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Abstract. The DAIDA project has made an attempt of 
formally defining and relating declarative and computational 
entities considered relevant to the process of database 
application development. Such entities range from object- 
oriented specifications to executable modules of database 
programs. To bridge the gap between semantics and com- 
putation, they also include abstract machine-based formal 
specifications and transformational theories. In an second 
contribution, selected characteristics of such entities and 
relationships are modeled uniformly in a software infor- 
mation system. Emphasis is placed on those properties that 
may become relevant when applications have to be modified 
or adjusted. Besides discussing the interaction of these 
aspects of the DAIDA methodology, the paper outlines an 
operational project prototype and reports first experiences. 

1 Introduction 

A short historical consideration of the database area points 
out that the first data models, which were supposed to 
satisfy arising database needs in computing environments, 
were not sufficient to make the distinction between 
semantic and computational aspects of database applications 
[BM86]. Programmers tried to come up with database 
application development by implicit and naive modeling of 
the application area in terms of available data types -- trees, 
networks, relations -- and to capture all application 
semantics within computational units -- transactions, 
programs. Research effort focused on providing the database 
programming community with tools -- code generators, 
language-sensitive editors, interfaces, etc. This certainly 
increased programming productivity but did not solve the 
well-known inefficiencies of database software development. 
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The development of the relational model, with its well 
defined abstraction features, was probably the starting point 
for suspecting that there is something more to data models 
than just symbol manipulation. This suspicion caused the 
exploitation of semantic data models as a first dimension of 
activities towards better database application engineering 
[HK87]. These models emphasized the specification of 
application semantics -- with their own environment, tools, 
support, etc. -- but caused a divergence between techno- 
logies dealing with semantic and computational aspects. 
Database applications can now be thought of as resting on 
two pillars without a bridge in between. This statement is 
well illustrated by the current debate on semantic-oriented 
knowledge representations versus computationally 
motivated object-oriented databases. Generic attempts to 
combine both, for example deductive databases which offer 
a declarative as well as a procedural interpretation, seem to 
cover only a limited number of application domains. 

For more general database programming tasks, the two 
pillars are too far apart to be easily connected by any kind 
of automated translation technology. The conceptual 
distance between their goals and functionalities -- expressive 
power on the one side, computational efficiency on the 
other -- therefore adds an additional factor of complexity to 
database application development. 

The second dimension of research activities related to 
database application development has been attacking this 
additional complexity by developing bridging technologies 
-- expert systems guiding implementations, mapping 
assistants supporting transformation of one formalism to 
another, or proof assistants supporting refinement of 
specifications. Extending the similarities between database 
application development and the bridge construction we 
may assume that adding a third pillar in the right place 
interprets this activity in a good way. 
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In section 3, we present part of the second dimension 
activities: how to bridge the semantic and the imple- 
mentation layer. We start from predicative object-oriented 
descriptions, a technology supporting attractive abstraction 
principles and concise notation. We transform these 
specifications into an intermediate structure of Abstract 
Machines and proceed with formal refinement down to 
efficient transaction-oriented database programs. 

In section 4, we enter the third dimension of activities by 
explaining how to describe abstractly system components 
and their dependencies; also, how to make use of this 
information. Section 5 describes the actual tools the 
DAIDA environment offers for mapping support and 
software information management, and presents a more 
general process model based on this experience. 

2 Two DAIDA Views of a Data-Intensive 
Application 

Taking for granted the necessity of a semantic layer 
addressing expressive power and reasoning capabilities and 
of a computational layer addressing computational 
efficiency, we briefly describe the languages TDL and 
DBPL which are appropriate for the semantic and the 
implementation layers. Both languages have been defined 
and used in the DAIDA project [BMMS88, SEM88]. 

Extending ideas from the Taxis project at the University of 
Toronto [MBWSO], the Taxis Design Language TDL 
[BMMS88] introduces a predicative and object-oriented style 
of specifications. TDL supports object manipulation 
through instantiation in a data class called EntityClass. 

Objects have intrinsic identity. This supports the ability to 
distinguish object identity from object equality, to share 
objects among other objects, to modify objects (which is 
not the same as deletion and insertion in value- based 
formalisms), and to support referential constraints naturally. 

The structure of values in TDL can be complex. Simple 
values are modeled as instances of ~a s ice I a s s and 
EnumeratedClass. Vahes built as tuples of other values 
are modeled as instances of AggregateClass, and their 
identity is specified by their components, which are named 
by attributes. Entities in the application domain are 
modeled as object instances of Ent it yClas s; specific 
integrity constraints are assigned to their attributes by 
means of attribute categories and range constraints. 

Operations are modeled as instances of TransactionClass, 

where the input/ output of a transaction and its actions is 
described by appropriate attributes and logical formulas. 

Most experience has been gained with design assistance for 
database structuring. Much less work has addressed 
procedural aspects of information systems development and 
their interaction with data design IBR84, EGL84, SS891. 
This is despite the fact that object-oriented databases 
emphasize the integration, even encapsulation, of structural 
and procedural components [SSE871. 

Finally, the third dimension of activities is concerned with 
the maintenance monster, something that is a routine task 
in bridge construction, but software engineers are terrified 
of. Once the overall product is in a fairly stable situation, 
bridge constructors look for the next bridge to apply their 
knowledge to while software engineers never stop 
maintaining the database application. The application area 
evolves, specifications get modified, implementations must 
reflect design updates in a consistent way. Consequently, 
the problem we face is the abstract representation of what 
we constructed, the design decisions we made, the 
relationships across the layers, so that we are able to reason 
on our product and reconstruct parts of it in a consistent 
way with respect to the whole product. 

Of course, a uniform representation is an indispensable 
prerequisite for using this knowledge efficiently. Current 
software CAD databases [RW89] emphasize the storage of 
software objects [LK86] and the integration of active 
components such as attribute evaluators [HK891, but tend 
to neglect the management of design decisions [PB881. 
Integration and schema evolution problems have been dealt 
with only at the programming level [BKKK87]. 

When the DAIDA project started in 1985 to investigate a 
comprehensive environment for information systems 
engineering, all three classes of activities had to be 
considered: semantic modeling and database programming 
languages, suitable intermediate representations and 
mappings, and design decision support [BJM*87]. 
Meanwhile, a set of coherent concepts have evolved and 
their feasibility has been shown through the realization of 
an integrated DAIDA prototype [DAIDA891. 

In this paper, we present a substantial portion of this work, 
excluding, however, the requirements engineering and rapid 
prototyping components of the DAIDA environment. In 
section 2, we propose two specific languages dealing with 
semantics and computations of database applications, 
respectively. The construction principles of these languages 
have the advantage of keeping the conceptual distance 
between the semantical and computational aspects 
manageable but cannot remove the impedance mismatch 
between their features completely. 
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Inheritance is supported for data classes as well as for 
transaction classes, allowing the organization of objects and 
the reuse of transaction specifications. This abstraction and 
structuring of the statics and dynamics of the database 
application, and the expression of specific classes of 
integrity constraints in a short, convenient way in terms of 
attribute categories represent the main TDL features useful 
for representing database-intensive applications. 

Integrity constraints which cannot be represented by 
attribute categories can be described with the assertional 
language supported by TDL, a first-order predicate language 
with equality. The pre-/post condition style is adopted to 
express specifications of transactions in terms of the states 
before and after the execution of the transaction. We only 
need to express the changes that are caused by a transaction 
and implicitly accept that everything else remains 
unchanged -- the “frame assumption”. This decision 
greatly facilitates the presentation of specifications but 
makes the semantic layer less explicit. 

We give the TDL description for a small database example 
dealing with project management: 

TDLDESIGN Researchcompanies IS 

ENUMERATED CLASS 
Agencies = ('ESPRIT, 'DFG, 'NSF ); 

ENTITY CLASS Companies WITH 
UNIQUE, UNCHANGING name : Strings; 
CHANGING engagedIn : SetOf Projects; 

END Companies; 

ENTITY CLASS Employees WITH 
UNCHANGING name : Strings; 
CHANGING belongsTo : Companies; 
worksOn: SetOf Projects; 
INVARIANTS onEmpComp: True IS 

(THIS.worksOn SubSetOf 
THIS.belongsTo.engagedIn); 

END Employees; 

ENTITY CLASS Projects WITH 
UNIQUE, UNCHANGING 

name : Strings; 
getsGrantFrom : Agencies; 

CHANGING 
consortium : SetOf Companies; 

INVARIANTS onProjComp: True IS 
(THIS.consortium = 

[EACH x IN Companies: 
THIS IsIn x.engagedInJ); 

END Projects; 

TRANSACTION CLASS HireEmployee WITH 
IN name : Strings; 

belongs : Companies; 
works : SetOf Project; 

OUT, PRODUCES e : Employee; 
GIVEN 

THIS.works SubSetOf 
THIS.belongs.engagedIn; 

GOALS 
(e.name' = name) AND 

(e.worksOn' = works) AND 
(e.belongsTo' = belongs) 

END HireEmployee ; 
END ResearchCompanies; 

The language DBPL [SEM88] emphasizes the concept of 
transaction-oriented database programming. The major 
modeling constructs are sets and predicates. Sets are used as 
a bulk data structure and as an orthogonal type constructor. 
Like in NF* relations [SP821, the underlying data model is 
a value-based one. 

The inherent constraints supported by such a data model 
include the necessity of values (no null values) within 
structured data and the uniqueness of values of specific 
attributes of structured sets (relations), characterized as keys. 
Additionally, first-order predicates over implicitly declared 
set element variables are integrated into DBPL expressions. 
Orthogonal persistence is provided by encapsulating data 
objects and transactions in so-called database modules. 

DBPL’s transaction orientation and its rich typing system 
(though without inheritance) reduce the conceptual distance 
to TDL, making it a promising “second pillar” for 
application development. Full database functionality 
including, e.g., concurrency control is provided by the 
DBPL system. 

We give a DBPL program of our small database example: 

DEFINITION MODULE 
ResearchCompaniesTypes; 

IMPORT Identifier,String; 
TYPE 

Agencies = (ESPRIT, DFG, NSF); 
CompNames, EmpNames,ProjNames = String.Type; 
EmpIds = Identifier.Type; 
ProjIdRecType = RECORD name : ProjNames; 

getsGrantFrom : Agencies END; 

ProjIdRelType = RELATION OF ProjIdRecType; 
CompRelType = RELATION name OF 

RECORD 
name : CompNames; 
engagedIn : ProjIdRelType 

END; 



EmpRelType = RELATION employee OF 
RECORD 

employee : EmpIds; 
name : EmpNames; 
belongsTo : CompNames; 
worksOn : ProjIdRelType 

END; 
ProjRelType = RELATION projId OF 

RECORD 
projId : ProjIdRecType; 
consortium: 

RELATION OF CompNames 
END; 

END ResCompaniesTypes. 

DATABASE DEFINITION MODULE 
ResearchCompaniesOps; 

FROM ResearchCompaniesTypes 
IMPORT EmpNames, CompNames, 

ProjIdRelType, EmpIds; 
TRANSACTION hireEnployee(name:EmpNames; 

belongs:CompNanes; works:ProjIdRelType) 
: EmpIds; 

END ResearchCompaniesOps. 

DATABASE IMPLEMENTATION MODULE 
ResearchCompaniesOps; 
FROM ResearchCompaniesTypes 
IMPORT CompRelType; EmpRelType; ProjRelType; 
IMPORT Identifier; 

VAR 
compRe1 : CompRelType; 
enpRe1 : EmpRelType; 
projRe1 : ProjRelType; 

TRANSACTION hireEmployee (name : EmpNames; 
belongs : ConpNames; works : ProjIdRelType) 

: EhpIds; 
VAR tEmpId : EmpIds; 
BEGIN 
IF SOME c IN compRe1 (c.name = belongs) AND 

ALL w IN works 
SOME p IN compRel[belongsl.engagedIn (w = p) 

THEN tEmpId := Identifier.New; empRe1 :+ 
EmpRelTypei<tEmpId,name,belongs,works>); 
RETURN tEmpId 

ELSE RETURN Identifier.Nil END 
END hireEmployee; 

END ResearchCompaniesOps. 

3 Mapping the Semantic Layer to Com- 
putations: Expressiveness vs. Efficiency 

The predicative style of TDL, combined with object 
orientation, provides reasoning capabilities and abstraction 
principles that are extremely valuable within the semantic 

layer. Nevertheless, this framework also causes a mismatch 
with the imperative and value-based style of DBPL. We 
enter the second dimension of activities where we have to 
bridge the gap between the technologies. The approach we 
took was to build a translator that explicitly writes out all 
assumptions and inherent constraints underlying the TDL 
model, and then re-expresses them in the specification 
formalism we use [BMS W901. 

Among the different styles of software specification that 
have been proposed (logic-based, functional, algebraic, . ..). 
we had to choose one which fits well with TDL 
descriptions. The model-based style -- also present in VDM 
or Z [SPIV89] -- turns out to be the appropriate candidate. 
At the same time, a formalism for our needs must be 
supported by a reasonably developed methodology and by a 
supporting technology suitable for a database-oriented target 
language such as DBPL. 

The third pillar of our “bridge” construction is therefore 
based on Abstract Machines (AMs), a notation using basic 
set theory, first-order predicates and generalized theories 
[AGMS88]. Appropriate theories defined on Abstract 
Machines support the transformation of TDL models into 
AM descriptions, the formal structural and operational 
refinement of Abstract Machines. down to our 
computational model and the final transformation into 
transaction-oriented database programs. These 
transformations are formally represented as so-called 
Generalized Substitutions [AGMS88, BMSW90]. 

The AM description of our small TDL example is: 

MACHINE researchCompanies.initialversion 
BASIC SETS 

Agencies, Companies, Employees, Projects, 
CompNames, EmNames, ProjNames 

CONTEXT 
Agencies = ( ESPRIT, DFG, NSF ); 
CompNames, EmpNames, ProjNames = Strings 

VARIABLES 
companies, compName, engagedIn, employees, 
empName, belongsTo, worksOn, 
projects, projName, getsGrantFrom. consortium 

INVARIANTS 
companies IN POW(Companies); 
compName IN (employees -> CompNames); 
engagedIn IN (companies -> POW(Projects)); 
employees IN PUW(Employees); 
empName IN (employees -> empNames); 
belongsTo IN (employees-xompanies); 
work&n IN (employees -> POW(projects); 
projects IN POW(Projects); 
projName IN (projects -> ProjNames); 
getsGrantFrom IN (projects->Agencies); 
consortium lN (projects -> POW(companies)); 
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V x, y. x, y IN companies ==> 
(compName(x) = compName(y) ==> x = y); 

V x. x IN employees ==z 
(worksOn SUBSET engagedIn(belongsTo(x)); 

V x, y. x, y IN projects ==> 
@rojName(x) = projName(y) ==> x = y); 

V x. x IN projects ==> 
(consortium(x) = ( y I y IN companies AND 

x IN engagedIn )) 
OPERATIONS 

HireEmployee (name, belongs, works) = 
PRE name IN EmpNames AND 

belongs IN companies AND 
works IN POW(engagedIn(belongs)) 
ANY e IN (Employees - employees) 

THEN (empName(e), worksOn( belongsTo( 
I<- (name,works.belongs) II 

employees I<- employees UNION (e) Ii 
HireEmployee I<- e END 

END HireEmployee; 
END researchCompanies.initialversion 

To explain the perhaps unfamiliar notation, consider its last 
PUt,OPERATIONS. HireEmployee defines three attribute 
functions, one variable e, and the results function by 
parallel ( II ) textual substitution ( I<- ). These parallel 
substitutions are part of an unbounded non-deterministic 
ANY-SUbStitUtiOn which chooses an arbitrary fresh member 
from the set of elements considered for employee 
representation (basic set Employees minus existing 
employees). The entire substitution is preconditioned by 
“type conditions” on the input parameters (PRE). 

The reader may have noticed a rough correspondence 
between the constructs of the TDL and AM formalisms: 
classes become sets, attributes become mappings between 
sets, integrity constraints become invariants, and pre/post 
statements become generalized substitutions. 

A proof assistant, the B-Tool [ABRI86], has been used to 
encode the knowledge of TDL-AM transformation. It 
supports the software engineer in proving the consistency 
of an Abstract Machine. It also supports the consistent 
refinement of an Abstract Machine by creating proof 
obligations, applying proof tactics, and keeping track of 
proven or still open lemmas. In the case of transactions, 
this refinement gradually leads from predicative 
specifications to imperative code; each such operational 
refinement is based on a corresponding data refinement. 

The crucial factor, however, during the overall refinement 
process are the design decisions taken by the software 
engineer in order to come up with application descriptions 
that can be executed. 

The necessity of introducing computational concepts leads 
to design decisions for data identification, data structuring, 
data typing, and operational refinement. Specific toolkits 
containing theories and tactics for each of these activities 
support the execution of design decisions. In DAIDA, full 
automation has only been possible for certain substeps of 
this abstract-machine based methodology. Further research 
is needed to determine how far automation can be carried and 
at what points human decisions remain necessary; the 
current status of this work is presented in lBMSW901. 

The following Abstract Machine represents a consistent 
refinement of the previous one, where data structuring 
(e.g., EmpClas s as a cross-product) and OperatiOnd refine- 
ment (e.g., assignment to ~mpclas~) have been introduced: 

MACHINE researchCompanies.refinedVersion 
IMPLY researchCompanies.initialversion 
VARIABLES. 

compClass, empclass, projclass, tEmpId 
INVARIANTS 

compClass IN (companies -> POW (projects)); 
empclass IN (employees -> 

EmpNames x companies x POW (projects)); 
projCli&s IN (projects IN POW(companies)); 
tEmpId IN EmpIds; 
. . . 

DEFINITIONS 
engagedIn = ;C x. (x IN companies I compClass(x)); 
(empName, belongsTo, workson) = 

k. x. (x IN employees I empClass(x)); 

consortium = A x. (x IN projects I projClass(x)); 
OPERATIONS 

HireEmployee (name, belongs, works) = 
PRE name IN EmpNames AND 

belongs IN companies AND 
works IN POW(engagedIn(belongs)) 
tEmpId I<- newEmpId; 
empClass I<- empClass UNION 

((tEmpId, name, belongs, works)) ; 
HireEmployee I<- tEmpId 

END HireEmployee; 
OTHER 

newEmpId IN ( -> (EmpIds - employees)); 
END researchCompany.refinedversion; 

4 Software Object and Dependency Modeling 

The modeling of software development is of outstanding 
importance during the third dimension of activities, the 
maintainance of the system. The structure and 
interrelationships of evolving system components have to 
be captured in order to support system designers in 
modifying parts of the software system in a consistent way. 
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We claim that this is essentially a typical database problem. 
We have to manage a large set of objects, their 
relationships, and their evolution caused by particular 
development and maintenance activities. This domain is 
well-known in the database community since the E-R 
epoch; recent E-R extensions dealing with activity 
modeling include RML [GBM861 and ERAE [HAGEgg]. 

This view does not only allow us to model the software 
objects, relationships and software engineering activities 
composing the software development domain, Going 
further, we can now define what are the consistent means 
by which we should proceed and reason whether our system 
has been evolved in a consistent way. This is because such 
a model need not define a methodology in terms of fixed 
predefined steps but can describe it in terms of design goals 
and constraints whose satisfaction is then accomplished and 
verified by particular steps taken during development and 
maintainance. 

What we need, consequently, is a semantic model capturing 
the statics (software objects, relationships) and the 
dynamics (development and maintainance activities) of the 
software modeling activity in a form appropriate for 
reasoning. Extending earlier work on RML [GBM86], the 
knowledge representation language Telos was elaborated in 
DAIDA with exactly these goals in mind [MBJK90]. It is a 
structurally object-oriented language into which a time 
calculus (not used in this paper) and the rules and integrity 
constraints of deductive databases have been integrated. 

In the following, we give a Telos description of some TDL 
and AM language constructs as well as the description of 
the dependencies that can be established between them. All 
these descriptions can be thought of. as uniformly 
represented metalevel knowledge about the two layers, 
allowing us to establish and maintain dependencies across 
objects of different languages; these objects and 
dependencies can be further restricted by Telos’ predicative 
rules and constraints. We start with the Telos description of 
some TDL classes modeling static aspects of application 
domains (the reader can easily establish the relationship to 
our TDL example in section 2): 

IndividualClass TDL-Design 
in MetaClass with 
attribute 

entities: TDL EntityClass; - 
transactions: TDL-TransactionClass; 
enumerated: TDL-EnumeratedClass; 
aggregates: TDL:AggregateClass; 
basicclasses: TDL BasicClass - 

end TDL-Design 

IndividualClass TDL-EnumeratedClass 
in MetaClass isA TDL DataClass - 

end TDL EnumeratedClass - 

IndividualClass TDL-EntityClass 
in MetaClass isA TDL DataClass with - 
attribute 

CHANGING,UNCHANGING,UNIQUE: 
TDL DataClass; - 

INVARIANTS: TDL AssertionClass - 
end TDL EntityClass - 

IndividualClass TDL TransactionClass - 
in MetaClass isA TDL Class with - 
attribute 

IN,OUT,PRODUCES: TDL DataClass; - 
GIVEN,GOALS: TDL AssertionClass - 

end TDL TransactionClass - 

IndividualClass TDL AssertionClass - 
in MetaClass isA TDL Class, String - 

end TDL-TransactionClass 

Note that the abstract description of TDL assertions is 
simply a string. Next, we describe Abstract Machines: 

IndividualClass AbstractMachine 
in MetaClass with 
necessary 

basicsets: AM BasicSet; - 
initializations: AM Initialization; 
variables: AM Variable; - 
invariants: AM Invariant; - 
operations: AM-Operation 

attribute 
definitions : AM Definition; - 
contexts: AM Context; - 
others: AM Other - 

end AbstractMachine 

IndividualClass AM-Operation 
in MetaClass with 
attribute 

PRE,THEN: String 
end AM Operation - 

Since we have now modeled both languages within a 
common formalism, we can formally specify possible 
dependencies between TDL and AM objects. Dependencies 
are represented as classes of attributes (with category 
dependson) attached to derived objects. In our example, the 
most general dependency InitialAbstractMachine! 
dependsonTd1 establishes that an Initial Abstract Machine 
is derived from a single TDL design. The constraint 
demands that attributes of the Initial Abstract Machine are 
derived from attributes of the same TDL design. The model 
can easily be semantically enriched by further constraints. 
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IndividualClass InitialAbstractMachine 
isA AbstractMachine with 
dependson, single 

dependsonldl: TDL-Design 
constraint 

CompleteMapping: 
$ forall y/TDL-Design, a/Attribute 

(THIS.dependsonTdl = (y) and From(a,THIS) 
==>exists d/Class!dependson 

exists b/Attribute 
From(d,a) and To(d,b) and From(b,y) ) $ 

end InitialAbstractMachine 

In Telos notation, x.a gives the value of an attribute of 
category a while x!a stands for the attribute link a of x 
itself. THIS denotes an arbitrary instance of the class object 
being defined. The component dependencies below establish 
some (example) constraints on the derivation of an Abstract 
Machine’s basic sets, contexts, operations, and invariants. 

AttributeClass 
InitialAbstractMachine!basicsets with 
dependson, single 

dependsonEnum: TDL-Design!enumeratedclasses 
end InitialAbstractMachine!basicsets 

AttributeClass 
InitialAbstractMachine!contexts with 
dependson, single 

dependson: TDL-Design!enumeratedclasses 
constraint 

correspondinqBasicsetExists : 
s exists x/ InitialAbstractMachine 

ib/ InitialAbstractMachine!basicsets, 
(From(ib,x) and From(THIS,x)) $ 

end InitialAbstractMachine!contexts 

AttributeClass 
InitialAbstractMachine!operations with 
dependson 

dependsonTransaction:TDL-Design!transactions 
end InitialAbstractMachine!operations 

AttributeClass 
InitialAbstractMachine!invariants with 
dependson 

tdlInvariant: TDL-EntityClass!INVARIANT; 
uniqueTdlAttr: TDL-EntityClass!UNIQUE 

constraint 
CorrectEntities: $ forall x/TDL Design, - 

am/InitialAbstractMachine 
(From(THIS,am) and am.dependsonTdl = ix) 

==> 
(exists es/Attribute, e/TDL-EntityClass 
From(ea,e) and e outOf x.entities and 
(ea outOf THIS.tdlInvariants or 
ea outOf THIS.uniqueTdlAttr)) ) $ 

end InitialAbstractMachine!invariants 

Going on this way all possible dependencies between 
software objects can be specified. Particular dependencies for 
a specific design would be represented as instances of the 
above dependency classes. It is quite easy now to guess how 
we support the third dimension maintenance activities. A 
software information system keeps track of the dependencies 
during the development and maintainance of a software 
system component. It can identify the consequences of 
modifications not only within the language layer where the 
modification took place, but also across the layers. 

5 From Dependency Modeling to Design 
Decision Support: ConceptBase 

In the DAIDA prototype environment, the interaction of 
bridging activities (sec. 3) and object-dependency (sec. 4) 
modeling has been implemented by coupling 
knowledge-based mapping tools with the Telos-based 
software information system, ConceptBase [EJJ*89]. A 
mapping assistant documents its activities and their results 
in ConceptBase, and retrieves information. The 
ConceptBase usage environment offers a window-based and 
graphics-oriented set of tools for browsing, zooming, and 
editing hypertext-like views of the software knowledge that 
may guide the software engineer (the user of the mapping 
assistant) in further activities. 

In the following subsections, we first sketch the 
implementation of the TDL-to-DBPL mapping 
methodology via AMs, and then exploit this experience to 
identify several important model extensions we have 
incorporated in the ConceptBase system. 

5.1 Implementation of Mapping Methodology 

We support the particular mapping methodology introduced 
in sections 3 and 4 as illustrated in figure 1. In this figure, 
intermediate results are denoted by rectangles, design steps 
or decisions by ovals, and design tools by rounded boxes. 
Links establish the input-output relationships. 

A first step translates a TDL design into an Initial Abstract 
Machine which is verified for consistency. After the 
consistency proof, the AM is subjected to a series of 
verified refinements. The last refined machine (baseline) is 
automatically translated into DBPL code. The formal 
properties of Abstract Machines and refinements are assured 
and organized with the help of Abrial’s interactive proof 
assistant, the B-Tool [ABRI86]. Another tool, the 
language-sensitive editor DBPL-USE [NS893, provides 
syntactic and some semantic support for correct 
programming and program interconnection of DBPL 
modules that come from outside the DAIDA environment. 
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The refinement process is directed interactively by the user 
and controlled formally by the mapping assistant. The 
mapping assistant itself is organized as a toolkit from 
which the developer must choose problem-adequate theories 
(i.e., sets of previously proven theorems) and tactics 
(sequencing rules for the application of theories) to be 
employed by the B mol. 

Additionally, there is usually a large set of open proof 
obligations, called lemmas. The generation of refinements 
and their correctness proofs is quite complicated and requires 
a lot of knowledge about available theories and useful proof 
tactics for specific proving tasks. This experience led to a 
first extension of the mapping model managed by Concept- 
Base: we needed to model not only the refinement steps but 
also their associated correctness proofs, and even individual 
steps of those proofs. The proof model can again be seen as 
an object-dependency structure. 

Fig. 2 illustrates this claim for one particular refinement 
step. Dependencies (here drawn as vertical arrows, e.g., 
dep-opn-1) are used to document individual operational 
refinements. Each dependency creates a proof obligation 
(e.g., the box pointed to by opn-l-tobeproven) which in 
turn requires a complex hierarchy of proof steps; only if all 
of these proof steps succeed for all operations (either 
formally or because the user signs them off as correct), the 
WholeProof object for the refinement will be created in the 
knowledge base. 

5.2 Extensions to Object-Dependency Model 

The two figures reveal some deficiencies in the object- 
dependency model of section 4. For example, besides the 
dependencies which are directly related .to the specific 
methodology at hand, figure 1 also illustrates more generic 
kinds of activities which are associated with software 
project management. The picture shows the distinction 
between initial versions, refinements within a particular 
language context, release decisions for temporarily frozen 
object versions, and mapping between different language 
contexts. We may also need to represent the relationships 
between different variants or the discussion of design goals. 

In ConceptBase, we have decided to separate the semantic 
descriptions given by the models discussed in section 4, 
from the administrative aspects of a software information 
system. This has two advantages. Firstly, each admini- 
strative object can be associated with both, a semantic 
description and the actual software object. Secondly, version 
and configuration management problems can be addressed at 
both a conceptual and a storage level [RJ90] so that we can 
combine the advantages of a software database with those of 
a knowledge-based mapping assistant. 

A related observation that is not adequately addressed in the 
above model is that the dependencies are created by the 
execution of human design decisions. Such design decisions 
are free within a prescribed methodology, they can be driven 
by goals and can be argued about in design teams. 
ConceptBase makes the notion of design decisions explicit 
and provides tools for multi-objective decision-making and 
argumentation support [HJR90]; another part of the DAIDA 
environment has explored the idea of goal satisficing for 
non-functional requirements [CKM*90]. The idea of 
separating administration and semantics of objects is now 
applied to design decisions: the dependencies defined in 
section 4 become the semantic description of their 
underlying design decision. 

Finally, figure 1 illustrates that we have neglected the 
existence of multiple interacting tools in our initial model. 
To evaluate or replay a design history, we have to know 
which tools were used to create the version we are looking 
at. Moreover, the whole approach proposed here is so 
documentation-intensive that it becomes economically 
feasible only in a CASE (computer-aided software 
engineering) environment. The formal modeling and 
technical interconnection of an open toolset of mapping 
assistants, layer-specific editors, compilers, proof 
assistants, etc. is therefore a necessity, albeit one not 
addressed in most existing software information systems. 

ConceptBase models tools as reusable software objects that 
are specified in a TDL-like style and implemented in any 
programming language. Technically, such tools can be 
connected to ConceptBase by interprocess communication 
in a client-server architecture. A trigger concept added to the 
Telos language controls the activation of such tools via 
their specification [JJR89]. The way how this is 
implemented is closely related to active databases [DBM88]. 

Summarizing, we have identified three extensions. Taken 
together, they generalize the object-dependency approach of 
section 4 to a Decision-Object- Tool or D.O.T. model: 

. separation of administrative and semantic aspects of 
object management 

. decision support instead of just dependency recording 

. tool modeling and technical tool integration. 

A final point is extensibility. The full DAIDA environment 
does not only support the specification-to-implementation 
mapping discussed in this paper. It also includes require- 
ments engineering and prototyping sub-environments and a 
mapping assistant for the derivation of TDL descriptions 
from requirements [CKM*90]. Although these subtasks 
address rather different problems, we have been able to mo- 
del their execution within the same framework [DAIDA89]. 
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Fig. 1: Mapping TDL specifications to DBPL programs in the DAIDA environment 

Fig. 2: Example of interaction between refinement and proofs 



For this purpose, we have defined a generic D.O.T. model 
of tool-assisted information systems processes at the 
next-higher level of the Telos metaclass hierarchy which 
has all the classes defined in section 4 as well as others as 
its instances [JJR901. This metamodel consists of the 
following Telos classes: 

IndividualClass Class with 
attribute 

attribute : Class; 
dependson : Class; 
trigger : Behavior 

end Class 

IndividualClass DesignObject 
in MetametaClass with 
attribute 

objsemantic : Class; 
objsource : ExternalReference 

end DesignObject 

IndividualClass DesignGoal isA DesignObject 
end DesignGoal 

IndividualClass DesignDecision 
isA DesignObject with 
attribute 

from, to : DesignObject; 
goals : DesignGoal; 
decsemantic : DecisionDescription 

end DesignDecision 

IndividualClass DecisionDescription 
in MetametaClass with 
attribute 

dependencies : Class!dependson 
end DecisionDescription 

IndividualClass DesignTool 
isA DesignDecision with 
attribute 

from : DesignDecision; 
to : Behavior 

end DesignTool 

Figure 1 from section 5.1 can be understood as a semantic 
network view of our mapping knowledge base that directly 
reflects the D.O.T. structure: software object classes are 
denoted by rectangles, decision classes by ovals, and tools 
by rounded rectangles. For example, the objects, decisions, 
and tools involved in the initial translation from the TDL 
formalism to Abstract Machines is represented as an 
instance of the D.O.T. metamodel as follows (the classes 
defined in section 4 form the semantic descriptions): 

IndividualClass BaselineConceptualDesign 
in DesignObject with 
objsemantic 

: TDL-Design 
objsource 

: TDL-Directory 
end BaselineConceptualDesign 

IndividualClass 
InitialImplementationDesign 
in DesignObject with 
objsemantic 

: InitialAbstractMachine 
objsource 

: B-Directory 
end InitialImplementationDesign 

IndividualClass MapToImplementationDesign 
in DesignDecision with 
from 

fromCD : BaselineConceptualDesign 
to 

toID : InitialImplementationDesign 
decsemantic 

: TDL-AM-Description 
end MapToImplementationDesign 

IndividualClass TDL-AM-Description 
in DecisionDescription with . 
dependencies 

: InitialAbstractMachine!dependsonTdl 
end TDL AM Description 

IndividualClass B-Mapping-Assistant 
in DesignTool with 
from 

suppDecision : MapToImplementationDesign 
to 

b tool call : "/private/daida/gobee" 
end B Mapping Assistant - - 

Figure 3 is a ConceptBase screendump which illustrates the 
above model and its instantiation. The left side shows part 
of the model in a graphical editor/browser. The editor on the 
upper right shows an instance of the AbstractMachine 
class defined in section 4, for the example information 
system used in sections 2 and 3; the names differ slightly 
since in reality our example is embedded in a longer history 
of system versions and configurations [DAIDA891. 

Without going into details of Telos syntax, figure 4 
illustrates the instantiation of D.O.T. by another example: 
the handling of proofs as in figure 2. Proof obligations and 
theories are modeled as instances of class ~e~ignOb ject, 
and proofs as hierarchically nested design decisions. Each 
step is supported by a prover tool which consists of B 
enhanced by specific theories and tactics. 
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Fig. 3: ConceptBase screendump with mapping model and example object instance 

E ProofObligation 

Fig. 4: Class-level network representation of proof management model based on D.O.T. 
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6 Discussion and Conclusion 

We started this paper with drawing an analogy between 
database application development and bridge construction, 
and with asking three questions: What are the basic pillars 
-- the semantic and computational modeling languages -- we 
need? How can we bridge the gap between them by a 
suitable specification formalism (a third pillar in the right 
place) and mapping methodology? Finally, how can we 
support maintenance by abstract modeling of software 
objects and design decisions? 

Our answer to these questions has been the integration of 

. a semantic modeling language (TDL) which supports 
an object-oriented and predicative style of conceptual 
specification, 

. a transaction-oriented database programming language 
with sets and predicates (DBPL), 

. an appropriate formal method and tool (Abstract 
Machine refinements and database-specific proof 
theories and tactics using the B tool) for individual 
software development tasks, and 

. a knowledge base management system (based on 
Telos, the D.O.T. model and ConceptBase) to keep 
track of information about a system’s underlying 
design decisions across multiple representational 
levels, and with method-dependent precision. 

Aspects of this approach have also been addressed by a 
number of other projects on transformational and 
knowledge-based software engineering [PS83, BARS87], 
software hypertext systems [GS89], software databases 
[RW89], and project support environments [BROW881. Our 
solution differs from these by its integration of database- 
specific languages, its integration of programming-in- 
the-small with version, configuration, and cooperation 
management (not discussed here [RJ90, HJR901), and, for 
some aspects, simply by the fact that they have been 
implemented and experimented with. 

Currently, our practical experience does not go beyond a 
few medium-scale applications. These applications share the 
need for a wide variety of structurally constrained objects 
but relatively simple operations that can be understood 
intuitively in terms of conditioned state transitions. Both, 
objects and operations, are constrained and interrelated by 
relatively high numbers of general first-order invariants and 
pre- and postconditions. Applications with such 
characteristics seem to be well served by the+eported base 
technology, i.e., by the assertion language of TDL, the 
typing and querying mechanisms of DBPL, the Abstract 
Machine/ Generalized Substitution approach of the B Tool, 
and the corresponding D.O.T.-based software information 

schema. In a more restricted context, our implementation of 
the deductive and object-oriented KBMS ConceptBase has 
followed the same approach [JJR89]. 

Up to now we did not exploit the specific generalization/ 
specialization predicates of the TDL language, provided 
symmetrically for data class as well as transaction design. 
As a next step in applying the DAIDA framework, we are 
interested in gaining experience about the consequences of 
changes in Information Systems requirements, in particular 
of those changes that are incremental due to the nature of 
inheritance. This is intended to lead to formal support for a 
new object-oriented software lifecycle heavily based on 
reusability through inheritance, i.e., by specialization or 
generalization of existing components. The gain in -- 
productivity by re-utilizing a previous effort in proofs and 
refinements is expected to be considerable, in particular, 
when the need for future generalizations and specializations 
is foreseen and respected in the initial design and 
development. 
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