
Database Application Development as an Object Modeling Activity

Manfred A. Jeusfeld*, Michael Mertikas+, Ingrid Wetzel+,
Matthias Jarke*, Joachim W. Schmidt+

* FORWISS Research Center, Universitit Passau, P.O. Box 2540,839O Passau, W. Germany
+Fachbereich Informatik, Universitit Hamburg, Schliiterstr. 70,200O Hamburg 13, W. Germany

Abstract. The DAIDA project has made an attempt of
formally defining and relating declarative and computational
entities considered relevant to the process of database
application development. Such entities range from object-
oriented specifications to executable modules of database
programs. To bridge the gap between semantics and com-
putation, they also include abstract machine-based formal
specifications and transformational theories. In an second
contribution, selected characteristics of such entities and
relationships are modeled uniformly in a software infor-
mation system. Emphasis is placed on those properties that
may become relevant when applications have to be modified
or adjusted. Besides discussing the interaction of these
aspects of the DAIDA methodology, the paper outlines an
operational project prototype and reports first experiences.

1 Introduction

A short historical consideration of the database area points
out that the first data models, which were supposed to
satisfy arising database needs in computing environments,
were not sufficient to make the distinction between
semantic and computational aspects of database applications
[BM86]. Programmers tried to come up with database
application development by implicit and naive modeling of
the application area in terms of available data types -- trees,
networks, relations -- and to capture all application
semantics within computational units -- transactions,
programs. Research effort focused on providing the database
programming community with tools -- code generators,
language-sensitive editors, interfaces, etc. This certainly
increased programming productivity but did not solve the
well-known inefficiencies of database software development.

permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is given

that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise. or to republish. requires a fee

and/or special permission from the Endowmenr.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

The development of the relational model, with its well
defined abstraction features, was probably the starting point
for suspecting that there is something more to data models
than just symbol manipulation. This suspicion caused the
exploitation of semantic data models as a first dimension of
activities towards better database application engineering
[HK87]. These models emphasized the specification of
application semantics -- with their own environment, tools,
support, etc. -- but caused a divergence between techno-
logies dealing with semantic and computational aspects.
Database applications can now be thought of as resting on
two pillars without a bridge in between. This statement is
well illustrated by the current debate on semantic-oriented
knowledge representations versus computationally
motivated object-oriented databases. Generic attempts to
combine both, for example deductive databases which offer
a declarative as well as a procedural interpretation, seem to
cover only a limited number of application domains.

For more general database programming tasks, the two
pillars are too far apart to be easily connected by any kind
of automated translation technology. The conceptual
distance between their goals and functionalities -- expressive
power on the one side, computational efficiency on the
other -- therefore adds an additional factor of complexity to
database application development.

The second dimension of research activities related to
database application development has been attacking this
additional complexity by developing bridging technologies
-- expert systems guiding implementations, mapping
assistants supporting transformation of one formalism to
another, or proof assistants supporting refinement of
specifications. Extending the similarities between database
application development and the bridge construction we
may assume that adding a third pillar in the right place
interprets this activity in a good way.

Work on DAIDA (= Development Assistance for Interactive
Database Applications) was supported in part by the European
Commission under ESPRIT Contract 892, including the
software houses BIhI, Belgium; GFI, France; SCS, Germany;
the FORTH Computer Research Center, Greece; and the
Universities of Frankfurt/Hamburg and Passau, Germany.

442

In section 3, we present part of the second dimension
activities: how to bridge the semantic and the imple-
mentation layer. We start from predicative object-oriented
descriptions, a technology supporting attractive abstraction
principles and concise notation. We transform these
specifications into an intermediate structure of Abstract
Machines and proceed with formal refinement down to
efficient transaction-oriented database programs.

In section 4, we enter the third dimension of activities by
explaining how to describe abstractly system components
and their dependencies; also, how to make use of this
information. Section 5 describes the actual tools the
DAIDA environment offers for mapping support and
software information management, and presents a more
general process model based on this experience.

2 Two DAIDA Views of a Data-Intensive
Application

Taking for granted the necessity of a semantic layer
addressing expressive power and reasoning capabilities and
of a computational layer addressing computational
efficiency, we briefly describe the languages TDL and
DBPL which are appropriate for the semantic and the
implementation layers. Both languages have been defined
and used in the DAIDA project [BMMS88, SEM88].

Extending ideas from the Taxis project at the University of
Toronto [MBWSO], the Taxis Design Language TDL
[BMMS88] introduces a predicative and object-oriented style
of specifications. TDL supports object manipulation
through instantiation in a data class called EntityClass.

Objects have intrinsic identity. This supports the ability to
distinguish object identity from object equality, to share
objects among other objects, to modify objects (which is
not the same as deletion and insertion in value- based
formalisms), and to support referential constraints naturally.

The structure of values in TDL can be complex. Simple
values are modeled as instances of ~a s ice I a s s and
EnumeratedClass. Vahes built as tuples of other values
are modeled as instances of AggregateClass, and their
identity is specified by their components, which are named
by attributes. Entities in the application domain are
modeled as object instances of Ent it yClas s; specific
integrity constraints are assigned to their attributes by
means of attribute categories and range constraints.

Operations are modeled as instances of TransactionClass,

where the input/ output of a transaction and its actions is
described by appropriate attributes and logical formulas.

Most experience has been gained with design assistance for
database structuring. Much less work has addressed
procedural aspects of information systems development and
their interaction with data design IBR84, EGL84, SS891.
This is despite the fact that object-oriented databases
emphasize the integration, even encapsulation, of structural
and procedural components [SSE871.

Finally, the third dimension of activities is concerned with
the maintenance monster, something that is a routine task
in bridge construction, but software engineers are terrified
of. Once the overall product is in a fairly stable situation,
bridge constructors look for the next bridge to apply their
knowledge to while software engineers never stop
maintaining the database application. The application area
evolves, specifications get modified, implementations must
reflect design updates in a consistent way. Consequently,
the problem we face is the abstract representation of what
we constructed, the design decisions we made, the
relationships across the layers, so that we are able to reason
on our product and reconstruct parts of it in a consistent
way with respect to the whole product.

Of course, a uniform representation is an indispensable
prerequisite for using this knowledge efficiently. Current
software CAD databases [RW89] emphasize the storage of
software objects [LK86] and the integration of active
components such as attribute evaluators [HK891, but tend
to neglect the management of design decisions [PB881.
Integration and schema evolution problems have been dealt
with only at the programming level [BKKK87].

When the DAIDA project started in 1985 to investigate a
comprehensive environment for information systems
engineering, all three classes of activities had to be
considered: semantic modeling and database programming
languages, suitable intermediate representations and
mappings, and design decision support [BJM*87].
Meanwhile, a set of coherent concepts have evolved and
their feasibility has been shown through the realization of
an integrated DAIDA prototype [DAIDA891.

In this paper, we present a substantial portion of this work,
excluding, however, the requirements engineering and rapid
prototyping components of the DAIDA environment. In
section 2, we propose two specific languages dealing with
semantics and computations of database applications,
respectively. The construction principles of these languages
have the advantage of keeping the conceptual distance
between the semantical and computational aspects
manageable but cannot remove the impedance mismatch
between their features completely.

443

Inheritance is supported for data classes as well as for
transaction classes, allowing the organization of objects and
the reuse of transaction specifications. This abstraction and
structuring of the statics and dynamics of the database
application, and the expression of specific classes of
integrity constraints in a short, convenient way in terms of
attribute categories represent the main TDL features useful
for representing database-intensive applications.

Integrity constraints which cannot be represented by
attribute categories can be described with the assertional
language supported by TDL, a first-order predicate language
with equality. The pre-/post condition style is adopted to
express specifications of transactions in terms of the states
before and after the execution of the transaction. We only
need to express the changes that are caused by a transaction
and implicitly accept that everything else remains
unchanged -- the “frame assumption”. This decision
greatly facilitates the presentation of specifications but
makes the semantic layer less explicit.

We give the TDL description for a small database example
dealing with project management:

TDLDESIGN Researchcompanies IS

ENUMERATED CLASS
Agencies = ('ESPRIT, 'DFG, 'NSF);

ENTITY CLASS Companies WITH
UNIQUE, UNCHANGING name : Strings;
CHANGING engagedIn : SetOf Projects;

END Companies;

ENTITY CLASS Employees WITH
UNCHANGING name : Strings;
CHANGING belongsTo : Companies;
worksOn: SetOf Projects;
INVARIANTS onEmpComp: True IS

(THIS.worksOn SubSetOf
THIS.belongsTo.engagedIn);

END Employees;

ENTITY CLASS Projects WITH
UNIQUE, UNCHANGING

name : Strings;
getsGrantFrom : Agencies;

CHANGING
consortium : SetOf Companies;

INVARIANTS onProjComp: True IS
(THIS.consortium =

[EACH x IN Companies:
THIS IsIn x.engagedInJ);

END Projects;

TRANSACTION CLASS HireEmployee WITH
IN name : Strings;

belongs : Companies;
works : SetOf Project;

OUT, PRODUCES e : Employee;
GIVEN

THIS.works SubSetOf
THIS.belongs.engagedIn;

GOALS
(e.name' = name) AND

(e.worksOn' = works) AND
(e.belongsTo' = belongs)

END HireEmployee ;
END ResearchCompanies;

The language DBPL [SEM88] emphasizes the concept of
transaction-oriented database programming. The major
modeling constructs are sets and predicates. Sets are used as
a bulk data structure and as an orthogonal type constructor.
Like in NF* relations [SP821, the underlying data model is
a value-based one.

The inherent constraints supported by such a data model
include the necessity of values (no null values) within
structured data and the uniqueness of values of specific
attributes of structured sets (relations), characterized as keys.
Additionally, first-order predicates over implicitly declared
set element variables are integrated into DBPL expressions.
Orthogonal persistence is provided by encapsulating data
objects and transactions in so-called database modules.

DBPL’s transaction orientation and its rich typing system
(though without inheritance) reduce the conceptual distance
to TDL, making it a promising “second pillar” for
application development. Full database functionality
including, e.g., concurrency control is provided by the
DBPL system.

We give a DBPL program of our small database example:

DEFINITION MODULE
ResearchCompaniesTypes;

IMPORT Identifier,String;
TYPE

Agencies = (ESPRIT, DFG, NSF);
CompNames, EmpNames,ProjNames = String.Type;
EmpIds = Identifier.Type;
ProjIdRecType = RECORD name : ProjNames;

getsGrantFrom : Agencies END;

ProjIdRelType = RELATION OF ProjIdRecType;
CompRelType = RELATION name OF

RECORD
name : CompNames;
engagedIn : ProjIdRelType

END;

EmpRelType = RELATION employee OF
RECORD

employee : EmpIds;
name : EmpNames;
belongsTo : CompNames;
worksOn : ProjIdRelType

END;
ProjRelType = RELATION projId OF

RECORD
projId : ProjIdRecType;
consortium:

RELATION OF CompNames
END;

END ResCompaniesTypes.

DATABASE DEFINITION MODULE
ResearchCompaniesOps;

FROM ResearchCompaniesTypes
IMPORT EmpNames, CompNames,

ProjIdRelType, EmpIds;
TRANSACTION hireEnployee(name:EmpNames;

belongs:CompNanes; works:ProjIdRelType)
: EmpIds;

END ResearchCompaniesOps.

DATABASE IMPLEMENTATION MODULE
ResearchCompaniesOps;
FROM ResearchCompaniesTypes
IMPORT CompRelType; EmpRelType; ProjRelType;
IMPORT Identifier;

VAR
compRe1 : CompRelType;
enpRe1 : EmpRelType;
projRe1 : ProjRelType;

TRANSACTION hireEmployee (name : EmpNames;
belongs : ConpNames; works : ProjIdRelType)

: EhpIds;
VAR tEmpId : EmpIds;
BEGIN
IF SOME c IN compRe1 (c.name = belongs) AND

ALL w IN works
SOME p IN compRel[belongsl.engagedIn (w = p)

THEN tEmpId := Identifier.New; empRe1 :+
EmpRelTypei<tEmpId,name,belongs,works>);
RETURN tEmpId

ELSE RETURN Identifier.Nil END
END hireEmployee;

END ResearchCompaniesOps.

3 Mapping the Semantic Layer to Com-
putations: Expressiveness vs. Efficiency

The predicative style of TDL, combined with object
orientation, provides reasoning capabilities and abstraction
principles that are extremely valuable within the semantic

layer. Nevertheless, this framework also causes a mismatch
with the imperative and value-based style of DBPL. We
enter the second dimension of activities where we have to
bridge the gap between the technologies. The approach we
took was to build a translator that explicitly writes out all
assumptions and inherent constraints underlying the TDL
model, and then re-expresses them in the specification
formalism we use [BMS W901.

Among the different styles of software specification that
have been proposed (logic-based, functional, algebraic, . ..).
we had to choose one which fits well with TDL
descriptions. The model-based style -- also present in VDM
or Z [SPIV89] -- turns out to be the appropriate candidate.
At the same time, a formalism for our needs must be
supported by a reasonably developed methodology and by a
supporting technology suitable for a database-oriented target
language such as DBPL.

The third pillar of our “bridge” construction is therefore
based on Abstract Machines (AMs), a notation using basic
set theory, first-order predicates and generalized theories
[AGMS88]. Appropriate theories defined on Abstract
Machines support the transformation of TDL models into
AM descriptions, the formal structural and operational
refinement of Abstract Machines. down to our
computational model and the final transformation into
transaction-oriented database programs. These
transformations are formally represented as so-called
Generalized Substitutions [AGMS88, BMSW90].

The AM description of our small TDL example is:

MACHINE researchCompanies.initialversion
BASIC SETS

Agencies, Companies, Employees, Projects,
CompNames, EmNames, ProjNames

CONTEXT
Agencies = (ESPRIT, DFG, NSF);
CompNames, EmpNames, ProjNames = Strings

VARIABLES
companies, compName, engagedIn, employees,
empName, belongsTo, worksOn,
projects, projName, getsGrantFrom. consortium

INVARIANTS
companies IN POW(Companies);
compName IN (employees -> CompNames);
engagedIn IN (companies -> POW(Projects));
employees IN PUW(Employees);
empName IN (employees -> empNames);
belongsTo IN (employees-xompanies);
work&n IN (employees -> POW(projects);
projects IN POW(Projects);
projName IN (projects -> ProjNames);
getsGrantFrom IN (projects->Agencies);
consortium lN (projects -> POW(companies));

445

V x, y. x, y IN companies ==>
(compName(x) = compName(y) ==> x = y);

V x. x IN employees ==z
(worksOn SUBSET engagedIn(belongsTo(x));

V x, y. x, y IN projects ==>
@rojName(x) = projName(y) ==> x = y);

V x. x IN projects ==>
(consortium(x) = (y I y IN companies AND

x IN engagedIn))
OPERATIONS

HireEmployee (name, belongs, works) =
PRE name IN EmpNames AND

belongs IN companies AND
works IN POW(engagedIn(belongs))
ANY e IN (Employees - employees)

THEN (empName(e), worksOn(belongsTo(
I<- (name,works.belongs) II

employees I<- employees UNION (e) Ii
HireEmployee I<- e END

END HireEmployee;
END researchCompanies.initialversion

To explain the perhaps unfamiliar notation, consider its last
PUt,OPERATIONS. HireEmployee defines three attribute
functions, one variable e, and the results function by
parallel (II) textual substitution (I<-). These parallel
substitutions are part of an unbounded non-deterministic
ANY-SUbStitUtiOn which chooses an arbitrary fresh member
from the set of elements considered for employee
representation (basic set Employees minus existing
employees). The entire substitution is preconditioned by
“type conditions” on the input parameters (PRE).

The reader may have noticed a rough correspondence
between the constructs of the TDL and AM formalisms:
classes become sets, attributes become mappings between
sets, integrity constraints become invariants, and pre/post
statements become generalized substitutions.

A proof assistant, the B-Tool [ABRI86], has been used to
encode the knowledge of TDL-AM transformation. It
supports the software engineer in proving the consistency
of an Abstract Machine. It also supports the consistent
refinement of an Abstract Machine by creating proof
obligations, applying proof tactics, and keeping track of
proven or still open lemmas. In the case of transactions,
this refinement gradually leads from predicative
specifications to imperative code; each such operational
refinement is based on a corresponding data refinement.

The crucial factor, however, during the overall refinement
process are the design decisions taken by the software
engineer in order to come up with application descriptions
that can be executed.

The necessity of introducing computational concepts leads
to design decisions for data identification, data structuring,
data typing, and operational refinement. Specific toolkits
containing theories and tactics for each of these activities
support the execution of design decisions. In DAIDA, full
automation has only been possible for certain substeps of
this abstract-machine based methodology. Further research
is needed to determine how far automation can be carried and
at what points human decisions remain necessary; the
current status of this work is presented in lBMSW901.

The following Abstract Machine represents a consistent
refinement of the previous one, where data structuring
(e.g., EmpClas s as a cross-product) and OperatiOnd refine-
ment (e.g., assignment to ~mpclas~) have been introduced:

MACHINE researchCompanies.refinedVersion
IMPLY researchCompanies.initialversion
VARIABLES.

compClass, empclass, projclass, tEmpId
INVARIANTS

compClass IN (companies -> POW (projects));
empclass IN (employees ->

EmpNames x companies x POW (projects));
projCli&s IN (projects IN POW(companies));
tEmpId IN EmpIds;
. . .

DEFINITIONS
engagedIn = ;C x. (x IN companies I compClass(x));
(empName, belongsTo, workson) =

k. x. (x IN employees I empClass(x));

consortium = A x. (x IN projects I projClass(x));
OPERATIONS

HireEmployee (name, belongs, works) =
PRE name IN EmpNames AND

belongs IN companies AND
works IN POW(engagedIn(belongs))
tEmpId I<- newEmpId;
empClass I<- empClass UNION

((tEmpId, name, belongs, works)) ;
HireEmployee I<- tEmpId

END HireEmployee;
OTHER

newEmpId IN (-> (EmpIds - employees));
END researchCompany.refinedversion;

4 Software Object and Dependency Modeling

The modeling of software development is of outstanding
importance during the third dimension of activities, the
maintainance of the system. The structure and
interrelationships of evolving system components have to
be captured in order to support system designers in
modifying parts of the software system in a consistent way.

446

We claim that this is essentially a typical database problem.
We have to manage a large set of objects, their
relationships, and their evolution caused by particular
development and maintenance activities. This domain is
well-known in the database community since the E-R
epoch; recent E-R extensions dealing with activity
modeling include RML [GBM861 and ERAE [HAGEgg].

This view does not only allow us to model the software
objects, relationships and software engineering activities
composing the software development domain, Going
further, we can now define what are the consistent means
by which we should proceed and reason whether our system
has been evolved in a consistent way. This is because such
a model need not define a methodology in terms of fixed
predefined steps but can describe it in terms of design goals
and constraints whose satisfaction is then accomplished and
verified by particular steps taken during development and
maintainance.

What we need, consequently, is a semantic model capturing
the statics (software objects, relationships) and the
dynamics (development and maintainance activities) of the
software modeling activity in a form appropriate for
reasoning. Extending earlier work on RML [GBM86], the
knowledge representation language Telos was elaborated in
DAIDA with exactly these goals in mind [MBJK90]. It is a
structurally object-oriented language into which a time
calculus (not used in this paper) and the rules and integrity
constraints of deductive databases have been integrated.

In the following, we give a Telos description of some TDL
and AM language constructs as well as the description of
the dependencies that can be established between them. All
these descriptions can be thought of. as uniformly
represented metalevel knowledge about the two layers,
allowing us to establish and maintain dependencies across
objects of different languages; these objects and
dependencies can be further restricted by Telos’ predicative
rules and constraints. We start with the Telos description of
some TDL classes modeling static aspects of application
domains (the reader can easily establish the relationship to
our TDL example in section 2):

IndividualClass TDL-Design
in MetaClass with
attribute

entities: TDL EntityClass; -
transactions: TDL-TransactionClass;
enumerated: TDL-EnumeratedClass;
aggregates: TDL:AggregateClass;
basicclasses: TDL BasicClass -

end TDL-Design

IndividualClass TDL-EnumeratedClass
in MetaClass isA TDL DataClass -

end TDL EnumeratedClass -

IndividualClass TDL-EntityClass
in MetaClass isA TDL DataClass with -
attribute

CHANGING,UNCHANGING,UNIQUE:
TDL DataClass; -

INVARIANTS: TDL AssertionClass -
end TDL EntityClass -

IndividualClass TDL TransactionClass -
in MetaClass isA TDL Class with -
attribute

IN,OUT,PRODUCES: TDL DataClass; -
GIVEN,GOALS: TDL AssertionClass -

end TDL TransactionClass -

IndividualClass TDL AssertionClass -
in MetaClass isA TDL Class, String -

end TDL-TransactionClass

Note that the abstract description of TDL assertions is
simply a string. Next, we describe Abstract Machines:

IndividualClass AbstractMachine
in MetaClass with
necessary

basicsets: AM BasicSet; -
initializations: AM Initialization;
variables: AM Variable; -
invariants: AM Invariant; -
operations: AM-Operation

attribute
definitions : AM Definition; -
contexts: AM Context; -
others: AM Other -

end AbstractMachine

IndividualClass AM-Operation
in MetaClass with
attribute

PRE,THEN: String
end AM Operation -

Since we have now modeled both languages within a
common formalism, we can formally specify possible
dependencies between TDL and AM objects. Dependencies
are represented as classes of attributes (with category
dependson) attached to derived objects. In our example, the
most general dependency InitialAbstractMachine!
dependsonTd1 establishes that an Initial Abstract Machine
is derived from a single TDL design. The constraint
demands that attributes of the Initial Abstract Machine are
derived from attributes of the same TDL design. The model
can easily be semantically enriched by further constraints.

447

IndividualClass InitialAbstractMachine
isA AbstractMachine with
dependson, single

dependsonldl: TDL-Design
constraint

CompleteMapping:
$ forall y/TDL-Design, a/Attribute

(THIS.dependsonTdl = (y) and From(a,THIS)
==>exists d/Class!dependson

exists b/Attribute
From(d,a) and To(d,b) and From(b,y)) $

end InitialAbstractMachine

In Telos notation, x.a gives the value of an attribute of
category a while x!a stands for the attribute link a of x
itself. THIS denotes an arbitrary instance of the class object
being defined. The component dependencies below establish
some (example) constraints on the derivation of an Abstract
Machine’s basic sets, contexts, operations, and invariants.

AttributeClass
InitialAbstractMachine!basicsets with
dependson, single

dependsonEnum: TDL-Design!enumeratedclasses
end InitialAbstractMachine!basicsets

AttributeClass
InitialAbstractMachine!contexts with
dependson, single

dependson: TDL-Design!enumeratedclasses
constraint

correspondinqBasicsetExists :
s exists x/ InitialAbstractMachine

ib/ InitialAbstractMachine!basicsets,
(From(ib,x) and From(THIS,x)) $

end InitialAbstractMachine!contexts

AttributeClass
InitialAbstractMachine!operations with
dependson

dependsonTransaction:TDL-Design!transactions
end InitialAbstractMachine!operations

AttributeClass
InitialAbstractMachine!invariants with
dependson

tdlInvariant: TDL-EntityClass!INVARIANT;
uniqueTdlAttr: TDL-EntityClass!UNIQUE

constraint
CorrectEntities: $ forall x/TDL Design, -

am/InitialAbstractMachine
(From(THIS,am) and am.dependsonTdl = ix)

==>
(exists es/Attribute, e/TDL-EntityClass
From(ea,e) and e outOf x.entities and
(ea outOf THIS.tdlInvariants or
ea outOf THIS.uniqueTdlAttr))) $

end InitialAbstractMachine!invariants

Going on this way all possible dependencies between
software objects can be specified. Particular dependencies for
a specific design would be represented as instances of the
above dependency classes. It is quite easy now to guess how
we support the third dimension maintenance activities. A
software information system keeps track of the dependencies
during the development and maintainance of a software
system component. It can identify the consequences of
modifications not only within the language layer where the
modification took place, but also across the layers.

5 From Dependency Modeling to Design
Decision Support: ConceptBase

In the DAIDA prototype environment, the interaction of
bridging activities (sec. 3) and object-dependency (sec. 4)
modeling has been implemented by coupling
knowledge-based mapping tools with the Telos-based
software information system, ConceptBase [EJJ*89]. A
mapping assistant documents its activities and their results
in ConceptBase, and retrieves information. The
ConceptBase usage environment offers a window-based and
graphics-oriented set of tools for browsing, zooming, and
editing hypertext-like views of the software knowledge that
may guide the software engineer (the user of the mapping
assistant) in further activities.

In the following subsections, we first sketch the
implementation of the TDL-to-DBPL mapping
methodology via AMs, and then exploit this experience to
identify several important model extensions we have
incorporated in the ConceptBase system.

5.1 Implementation of Mapping Methodology

We support the particular mapping methodology introduced
in sections 3 and 4 as illustrated in figure 1. In this figure,
intermediate results are denoted by rectangles, design steps
or decisions by ovals, and design tools by rounded boxes.
Links establish the input-output relationships.

A first step translates a TDL design into an Initial Abstract
Machine which is verified for consistency. After the
consistency proof, the AM is subjected to a series of
verified refinements. The last refined machine (baseline) is
automatically translated into DBPL code. The formal
properties of Abstract Machines and refinements are assured
and organized with the help of Abrial’s interactive proof
assistant, the B-Tool [ABRI86]. Another tool, the
language-sensitive editor DBPL-USE [NS893, provides
syntactic and some semantic support for correct
programming and program interconnection of DBPL
modules that come from outside the DAIDA environment.

448

The refinement process is directed interactively by the user
and controlled formally by the mapping assistant. The
mapping assistant itself is organized as a toolkit from
which the developer must choose problem-adequate theories
(i.e., sets of previously proven theorems) and tactics
(sequencing rules for the application of theories) to be
employed by the B mol.

Additionally, there is usually a large set of open proof
obligations, called lemmas. The generation of refinements
and their correctness proofs is quite complicated and requires
a lot of knowledge about available theories and useful proof
tactics for specific proving tasks. This experience led to a
first extension of the mapping model managed by Concept-
Base: we needed to model not only the refinement steps but
also their associated correctness proofs, and even individual
steps of those proofs. The proof model can again be seen as
an object-dependency structure.

Fig. 2 illustrates this claim for one particular refinement
step. Dependencies (here drawn as vertical arrows, e.g.,
dep-opn-1) are used to document individual operational
refinements. Each dependency creates a proof obligation
(e.g., the box pointed to by opn-l-tobeproven) which in
turn requires a complex hierarchy of proof steps; only if all
of these proof steps succeed for all operations (either
formally or because the user signs them off as correct), the
WholeProof object for the refinement will be created in the
knowledge base.

5.2 Extensions to Object-Dependency Model

The two figures reveal some deficiencies in the object-
dependency model of section 4. For example, besides the
dependencies which are directly related .to the specific
methodology at hand, figure 1 also illustrates more generic
kinds of activities which are associated with software
project management. The picture shows the distinction
between initial versions, refinements within a particular
language context, release decisions for temporarily frozen
object versions, and mapping between different language
contexts. We may also need to represent the relationships
between different variants or the discussion of design goals.

In ConceptBase, we have decided to separate the semantic
descriptions given by the models discussed in section 4,
from the administrative aspects of a software information
system. This has two advantages. Firstly, each admini-
strative object can be associated with both, a semantic
description and the actual software object. Secondly, version
and configuration management problems can be addressed at
both a conceptual and a storage level [RJ90] so that we can
combine the advantages of a software database with those of
a knowledge-based mapping assistant.

A related observation that is not adequately addressed in the
above model is that the dependencies are created by the
execution of human design decisions. Such design decisions
are free within a prescribed methodology, they can be driven
by goals and can be argued about in design teams.
ConceptBase makes the notion of design decisions explicit
and provides tools for multi-objective decision-making and
argumentation support [HJR90]; another part of the DAIDA
environment has explored the idea of goal satisficing for
non-functional requirements [CKM*90]. The idea of
separating administration and semantics of objects is now
applied to design decisions: the dependencies defined in
section 4 become the semantic description of their
underlying design decision.

Finally, figure 1 illustrates that we have neglected the
existence of multiple interacting tools in our initial model.
To evaluate or replay a design history, we have to know
which tools were used to create the version we are looking
at. Moreover, the whole approach proposed here is so
documentation-intensive that it becomes economically
feasible only in a CASE (computer-aided software
engineering) environment. The formal modeling and
technical interconnection of an open toolset of mapping
assistants, layer-specific editors, compilers, proof
assistants, etc. is therefore a necessity, albeit one not
addressed in most existing software information systems.

ConceptBase models tools as reusable software objects that
are specified in a TDL-like style and implemented in any
programming language. Technically, such tools can be
connected to ConceptBase by interprocess communication
in a client-server architecture. A trigger concept added to the
Telos language controls the activation of such tools via
their specification [JJR89]. The way how this is
implemented is closely related to active databases [DBM88].

Summarizing, we have identified three extensions. Taken
together, they generalize the object-dependency approach of
section 4 to a Decision-Object- Tool or D.O.T. model:

. separation of administrative and semantic aspects of
object management

. decision support instead of just dependency recording

. tool modeling and technical tool integration.

A final point is extensibility. The full DAIDA environment
does not only support the specification-to-implementation
mapping discussed in this paper. It also includes require-
ments engineering and prototyping sub-environments and a
mapping assistant for the derivation of TDL descriptions
from requirements [CKM*90]. Although these subtasks
address rather different problems, we have been able to mo-
del their execution within the same framework [DAIDA89].

449

Baseline

/

llizl Co”cept”a1

Fig. 1: Mapping TDL specifications to DBPL programs in the DAIDA environment

Fig. 2: Example of interaction between refinement and proofs

For this purpose, we have defined a generic D.O.T. model
of tool-assisted information systems processes at the
next-higher level of the Telos metaclass hierarchy which
has all the classes defined in section 4 as well as others as
its instances [JJR901. This metamodel consists of the
following Telos classes:

IndividualClass Class with
attribute

attribute : Class;
dependson : Class;
trigger : Behavior

end Class

IndividualClass DesignObject
in MetametaClass with
attribute

objsemantic : Class;
objsource : ExternalReference

end DesignObject

IndividualClass DesignGoal isA DesignObject
end DesignGoal

IndividualClass DesignDecision
isA DesignObject with
attribute

from, to : DesignObject;
goals : DesignGoal;
decsemantic : DecisionDescription

end DesignDecision

IndividualClass DecisionDescription
in MetametaClass with
attribute

dependencies : Class!dependson
end DecisionDescription

IndividualClass DesignTool
isA DesignDecision with
attribute

from : DesignDecision;
to : Behavior

end DesignTool

Figure 1 from section 5.1 can be understood as a semantic
network view of our mapping knowledge base that directly
reflects the D.O.T. structure: software object classes are
denoted by rectangles, decision classes by ovals, and tools
by rounded rectangles. For example, the objects, decisions,
and tools involved in the initial translation from the TDL
formalism to Abstract Machines is represented as an
instance of the D.O.T. metamodel as follows (the classes
defined in section 4 form the semantic descriptions):

IndividualClass BaselineConceptualDesign
in DesignObject with
objsemantic

: TDL-Design
objsource

: TDL-Directory
end BaselineConceptualDesign

IndividualClass
InitialImplementationDesign
in DesignObject with
objsemantic

: InitialAbstractMachine
objsource

: B-Directory
end InitialImplementationDesign

IndividualClass MapToImplementationDesign
in DesignDecision with
from

fromCD : BaselineConceptualDesign
to

toID : InitialImplementationDesign
decsemantic

: TDL-AM-Description
end MapToImplementationDesign

IndividualClass TDL-AM-Description
in DecisionDescription with .
dependencies

: InitialAbstractMachine!dependsonTdl
end TDL AM Description

IndividualClass B-Mapping-Assistant
in DesignTool with
from

suppDecision : MapToImplementationDesign
to

b tool call : "/private/daida/gobee"
end B Mapping Assistant - -

Figure 3 is a ConceptBase screendump which illustrates the
above model and its instantiation. The left side shows part
of the model in a graphical editor/browser. The editor on the
upper right shows an instance of the AbstractMachine
class defined in section 4, for the example information
system used in sections 2 and 3; the names differ slightly
since in reality our example is embedded in a longer history
of system versions and configurations [DAIDA891.

Without going into details of Telos syntax, figure 4
illustrates the instantiation of D.O.T. by another example:
the handling of proofs as in figure 2. Proof obligations and
theories are modeled as instances of class ~e~ignOb ject,
and proofs as hierarchically nested design decisions. Each
step is supported by a prover tool which consists of B
enhanced by specific theories and tactics.

451

Object in Editor : EmpProlam I

(rn](UPDATE CONFIGURATION)

bas3 : EmpiPers-am;
bas4 : Projects-am;
bas5 : CcmpNames-am;
bas6 : PersNames-am;
bas7 : ProjNames-am

contexts
ctxl : Agencies-&x-am; \ \ 1 ; \ \ ’ \ \ \

: ::
$

:::
8
,;;;
::::
::::
::::
::::
i$
i:;

3:
j j j j

Fig. 3: ConceptBase screendump with mapping model and example object instance

E ProofObligation

Fig. 4: Class-level network representation of proof management model based on D.O.T.

452

6 Discussion and Conclusion

We started this paper with drawing an analogy between
database application development and bridge construction,
and with asking three questions: What are the basic pillars
-- the semantic and computational modeling languages -- we
need? How can we bridge the gap between them by a
suitable specification formalism (a third pillar in the right
place) and mapping methodology? Finally, how can we
support maintenance by abstract modeling of software
objects and design decisions?

Our answer to these questions has been the integration of

. a semantic modeling language (TDL) which supports
an object-oriented and predicative style of conceptual
specification,

. a transaction-oriented database programming language
with sets and predicates (DBPL),

. an appropriate formal method and tool (Abstract
Machine refinements and database-specific proof
theories and tactics using the B tool) for individual
software development tasks, and

. a knowledge base management system (based on
Telos, the D.O.T. model and ConceptBase) to keep
track of information about a system’s underlying
design decisions across multiple representational
levels, and with method-dependent precision.

Aspects of this approach have also been addressed by a
number of other projects on transformational and
knowledge-based software engineering [PS83, BARS87],
software hypertext systems [GS89], software databases
[RW89], and project support environments [BROW881. Our
solution differs from these by its integration of database-
specific languages, its integration of programming-in-
the-small with version, configuration, and cooperation
management (not discussed here [RJ90, HJR901), and, for
some aspects, simply by the fact that they have been
implemented and experimented with.

Currently, our practical experience does not go beyond a
few medium-scale applications. These applications share the
need for a wide variety of structurally constrained objects
but relatively simple operations that can be understood
intuitively in terms of conditioned state transitions. Both,
objects and operations, are constrained and interrelated by
relatively high numbers of general first-order invariants and
pre- and postconditions. Applications with such
characteristics seem to be well served by the+eported base
technology, i.e., by the assertion language of TDL, the
typing and querying mechanisms of DBPL, the Abstract
Machine/ Generalized Substitution approach of the B Tool,
and the corresponding D.O.T.-based software information

schema. In a more restricted context, our implementation of
the deductive and object-oriented KBMS ConceptBase has
followed the same approach [JJR89].

Up to now we did not exploit the specific generalization/
specialization predicates of the TDL language, provided
symmetrically for data class as well as transaction design.
As a next step in applying the DAIDA framework, we are
interested in gaining experience about the consequences of
changes in Information Systems requirements, in particular
of those changes that are incremental due to the nature of
inheritance. This is intended to lead to formal support for a
new object-oriented software lifecycle heavily based on
reusability through inheritance, i.e., by specialization or
generalization of existing components. The gain in --
productivity by re-utilizing a previous effort in proofs and
refinements is expected to be considerable, in particular,
when the need for future generalizations and specializations
is foreseen and respected in the initial design and
development.

References

[ABRI86] Abrial, J.R. (1986). An informal introduction
to B. Manuscript, Paris, France.

[AGMS881 Abrial, J.R., Gardiner, P., Morgan, C., Spivey,
M. (1988). Abstract machines, part I-IV.
Manuscript, Oxford University, UK.

[BARS871 Bar-stow, D. (1987). Artificial intelligence and
software engineering. Proc. 9th Intl. Conf.
Software Eng., Monterey, Ca, 200-211.

[BJM*87] Borgida, A., Jarke, M., Mylopoulos, J.,
Schmidt, J.W., Vassiliou, Y. (1987). The
software engineering environment as a knowl-
edge base management system. In Schmidt/
Thanos (eds.): Foundations of Knowledge Base
Management, Springer-Verlag, 4 1 l-440.

[BKKK871 Banerjee, K., Kim, W., Kim, H.-J., Korth,
H.F. (1987). Semantics and implementation of
schema evolution in databases. Proc. ACM-
SIGMOD Conf., San Francisco, Ca, 31 l-322.

PM861 Brodie, M.L., Mylopoulos, J. (1986). Knowl-
edge bases and databases: semantic vs. compu-
tational theories of information. In Ariav/
Clifford (eds.): New Directions for Database
Systems, Ablex, 186-218.

lBMMS881 Borgida, A., Meirlaen, E., Mylopoulos, J.,
Schmidt, J.W. (1988). Report on the Taxis
Design Language TDL. Report, ESPRIT 892
(DAIDA), FORTH-CRC, Iraklion, Greece.

[BMSW90] Borgida, A., Mertikas, J., Schmidt, J.W.,
Wetzel, I. (1990). Specification and refinement
of databases and transactions. Report, ESPRIT
project 892 (DAIDA), Universitit Hamburg.

453

NW Brodie, M.L., Ridjanovich, D. (1984). On the
design and specification of database trans-
actions. In Brodiel Mylopoulosl Schmidt (eds.):
On Conceptual Modeting. Springer, 277-306.

[BROW&S] Brown, A.W. (1988). Integrated project support
environments. Information & Management 15,
2, 125134.

[CKM*90] Chung, L., Katalagarianos, P., Marakakis, M.,
Me&as, M., Mylopoulos, J., Vassiliou, Y.
(1990). From information systems requirements
to designs: a mapping framework. To appear,
Information Systems.

[DBM88]

W-J1

[DAIDA89]Jarke, M., DAIDA Team (1989). The DAIDA
demonstrator: development assistance for
database applications. Proc. ESPRIT Conf.,
Brussels, Belgium, 459-474.
Dayal, U., Buchmann, A., McCarthy, D.R.
(1988). Rules are objects too: a knowledge
model for active, object-oriented databases. In
Dittrich, K. (ed.): Advances in Object-Oriented
Databases, Springer-Verlag, 129-143.
Ehrich, H., Lipeck, U., Gogolla, M. (1984).
Specification, semantic, and enforce- ment of
dynamic integrity constraints. Proc. 10th
VLDE Conf, Singapore, 301-308.
Eherer, S., Jarke, M., Jeusfeld, M., Miethsam,
A., Rose, T. (1989). ConceptBase V2.1 user
manual. Report MIP-8936, Universitat Passau,.
Greenspan, S., Borgida, A., Mylopoulos, J.
(1986). A requirements modeling language and
its logic. In Brodie, M.L., Mylopoulos, J.
(eds.): On Knowledge Base Management
Systems, New York, Springer-Verlag, 471-502.
Garg, P.K., Scacchi, W. (1989). ISHYS --
designing an intelligent software hypertext
system. IEEE Expert 4,4,52-63.

[EJJ*891

[GBM86]

[GS89]

[I=871

[HAGE88] Hagelstein, J. (1988). Declarative approach to
information systems requirements. Knowledge-
Based System 1,4,21 l-220.
Hahn, U., Jarke, M., Rose, T. (1990). Group
work in software projects. IFIP Conf. Multi-
User Interfaces & Applications, I&lion, Greece
Hull, R., King, R. (1987). Semantic database
modeling: survey, applications, and research
issues. ACM Comp. Surveys 19, 3, 201-260.
Hudson, S.E., King, R. (1989). Cactis: a
self-adaptive, concurrent implementation of an
object-oriented database management system.
ACM TODS 14, 3, 291-321.
Jarke, M., Jeusfeld, M., Rose, T. (1989).
Software process modeling as a strategy for
KBMS implementation. Proc. First Intl. Conf.
on Deductive and Object-Oriented Databases,
Kyoto, Japan, 496-515.

Cm891

[JJR89]

[JJR90] Jarke, M., Jeusfeld, M., Rose, T. (1989). A
software process data model for knowledge
engineering in information systems.
Information Systems 15, 1, 85- 116.

ILK863 Lyngbaek, P., Kent, W. (1986). A data model-
ing facility for the design and implementation
of information systems. Proc. Intl. Workshop
Object-Oriented Databases, Pacific Grove, Ca.

&lBJK90] Mylopoulos, J., Borgida, A., Jarke, M.,

[MBWSO]

[NS89]

[PBf381

[PS83]

IN901

NJ’891

@EM881

[SP82]

[SPIV89]

[SS89]

[SSE87]

Koubarakis, M. (1990). Telos: a language for
representing knowledge about information
systems. To appear, ACM Trans. Information
Systems.
Mylopoulos, J., Bernstein, P.A., Wong,
H.K.T. (1980). A language facility for
designing interactive, data-intensive
applications. ACM TODS 5, 2, 185-207.
Niebergall, P., Schmidt, J.W. (1989).
DBPL-USE: a tool for language-sensitive
database programming. Report, ESPRIT 892
(DAIDA), Universimt Frankfurt, FRG.
Potts, C., Bruns, G. (1988). Recording the
reasons for design decisions. Proc. 10th Intl.
Conf Software Eng., Singapore, 418-427.
Partsch, H., Steinbriiggen, R. (1983). Program
transformation systems. ACM Computing
Surveys 1.5, 3, 199-236.
Rose, T., Jarke, M. (1990). A decision-based
configuration process model. Proc. 12th Intl.
Conf. Software Eng., Nice, France, 316-325.
Rowe, L.A., Wensel, S. (eds.): Proceedings of
the ACM-SIGMOD Workshop on Software
CAD Databases. Napa Valley, Ca.
Schmidt, J.W., Eckhardt, H., Matthes, F.
(1988). Extensions to DBPL: towards a type-
complete database programming language.
ESPRIT 892 (DAIDA), Universitat Frankfurt.
Schek, H.-J., Pistor, P. (1982). Data structures
for an integrated data base manage- ment and
information retrieval system. Proc. 8th VLDB,
Mexico City, 197-207.
Spivey, J.M. (1989). An introduction to Z and
formal specifications. Software Engineering
Journal 4, 1,40-50.
Sheard, T., Stemple, D. (1986). Automatic
verification of database transaction safety. ACM
Trans. Database Systems 14, 3,322-368.
Sernadas, A., Sernadas, C., Ehrich, H.-D.
(1987). Object-oriented specification of
databases: an algebraic approach. Proc. 13th
VLDB Co&, Brighton, UK, 107-l 16.

454

