
Commit-LSN: A Novel and Simple Method for Reducing
Locking and Latching in Transaction Processing Systems

C. MOHAN

Data Base Technoloqy Instl!ute, IRM Alumden Recearct, Center, San .Jow, CA 95170. l.JSA
mnha/vr~lhm.com

Abstract This paper presents a novel and simple
method, called CommitYLSN, for determining if a piece
of data is in the commltted state in a transaction pro-
cessing system. This method is a much cheaper alter-
native to the locking approach used by the prior art for
this purpose. The method takes advantage of the concept
of a log sequence number (LSN). In many systems. an
LSN is recorded in each page of the data base to relate
the state of the page to the log of update actions for
that page. Our method uses information about the LSN
of the first log record (call it Commit-LSN) of the oldest
update transaction still executing in the system to infer
that all the updates in pages with page_LSN less than
Commit LSN have been committed. This reduces locking
and latching. In addition. the method may also increase
the level of concurrency that could be supported. The
Commit LSN method makes it possible to use fine-
granulazty locking without unduly penalizing transactions
which read numerous records. It also benefits update
transactions by reducing the cost of fine-granularity lock-
ing when contention is not present for data on a page.
We discuss in detail many applications of this method
and illustrate its potential benefits for various environ-
ments. In order to apply the Commit-LSN method, ex-
tensions are also proposed for those systems in which
(1) LSNs are not associated with pages (AS1400,’ SQLIDS,
System R), (2) LSNs are used only partially (IMS), and/or
(3) not all objects’ changes are logged (AS1400, SQL/DS.
System R).

1. Introduction

In many cases of data base interactions, the sole purpose
of locking is to ensure that a given piece of data that is
about to be read is in the committed state. In those
cases, locking is not really being done to delay future
updates. This is the case with transactions that run with
the Cursor Stability (CS) level of isolation (i.e., consis-
tency /eve/ 2 of System R [Gray781 - see the section
“1.2. Latches and Locks”) when they do not have the
intention to update the data being read. Typically, ad

Permission to copy wrthout fee all or part of thus mater/al 1s
granted provided that the copies are not made or distributed fo/
direct commercial advantage, the VLDB copyrIght nobce and the
t/t/e of the pubkabon and its date appear, and nobce is gtven
that copying is by permission of the Very Large Data Base En-
dowment. To copy otherwise, or to republish, reqtnres a fee and/
or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia, August 1990

hoc queries that examine large volumes of data and that
generally do not perform any updates of the examined
data are run at this level of isolation [PMCLSSO]. For
transactions that run with the Repeatable Read (RR)
level of isolation (i.e., consistency /eve/ 3 of System R -
see the section “1.2. Latches and Locks”) also, there are
times when the data base management system (DBMS)
does some reads using CS. This happens, for example,
in DB2’ during referential constraint checking. Avoiding
the locking and unlocking interactions with the lock man-
ager saves not only pathlength. but it may also increase
concurrency, depending on the granularity of locking. In
one system, when there are no conflicts. acquiring a lock
and releasing it costs about 800 instructions.

Fine-granularity (e.g., record) locking is very helpful in
increasing the level of concurrency that can be supported
by reducing contention amongst transactions for access
to data. The ARIES (Algorithm for Recovery and Isolation
Exploiting Semantics), ARIES/NT (NeSted Transactions),
ARIES/KVL (Key-Value Locking), ARlESlLHS (Linear
Hashing with Separators) and ARIES/IM (Index Manage-
ment) methods presented in [MHLPS89, MohaSOa,
MohaSOb. MoLe89, MoPi90, RoMo89] are examples of
methods which support high concurrency. ARIES has
been implemented, to varying degrees, in the IBM prod-
ucts OS/2 Extended Edition Database Manager’ [ChMy88]
and 082 V2R1, in the IBM Research prototypes Starburst
[SCFLMRG] and Quicksilver [HMSCSS], and in the Uni-
versity of Wisconsin’s Gamma data base machine
[DGSBHSO]. The drawback of fine-granularity locking is
that for those transactions that access large number of
records, the number of locks that need to be acquired
may increase dramatically compared to the situation
with, for example, page locking. If. for those transactions
which only need to determine that some piece of data
is in the committed state, the system could somehow
avoid locking, then we can have the benefits of fine-
granularity locking for transactions which access few
records and at the same time avoid the drawbacks of
such a locking granularity for transactions which access
numerous records for reading. A method for avoiding
locking is expected to be useful very often since in most
data bases, at any given time, most of the data is in the
committed state.

1.1.. &crkw qf’ the iklcthod

In most transaction systems that use write-ahead logging
(WAL) for their recovery, updates to pages get. logged
and every page’s header has a field called page_LSN
which contains what is called the log sequence number
(LSN). The LSN is a monotonically increasing number
which i,; typically the logical address of the log record

406

describing the most recent update to the page. Existing
systems (e.g., IBM’s DB2 [Crus84], IMS [GaKi85, PeSt83,
Yama83] and the OS12 Extended Edition Database Man-
ager, and Tandem’s Nonstop SQL’ [Tand87]) have used
the LSN concept only to accomplish the recovery of the
data after a system failure, to guarantee the transaction
atomicity and persistence properties [HaRe83].

The crux of the Commit LSN method is to use this LSN
information and information about the currently active
update transactions to come to some conclusions about
whether or not all the data on a given page is in the
committed state, without resorting to locking. This is
done by comparing the page’s LSN with the information
about the oldesf update transaction still executing in the
system. The crucial fact that makes our method accom-
plish its objectives is that no page with an LSN value
that is less fhan the LSN of the Begin-Transaction log
record of the oldest executing update transaction could
have any uncommitted data. The Commit-LSN method
applies whether the lowest granularity of locking is a
page or something finer than that (e.g., record).

We have extended the Commit-LSN method to use it in
those transaction systems which do not necessarily log
changes to all the pages of the data base (e.g., as in
AS/400’ [CICo89, DHLPR891, Infoi-mix-Turbo’ [Curt88],
SQLlDS [ChGY81], and System R [CABGKBI]) and which
do not necessarily store in the page header the LSN
value (e.g., AS1400. IMS, SQL/D% System R). In such
systerns. we can make a change so that the systems
keep track of the youngest transaction to have updated
each page and use this information in the same fashion
the LSN information is used by our method in the other
systems to reduce or avoid locking.

The rest of this section introduces some concepts and
terminologies relating to locking, latching, logging, and
recovery. Section 2 discusses the goals that we had in
mind when we designed the Commit-LSN method. The
method is presented in detail in section 3, while the
implementations of the method in different systems are
discussed in section 4. Section 5 discusses optimizations
to improve the usefulness of the Commit-LSN concept
in the presence of long-running update transactions. Nu-
merous applications of the Commit-LSN method are out-
lined in section 6. Section 7 discusses the impact of the
shared disks (dafa sharing) [MoNPSO, ReSW89] and the
shared nothing (partitioned) [DGSBHSO, Shoe861 envi-
ronments on the extent of applicability of the method.
Finally, section 8 presents a summary of our work.

1.2. I,ntcllcs nnd Locks

Normally latches and locks are used to control access
to shared information. Locking has been discussed to a
great extent in the literature. Latches, on the other hand.
have not been discussed that much. Latches are Iike
semaphores. Usually, latches are used to guarantee
physical consistency of data, while locks are used lo
assure logical consistency of data. Latches are usually

held for a much shorter period of time than are locks.
Also, the deadlock detector is not informed about latch
waits. Latches are requested in such a manner so as to
avoid deadlocks involving latches alone, or involving
latches and locks

Acquiring a latch is cheaper than acquiring a lock (in the
no-conflict case, 10s of instructions versus 100s of in-
structions), because the latch control information is al-
ways in virtual memory in a fixed place, and direct ad-
dressability to the latch information is possible given the
latch name. On the other hand, storage for individual
locks may have to be acquired, formatted, and released
dynamically, and more instructions need to be executed
to acquire and release locks. This is because, in most
systems, the number of lockable objects is many orders
of magnitude greater than the number of latchable ob-
jects.

Locks rnay be obtained in different modes such as S
(Shared), X (eXclusive), IX (Intention exclusive), IS (In-
tention Shared), and SIX (Shared Intention eXclusive),
and at different granularities such as record (tuple), table
(relation), file (tablespace, segment, dbspace) [Gray78].
The S and X locks are the most common ones. S provides
the read privilege and X provides the read and write
privileges. Locks on a given object can be held simul-
taneously by different transactions only if those locks’
modes are compatible. The compatibility relationships
amongst the different modes of locking are shown in
Figure 1. A check mark (‘J’) indicates that the corre-
sponding modes are compatible

Figwr 1: Lock Mode Compatibility Matrix

With hierarchical locking. the intention locks (IX, IS, and
SIX) are generally obtained on the higher levels of the
hierarchy (e.g., table), and the S and X locks are obtained
on the lower levels (e.g., record). The nonintention mode
locks (S or X), when obtained on an object at a certain
level of the hierarchy. implicitly grant locks of the cor-
responding mode on thp lower level objects of that higher
level object. The intention mode locks, on the other
hand, only give the privilege of requesting the corre-
sponding intention or nonintention mode locks on the
lower level objects (e.g , SIX on a table implicitly grants
S on al’ the records of that table. and it allows X to be
requested explicilly on the records). For more details,
the reader is refcrrfd to [Gray78].

Lock requests may be made with the condifional or the
c/ncondifiona/ option. A conditional Irequest means that

407

the requestor is not willing to wait if the lock is not
grantable immediately at the time the request is pro-
cessed. An unconditional request means that the reques-
tor is willing to wait until the lock becomes grantable.
Locks may be held for different durations. An uncondi-
tional request for an instant duration lock means that
the lock is not to be actually granted, but the lock man-
ager has to delay returning the lock call with the success
status until the lock becomes grantable. Manual duration
locks are released some time after they are acquired
and, typically, long before transaction termination. Com-
mit duration locks are released only at the time of ter-
mination of the transaction, i.e., after commit or abort is
completed. The above discussions concerning conditional
requests, S and X modes, and durations, except for com-
mit duration, apply to iatches also.

Transactions may request different levels of isolation (or
consistency) with respect to each other. SQUDS, the
OS/2 Extended Edition Database Manager, DE2 and
Nonstop SQL support the isolation levels cursor stability
(consistency /eve/ 2 of System R [Gray78]) and repeat-
able read (/eve/ 3 of System R). They are referred to as
CS and RR, respectively. Both return only committed
data to the transactions, unless the accessed data is
uncommitted data belonging to the accessing transaction.
When the chosen level is CS, as long as an updateable
SQL cursor is positioned on a record, a lock will continue
to be held on the record and the record will be guaranteed
to exist in the data base, unless the current transaction
itself deletes the record after the cursor is positioned on
it. As soon as the cursor is moved to a different record,
the lock may be released on the previous record.

With RR, locks are held on all the accessed data until
the end of the transaction. Actually, locks are somehow
held even on nonexistent data, which could have satisfied
the query. In [MohaSOa, MoLe89], we discuss how this
is done when the accesses are made via indexes. With
RR, if a certain query were to be posed at a certain
point in a transaction, and a little later the same query
were to be posed within the same transaction, then the
response to the query would be the same, even if it
were a negative response like nof found, unless the
same transaction had changed the data base to cause a
difference to be introduced in the responses. If all the
transactions are run with RR, then their concurrent ex-
ecutions would be serIa/Izable in the sense of [EGLT76].
That is, the concurrent execution would be equivalent to
some serial execution of those transactions. With CS,
only the locks on data modified by the transaction are
held for commit duration and so, repeating a query may
give a different response due to other concurrent trans-
actions’ intervening activities. CS supports higher con-
currency than RR since the S locks are held for a shorter
time with CS. Typically, users posing ad hoc queries for
decision support run their transactions with CS to reduce
the harmful interactions with the transactions which are
supporting production applications [PMCLSSO]. The in-
tention here is to read only committed data, but not to
prevent future updates of the read data by other trans-
actions before the reading transaction terminates.

In order to avoid starvation, typically lock managers
process lock requests in the first-in-first-out (FIFO) dis-

cipline. As a result, sometimes a transaction may have
to wait, even though its requested lock mode is compat-
ible with the currently held mode, just because there is
already a waiting request whose mode is incompatible
with the held mode. While, from an overall system point
of view this is a desirable wait, from the individual new
request’s viewpoint it is an undesirable wait. It wourd
be desirable, at least under some circumstances, to
avoid this waiting as long as it does not cause starvation.

1.3. Logging and Recovery

To meet transaction and data recovery guarantees, the
transaction processing system records in a log the
progress of a transaction, and its actions which cause
changes to recoverable data objects. The log becomes
the source for ensuring either that the transaction’s com-
mitted actions are reflected in the data base in spite of
various types of failures, or that its uncommitted actions
are undone (i.e., rolled back). The log can be thought of
logically as an ever growing sequential file.

Each log record is assigned, by the log manager, a
unique log sequence number (LSN) at the time the record
is written to the log. The LSNs are assigned in ascending
sequence. Typically, they are the logical addresses of
the corresponding log records [Crus84]. At times, ver-
sion numbers or timestamps are also used as LSNs
[MoNPSO, ReSW89, Yama83]. On finishing the logging
of an update to a page, in many sysiems (e.g., in DB2,
Starburst, QuickSilver, the OS12 Extended Edition Data-
base Manager and Nonstop SQL), the LSN of the log
record corresponding to the latest update to the page is
placed in a field (page_LSN) in the page header. Hence,
knowing the LSN of a page allows the system to correlate
the state of the page with respect to those logged up-
dates relating to that page. That is, at the time of re-
covery, the page LSN and the log record’s LSN can be
compared to determine unambiguously whether or not
that log record’s update is already reflected in that page
[MHLPS89].

The nonvolatile version of the log is stored on what is
generally called stable storage (e.g., disk). This storage
remains intact and available across system failures.
Whenever log records are written, they are placed first
only in the volatile storage (i.e., virtual storage) buffers
of the log fiie. Only at certain times (e.g., at prepare
time during the execution of the two-phase commit pro-
tocol - see [MoLi83, MoL086]) are the log records up
to a certain LSN written, in log page sequence, to stable
storage. This is called forcing the log up to that LSN.

There are two general approaches to recovery: the write-
ahead loggfng (WAL) approach [Gray78, MHLPS89] and
the shadow-page technique [GMBLL81, MHLPS89]. WAL
is the recovery method of choice in most systems, even
though the shadow-page technique of System R or a
variation of it is used in systems like SQUDS and Informix-
Turbo. In WAL systems, an updated page is written back
to the same nonvolatile storage location from which it
was read. The WAL protocol asserts that the log records
representing changes to some data must already be on
stable storage before the changed data is allowed to
replace the previous version of that data on nonvolatile

408

storage. The buffer manager uses the LSN associated
with the page to ensure that the log has been forced up
to that LSN before it writes the modified page to non-
volatile storage. In System R’s implementation of the
shadow-page technique, periodically an action-consistent
checkpoint is taken by quiescing all activity in the data
manager. This state of the data base (the shadow ver-
sion) is preserved on disk until the next checkpoint by
creating new copies of any pages which get modified in
the interim (the current version). Should a system failure
occur, restart recovery always happens from the most
recent (internally consistent) shadow version of the data
base. Even with this technique, logging of updates is
performed.

Generally, each log record describes the update per-
formed on only a single page. The undo (respectively,
redo) portion of a log record provides information on
how to undo (respectively, redo) changes performed by
the transaction. A log record which contains both the
undo and the redo information is called an undo-redo
log record. Sometimes, a log record may be written to
contain only the redo information or only the undo infor-
mation. Such a record is called a redo-on/y log record
or undo-only log record, respectively.

2. Goals

Our goals in doing this work were:

Provide a more efficient, in terms of number of com-
puter instructions executed, method for determining
that a piece of data is in the committed state, without
using locking.

Improve the level of concurrent execution of transac-
tions that could be supported by avoiding obtaining
locks which may cause unnecessary lock waits and
unnecessary interferences amongst transactions.

Support fine-granularity locking in such a way that it
does not become too expensive for transactions which
access large quantities of data for reading and for
transactions which update the data when there isn’t
contention on the affected pages.

Make use of the fact that in some systems pages of
the data base have tags associated with them for re-
lating the page state to a logged history of updates in
order to infer some additional facts about the data on
the pages and thereby reduce locking.

Make use of the logging that is done in transaction
systems for recovery purposes to achieve the goal of
reducing locking even where those systems are not
presently tagging every page with the state information
which relates the page state to logged information.

3. The Commit-LSN Method

In this section, we describe in detail the commit_LSN
method and how it is used. In the next section, we
describe the implementation of the method in systems

which have adopted different approaches to logging and
recovery.

All transactions are assumed to get at least an intention
lock (e.g., in the IS mode) on the higher level object
(e.g., the table). The objective is only to reduce the
locking at the lower levels (e.g., pages or records) of the
object. Even when page is the smallest granularity of
locking, an exclusive (X) latch is used by update trans-
actions to let other nonlocking transactions (i.e., readers
of the page) know that an update is in progress. This
permits, when desired, uncommitted data to be read, as
in systems like AS/400, IMS, and Nonstop SQL, with
physical consistency of the data and the validity of point-
ers being guaranteed by making such transactions ac-
quire a share (S) mode latch before examining a page.
With finer than page locking, all updaters and readers
are in any case required to do latching in the appropriate
mode before examining the page [MHLPSIO].

An update transaction writes a Begin-Transaction log
record just before performing its first update. Read-only
transactions do not do any logging. The LSN of the
Begin-Transaction log record is termed the Begin-LSN
of the transaction. Typically, a component of the system
called the recovery manager or the transaction manager
maintains a transaction table which contains one entry
for each active transaction. In the entry associated with
an update transaction, the Begin-LSN value will also be
stored. With the Commit LSN method, the functionality
of the recovery manager-is extended so that it may be
queried at any time to obtain Commit-LSN, which is the
minimum of the Begin-LSNs of all the currently active
update transactions. If there is no update transaction in
the system at that point in time, then the current end-
of-log LSN (EOL-LSN) is returned by the recovery man-
ager as the value of Commit-LSN.

With respect to the maintenance of Commit-LSN, one
possibility is to keep it in shared storage and let the
recovery manager modify it using Compare & Double
Swap (S/370 instruction) type logic, whenever the termi-
nation of an update transaction causes Commit-LSN to
change. In this case, the transactions which need
Commit-LSN can obtain it directly from this shared stor-
age. The steps involved in maintaining this (Global)
Commit-LSN are:

When the system restarts after a failure, initialize
Commit-LSN to EOL-LSN, if no transactions are still
active at the end of restart recovery; else, initialize
it to Minimum(Begin-LSNs of Active Transactions).

During normal system operation, if a transaction is
terminating (after completing commit or abort) and
the terminating transaction’s Begin-LSN < >
Commit-LSN then leave the value as it is. Otherwise,
compute the new value of Commit-LSN: If no other
update transaction is active, then set the new value
of Commit-LSN to EOL-LSN; else set it to
Minimum(Begin-LSNs of Active Transactions).

Figure 2 shows, as an example. the state of a log as of
a certain time. It shows the log records written by dif-
fere,lt transactions and the LSNs of those log records.

409

Log and its Contents

T3(Pl

Tl { Pl P2 P3 1 74 { P4 52)

LSN 10 20 30 48 50 60 70 100 110 120 130 150 160

Cokit LSN
File 3

GlObId
Con& t_LSN

Transaction Table

{ - Begin-Transaction Log Record
} - End-Transaction Log Record
Pl, P2, . . . - Log Records of File P's Pages
Sl, s2, . . . - Log Records of File S's Pages
Active Update Transactions: 72, T3
Terminated Transactions: 11, T4 Global Comnit~LSH: 40

Figure 2: A Log Scenario

For each update log record, it also shows the file name
and page number within the file whose update is recorded
in that log record. For example, P2 refers to an update
to page 2 of file P. The figure also shows the contents
of the transaction table and the value of the (global)
commit_LSN field as of the time of the log state depicted
in that figure.

If Commit-LSN is not needed very often, then it may be
more cost effective to compute it only when it is needed.
Various possibilities exist for implementing the continu-
ous tracking of Commit-LSN. The recovery manager
could use a priority queue to keep track of the Begin LSNs
of the currently active update transactions. Alterna&ely,
if it is expensive to maintain it continuously, then the
recovery manager could compute Commit-LSN at regular
intervals based on elapsed time, number of terminations
of update transactions, amount of logging, etc.

Traditionally, locks are used to determine whether a
piece of data that needs to be accessed by a transaction
is currently in the committed state or not. The main idea
behind the Commit LSN method is the use of
Commit LSN to determine, without locking, that some
data is in fact in the committed state as of that time.
The interpretation of Commit LSN is that at /east all
updates logged prior to that poht in the log have already
been committed. It is possible that some additional up-
dates logged after the Commit LSN have also been com-
mitted. It will cost the transacGon more to find out which

of those later updates (i.e., updates with LSN > =
Commit-LSN) have been committed.

The Commit-LSN method’s steps at the time of a page
access are:

1. Find out Commit-LSN from the recovery manager
or access it in shared storage.

Note that it is not necessary for the transaction to
obtain the latest value of Commit-LSN before every
page access, as long as it is done at least once
before the first page access. While an out of date
Commit-LSN does not cause any inconsistencies, it
may increase the number of times locks have to be
obtained.

2. Latch the page in share (S) mode.

3. If page_LSN < Commit-LSN, then conclude that all
data on the page is in the committed state; otherwise,
do locking as usual and determine whether data of
interest is committed or not.

4. Implementation in Different Systems

The Commit-LSN method is directly implementable in
systems like 082, Starburst, QuickSilver, the OS12 Ex-
tended Edition Database Manager, the Gamma data base
machine and Nonstop SQL since those systems use the

410

WAL protocol and they store LSNs in the nonvolatile
storage versions of pages also.

One problem with its implementation in systems like IMS
is that such systems do not acquire latches on pages.*
This can be easily taken care of by introducing latching.
But the major problem with applying the Commit-LSN
method to systems like IMS relates to the t’naintenance
of LSNs on pages. Only for a dirty page in the buffer
pool, IMS Full Function maintains in the page’s buffer
control block the LSN of the latest update log record.
When the dirty page is written to nonvolatile storage,
the page_LSN is not written with it, but is discarded.
Changing this would be a major effort since it would
require changes to page formats and the reorganization
of existing data. The problem with discarding the
page_LSN is that if a page with uncommitted data were
to be replaced in the buffer pool (due to IMS Full Func-
tion’s steal policy) and later on the same page were to
be read in, the page_LSN information would be lost and
the fact that the page contains uncommitted data could
not be inferred without locking. What all these mean is
that, if the buffer manager knows that a page in the
buffer pool is dirty, then the page LSN that the buffer
manager is forced to track for enforcing the WAL protocol
could be utilized and benefit could be derived from the
Commit-LSN method. If a page is not dirty (i.e., buffer
version = nonvolatile storage version), then the system
cannot tell whether it contains any uncommitted updates
or not. The Commit-LSN method’s approach to handling
such situations is to make systems like IMS Full Function
associate with a page that is read from disk either (1)
the current end-of-log LSN or (2) the maximum of the
LSNs of all the dirty pages so far written to disk for the
object (e.g., file) containing that page. This LSN can then
be treated conservative/y as the page LSN. It i,s really
an upper bound for the true page_LSN? The page_LSN
remains at this value until the page is dirtied. Having
done this, the rest of the Commit-LSN method may be
used as before in systems like IMS also.

Although a system like the AS1400 also uses the W\L
protocol, unfortunately, in that system, even when dirty
data is in virtual storage, the page_LSN is not maintained.
That system does not have a buffer pool per se; because
of its single-level storage concept (similar to that of the
801 [ChMe88]), the paging subsystem is the buffer man-
ager. WAL is ensured by making an updated page inel-
igible for being paged out until the log record written for
that update is forced to stable storage. If the AS/400’s
paging is modified along the lines of what was discussed
earlier for IMS Full Function, then the Commit-LSN
method can be applied.

The major problem in applying the Commit-LSN method
to systems like SQL03 and System R is that such sys-
tems use the shadow-paging technique for recovery
[GMBLLII] and they do not maintain LSNs for pages in
the buffer pool or on nonvolatile storage, although they

log changes to the data and the log manager has the
notion of an LSN. Additionally. no logging is done of
changes to index pages and of updates to any of the
pages (index or data) during transaction rollback (i.e.,
no compensation log records (CL&) are written - see
[tvlHLPS89]). Informix-Turbo and the AS/400 also do not
log index changes.

In order to exploit the Commit-LSN method, the above
systems should be modified to store in every page the
Begin ISN of the youngest transaction to update the
page,%dependent of whether logging is done for that
update or not. That is, whenever a transaction makes a
change to a page, the transaction compares its own
Begin-LSN with the LSN value currently stored on the
page. The higher of the two values is now stored on the
page. In the case of indexes for which no logging is
done, the above applies for key inserts and key deletes.
For structure modification operations (SMOs - e.g., page
splits and page deletes), which cause keys or key-range
responsibility to be moved from one leaf to another, the
page into which keys or additional key-range responsi-
bility is shifted is assigned a new LSN which is
Maximum(Begin-LSN of current transaction, Current
Page-LSN of page from which keys or key-range respon-
sibility is shifted, Current-Page LSN of page being mod-
ified). This change in the procedure for determining the
new page_LSN is to account for the fact that the SMO
might cause some uncommitted data of one transaction
to be moved from one page to another by a different
transaction.

5. Object-Specific Commit-LSNs

Instead of having one global Commit-LSN that covers
all objects, transactions can benefit further by computing
an object-specific Commit LSN that is specific to the
object to be accessed. In th7.s way, a long-running update
transaction that accesses some other objects and keeps
the global Commit-LSN quite a bit in the past will not
unduly restrict the applicability of the Commit-LSN
method to the object of interest. The steps involved in
computing this object-specific (e.g., file specific)
Commit-LSN are:

1. After the transaction locks (e.g., in IS mode) the
object (e.g., the file) to be accessed, and just before
it accesses the object, it notes the current EOL-LSN.
Call it O/d EOL-LSN.

2. It queries the lock manager to ascertain the identities
of the other transactions that have update-type locks
(e.g.. IX and SIX mode locks) on that object. Call
this set of transactions the Updater-List.

Nofe that we are not concerned about the transac-
tions that have read-type locks (e.g., IS and S) on
that object even though some of those may be up-

2 For this reason, when unlocked reads (con.ri.rlenc~ /eve1 I of System R) arc pcrfnrmcd in IMS, physical contictcncy of lhe data is not guaranteed and that
may lead to abnormal termination of transactions.

3 In systems (e.g., IMS Fast Path [GaKi8S]) which do not allow uncommincd dala to he tiltcn lo dtsk (no-r!eal policy [llaRe83]), the page_LSN can
he set to zero, instead of the end-of-log I.SN, since the page cannot cnntain any uncomm tied data.

411

date transactions because of their activities against
other objects.

The Updater-List is passed on to the recovery man-
ager to find out the minimum of Begin-LSNs of those
transactions.

Note that by the time the list is passed on to the
recovery manager some of those transactions may
have already terminated and some other transac-
tions might have acquired update-type locks on this
object. It is to deal with the latter that we noted the
EOL-LSN before requesting the Updater-List from
the lock manager. We can assert that any other
transactions beginning to modify the object must be
writing log records (for that object) with LSNs greater
than or equal to the noted EOL-LSN.

The recovery manager returns Minimum-Begin-LSN
which is the minimum of the Begin LSNs of all the
transactions in the list that are still-in existence. If
none of those transactions is in existence, then it
returns the value infinity.

Having obtained the Minimum-Begin-LSN from the
recovery manager, the object-specific Commit LSN
is computed for the object of interest as the minihm
of {Old EOL-LSN, Minimum-Begin-LSN}.

Another possibility for computing the object-specific
Commit LSN is to track, for each transaction and for
each object that it updates, a lower bound on the LSN
of the log record of the first update that the transaction
makes to that object. This information is kept in the
virtual storage descriptor associated with the object. A
transaction needing the object-specific Commit-LSN can
then use the minimum of the tracked values and the
EOL-LSN as the Commit-LSN. The value computed in
this fashion will be greater than or equal to the value
derived from the previously given method which involved
interacting with the lock manager and the recovery man-
ager.

The scenario in Figure 2 illustrates the advantage of an
object-specific Commit-LSN over the global Commit-LSN.
When using only the global Commit-LSN value, if page
P3 is accessed, then locking would be necessary since
P3’s LSN (60) is greater than the former (40). On the
other hand, if the object-specific Commit-LSN for file P
had been used, then the locking will not be necessary
since the former (110) is greater than P3’s LSN.

6. Applications of the Method

In this section, a number of applications of the
Commit-LSN method are described. Some of them ben-
efit all transactions, while others benefit only transactions
that are performing read-only activities with CS. In this
section, only the single system scenario is considered.
In the next section, we consider the shared disks and
the shared nothing environments.

Some of the applications of the Commit-LSN method are:

1. CS Read-Only File Scans For read-only CS file
scans, there is no need to do locking of data while ac-
cessing data pages for which page_LSN < Commit-LSN.
Latching is still needed to do this check, evaluate pred-
icates and retrieve columns of qualifying records. To
amortize the cost of latching, in one access to the page,
all the qualifying records on that page can be retrieved.
Even for updateable CS scans, the checking of the
satisfiability of predicates can be done without locking,
if the above condition is true. If a record does not qualify
and the above condition is true, then no locking needs
to be performed. Only after determining that a record
qualifies does a manual duration lock need to be acquired
in the case of updateable CS file scans.

The possibility of this optimization lets one consider
keeping the granularity of locking small (e.g., at the
record level) to increase concurrency for the benefit of
RR transactions and CS read accesses with the update
intent, while at the same time not penalizing the CS
read-only accesses with the huge cost of locking and
unlocking every record that is accessed. For most of the
pages that the CS scan accesses, the transaction is ex-
pected to avoid locking completely, due to the
Commit-LSN method.

2. CS Read-Only index Scans For CS index scans, the
techniques of index ANDing/ORing [MHWCSO] can be
combined with the Commit-LSN method to dramatically
reduce the extent of locking. CS (read) index accesses
for which the index contains sufficient information to
respond to the query, without accessing data pages, can
also behave like in the case of data page accesses men-
tioned above.

With CS, if an index look-up is to be followed by a data
page access, and if no locking is performed during the
index access, then the same Commit-LSN value that was
used for avoiding the locking during the index access
should also be used while accessing the data page for
avoiding locking. If, on accessing the data page, the
data page’s LSN is found to be less than the Commit LSN
value passed by the index manager, then the predicates
checked via the index are still guaranteed to be true and
locking of the data may be avoided, if the access is a
read-only one. If the former condition does not hold,
then even the predicates already checked by the index
manager must be rechecked. Note that in this case the
record whose record ID (RID) was provided by the index
manager may no longer exist or, if multiple table’s
records are allowed to be intermixed on the same page,
then a record belonging to a different table might now
exist with that RID. By using the current Commit-LSN
value, it may still be possible to avoid locking.

The algorithm presented in Figure 3 may be used for CS
(read-only and update) scans, if one or more indexes
are to be used for identifying the qualifying records of
a single table before accessing the data pages, as dis-
cussed in [MHWCSO]. To simplify the pseudo-code, we
have ignored the details about what happens if a lock is
not grantable when it is requested. Since a page latch
is held, the lock requests must be made conditionally.
If the lock is not granted, then, to avoid deadlocks in-
volving latches, the latch must be released and the lock
requested unconditionally. Finally, when the lock is

412

Note Conmit-LSN BEFORE starting the scan of the first index and call it Begin-Cornit-LSN
Don't do any locking while accessing the indexes
Generate the list of RIDS satisfying the different predicates checked

via the different indexes and sort the RIDS in ascending order
Start accessing the records whose RIDS are in the list
For each record in the list do the following:

Latch record's page
IF poge_LSN c Begin-Cot&t-LSN THEN /* predicates checked before are still valid and */

/* all data on page is in the committed state */
check ANY REMAINING predicates /* only predicates NOT checked during index accesses */
IF predicates are satisfied THEN

IF updateable scan THEN
lock data for manual duration

unlatch page and return data
ELSE ignore record and unlatch page /* predicates not satisfied */

ELSE /* predicates checked via index need rechecking */
IF page_LSN c CURRENT Cornit-LSN THEN /* all data in page in conmitted state */

check ALL the predicates
IF predicates are satisfied THEN

IF upduteuble stun THEN
lock data for manual duration

unlatch page and return data
ELSE ignore record and unlatch page /* predicates not satisfied */

ELSE /* data on page may not be in the colmlitted state */
check ALL the predicates
IF predicutes ore satisfied THEN

IF upduteubZe stun THEN
lock data for manual duration, unlatch page and return data

ELSE lock data for instant duration, unlatch page and return data
ELSE /* predicates not satisfied */

lock data for instant duration /* to confirm coumitted state */
ignore record and unlatch page

Figure 3: Combining Commit-LSN Method With Index ANDlORing Technique

-

granted all the predicates already evaluated must be
reevaluated, if the page_LSN had changed during the
time the page latch was not held.

3. Referential Constraint Enforcement One method of
referential constraint enforcement during a modification
to the data base does the following: (1) do the modification
(delete, insert or update) first; (2) then check for refer-
ential constraint violations; (3) if constraints are violated,
then undo the modification (via a partial rollback). This
method has been implemented in DB2 V2Ri. With this
implementation, since the second step does only read
operations, locks need not be obtained on the data in
the pages accessed during that step if (1) the Commit-LSN
method’s condition (page_LSN < Commit-LSN) is satis-
fied and (2) the referential constraint is satisfied.” This
is acceptable even if the transaction performing the op-
eration has requested the RR level of isolation.5 If the

constraint is violated, RR is requested, and the repeat-
ability of the violation must be guaranteed, then a commit
duration lock must be acquired.

As an example, if the operation is an insert of a child
table’s record and the foreign key is not null, then a
check is made to ensure that a record whose primary
key is equal to the inserted record’s foreign key exists
in the parent table. When the primary key index of the
parent table is accessed to perform this check, the
Commit LSN method comes into play and locking can
be avoided under the above conditions. In summary, the
Commit LSN method may reduce the cost of enforcing
referentTal integrity constraints.

4. Space Reservation When record locking is used,
the space released by one transaction must be protected
from being consumed by another transaction, until the

4 Today, in DR2, the second step is executed with CS as the tcolntmn Icvrl. This CRLKCS mmunl duration locks tn hc acquired and relcased.

5 Not holding the locks on the data accessed in step 2 until commit dots not cause prohlrmc hecaute of the rollowing If any other transaction tries to
modify the data accessed during the second step concurrently in a way that would cau :e lhe already checked constraint to he violated, then such a
transaction would be forced to access the data modified by the first transachon in stc,o I tn order for it lo ensure that il is not violating any constraints.
If the lirst transaction has not terminated, then the second transaction will not be able to access the latter immediately, hut would he forced to wait. It
is to cause this wait to occur that the modification is performed hef~re the potsthlc violation is checked.

413

former commits. Otherwise, some other transactions
might consume the freed space and then the space-
freeing transaction might choose to rollback and find it
impossible to put back the data on the original page due
to lack of space. The method used in Starburst and the
OS/2 Extended Edition Database Manager to do space
reservation is described in [LiMP86]. The basic idea
behind methods like that is to make the space releasing
operations obtain locks (e.g., in IX mode) on the page
and leave ‘trails” on the page to let subsequent space
consuming transactions know that there is potentially
some uncommitted freed space on the page. The trans-
action attempting to perform a space consuming opera-
tion, on noticing the ‘trail’, is forced to get a lock (e.g.,
instant duration X mode) on the page to verify that the
space releasing operation has in fact committed, before
it consumes the space and, possibly, erases the trail.
Even if the lock is granted the trail should not be erased,
if the current transaction itself held the IX lock.

The application of the Commit-LSN method avoids the
need for the space consuming transaction that notices
the existence of the trail to have to lock the page to
consume the space, if the page_LSN is less than the
Commit-LSN. If the latter condition holds, then the trail
can also be erased. The erasure is correct only if the
current transaction itself is guaranteed not to have freed
up any space on the page. Note that even transactions
which access the page for update operations that neither
free nor use additional space can do the erasure under
the above condition. It would be useful to record the
erasing of the trail in the log record of the update action
so that at redo time, during system restart, the trail can
be reset conveniently.

5. ARIESIIM Index Algorithm The ARIES/IM index con-
currency and recovery algorithms described in [MoLe89]
set the value of the Delete-Bit on a leaf page to ‘1’
when doing the deletion of a key on that page. When a
key is about to be inserted on a leaf page, if that page’s
Delete Bit has the value ‘I’, then the inserter is required
to acquire the structure modification (SM) latch in S
mode (this latch becomes a global lock in the SD envi-
ronment) and then reset the Delete-Bit to ‘0’. What this
means is that the inserter has to wait until any in-progress
SM (page split or page delete) anyiYhere in the index
tree is completed. This is done to make sure that the
tree would be structurally consistent when the following
sequence of events occurs: (1) the inserting transaction
consumes all the space released by the deleting trans-
action and commits, (2) the deleting transaction rolls
back, and (3) a traversal of the index tree from the root
is necessary for performing a logical undo due to the
lack of space on the original page to put back the deleted
key. If this happens during normal processing, the tree
may be inconsistent and the deleter can wait for it to
become consistent; however, at restart time, since undo
for all losing transactions is performed in a single back-

ward scan of the log (see [MliLPS89]), waiting will not
be fruitful. Hence, the burden is placed on the inserter
to make sure that its action will not cause trouble for
the deleter. Note that if the deleter had committed by
the time the inserter attempts its operation then the
acquisition of the SM latch (lock in the SD environment),
which may reduce concurrency and cause delays, is un-
necessary.

In the original ARlESllM algorithms, there is no simple
way for the inserter to find out whether the defeter has
committed or not committed. The idea here is that if the
Delete-Bit were to be currently set at ‘1’ and the
page_LSN were to be less than the Commit-LSN, then
the inserter can reset the Delete-Bit to ‘0’ and safely
do its key insert without having to synchronize itself with
any SM, which may be on-going, using the SM latch
(lock). This improves concurrency also. If the
Commit-LSN condition does not hold then the original
ARIES/IM method applies. With the Commit-LSN method,
the system can potentially save a latch (lock) call at the
time of every key insert on a page that follows a key
delete involving the same page.

6. Next Key Locking in Indexes If, for a particular in-
dex, high concurrency is extremely important and RR is
not a requirement. then during a key insert, the next key
lockjng requirement (i.e., the instant duration X lock to
be acquired on the next higher key currently in the index,
before the insertion of the current key) of the methods
of ARIESIIM [MoLe89], ARlESlKVL [MohaSOa], and Sys-
tem R [MohaSOa] can be dropped, as long as the index
is a noqunique index. Under these conditions, for key
deletes in both unique and nonunique indexes, the next
key locking (commit duration X locks) must still be per-
formed to make sure that no uncommitted deletes are
‘skipped” over during a scan or a look-up operation, if
not skipping over is a requirement. The intent of this
lock is to let other transactions know about the uncom-
mitted delete by blocking them.

Even if RR is not required, the next key locking require-
ment for inserts has to be enforced in unique indexes to
make sure that the key being inserted is not the same
as another one which is currently in the uncommitted
deleted state.6 If the key to be inserted is higher than
the highest key on the page, then the next key locking
requirement potentially causes an extra I/O to read in
the next page. This next key locking during inserts
causes some unnecessary synchronization and delays if
it so happens that there are no uncommitted deletes in
the range of interest and (1) the next key had been
inserted by another transaction that has not yet commit-
ted,;’ OR (2) the next key is locked in the S mode by
anol her transaction.

For a unique index also, by applying the Commit-LSN
method during a key insert, the system can avoid the
next key locking and, possibly, an I/O if (1) RR is not

6 In ARfES/KVI. and System R alone, the next key locking under thcac conditions in unique indexes can he avoided if we changed the duration of the
lock obtained on the d&red key from instant to commit. With this change, the lock on lhc key to he in.wr/ed will not be granted lf lhere is an uncommitted
delete of the same key value by another transaction. This of course incrcatcs Ihc numhcr ,,I commit duration locks and also may cause unnecessary lock
collisions due to the fact that key values are hashed to gcncrate lock names. Of course, th s would he a hcller method if next key locking during a delete
can be avoided under the condition that not skipping over uncommiucd dclclcs is not a rcquirrmcnt.

414

necessary, (2) the key does not already exist on the
page, and (3) the page_LSN is less than the Commit-LSN.
The last condition guarantees that there are no uncom-
mitted deletes (or inserts, for that matter) on the page
and hence the uniqueness constraint will not be violated,
even if all the currently running update transactions
were to rollback. If condition 3 is not satisfied, the sys-
tem can still use other methods (like the IX locking tech-
nique of ARIES/KVL) to improve concurrency.

7. Logical Deletion of Keys One way to reduce locking
in indexes and thereby improve the pathlength and the
concurrency, while still guaranteeing RR, is to do logical
deletion of keys instead of physical deletion. That is,
during a key delete operation, instead of removing the
key from the page, it is left there with a delete-flag set
to ‘I’, as in IMS [Ober80] and in [Mino84]. Of course,
this operation must be logged. If the delete were to be
rolled back, then the delete-flag is reset to ‘0’. This also
avoids the possibility of a page split during the undo of
a key delete. Performing deletes in this fashion avoids
the need for next key locking during deletes which is
required in ARIESIIM, ARlESlKVL and System R. This
saves a commit duration X lock and improves the
pathlength and concurrency, and still lets the system
provide RR. If the key to be deleted is the highest key
on the page, then the next key locking requirement po-
tentially causes an extra l/O to read in the next page.
Even with logical deletes, next key locking must be per-
formed during key inserts, as long as RR must be guar-
anteed. Modifications to ARlESllM along these and other
lines to improve concurrency dramatically are explored
further in [MoHPSO].

The major problem with this logical-delete approach is
that, at some point after the’ commit of the key-deleting
transaction, the logically deleted key must be removed
to free up the space occupied by it in order to reduce
the number of page splits and to improve performance
during searches. Ordinarily, such garbage collections
would require getting locks on the deleted keys to make
sure that they are committed. The physical deletes which
are performed when such locking is successful should
also be logged since the redoing of updates during re-
start is page oriented (i.e., same page is updated during
redo as during normal processing) and the system needs
to be able to repeat history. Logging is required because
locks are not available at restart time to determine which
keys can be physically deleted and which cannot be due
to uncommitted deletes by in-doubt and in-flight trans-
actions. Note that readers of keys should lock logically
deleted keys. Only after the locks are granted, can they
ignore them. Readers should not leave behind S locks
on logically deleted keys to guarantee RR since those
keys may get garbage collected without the knowledge
of the readers. The garbage collector gets, if at all, only
a conditional instant duration S lock on a logically deleted

key to determine that it is committed and hence that it
can be physically deleted.

The cost of garbage collection of the logically deleted
keys can be reduced by using the Commit-LSN method,
as explained below. Readers can also benefit from the
Commit-LSN method. Locking of logically deleted keys
can be avoided by readers, if the Commit-LSN method
helps them to deduce immediately that all the logical
deletions on the page have been committed.

During any update operation* on an index leaf page, if
the page_LSN is less than the Commit-LSN. then ALL
the logically deleted keys on that page can be physically
deleted without incurring any locking cost. A field in the
page header can be made to keep a count of the number
of logically deleted keys on the page to trigger this ac-
tion. The log records for the physical deletes need not
include the key values themselves. In contrast, in a
logical-delete action’s log record, the complete key value
is needed to be able to perform the undo if the transaction
were to rollback. In the physical key delete log records,
it is enough to indicate the ordinal position(s), in the key
sequence on the page, of the key(s) to be deleted (e.g.,
the 3rd and the 17th keys on the page). This record can
be written as a redo-only log record and the repeating
history feature of the ARIES recovery method will ensure
that the log record’s effects persist even if the garbage
collecting transaction were to be rolled back later on. In
fact, this log record need not even be written as a sep-
arate record, but its contents could be combined with
those of the record logging the main update action of
this transaction on this page. The garbage collection
part of such a log record is never undone.

Thus, the Commit-LSN method in combination with the
logical delete approach can save a commit duration X
lock during a delete operation and an instant duration S
lock during the garbage collection of a logically deleted
key. The avoidance of the next key lock can also increase
the level of concurrency that can be supported. It can
also save a reader an instant duration S lock during a
look-up operation that encounters a logically deleted key.

8. Data-Only Locking When using certain index man-
agement methods like ARIESIIM, sometimes it may be
found that a transaction holds an X lock on a record or
a page, even though the transaction has not updated
and does not intend updating the corresponding data
page. This happens because, in ARIESIIM, in the interest
of reducing the number of locks (see [Mole891 for more
explanations), the locks on the index keys were made to
be the same as the locks on the underlying data from
whic:h those index entries were extracted. That is, the
same lock name is used to designate objects (records
and keys) which are related but which reside in different
pages. Given this data-only locking approach, in contrast
to the index-specific locking approaches of DB2, System
R and ARIESIKVL, the next key locking done during a

7 In the ARIES/KVL method [Moha90a], which guarantees RR, such unnecessary synchrori7ation is nvoidcd hy making the inscrtcrr lock the inserted key
and the next key in the 1X mode, instead of the X mode; that method, while it improves concurrency, ttill cotts the pnthlcngth incurred to get the lock.

8 Even readers, which are already update transactions due tn their activities on other data, c:m play the role of Good Snmarctanc and do garbage collection
when the appropriate conditions are true.

415

key delete causes an extra commit duration X lock to be
acquired on the underlying data, thereby potentially caus-
ing unnecessary .delays to other reader transactions, if
they insist on finding out whether some data page’s data
is committed or not committed by acquiring locks on the
data. For the same reason, a reader transaction doing
an index-only access on index II may get blocked, if it
does locking. This may happen not because any data on
that index page is currently in the uncommitted state,
but because an updater may hold an X lock on the un-
derlying data (data page or some row on the data page,
depending on the granularity of locking). The latter may
be the case either because the latter transaction updated
the underlying data, or because of its next key locking
on some other index or in the same index due to an
update on a different page of the current index. Under
these conditions, use of the Commit-LSN method during
data and index page accesses allows the transactions to
save locking costs, avoid unnecessary lock waits and
also increase concurrency. The Commit-LSN method
lets the transactions have the best of both: the reduced
number of locks due to the data-only locking feature of
ARIES/IM and a compensation for the reduction in con-
currency that data-only locking causes.

Even with index-specific locking (e.g., with key-value lock-
ing as in System R and ARIESIKVL). a single lock may
cover data in multiple pages. For example, a single key
value lock may lock up many index entries, even though
only one of them may be in the uncommitted state.

9. FIFO Lock Request Processing Because of the FIFO
discipline that is normally followed in granting lock re-
quests to avoid starvation, some additional delays may
be caused if a lock is used to determine that a piece of
data is in the committed state. An example situation
where, due to this observation, the Commit-LSN method
may help is: Tl holds an S lock on Dl; T2 has requested
an X lock on Dl and is forced to wait; T3 wants to check
if Dl is in the committed state, hence it requests a lock
on Dl, and is forced to wait.

10. Overflow Records When a record is updated and
it no longer fits in the original page, in systems like DB2,
the OS12 Extended Edition Database Manager, SQL/D&
and System R, the updated record is inserted on a dif-
ferent page. During such an operation, the record should
still retain its original RID since the index entries contain
the original RID. To accomplish this, in the original page,
the data record is replaced with a pointer record which
contains the RID (called the overflow RID) of the updated
data record on the overflow page. While performing the
insert of the updated data record on the overflow page,
the above systems have to make sure that they are not
reusing the RID of an uncommitted deleted record of
another transaction. This check is done by acquiring an
instant lock on the overflow page or RID. It should be
easy to see that the Commit LSN method could be used
to possibly avoid getting this lock. Note that since all
accesses to the overflow record happen only through
the original RID, the lock on the original RID is sufficient
to indicate that the updated record is in the uncommitted
state.

10. CS Updateable Scans As far as data qualifying for
updateable CS scans are concerned, the Commit-LSN

method may be used to delay or avoid locking the data,
if the current definition of CS (see the section “1.2.
Latches and Locks”) is relaxed. When an attempt is
made to do an update or a delete on the current scan
position (using the UPDATE or DELETE WHERE CURRENT
OF CUf!SOR SQL statement), it must be acceptable for
the system to respond that the record under the cursor
either co longer exists or that it no longer satisfies the
predicates of the scan, if, due to the fact that no lock
was acquired when the cursor was positioned during the
read, some other transaction’s activity had caused the
original state of affairs to change. If the state is still the
same as determined either by noticing that the page_LSN
has not changed since the scan was positioned on the
record or, if the page_LSN has changed, by reevaluating
the predicates, then an attempt is made to acquire the
X lock on the data and perform the update or delete.
Note that even with the current definition of CS, the
update or delete operation may fail due to a deadlock.
So, the mere fact that an S lock is acquired currently in
most systems when an updateable scan is positioned on
a record and is held when the user examines the record,
does not guarantee to the user that he would definitely
be able to modify the record, if he desires to do so. A
deadlock may cause the user’s transaction to be rolled
back. If the Commit LSN method is used and a lock is
not acquired at the time of positioning the scan, then it
would be like an optimistic approach. This approach may
or may not be acceptable and perhaps the user should
be given a choice.

7. Shared Disks Versus Partitioning

In a multisystem configuration, shared disks (SD) and
shared nothing (SN - i.e., partitioned approach) environ-
ments have different effects on the extent of applicability
of the Commit-LSN method. In the case of SD, the disks
are shared by the multiple instances of the DBMS, but
each DBMS instance has its own buffer pool and global
locks, and buffer coherency protocols are required to
preserve consistency of the data in the face of the ability
of all the systems to read and modify any of the data in
the data base. SD is the approach taken in IBM’s IMS
Data Sharing [PeSt83, Yama83], TPF [Scru87] and the
Amoeba research project [MoNPSO, SNOP85], in NEC’s
DCS [SMMT84], and in DEC’s VAX RdbNMS’ and VAX
DBMS’ in the VAXcluster’ environment [KrLS86,
ReSW89]. In the case of SN, each system can read or
modify directly only a portion of the data in the data
base. SN is the approach taken in Nonstop SQL,
Teradata’s DBCI1012’ [Tera88], and the University of
Wisconsin’s Gamma data base machine [DGSBHSO].

It should be quite clear that SN stands to benefit the
most from the Commit-LSN method since in that envi-
ronment there is only, at most, one copy of the data in
the bufter pool. The Commit-LSN can be determined by
each system independently of the other systems. With
SD, conceptually, each system needs to periodically poll
the other systems to determine the minimum
Commit LSN across all the systems (various alternatives
are possible for implementing this efficiently). As noted
before, it is acceptable to use an out-of-date Commit-LSN.

416

The latter can only cause unnecessary locking and not
the reading of any uncommitted data.

With SD, since there can be more than one copy of each
page across the different buffer pools, unless a given
system is already known to have the latest version of a
given page, the utility of the Commit-LSN method is
reduced. It is applications I, 2, 3, 8, and 9 of the
Commit-LSN method that suffer the most in data sharing,
if the CS transactions always need to see the most re-
cent version of any data. When record locking is in
effect, even if the system is forced to behave like an
updater of the page, which may involve acquiring a
global lock on the page to be sure that the transaction
is reading the latest version of the page, the system can
still benefit if the Commit-LSN method avoids the need
for acquiring the record-level global locks. SD is penal-
ized the most, compared to SN, when page locking is
done, but it is still better compared to SD in which the
Commit-LSN method is not adopted. The amount of
global locking will not decrease, but some local locking
will be avoided.

It is possible to design a method in which, if sufficiently
large amount of data is going to be read in one system
and the amount of concurrent update activity in the other
systems is small, the updating systems can be made to
let the reading system know what pages are being up-
dated by them that belong to the object being read and
for those pages alone the reading system can do locking.
This penalizes the updating transactions and it is not
clear that this is desirable. Another possibility is to relax
the requirement that the CS reader always see the latest
version of the data.

Also, a version number technique [MoNPSO] used to
avoid the need for a merged log across the systems,
makes it impossible to correlate a page’s version number
(a counter that monotonically increases for a particular
page) with the information about the Begin-LSNs of the
currently executing transactions. This is because the
version number assigned to a page during an update
may be less than the Begin-LSN of the updating tra:is-
action even if the system equates the Begin-LSN to the
timestamp assigned to that transaction’s
Begin Transaction log record. This could be fixed by
ensuring that the version number assigned at the time
of an update to the page is always at least as high as
the updating transaction’s Begin-LSN.

Earlier, it was pointed out as to how the data-only locking
performed by the ARlESllM method and the next key
locking performed during key deletes could cause some
unnecessary lock waits during index and data page ac-
cesses and how the Commit-LSN method reduces the
impact of those. In SD, there is another feature which
could cause unnecessary waits for some types of ac-
cesses. This is due to the fact that the instant duration
X lock acquired on the next key during key inserts in the
single system environment had to be changed to a com-
mit duration X lock in SD. The Commit-LSN method can
reduce the impact of this change.

8. Summary

We presented a novel and simple method, called
Commit-LSN, for determining if a piece of data is in the
committed state in a transaction processing system. This
method is a much cheaper alternative to the locking
approach used by the prior art for this purpose. The
method took advantage of the concept of log sequence
number (LSN) which, in many systems, is recorded in
each page of the data base to relate the state of a page
to the log of update actions for that page. information
which is normally used only for recovery purposes is
exploited by the Commit-LSN method to improve per-
formance. The method uses information about the LSN
of the first log record (called Commit-LSN) of the oldest
update transaction still executing in the system to infer
that all the updates in pages with page_LSN Iess than
Commit-LSN have been committed and thereby reduces
locking and latching overheads. In addition, this method
was also shown to increase the level of concurrency that
could be supported. We described how our method
makes it possible to use fine-granularity locking without
unduly affecting transactions which read numerous
records. We also described its benefits to update trans-
actions due to the reduction in the cost of fine-granularity
locking when contention is not present for data on a
page. We discussed in detail many applications of this
method and illustrated its potential benefits. We also
analyzed the impact of the shared disks and the shared
nothing environments. Techniques for implementing this
method in systems based on write-ahead logging or the
shadow-page technique were presented. For the 5way
join query analyzed in [PMCLSSO], we have estimated
that the Commit-LSN method could save up to 90% of
the pathlength, depending on the sizes of records, num-
ber of records per page, predicate selectivities, etc.

9. References

CABGK81

ChGY81

ChMe88

ChMy88

cIco88

Crus84

curl88

DGSBHSO

DHLPR88

Chamberlin, D., et al., A History and Evaluation of
System R, Communications of the ACM, Vol. 24,
No. 10. October 1981.
Chamderlin, D., Gilbert, A., Yost, R. A History of
System R and SQL/Data System. Proc. 7th Interna-
tibnal Conference on V&y Large Data Bases,
Cannes, September 1981.
Chang, A., Mergen, M. 801 Storage: Architecture
and Programming, ACM Transactions on Computer
Systems, Vol. 6, No. 1, ~28-50, February 1988.
Chang, P.Y., Myre, W.W. OS12 EE Database Manager
Overview and Technical Highlights, IBM Systems
Journal, Vol. 27, No. 2, 1988.
Clark, B.E., Corrigan, M.J. Application System1400
Performance Characteristics. IBM Svstems Journal.

- Vol. 28, No. 3, 1989.
Crus. R. Data Recovery in IBM Database 2. IBM
Svstems Journal. Vol. 2% No. 2. 1984.
Cirtis, R. Inforktix-Turbo, Pro& IEEE Compcon
Spring ‘88, February-March 1988.
Dewitt, D., , Ghandeharizadeh, S.. Schneider, D.,
Bricker. A.. Hsiao, H.-l, Rasmussen, R. The Gamma
Database Machine Project, IEEE Transactions on
Knowtedge and Data Engineering, Vol. 2, No. 1,
March 1990.
DeLorme, D., Helm, M., Lee, W., Passe, P., Ricard,
G., Timms, Jr., G., Youngren, L. Database Index
Journahng for Enhanced Recovery, U.S. Patent
4,819,158, IBM, April 1989.

417

EG LT76 Eswaran, K.P., Gray, J., Lorie, R., Traiger, I. The Montreal, Canada, August 1983. Also IBM Research
Notion of Consistencv and Predicate Locks in a Reoort RJ3881. IBM San Jose Research Laboratorv.
Database System, Communications of the ACM, Vol.
19, No. 11, November 1976.

OaKiS Gawlick, D., Kinkade, D. Varieties of Concurrency
Control rn IMSlVS Fast Path, IEEE Database Engi-
neering, Vol. 8, No. 2, June 1985.

GMBLL51 Gray, J., t&Jones, P., Blasgen, M., Lindsay, B.,
Lorie, R., Price, T., Putzolu, F., Traiger, I. The Re-
covery Manager of the System R Database Manager,
ACM Computing Surveys, Vol. 13, No. 2, June 1981.

Gray78 Gray, J. Notes on Data Base Operating Systems,
In Operating Systems - An Advanced Course, R.
Bayer, R. Graham, and G. Seegmuller (Eds.), Lec-
ture Notes in Computer Science, Volume 60,
Springer-Verlag, 1978. Also Available as IBM Re-
search Report RJ2188, IBM San Jose Research
Laboratory, February 1978.

HaReg3 Haerder, T., Reuter, A. Principles of Transaction
Oriented Database Recovery - A Taxonomy, Com-
puting Surveys, Vol. 15, No. 4, December 1983.

HMSCSS Haskin, R., Malachi, Y., Sawdon, W., Chan, G. Re-
covery Management in Quicksilver, ACM Transac-
tions on Computer Systems, Vol. 6, No. 1, ~82-108,
1988.

KrLSS5 Kronenberg, N., Levy, H., Strecker, W. VAXclusters:
A Closely-Coupled Distributed System, ACM Trans-
actions on Comouter Systems. Vol. 4. No. 2. Mav

J&e 1983.
MaLOSS Mohan, C., Lindsay, B., Obermarck, R. Transaction

Management in the R’ Distributed Data Base Man-
agement System, ACM Transactions on Database
Systems, Vol. 11, No. 4, December 1986. Also IBM
Research Report RJ5037, IBM Almaden Research
Center, February 1986.

MoNP90 Mohan, C., Narang, I., Palmer, J. A Case Study of
Problems in Migrating to Distributed Computing:
Page Recovery Using Multiple logs in the Shared
Disks Environment, IBM Research Report RJ7343,
IBM Almaden Research Center, March 1990.

MoPiSO Mohan, C., Pirahesh, H. AR/ES-RR/f: Restricted Re-
peating of History in the AR/ES Transaction Recov-
ery Method, IBM Research Report RJ7342, IBM
Almaden Research Center, February 1990.

OberttO Obermarck, R. /MSlVS Program isolation Feature,
IBM Research Report RJ2879, San Jose, July 1980.

Pest83 Peterson, R.J., Strickland, J.P. Log Write-Ahead
Protocols and IMSIVS logging Proc. 2nd ACM
SIGACT-SIGMOD Symposium on Principles of Da-
tabase Systems, Atlanta, March 1983.

PMCLSSO Pirahesh, H., Mohan, C., Cheng, J., Liu, T.S.,
Selinger, P. Para//e/ism in Relational Data Base
Systems: Architectural Issues and Design Ap-
oroaches. Proc. 2nd International Svmooslum on

1

1986. batabase; in Parallel and Distributed Sysiems, Dub-
LiMPBB Lindsay, B., Mohan, C., Pirahesh, H. Method for lin, July 1990, IEEE Computer Society Press. Also

Reserving Space Needed for “Rollback” Actions, Available as IBM Research Report, IBM Almaden
IBM Invention Disclosure SA885-0217, IBM Techni- Research Center, July 1990.
cal Disclosure Bulletin, Vol. 29, No. 6, November ReSWES Rengarajan, T.K., Spiro, P., Wright, W. High Avail-
1986. ability Mechanisms of VAX DBMS Software, Digital

MHLPS89 Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Technical Journal, No. 8, February 1989.
Schwarz. P. ARIES: A Transaction Recoverv Method RoMo89 Rothermel. K.. Mohan. C. AR/ES/NT: A Recoverv
Supporting Fine-Granularity Locking a& Partial
Rollbacks Using Write-Ahead logging, To Appear

Method Based on Wriie-Ahead logging for Nested
Transactions, Proc. 15th International Conference

in ACM Transactions on Databaie Systems. Also on Very Large Data Bases, Amsterdam, August
Available as IBM Research Report RJ6649, IBM 1989. A longer version appears as IBM Research
Almaden Research Center, January 1989. Report RJ6550, IBM Almaden Research Center,

MHWCgO Mohan, C., Haderle, D., Wang, Y., Cheng, J. Single January 1989.
Table Access Using Mu/tip/e Indexes: Optimization, SCFLMBS Schwarz, P., Chang, W., Freytag, J., Lohman, G.,
Execution and Concurrency Control Techniques, McPherson, J., Mohan, C., Pirahesh, H. Extensibility
Proc. International Conference on Extendtna Data in the Starburst Database Svstem. Proc. Workshoo
Base Technology, Venice, March 1990. An expanded
version is available as IBM Research Report
RJ7341. IBM Almaden Research Center. March
1990.
Minoura, T. Multi-Level Concurrency Control of a
Database System, Proc. 4th IEEE Symposium on

on Object-Oriented Data B&e Systems, Asiloma;,
September 1986. Also Available as IBM Research
Report RJ5311. IBM Almaden Research Center.

ScruS7
Se&ember 1986.
Scrutchin, T. TPF: Performance, Capacity, Avail-
ability, Proc. IEEE Compcon Spring ‘87, San Fran-

Mino&l

Reliability in Distributed Software and- Database
Systems, Silver Spring, October 1984.

MohasOa Mohan, C. ARIESIKVL: A Key-Value Locking Method
for Concurreny Control of Multiaction Transactions
Operating on B-Tree Indexes, Proc. 16th Intema-
tional Conference on Very Large Data Bases, Bris-
bane, August 1990. An expanded version is avail-
able as IBM Research ReDorl RJ7008. IBM Almaden

cisco, February 1987.
Shoe@3 Shoens, K. Data Sharing vs. Partitioning for Capac-

ity and Availability, Database Engineering, Vol. 9,
No. 2, March 1986.

SMMT84 Sekino, A., Moritanl, K., Masai, T., Tasaki, T., Goto,
K. The DCS - A New Approach to Multisystem
Data-Sharing, Proc. National Computer Conference,
Las Veoas. Julv 1984.

Research Center, Septeiber 1989. SNOPg5 Shtiens: K.‘, Naiang, I., Obermarck, R., Palmer, J.,
MohagOb Mohan, C. ARIESILHS: A Concurrency Control and Silen, S., Traiger, I., Treiber, K. Amoeba Project,

Recovery Method Using Write-Ahead Logging for Proc. IEEE Compcon Spring ‘66, San Francisco,
bear Hashing with Separators, tBM Research Re- February 1985.
oort. IBM Almaden Research Center. 1990. Tand87 The Tandem Database Grout, NonStoD SQL: A Dis-
r -’ MoHPSO Mohan, c., Haderle, D., Peterson, A. ARIESIIMILDK: trrbuted, High-Performance, high-Avajlabiljty Imple-
A Concurrency Control and Recovery Method for mentation of SQL, Proc. 2nd International Workshop
index Management Using Write-Ahead Logging and
Looical Deletion of Kevs. IBM Research Reoort.

on High Performance Transaction Systems,
Asilomar. Seetember 1987. Also in Lecture Notes

MoLe8B

MoLi83

iiiti Almaden Research ‘Center, In Preparation.
1990.
Mohan, C., Levine, F. AR/ES//M: An Efficient and
Hiah Concurrencv Index Manaaemenl Method Usins
W&e-Ahead Log$ng, IBM Res;arch Report RJSS48:
IBM Almaden Research Center, August 1989.
Mohan, C., Lindsay, B. Efficient Commit Protocols
for the Tree of Processes Mode/ of Distributed
Transactions, Proc. 2nd ACM SlGACTlSlGOPS Sym-
posium on Principles of Distributed Computing,

Tera88

Yam,rg3

in Compider’ Science Vol. 359, D. Gawlick, M.
Haynie, A. Reuter (Ed%), Springer-Verlag, 1989.
Teradata DBC11072 Data Base Computer Concepts
and Facilibes - Release 3.1. Documber Number
CD2-tlOD1-05, Teradata Corp., .May 1988.
Yamashita, A. Data Base integrity at Emergency
Restart in Data Sharing, IBM Invention Disclosure
SA882-0110, IBM Technical Disctosure Bulletin, Vol.
26, No. 2, ~863, July 1983.

418

