
Right-, left- and multi-linear rule transformations that maintain
context information

David B. Kemp, Kotagiri Ramamohanarao, and Zoltan Somogyi

{kemp,rao,zs}@cs.mu.OZ.AU
Key Centre for Knowledge Based Systems, Department of Computer Science, University of Melbourne,

Parkville, 3052, Australia

Abstract
We present an algorithm that takes recursive rules,
predicates and queries belonging to a particular
class and transforms them into rules, predicates and
queries that allow efficient bottom-up computation
of answers. This work extends the work presented in
“Eficient evaluation of right-, left-, and multi-linear
rules” by J. Naughton, R. Ramakrishnan, Y. Sagiv,
and J. Ullman. Our transformation can handle calls
whose input arguments are not manifest constants
but are computed by other calls in the query, and
it can handle predicates containing pseudo-left-linear
rules together with right-linear and/or multi-linear
rules. The first of those properties allows us to apply
our algorithm effectively to calls that occur in the
bodies of rules as well as in queries. Experimental
results indicate that our algorithm can achieve con-
siderable speedups over previous methods.

1 Introduction

The past several years have seen great advances in the
field of deductive databases. Much of this progress
took the form of the development of evaluation algo-
rithms and rule rewriting techniques that can increase
the speed of bottom-up computation of answers to
queries by several orders of magnitude. These tech-
niques, which include differential or semi-naive eval-
uation [3, 41, magic sets [l, 5, 7, 171, the Alexander
method [ll, 151, counting sets [16, 171, rule rectifi-
cation [19], and constraint propagation [9], generally

Permission to cop uithout fw all or part of thih matcriai i\

granted provided that the topics art’ not m;dc or di4triht~tccl I’OI

direct commercial acl\nnta~e. the VLDB cop!ri$t notice anal

the title of the publication and it\ clatc appear. and notice k gi\cn

that copying is h) pcrmikm 01. the Vu> La~pc Dat;l Baw

Endowment. To cop) othewiw. OI- to Icpuhii\h. IK’C~U~W\ ,I I’CC

and/or special pcrmiaion from the kndowmcnt.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

work by reducing the number and/or the size of the
tuples one must generate to answer a given query.

In two other recent papers ([13] and then [12]),
J. Naughton, R. Ramakrishnan, Y. Sagiv, and J. Ull-
man have taken further steps in this direction. They
have defined a transformation that can reduce the
cost of answering some queries from O(n2) to O(n).
This transformation, which we call the NRSU-trans-
formation, is applicable to a fairly large class of proce-
dures that occurs frequently in real programs: those
defined by right-, left-, and multi-linear rules (see sec-
tions 2 through 5; see also [13] and chapter 15 of [IS]).

In this paper we address the fundamental limita-
tion of the NRSU-transformation: it works only when
the call to the transformed procedure has constants
in its input positions. We define a new transform-
ation that does not require this restriction: it works
even when the input of the transformed procedure is
provided by a non-singleton relation. Since the key
feature of our algorithm is its management of context
information that records which outputs go with which
inputs, we call our algorithm the context-transform-
ation.

In [13], Naughton et al tentatively suggest another
approach to this problem. They propose executing
the NRSU-transformed program for each tuple in the
input relation if the input relation is “small enough”.
Although we can confirm their conjecture that when
the input relation contains very few tuples (two or
at most three) their method is indeed better than
magic sets, our work renders this point irrelevant.
Our measurements show that the context-transform-
ation is more efficient than the NRSU-transformation
whenever the input relation has two or more tuples.
When the input relation has many tuples, the differ-
ence between the two techniques becomes more than
an order of magnitude.

From our experience with logic programs, we
expect that many procedures in real deductive
databases will belong to the class of procedures han-
dled by the NRSU-transformation. However, only a
small fraction of calls are likely to have constants as

380

the input arguments; and if any of the input argu-
ments are variables, then one can seldom guarantee
that the input relation to the call will always be a
singleton set. The true significance of our algorithm
is that it imposes no such requirements on the inputs
of calls; it can therefore optimize far more calls in a
typical deductive database program than the NRSU-
transformation can. The fact that the context-trans-
formation can handle procedures that mix pseudo-
left-linear rules with right-linear, multi-linear and ba-
sis rules is a secondary contribution.

The structure of this paper is as follows. The rest
of this section contains background information. Sec-
tions 2 through 4 deal with procedures containing
right-linear rules, left-linear rules, and multi-linear
rules respectively; section 5 covers procedures that
contain linear rules of more than one type. Each
of these sections starts with a motivating exam-
ple, showing how the NRSU-transformation and our
context-transformation handle the same simple pro-
gram; we then give the definition of the context-trans-
formation as it applies to that class of procedures.
These sections also contain estimates of the efficiency
of the programs produced by the transformations un-
der consideration, using the number of tuples gener-
ated as the cost criterion. In Section 6 we consider
the optimization of calls occurring in bodies rather
than queries, including the interaction of our trans-
formation with other optimization techniques. In
section 7 we validate these estimates by presenting
performance results derived from experiments using
Aditi, a full-scale deductive database system based on
relational algebra operations that is currently being
built at the University of Melbourne [20].

In this paper we consider only positive databases,
although we strongly believe that our results can be
easily generalized to handle stratified databases (just
as magic sets have been [2, 141); we discuss this issue
further in section 6. For simplicity and without loss
of generality we assume that all rules in the database
are in homogeneous form, i.e. their heads contain
only distinct variables. In sections 2 through 5 we
also assume that the database contains only one de-
rived predicate, all other predicates representing base
relations; we lift this restriction in section 6.

We assume the reader is familiar with the ter-
minology of deductive databases, the notion of dif-
ferential or semi-naive bottom-up computation, the
concepts of stratified databases and maximal strati-
fication, and the general idea of the magic set trans-
formation.

A final note on terminology. Most papers in this
area define a rule as linear recursive if the head pred-
icate occurs exactly once in the body. However, in

[13] and [12], Naughton et al allow a rule to contain
more than one occurrence of the head predicate in the
body in their definition of multi-linear recursion (and
in their definition of left-linear recursion as well in
[12]). For the purposes of this paper, we use the def-
initions given in [13], which we reproduce in sections
2 through 5.

Due to lack of space, this paper contains no proofs
for our theorems. They can be found in the technical
report version of this paper [lo].

2 Right-linear recursions

Before we give a general transformation, we look at a
motivating example. Consider the following rules for
deriving the ancestor relation:

anc(x, Y) +par(X, Y).
anc(x, Y) + par(X. Z), anc(Z, Y>.

Suppose the query is

c anc(judy, Y>.

Using the magic set transformation we get the follow-
ing rules for evaluating this query:

anc(X, Y) + mAIlc(X), par(X, Y).
anc(X, Y) t m-anc()0, par(X, Z), anc(Z, Y).
m-ant(Z) 6 m-ant(x), par(X, Z).
m-anc(judy>.

Suppose the relation for par looks something like the
following set of tuples:

{(judy,xl), (xI,*z), . . . , (xn-l,xn>)

The answer to the query contains only n tuples, how-
ever the number of tuples generated for ant is O(n2).

Notice however, that in this example, the tuples
generated for mane contain all the required answers,
and so it is better to use the NRSU-transformation
outlined in [13] to get the following rules for evaluat-
ing the query:

manc(judy).
m-arm(Y) + m-arm(X), par(X, Y).
answers(Y) +-rn-ant(X), par(X, Y).

This is an improvement on the magic set transform-
ation as the number of tuples generated is only O(n).

2.1 Right-linear recursions with con-
text information

Now suppose there is a base relation called t, and
that the query is

381

+t(C), anc(C, Y).

The paper [13] suggests that the same transform-
ation can be used as for a single constant, but that
separate computations could be made for each tuple
in t. However, we have found that it is more efficient
to compute the answers for all tuples in t together
using the context-transformed program shown below.

mcanc(C, C) et(C).
mc-anc(C, Z) cmc-anc(C, X1, par(X, Z).
ac-anc(C, Y) + mc-anc(C, Z>, par(Z, Y).
ansuers(C, Y) +- t(C), ac-anc(C, Y).

The relation defined by mc-anc (magic ancestor
with context information) is the same as the original
magic set, except that every tuple has the extra argu-
ment that gives the value from relation t that caused
that tuple to be generated. The relation defined by
ac-ant (ancestor answers with context information)
is the set of required tuples for the ant relation.

If the relation t has m tuples, then the number of
tuples generated is O(mn). Hence, for the special case
of m = 1, this transformation is almost as efficient as
the NRSU-transformation, and for larger values of
m the cost will never be much greater than that for
magic sets (and will often be less).

2.2 General transformations for right-
linear recursions

Definition 2.1 A derivdion rule for a recursive
predicate p is right-linear with respect to an adorn-
ment a if it is of the form:

p<x, P> + Gl,. . . ,Gk, p(w, y).

--
where X, Y, and w represent vectors of variables,
and the following conditions hold:

l If the number of variables in x is m, then the
m leftmost arguments of p are bound and the
other arguments are free according to a.

l p is not the predicate of any of the Gi ‘s.

l The variables in y do not occur in any of the
Gi ‘s, but they do each occur in the same ar-
gument position in the recursive body literal as
they do in the head.

l Each variable that occurs in m either appears
in Gl,..., Gk or occurs in x. a

Definition 2.2 A recursive predicate p is right-
linear with respect to an adornment o if the following
conditidns hold:

l p is not mutually recursive with any other pred-
icates.

l each rule defining p is either non-recursive or
right-linear with respect to (Y. a

The context-transformation for right-linear pred-
icates consists of three separate rule transformations:
one for basis rules, one for right-linear recursive rules,
and one for the query. To apply the corkext-trans-
formation to a right-linear predicate p, we apply the
appropriate rule transformation to the query and to
each rule defining p; the transformed program is the
union of all the transformed rules with the trans-
formed query.

The rule transformation for right-linear rules
transforms

p(;iT, v’) + Gl,. . . ,Gk, p(w’, 7’).

into

mc-p(E, W) + mc-p(C, r), Gl,. . ,Gk.

where c is a vector of distinct variables that do not
occur in the original rule, and the number of variables
in c is equal to the number in y.

The rule transformation for basis rules transforms
--

p(X, Y) + HI ,... ,Hj.

into

ac_pE, y;) +- mc_pE, X1 , HI, . . . , Hj .

The rule transformation for queries transforms
--

c FI,..., F‘,p(Cs Y), Fj+l,..., Ff.

where each variable in c is either a constant or a term
ground by Fl, . . . , Fj, into the query

+ FI,.. .,Fj,ac-p(c, P>, Fj+l,...,Ff.

and the rule

mc-p(c, E> + Fl,. . . , Fj.

Theorem 2.1 The context-transformation for right-
linear rules preserves equivalence with respect to the
query.

2.3 Efficiency

I!or the special case where the query involves con-
stants instead of bound variables, the context-trans-
formation produces rules that are similar to the
rules produced by the NRSU-transformation. The
context-transformed program generates exactly the
same number of tuples as the NRSU-transformed

382

program; the difference is that the tuples generated
by the context-transformed program will include the
constants from the query and will therefore be larger.
Hence, for this special case, the NRSU-transform-
ation is more effective.

In other cases, however, the original NRSU-trans-
formation does not apply, whereas the context-trans-
formation does. In those cases, the context-trans-
formed program will still only generate O(n) tuples,
compared to the 0(n2) tuples of the magic set trans-
formed program.

3 Left-linear recursions

Using the same rules for ancestor as presented in the
previous section, consider the query

+ anc(X, judy).

Using a suitable sideways information-passing strat-
egy, the magic set transformation gives

anc(X, Y) c- m-am(Y), par(X, Y>.
anc(X, Y) +-- lLanc(Y), anc(Z, Y)) par(X, z>.
m-am(Y) + mAnc(Y).
m-anc(judy).

One can easily see that m-arm will only ever contain
the tuple judy. Hence it is more efficient to use the
NRSU-transformation whose result is

a-arm(X) - par(X, judy).
aanc(X) + a-arm(Z), par(X, Z).
ansaers(X) + a-arm(X).

3.1 Left-linear recursions with context
information

Now suppose the query is

+ t(c), anc(X, c>.

It is possible to use the NRSU-transformation and
compute answers corresponding to each tuple in t.
However, a comparison of the magic set transform-
ation with the NRSU-transformation will show that
the NRSU-transformation only reduces the size of
each tuple, and the number of tuples generated re-
mains unchanged. Hence the magic set transform-
ation is reasonably efficient for the above query.

We present a transformation which is similar to
the magic set transformation. The rules produced
are no more efficient than those produced by the
magic set transformation, but they do allow an easy
transition to the mixed-linear cases. As with the
right-linear case, we define two new predicates called

mc-ant and ac-anc. The mc-ant predicate (magic an-
cestor with context information) is again a magic set
with each tuple containing an extra argument that
gives the value from t for which ant is being evalu-
ated. The tuples generated for the acanc predicate
(ancestor answers with context information) are again
the answers to the query.

Our context-transformation produces the follow-
ing rules for our running example

mc-anc(C, C) + t(C).
ac-anc(X, C) 4- mc-anc(C, Y), par@, Y).
ac-anc(X, C) 6 acanc(Z, C), par(X, Z>.
ansaers(X, C) +- t(C), ac-anc(X, C>.

3.2 General transformations for left-
linear recursions

Definition 3.1 A derivation rule for a recursive
predicate p is left-linear with respect to an adornment
a if it is of the form

p(x, 7’) + p(x, v>, GI,. . . ,Gk.

and the following conditions hold:

l If the number of variables in x is m, then the
m leftmost arguments of p are ‘bound and the
other arguments are free according to Q.

l p is not the predicate of any of the Gi ‘s.
-

l Every variable in V is different from every vari-
able in y.

l (None of the van’ables in x occur in any of the
Gi ‘s.

If all the conditions except the last are satisfied, then
the rule is called pseudo-left-linear. a

Definition 3.2 A recursive predicate p is left-linear
with respect to an adornment cy if the following con-
ditions hold:

p is not mutually recursive with any other pred-
icates.

each rule defining p is either non-recursive or
left-linear with respect to a.

If the definition of p contains pseudo-lefl-linear rules
as well as non-recursive and/or left-linear rules, then
p is called pseudo-left-linear. a

The context-transformation for left-linear and
pseudo-left-linear predicates consists of three separate
rule transformations: one for basis rules, one for left-
linear and pseudo-left-linear recursive rules, and one

383

for the query. To apply the context-transformation
to a left-linear predicate p, we apply the appropri-
ate rule transformation to the query and to each rule
defining p; the transformed program is the union of
all the transformed rules with the transformed query.

m-anc(judy).
m-arm(Z) c a-arm(Z), m-ant(X).
a-ant(Y) +- m-ant(X), par(X, Y).

The rule transformation for left-linear and
pseudo-left-linear rules transforms

where the relation a-ant contains the answers to the
query. This program is more efficient than the un-
transformed and magic set transformed programs.

p(x, y) + p(??, v), GI,. . . ,Gk. 4.1 Multi-linear recursions with con-
into text information

ac-p(c, L;) - For a query such as

mc-p(c’, 7) , ac-p(??‘, v) , GI , . . . , Gk. - t(C), a(C, Y).

where c is a vector of distinct variables that do not
occur in the original rule, and the number of variables
in c is equal to the number in w.

the context-transformation gives the following rules:

mc-anc(C, C) et(C).
The literal whose predicate is mc-p is not needed mcanc(C, Z) + ac2urc(C. Z).

for pure left-linear rules, which can be transformed ac-anc(C, Y) + mc-anc(C, X), par(X, Y).
into answers(C, Y) c t(C), ac-a.nc(C, Y).

ac-p(c, P) - ac-p(c, v), Gr,. . . ,Gk.

The rule transformations for basis rules and for
queries are the same for left-linear and pseudo-left-
linear predicates as for right-linear predicates.

As usual, the context magic set is initialized with val-
ues from relation t. The recursive derivation rule for
mc-ant is built from the recursive rule for ant. As
with right-linear recursion, the derivation rule for the
predicate ac-ant is built from the basis rule for ant.

Theorem 3.1 The context-transformation for left-
linear rules preserves equivalence with respect to the
query.

4.2 General transformations
multi-linear recursions

3.3 Efficiency

The rules produced by the context-transformation
for left-linear rules compute approximately the same
number of tuples as the magic set transformation,
and so the context-transformation is not an improve-
ment over magic sets in this case. However, our trans-
formation can be easily combined with the context-
transformation for right-linear rules to give an effi-
cient transformation for predicates that have both
left-linear and right-linear rules. This is the subject
of section 5.

Definition 4.1 A derivation rule for a recursive
predicate p is multi-linear with respect to an adorn-
ment a if it is of the form

p<x, P) + Gr,. . . ,Gk, p(w, F).

and the following conditions hold:

If the number of variables in 5i; is m, then the
m leftmost arguments of p are bound and the
other arguments are free according to cr.

4 Multi-linear recursions

The variables in P do not occur in any of the
Gi ‘s, but they do each occur in the same argu-
ment position in the last recursive body literal
as they do in the head.

Our transformation can handle multi-linear recursive
rules. Consider the following multi-linear rules and
query for the ancestor relation:

All the variables in m appear in G1, . . . , Gk, but
none occur in X.

At least one of the Gi’s has p as its predicate.

anc(X, Y) + par(X, Y).
anc(X, Y> + anc(X, Z), anc(Z, Y).

+ anc(judy, Y).

The NRSU-transformation gives the rules

IfGi (i= 1,. . . , k) has p as its predicate then,

- Its m leftmost arguments are identical to
those of the head, i.e. those arguments
contain all the variables in x in order, and

for

384

- All of its other arguments have variables
that do not occur in 5?.

l If Gi (i = l,.. . , k) doesn’t have p as its pred-
icate, then none of its variables are among x.
4

Definition 4.2 A recursive predicate p is multi-
linear with respect to an adornment cr if the following
conditions hold:

l p is not mutually recursive with any other pred-
icates.

l each rule defining p is either non-recursive or
multi-linear with respect to (Y. a

The context-transformation for multi-linear pred-
icates consists of three separate rule transformations:
one for basis rules, one for multi-linear recursive rules,
and one for the query. To apply the context-trans-
formation to a multi-linear predicate p, we apply the
appropriate rule transformation to the query and to
each rule defining p; the transformed program is the
union of all the transformed rules with the trans-
formed query.

The rule transformation for multi-linear rules
transforms

p(x, P) + GI, . . . ,Gk, p(w, P> .

into
--

mc-p(C, WI + G’,, . . . ,G;.

where ?? is a vector of distinct variables that do not
occur in the original rule, and the number of variables
in c is equal to the number in x. The G: are the
same as the Gi, except for those whose predicates are
p. These are replaced by literals whose predicates are
ac-p, whose leftmost m variables are replaced by c
and whose remaining variables are the same variables
as those of the literal being replaced.

The basis rules and the query are transformed in
exactly the same manner as in the previous sections.

Theorem 4.1 The context-transformation for multi-
linear rules preserves equivalence with respect to the
query.

5 Mixed-linear recursions

When a predicate has a mixture of right-linear, left-
linear, pseudo-left-linear and multi-linear rules, the
transformations shown in the previous sections can
still be applied. To illustrate this, we use the same
example given in [13]. The predicate p is defined as
follows:

r1: p(X, Y, Z> + q(X, Y, Z>.
rs: p(X, Y, 2) + a(X, U>, p(U, Y, Z).
rg: p(X, Y, Z) *b(Y, VI, P(X, V, Z>.
r4: p(X, Y, Z> + c(Z, WI, p(X, Y, WI.

Suppose the query is

+ p(christina, Y, Z>.

With respect to this query, rule r2 is right-linear while
rules rs and r4 are left-linear. The rules defining the
magic predicate m-p are built from the query and rule
r2 as follows:

m-p(christina).
m-p(U) + m-p(X), a@, U>.

These magic rules combined with the following four
rules make up the rules produced by the NRSU-trans-
formation.

a-p(Y, Z) + m-p(X), q(X, Y, Z). From rl.
a-p(Y, Z) +- a-p(V, Z>, b(Y, VI. From rs.
a-p(Y, Z) + a-p(Y. WI, c(Z, WI. From r.+.
p(christina, Y, Z) + a-p(Y, Z). From query.

These rules are at least as efficient as those produced
by the magic set transformation, and our timing re-
sults in section 7 show that they are considerably
more efficient.

5.1 Mixed-linear recursions with con-
text informat ion

Consider a query of the form

+-t(C), p(C, Y, Z).

Combining the context-transformation for left- and
right-linear rules gives the following rules and query:

mc-p(C, C> + t(C).
mc-p(C. U> + mc-p(C, XI. a(X, W.
ac-p(C, Y, Z) + mc-p(C, XI, q(X, Y, Z).
ac-p(C, Y, Z) t ac-p(C, V, Z>, b(Y, VI.
acp(C, Y. Z) +,ac-p(C, Y. WI. c(Z, U).
c t(C), ac-p(C, Y, Z).

5.2 General transformations
mixed-linear recursions

for

Definition 5.1 A recursive predicate p is mixed-
linear with respect to an adornment cr if the following
conditions hold:

l p is not mutually recursive with any other pred-
icates.

385

l each rule defining p is either non-recursive,
right-linear, left-linear, pseudo-left-linear, or
multi-linear with respect to (Y. a

To apply the context-transformation to a mixed-
linear predicate p, we apply the appropriate rule
transformation to the query and to each rule defin-
ing p as they were defined in the previous sections;
the transformed program is the union of all the trans-
formed rules with the transformed query.

Theorem 5.1 The context-transformation for
mixed-linear rules preserves equivalence with respect
to the query.

Unlike the NRSU-transformation, the context-
transformation works even when a mixed-linear pred-
icate contains pseudo-left-linear rules: the arguments
that carry context values provide bindings for the
variables that make the rule pseudo-left-linear as op-
posed to pure left-linear. This is a serendipitous side-
effect of our approach.

In a recent paper [8], J iawei Han and Ling Liu
have suggested methods for processing a class of lin-
ear recursions that they call multiple linear recur-
sions. This class overlaps the class of procedures we
consider in this paper: mixed-linear procedures with-
out multi-linear rules belong to both classes. For such
programs, the two techniques give the same results:
a bottom-up evaluation of the rules that our trans-
formation produces results in the same computation
as the evaluation of the relational algebra formulae
produced by the methods given in [8]. The most im-
portant difference between the two methods is that
only ours can handle multi-linear rules, whereas only
their method can handle procedures such as same
generation, in whose recursive rules the head and the
recursive call share neither the full set of inputs nor
the full set of outputs. (We intend to leave the op-
timization of such rules to a separate counting-sets
transformation.) The other main difference is that
their methods produce relational algebra formulae di-
rectly whereas our transformation yields logic pro-
grams, making further optimizations easier.

6 Calls in rule bodies

In the previous four sections we have applied our
transformation only to calls occurring in the query.
However, our transformation can also handle calls
within program rules, provided that the predicate of
the call concerned is not mutually recursive with any
other predicates.

To see that our transformation works correctly
in such situations, imagine the position of a to-be-
transformed predicate in a maximally stratified data-
base. (We are still talking about positive databases;
we will discuss negation in a moment.) Our condi-
tion forbidding mutual recursion guarantees that this
predicate is the only one on its level. Now follow the
course of a level-structured bottom-up computation.
Such a computation applies the rules of the predi-
cates in the bottom stratum until it can generate no
more new facts; it then repeats the process with suc-
cessively higher strata. By the time we get to the
level containing the t&be-transformed predicate (and
nothing else), all predicates in lower levels have been
completely evaluated. Such a situation is isomorphic
to the case of a single recursive predicate and a collec-
tion of base relations. Our transformation therefore
works as well when applied to calls in the bodies of
rules as when applied to calls in queries.

This kind of argument can show that the origi-
nal NRSU-transformation could also handle calls that
occur in the bodies of rules. The advantage of the
context-transformation of course is that it can han-
dle calls that have variables among their input argu-
‘merits. Based on our experience with logic programs,
we believe this to be a very significant advantage:
constants simply do not occur anywhere near as of-
ten in rules as variables do. The inputs of most calls
are provided by the outputs of other calls in the same
rule or by the inputs of the predicate being defined.

In the presence of negation, the context-trans-
formation suffers from a problem that magic sets also
suffer from: the resulting program may be unstrati-
fied even when the input program has a stratification.
Since unstratified databases do not have an agreed-
on semantics, this is not acceptable. Fortunately, the
picture is not all bleak. Since the cause of the un-
stratification is the same in each case (a rule defining
a magic predicate may contain a negative reference to
its parent predicate) we believe that the techniques
that solve this problem for magic sets (labelling al-
gorithms [2] and structured interpreters [14]) should
also solve it for the context-transformation. We in-
tend to explore this issue in more detail; we will report
our results in a later paper.

The context-transformation is compatible with
most other optimization techniques but with some
notable exceptions. First, like most optimizations, it
is not compatible with itself, in the sense that apply-
ing it twice to the same predicate will not improve
performance and may in fact hurt (if the second ap-
plication is possible at all). Second, it is not compati-
ble with optimizations that derive their improvements
from the same source: applying the magic set- or

386

the NRSU-transformation to a context-transformed
program will likewise reduce performance. The rea-
son is that the second transformation adds overhead
but cannot reduce the number of intermediate tuples
generated (the context-transformation already com-
putes the necessary magic sets; computing them again
will not help). On the other hand, techniques such
as differential evaluation [3, 41, rule rectification [19]
and constraint propagation [9] are as applicable to
context-transformed programs as to any others.

We have also devised an optimization technique
that applies only to context-transformed programs.
This optimization targets the overhead involved in
copying contexts around by representing each context
c by a single integer I. The optimization carries out
this substitution in all of the rules defining ac-p and
mc-p, and it further modifies the clauses containing
calls to the transformed predicate and the basis rule
of the context magic predicate. The body of a calling
clause, which originally was of the form

Fl,. . . ,Fj, ac-p(C, Y’>, Fj+i,. . . ,Ff

now becomes

Fl,... ,Fj, id-p(1, C). ac-p(1, P), Fj+l,Fj

with the id-p relation storing the mapping between
contexts and their identifiers. (This mapping must
be established at run time; the underlying database
system could easily provide special support for this.)
Given this mapping, the rule for mc-p, which was orig-
inally

XlC-p(C, C) c Fl,...,Fj.

(derived from the call to p) now becomes

mc-p(1, C’> +- id-p(1, c).

Unless the context was already of minimal size, this
will reduce the size of the magic set (in bytes, not
in tuples); and it will always eliminate the redundant
evaluation of Fl, . . . , Fj .

7 Performance results

We have tested the effectiveness of the context-trans-
formation using Aditi, a deductive database system
currently under development at the University of Mel-
bourne [20]. Aditi is designed to evaluate database
queries using relational algebra operations like join
and union, and has a compiler for transforming Pro-
log rules into a low-level relational language. Aditi is
designed to handle large databases, and so it stores
all its intermediate relations on disk. To make our
measurements as realistic as possible (specifically, to

include disk access times) we measure performance
by the real time required to perform a given query.

We compared five transformation algorithms, the
magic set algorithm, the supplementary magic set
algorithm, the NRSU-transformation, the context-
transformation, and the null transformation (as a
control). We tried out each of these algorithms on
four programs (one right-linear, one (pure) left-linear,
one multi-linear and one mixed-linear). We ran each
of the resulting transformed programs on five sets of
data, asking two queries with different-sized input re-
lations on each combination. (It turns out that the
supplementary magic set transformation of the left-
linear program gives the same rules as those given by
the magic set transformation, and hence there was no
need to do separate runs for this case.) Some results
(those pairing the NRSU-transformation with large
input relations) are missing due to the excessively
large amount of time that would have been required
to complete them.

Our four test programs are shown in figure 1. In
each case, q is the query predicate, the query being a
call to q with all arguments free.

Our test data consists of the relations par, v, a,
b, and c. Our relation par is a set of tuples that
describe a full binary tree:

{par(l,l), par(i,3), par(2,4), par(2,6), . . .,
par(n. 2n+ 1))

The four data sets differ in their value of n; we used
the values 127, 255, 511, 1023, and 2047, correspond-
ing to tree depths of 7, 8, 9, 10 and 11 respectively.

The relation v is a set of tuples that can be re-
garded as vectors in three dimensional space. They
are arranged in a cubic grid, separated from each
other by one hundred units, and contained in a
cube which has opposite vertices of (O,O, 0) and
(200,200,200). I n other words, v is the set

{(z, y,z) : 2 = lOOi, y = lOOj, z = look, 0 < i 5 2,
o<js2,0<k:<2}

In our test data, the contents of the relations a, b,
and c are identical; each is the set

((2, y) : z = y + 1, y = 1ooi + j, 0 5 i 5 2,
Oljlnl

The three data sets differ in their value of n (which in
this case we call the TUT length); we used the values
3, 4, 5, 6 and 7. (The derived relation p consists of
the cube described by v but with every point in v
extended into a small cube, the length of whose sides
is given by n.)

Table 1 reports our results. The four sections of
the table cover right-, left-, multi- and mixed-linear

387

Speedups for right-linear query evaluation

11 depth = 7 11 depth = 8 /I depth = 9 II depth = 10 11 depth = 11
#kl #k12 #kl

1.0 1.0 1.0
3.0 1.7 4.4
1.9 1.0 3.2
5.0 0.4 6.9
4.6 2.8 7.1

#k25 #kl
1.0 1.0
1.9 5.7

i-

1.2 4.6
0.3 9.1
3.5 9.0

#t=5i #t=i #t=i02 #t=i
1.0 1.0 1.0 1.0
2.1 8.3 1.9 10.7
1.5 7.8 1.4 10.5
0.2 12.4 - 16.3
3.7 12.4 3.8 16.0

ITG-
magic
supmagic I. nrsu
cntxt

orig
magic
supmagic
nrsu
cntxt

Speedups for left-linear query evaluation

depth = 7 depth = 8 depth = 9 depth = 10
#t=l #k12 #kl #k25 #t=l #k51 #t=l #t=102

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
4.2 2.6 7.6 4.1 13.4 5.6 23.7 7.9
4.2 2.6 7.6 4.1 13.4 5.6 23.7 7.9
5.6 0.3 8.6 0.3 16.5 0.2 25.6 -
4.4 3.1 8.2 5.2 17.9 6.9 25.6 9.8

depth = 11

Speedups for multi-linear query evaluation

depth = 7 depth = 8 depth = 9 depth = 10 depth = 11
#t=l #k12 #kl #k25 #kl #k51 #kl #k102 #kl #t=204

orig 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
magic 1.5 1.6 3.7 3.8 7.1 6.9 14.2 14.8 21.7 21.8
supmagic 1.2 1.2 2.9 2.9 5.5 5.2 11.3 11.3 17.8 18.3
nrsu 3.7 0.5 7.8 0.4 15.2 0.4 26.6 - 40.8 -
cntxt II 3.5 I 3.7 II 7.7 I 7.9 II 14.5 I 13.7 II 26.4 I 26.3 11 39.7 1 39.3 I

Speedups for mixed-linear query evaluation

run length = 3 run length = 4 run length = 5 run length = 6 run length = 7
#t=l #t=6 #t=l #t=7 #t=l #kg #t=l #t=lO #t=l #t=12

orig 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
magic 3.6 1.3 4.8 1.5 7.0 1.4 9.7 1.2 10.6 1.1
supmagic 3.2 1.2 4.4 1.4 6.7 1.3 9.3 1.2 10.4 1.1
nrsu 4.9 1.0 6.7 1.2 9.8 1.2 13.8 1.2 15.1 1.2
cntxt 4.5 2.6 6.3 2.7 9.1 2.8 13.4 2.6 14.3 2.4

Table 1: Speedups using the Aditi deductive database

388

Right-linear query

anc(X, Y) +par(X, Y).
anc(X, Y> + par(X, Z), anc(Z, Y>.
q(X, Y) + t(X), anc(X. Y).

Multi-linear query
anc(X, Y) +par(X, Y).
anc(X, Y) + anccx, Z), a.nc(Z, y>.
q(X, Y) t t(X), anc(X. Y).

Left-linear query
anc(x, Y> c par(X, Y>.
anc(x, Y) t par(X, Z), a=(Z, Y).
q(X, Y) et(Y), anc(X. Y).

Mixed-linear query
p(X, Y, z> * v(X, Y, Z).
p(X, Y, Z) + a(X, W, p(U, Y, Z>.
p(X, Y, Z) + b(Y, ‘0, p(X, V, Z).
pa, y, Z) - c(Z, w, p(x, Y, w>.
q(X, Y, Z> + t(X), p(X, Y, Z).

Figure 1: Test Programs

programs respectively. Each table section contains re-
sults in five rows, measuring the performance of the
original, the magic set transformed, the supplemen-
tary magic set transformed, the NRSU-transformed,
and the context-transformed programs respectively.
The five major columns divide the four data sets:
trees of depths 7, 8, 9, 10 and 11 for the right-, left-
and multi-linear programs and cubes with run lengths
of 3, 4, 5, 6 and 7 for the mixed-linear program. The
two minor columns within each major column give
the size of the t relation, i.e. the size of the input
to the linear predicate. We consider two cases: the
input contains one tuple or it contains several. When
t contains just one tuple, the tuple is chosen from
the middle level of the tree (for the right-‘, left- and
multi-linear cases) or contains zero (for the mixed-
linear cases). When t contains several tuples, the
tuples were chosen randomly. For the right-, left-
and multi-linear cases, the size of the t relation was
fixed at five percent of the size of the par relation; for
the mixed-linear cases, it was fixed at fifty percent of
the possible argument values of the first argument of
p. All computations used the differential evaluation
strategy [3].

Each entry in table 1 gives the speedup achieved
by the given transformation strategy on the given test
data with the given query; the reference is the per-
formance of the untransformed program on the same
test data and the same query. The speedups com-
pare real (wallclock) times on an Encore Multimax
320 with 64 megabytes of memory under UMAX 4.2
(revision 3.3.1). The test database was stored on an
NEC D2362 disk drive connected via an asynchronous
SCSI interface with a 1.5 Mb/s maximum transfer
rate.

Every figure we report is based on the average of
several runs. When t contained just one tuple, the
repetition served only to reduce timing errors. When

t contained several tuples, the repetition served to
eliminate the influence of the large variation in per-
formance between different sets of input values: each
measurement is an average of several runs with dif-
ferent t relations. For the large times, two or three
runs were enough, but in some cases we needed four
or five runs to establish a reasonably firm value for
the mean. The majority of the raw results lie within
about five percent of the mean.

Our results confirm our expectations about the
relative efficiency of the various transformations.
When the relation t had only one tuple, the NRSU-
transformed and the context-transformed programs
always performed better than the magic set and
the supplementary magic set transformed programs,
and these in turn performed better than the un-
transformed programs. The NRSU-transformed pro-
gram generally performed better than the context-
transformed program as the tuples generated by the
NRSU-transformed program were smaller. As the
programs that we are considering are so simple,
the supplementary magic set transformation actually
adds an overhead to the magic set transformation and
so it produces a less efficient program, except when
applied to left-linear programs as it then produces the
same rules.

Also as expected, the results for the left-linear pro-
gram show that there is little difference between the
NRSU-transformed, the context-transformed and the
magic set transformed programs.

When the relation t had more than one tuple, the
need to evaluate the query separately for each t,uple in
t ruined the performance of the NRSU-transformed
program. The context-transformed program, on the
other hand, kept its efficiency: in. these cases it always
performed better than any of the others.

One should also exercise caution in the interpreta-
tion of our results. The version of Aditi that we used

389

for these tests is only a prototype; further tuning may
help some transformations more than others. Also,
the results depend critically on the precise form of
the rules defining the derived relations and the precise
shape of the data in the base relations. For more au-
thoritative results, one would need to run much more
extensive tests using a much wider range of programs
and test data (possibly using [6] as a base).

8 Conclusions

Our measurements prove that our optimization tech-
nique can yield significant speedups, speedups that
are better in most cases than those achieved by magic
sets or the NRSU-transformation. It eliminates the
main weakness of the NRSU-transformation: it works
even when input arguments are variables, not con-
stants, and hence it can be applied to far more calls
in deductive database programs.

In the future, we intend to perform further exper-
iments to evaluate the effectiveness of the transform-
ation under various conditions, including the cases
of calls occurring in bodies, calls with more than
one bound argument, and base relations of differ-
ent shapes. We also intend to find out whether our
transformation warrants the application of unfolding
to convert a set of mutually recursive predicates into
a single self-recursive predicate, and if so, under what
conditions (beside the constraint that the references
between the mutually recursive predicates must form
a simple loop so that unfolding will terminate).

We would like to thank Jayen Vaghani for hacking
Aditi “above and beyond the call of duty”. We would
also like to thank Isaac Balbin for his comments on
previous drafts of this paper.

References

PI

PI

[31

BALBIN, I., PORT, G., AND RAMAMOHANA-
RAO, K. Magic set computation for stratified
databases. Tech. Rep. 87/3 (revised), Depart-
ment of Computer Science, University of Mel-
bourne, Australia, 1987. To appear in the Jour-
nal of Logic Programming.

BALBIN, I., PORT, G., RAMAMOHANARAO, K.,
AND MEENASKSHI, K. Efficient bottom-up com-
putation of queries on stratified databases. Jour-
nal of Logic Programming (1990). To appear.

BALBIN, I., AND RAMAMOHANARAO, K. A gen-
eralization of the differential approach to recur-
sive query evaluation. Journal of Logic Program-
ming 4, 3 (September 1987), 259-262.

PI

[51

PI

I71

PI

PI

PO1

Pll

WI

BANCILHON, F. Naive evaluation of recursively
defined relations. In Proceedings of the Isla-
madora Conference on Databases and AI (1985).

BANCILHON, F., MAIER, D., SAGIV, Y., AND
ULLMAN, J. Magic sets and other strange
ways to implement logic programs. In Proceed-
ings of the Fifth ACM Symposium on Principles
of Database Systems (Washington, DC, 1986),
pp. 1-15.

BANCILHON, F., AND RAMAKRISHNAN, R. Per-
formance evaluation of data intensive logic pro-
grams. In Foundations of Deductive Databases
and Logic Programming, J. Minker, Ed. Mor-
gan Kaufmann Publishers, Los Altos, California,
1988, pp. 439-518.

BEERI, C., AND RAMAKRISHNAN, R. On the
power of magic. In Proceedings of the Sixth ACM
Symposium on Principles of Database Systems
(San Diego, California, 1987), pp. 269-283.

HAN, J., AND LIU, I,. Processing multiple
linear ,recursions. In Proceedings of the First
North American Conference on Logic Program-
ming (Cleveland, Ohio, October 1989), E. L.
Lusk and .R. A. Overbeek, Eds., MIT Press,
pp. 816-830.

KEMP, D. B., RAMAMOHANARAO, K., BAL-
BIN, I., AND MEENAKSHI, K. Propagating con-
straints in recursive deductive databases. In Pro-
ceedings of the First North American Conference
on Logic Programming (Cleveland, Ohio, Octo-
ber 1989), E. L. Lusk and R. A. Overbeek, Eds.,
MIT Press, pp. 981-998.

KEMP, D. B., RAMAMOHANARAO, I<., AND So-
MOGYI, Z. Right-, left-, and multi-linear rule
transformations that maintain context informa-
tion. Tech. Rep. 90/2, Department of Com-
puter Science, University of Melbourne, Aus-
tralia, 1990.

KERISIT, J.-M., AND PUGIN, J.-M. Efficient
query answering on stratified databases. In Pro-
ceedings of the International Conference on Fifth
Generation Computer Systems 1988 (November
1988) pp. 719-725.

NAUGHTON, J. F., RAMAKRISHNAN, R., SA-
GIV, Y., AND ULLMAN, J. D. Argument reduc-
tion by factoring. In Proceedings of the Fifteenth
Conference on Very Large Data Bases (Amster-
dam, The Netherlands, 1989), P. M. G. Apers
and G. Wiederhold, Eds., pp. 173-182.

390

[13] NAUGHTON, J. F., RAMAKRISHNAN, R., SA-
GIV, Y., AND ULLMAN, J. D. Efficient evalua-
tion of right--, left-, and multi-linear rules. In Pro-
ceedings of ACM SIGMOD ‘89 (1989), pp. 235
242.

[14] PORT, G., BALBIN, I., AND RAMAMOHANA-
RAO, K. A new approach to supplementary
magic optimisation. Tech. Rep. 90/5, Depart-
ment of Computer Science, University of Mel-
bourne, Australia, 1990. Submitted for publica-
tion.

[15] ROHMER, J., LESCOEUR, R., AND KERISIT,
J. The Alexander method - a technique for
the processing of recursive axioms in deductive
databases. New Generation Computing 4, 3
(1986), 273-286.

[16] SACCA, D., AND ZANIOLO, C. The gen-
eralized counting method for recursive logic
queries. In Proceedings of the International Con-
ference on Database Theory (Rome, Italy, 1986),
G. Ausiello and P. Atzeni, Eds., pp. 31-53.

[17] SACCA, D., AND ZANIOLO, C. Magic counting
methods. In Proceedings of ACM SIGMOD ‘87
(San Francisco, California, May 1987), U. Dayal
and I. Traiger, Eds., pp. 49-59.

P31 U LLMAN, J. Principles of database and
knowledge-base systems, vol. II: The new tech-
nologies. Computer Science Press, New York,
1989.

[19] ULLMAN, J. D. Bottom-up beats top-down
for Datalog. In Proceedings of the Eighth ACM
Symposium on the Principles ‘of Database Sys-
tems (Philadelphia, Pennsylvania, March 1989),
pp. 140-149.

[20] VAGHANI, J., RAMAMOHANARAO, K., AND
KEMP, D. B. Design overview of Aditi: a de-
ductive database system. In Proceedings of the
Far-East Workshop on Future Database Systems
(Melbourne, Australia, April 1990). Proceedings
published as Technical Report #20, Key Centre
for Knowledge Based Systems, RMIT and The
University of Melbourne.

391

