data Engineering, March, 1990.

[DUSZ] Du, H.C. and Sobolewski, J.S., “Disk Allocation for Cartesian
Product Files on Multiple-Disk Systems,” ACM Trans. Database Sys-
tems, Vol. 7, No. 1, March 1982, pp. 82-101.

[GARE79] Garey, M. R., Johnson D. S., Computers and Interactability:
A Guide to the Theory of NP-Compeltenesa, New York, 1979.

[GHAN901 Ghandeharizadeh. S., and D. J. Dewitt, “Performance
Analysis of Alternative Declustering Strategies,” Proceedings of the
6th International Conference on Data Engineering, February 1990.

HNTE88], Intel Corporation, iP!X/Z User’s Guide, Intel Corporation
Order No. 311532-002. March, 1988.

[KIM881 Kim, M.H., and Pramanik, S.. “Optimal File Distribution for
Partial Match Retrieval,” Proc. ACM-SIGMOD Conf., June 1988.

[LIVN87] Livny, M., et al., “Multi-Disk Management Algorithms,” Proc.
ACM-SIGMETRICS Conf., May 1987.

[LORI88] L&e, R., et al., “Adding Intra-Transaction Parallelism to an
Existing DBMS: Early Experience” IBM Research Report RJ6165.
Almaden Research Center, March 1988.

[PA’IT88] Patterson, D., et al., “RAID: Redundant Arrays of Inexpensive
Disks,” Proc. ACM-SIGMOD Conf., June 1988.

[PRAM891 Pramanik, S., and M. H. Kim, “Database Processing Models
in Parallel Processing Systems,” Database Machines, Boral, H.. and
P. Faudemay, eds., Springer-Verlag. 1989.

[RIES78] Ries, D. and R. Epstein, “Evaluation of Distribution Criteria for
Distributed Database Systems,” UCB/ERL Technical Report M78/22,
UC Berkeley, May, 1978.

[SCHN89] Schneider, D. and D. J. Dewitt. “A Performance Evaluation of
Four Parallel Join Algorithms in a Shared-Nothing Multiprocessor
Enviromnent,” Proc. ACM-SIGMOD Conf., June 1989.

[SMlT89] Smith, M., et al., “An Experiment on Response Time Scalabil-
ity in Bubba,” Database Machines, Boral, H., and P. Faudemay, eds.,
Springer-Verlag. 1989.

[STON86] Stonebraker. M.. “The Case for Shared Nothing,” Database
Eng. 9, 1, March 1986.

[STON88] Stonebraker, M., et al., “The Design of XPRS,” Proceedings
of the 1988 VLDB Conference, Sept. 1988.

[TAND88] Tandem Performance Group, “A Benchmark of Non-Stop
SQL on the Debit Credit Transaction”, Proc. ACM-SIGMOD Conf.,
June 1988.

[TANESI] Tanenbaum, A. S., Computer Networks, Prentice-Hall, 1981.
[TEOR72] Teorey T. J., and Pinkerton T.B., “A Comparative Analysis of

Disk Scheduling Policies”, Commun. of ACM, 15:3, March 1972.
[TERA85] Teradata Corp., “DBC/lOlZ Data Base Computer System

Manual, Rel. 2.0,” Teradata Corp. Document No. ClO-0001-02.
November 1985.

492

