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Abstract 
We present an algorithm that takes recursive rules, 
predicates and queries belonging to a particular 
class and transforms them into rules, predicates and 
queries that allow efficient bottom-up computation 
of answers. This work extends the work presented in 
“Eficient evaluation of right-, left-, and multi-linear 
rules” by J. Naughton, R. Ramakrishnan, Y. Sagiv, 
and J. Ullman. Our transformation can handle calls 
whose input arguments are not manifest constants 
but are computed by other calls in the query, and 
it can handle predicates containing pseudo-left-linear 
rules together with right-linear and/or multi-linear 
rules. The first of those properties allows us to apply 
our algorithm effectively to calls that occur in the 
bodies of rules as well as in queries. Experimental 
results indicate that our algorithm can achieve con- 
siderable speedups over previous methods. 

1 Introduction 

The past several years have seen great advances in the 
field of deductive databases. Much of this progress 
took the form of the development of evaluation algo- 
rithms and rule rewriting techniques that can increase 
the speed of bottom-up computation of answers to 
queries by several orders of magnitude. These tech- 
niques, which include differential or semi-naive eval- 
uation [3, 41, magic sets [l, 5, 7, 171, the Alexander 
method [ll, 151, counting sets [16, 171, rule rectifi- 
cation [19], and constraint propagation [9], generally 
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work by reducing the number and/or the size of the 
tuples one must generate to answer a given query. 

In two other recent papers ([13] and then [12]), 
J. Naughton, R. Ramakrishnan, Y. Sagiv, and J. Ull- 
man have taken further steps in this direction. They 
have defined a transformation that can reduce the 
cost of answering some queries from O(n2) to O(n). 
This transformation, which we call the NRSU-trans- 
formation, is applicable to a fairly large class of proce- 
dures that occurs frequently in real programs: those 
defined by right-, left-, and multi-linear rules (see sec- 
tions 2 through 5; see also [13] and chapter 15 of [IS]). 

In this paper we address the fundamental limita- 
tion of the NRSU-transformation: it works only when 
the call to the transformed procedure has constants 
in its input positions. We define a new transform- 
ation that does not require this restriction: it works 
even when the input of the transformed procedure is 
provided by a non-singleton relation. Since the key 
feature of our algorithm is its management of context 
information that records which outputs go with which 
inputs, we call our algorithm the context-transform- 
ation. 

In [13], Naughton et al tentatively suggest another 
approach to this problem. They propose executing 
the NRSU-transformed program for each tuple in the 
input relation if the input relation is “small enough”. 
Although we can confirm their conjecture that when 
the input relation contains very few tuples (two or 
at most three) their method is indeed better than 
magic sets, our work renders this point irrelevant. 
Our measurements show that the context-transform- 
ation is more efficient than the NRSU-transformation 
whenever the input relation has two or more tuples. 
When the input relation has many tuples, the differ- 
ence between the two techniques becomes more than 
an order of magnitude. 

From our experience with logic programs, we 
expect that many procedures in real deductive 
databases will belong to the class of procedures han- 
dled by the NRSU-transformation. However, only a 
small fraction of calls are likely to have constants as 
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the input arguments; and if any of the input argu- 
ments are variables, then one can seldom guarantee 
that the input relation to the call will always be a 
singleton set. The true significance of our algorithm 
is that it imposes no such requirements on the inputs 
of calls; it can therefore optimize far more calls in a 
typical deductive database program than the NRSU- 
transformation can. The fact that the context-trans- 
formation can handle procedures that mix pseudo- 
left-linear rules with right-linear, multi-linear and ba- 
sis rules is a secondary contribution. 

The structure of this paper is as follows. The rest 
of this section contains background information. Sec- 
tions 2 through 4 deal with procedures containing 
right-linear rules, left-linear rules, and multi-linear 
rules respectively; section 5 covers procedures that 
contain linear rules of more than one type. Each 
of these sections starts with a motivating exam- 
ple, showing how the NRSU-transformation and our 
context-transformation handle the same simple pro- 
gram; we then give the definition of the context-trans- 
formation as it applies to that class of procedures. 
These sections also contain estimates of the efficiency 
of the programs produced by the transformations un- 
der consideration, using the number of tuples gener- 
ated as the cost criterion. In Section 6 we consider 
the optimization of calls occurring in bodies rather 
than queries, including the interaction of our trans- 
formation with other optimization techniques. In 
section 7 we validate these estimates by presenting 
performance results derived from experiments using 
Aditi, a full-scale deductive database system based on 
relational algebra operations that is currently being 
built at the University of Melbourne [20]. 

In this paper we consider only positive databases, 
although we strongly believe that our results can be 
easily generalized to handle stratified databases (just 
as magic sets have been [2, 141); we discuss this issue 
further in section 6. For simplicity and without loss 
of generality we assume that all rules in the database 
are in homogeneous form, i.e. their heads contain 
only distinct variables. In sections 2 through 5 we 
also assume that the database contains only one de- 
rived predicate, all other predicates representing base 
relations; we lift this restriction in section 6. 

We assume the reader is familiar with the ter- 
minology of deductive databases, the notion of dif- 
ferential or semi-naive bottom-up computation, the 
concepts of stratified databases and maximal strati- 
fication, and the general idea of the magic set trans- 
formation. 

A final note on terminology. Most papers in this 
area define a rule as linear recursive if the head pred- 
icate occurs exactly once in the body. However, in 

[13] and [12], Naughton et al allow a rule to contain 
more than one occurrence of the head predicate in the 
body in their definition of multi-linear recursion (and 
in their definition of left-linear recursion as well in 
[12]). For the purposes of this paper, we use the def- 
initions given in [13], which we reproduce in sections 
2 through 5. 

Due to lack of space, this paper contains no proofs 
for our theorems. They can be found in the technical 
report version of this paper [lo]. 

2 Right-linear recursions 

Before we give a general transformation, we look at a 
motivating example. Consider the following rules for 
deriving the ancestor relation: 

anc(x, Y) +par(X, Y). 
anc(x, Y) + par(X. Z), anc(Z, Y>. 

Suppose the query is 

c anc(judy, Y>. 

Using the magic set transformation we get the follow- 
ing rules for evaluating this query: 

anc(X, Y) + mAIlc(X), par(X, Y). 
anc(X, Y) t m-anc()0, par(X, Z), anc(Z, Y). 
m-ant(Z) 6 m-ant(x), par(X, Z). 
m-anc(judy>. 

Suppose the relation for par looks something like the 
following set of tuples: 

{(judy,xl), (xI,*z), . . . , (xn-l,xn>) 

The answer to the query contains only n tuples, how- 
ever the number of tuples generated for ant is O(n2). 

Notice however, that in this example, the tuples 
generated for mane contain all the required answers, 
and so it is better to use the NRSU-transformation 
outlined in [13] to get the following rules for evaluat- 
ing the query: 

manc(judy). 
m-arm(Y) + m-arm(X), par(X, Y). 
answers(Y) +-rn-ant(X), par(X, Y). 

This is an improvement on the magic set transform- 
ation as the number of tuples generated is only O(n). 

2.1 Right-linear recursions with con- 
text information 

Now suppose there is a base relation called t, and 
that the query is 
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+t(C), anc(C, Y). 

The paper [13] suggests that the same transform- 
ation can be used as for a single constant, but that 
separate computations could be made for each tuple 
in t. However, we have found that it is more efficient 
to compute the answers for all tuples in t together 
using the context-transformed program shown below. 

mcanc(C, C) et(C). 
mc-anc(C, Z) cmc-anc(C, X1, par(X, Z). 
ac-anc(C, Y) + mc-anc(C, Z>, par(Z, Y). 
ansuers(C, Y) +- t(C), ac-anc(C, Y). 

The relation defined by mc-anc (magic ancestor 
with context information) is the same as the original 
magic set, except that every tuple has the extra argu- 
ment that gives the value from relation t that caused 
that tuple to be generated. The relation defined by 
ac-ant (ancestor answers with context information) 
is the set of required tuples for the ant relation. 

If the relation t has m tuples, then the number of 
tuples generated is O(mn). Hence, for the special case 
of m = 1, this transformation is almost as efficient as 
the NRSU-transformation, and for larger values of 
m the cost will never be much greater than that for 
magic sets (and will often be less). 

2.2 General transformations for right- 
linear recursions 

Definition 2.1 A derivdion rule for a recursive 
predicate p is right-linear with respect to an adorn- 
ment a if it is of the form: 

p<x, P> + Gl,. . . ,Gk, p(w, y). 

-- 
where X, Y, and w represent vectors of variables, 
and the following conditions hold: 

l If the number of variables in x is m, then the 
m leftmost arguments of p are bound and the 
other arguments are free according to a. 

l p is not the predicate of any of the Gi ‘s. 

l The variables in y do not occur in any of the 
Gi ‘s, but they do each occur in the same ar- 
gument position in the recursive body literal as 
they do in the head. 

l Each variable that occurs in m either appears 
in Gl,..., Gk or occurs in x. a 

Definition 2.2 A recursive predicate p is right- 
linear with respect to an adornment o if the following 
conditidns hold: 

l p is not mutually recursive with any other pred- 
icates. 

l each rule defining p is either non-recursive or 
right-linear with respect to (Y. a 

The context-transformation for right-linear pred- 
icates consists of three separate rule transformations: 
one for basis rules, one for right-linear recursive rules, 
and one for the query. To apply the corkext-trans- 
formation to a right-linear predicate p, we apply the 
appropriate rule transformation to the query and to 
each rule defining p; the transformed program is the 
union of all the transformed rules with the trans- 
formed query. 

The rule transformation for right-linear rules 
transforms 

p(;iT, v’) + Gl,. . . ,Gk, p(w’, 7’). 

into 

mc-p(E, W) + mc-p(C, r), Gl,. . ,Gk. 

where c is a vector of distinct variables that do not 
occur in the original rule, and the number of variables 
in c is equal to the number in y. 

The rule transformation for basis rules transforms 
-- 

p(X, Y) + HI ,... ,Hj. 

into 

ac_pE, y;) +- mc_pE, X1 , HI, . . . , Hj . 

The rule transformation for queries transforms 
-- 

c FI,..., F‘,p(Cs Y), Fj+l,..., Ff. 

where each variable in c is either a constant or a term 
ground by Fl, . . . , Fj, into the query 

+ FI,.. .,Fj,ac-p(c, P>, Fj+l,...,Ff. 

and the rule 

mc-p(c, E> + Fl,. . . , Fj. 

Theorem 2.1 The context-transformation for right- 
linear rules preserves equivalence with respect to the 
query. 

2.3 Efficiency 

I!or the special case where the query involves con- 
stants instead of bound variables, the context-trans- 
formation produces rules that are similar to the 
rules produced by the NRSU-transformation. The 
context-transformed program generates exactly the 
same number of tuples as the NRSU-transformed 
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program; the difference is that the tuples generated 
by the context-transformed program will include the 
constants from the query and will therefore be larger. 
Hence, for this special case, the NRSU-transform- 
ation is more effective. 

In other cases, however, the original NRSU-trans- 
formation does not apply, whereas the context-trans- 
formation does. In those cases, the context-trans- 
formed program will still only generate O(n) tuples, 
compared to the 0(n2) tuples of the magic set trans- 
formed program. 

3 Left-linear recursions 

Using the same rules for ancestor as presented in the 
previous section, consider the query 

+ anc(X, judy). 

Using a suitable sideways information-passing strat- 
egy, the magic set transformation gives 

anc(X, Y) c- m-am(Y), par(X, Y>. 
anc(X, Y) +-- lLanc(Y), anc(Z, Y)) par(X, z>. 
m-am(Y) + mAnc(Y). 
m-anc(judy). 

One can easily see that m-arm will only ever contain 
the tuple judy. Hence it is more efficient to use the 
NRSU-transformation whose result is 

a-arm(X) - par(X, judy). 
aanc(X) + a-arm(Z), par(X, Z). 
ansaers(X) + a-arm(X). 

3.1 Left-linear recursions with context 
information 

Now suppose the query is 

+ t(c), anc(X, c>. 

It is possible to use the NRSU-transformation and 
compute answers corresponding to each tuple in t. 
However, a comparison of the magic set transform- 
ation with the NRSU-transformation will show that 
the NRSU-transformation only reduces the size of 
each tuple, and the number of tuples generated re- 
mains unchanged. Hence the magic set transform- 
ation is reasonably efficient for the above query. 

We present a transformation which is similar to 
the magic set transformation. The rules produced 
are no more efficient than those produced by the 
magic set transformation, but they do allow an easy 
transition to the mixed-linear cases. As with the 
right-linear case, we define two new predicates called 

mc-ant and ac-anc. The mc-ant predicate (magic an- 
cestor with context information) is again a magic set 
with each tuple containing an extra argument that 
gives the value from t for which ant is being evalu- 
ated. The tuples generated for the acanc predicate 
(ancestor answers with context information) are again 
the answers to the query. 

Our context-transformation produces the follow- 
ing rules for our running example 

mc-anc(C, C) + t(C). 
ac-anc(X, C) 4- mc-anc(C, Y), par@, Y). 
ac-anc(X, C) 6 acanc(Z, C), par(X, Z>. 
ansaers(X, C) +- t(C), ac-anc(X, C>. 

3.2 General transformations for left- 
linear recursions 

Definition 3.1 A derivation rule for a recursive 
predicate p is left-linear with respect to an adornment 
a if it is of the form 

p(x, 7’) + p(x, v>, GI,. . . ,Gk. 

and the following conditions hold: 

l If the number of variables in x is m, then the 
m leftmost arguments of p are ‘bound and the 
other arguments are free according to Q. 

l p is not the predicate of any of the Gi ‘s. 
- 

l Every variable in V is different from every vari- 
able in y. 

l (None of the van’ables in x occur in any of the 
Gi ‘s. 

If all the conditions except the last are satisfied, then 
the rule is called pseudo-left-linear. a 

Definition 3.2 A recursive predicate p is left-linear 
with respect to an adornment cy if the following con- 
ditions hold: 

p is not mutually recursive with any other pred- 
icates. 

each rule defining p is either non-recursive or 
left-linear with respect to a. 

If the definition of p contains pseudo-lefl-linear rules 
as well as non-recursive and/or left-linear rules, then 
p is called pseudo-left-linear. a 

The context-transformation for left-linear and 
pseudo-left-linear predicates consists of three separate 
rule transformations: one for basis rules, one for left- 
linear and pseudo-left-linear recursive rules, and one 
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for the query. To apply the context-transformation 
to a left-linear predicate p, we apply the appropri- 
ate rule transformation to the query and to each rule 
defining p; the transformed program is the union of 
all the transformed rules with the transformed query. 

m-anc( judy). 
m-arm(Z) c a-arm(Z), m-ant(X). 
a-ant(Y) +- m-ant(X), par(X, Y). 

The rule transformation for left-linear and 
pseudo-left-linear rules transforms 

where the relation a-ant contains the answers to the 
query. This program is more efficient than the un- 
transformed and magic set transformed programs. 

p(x, y) + p(??, v), GI,. . . ,Gk. 4.1 Multi-linear recursions with con- 
into text information 

ac-p(c, L;) - For a query such as 

mc-p(c’, 7) , ac-p(??‘, v) , GI , . . . , Gk. - t(C), a(C, Y). 

where c is a vector of distinct variables that do not 
occur in the original rule, and the number of variables 
in c is equal to the number in w. 

the context-transformation gives the following rules: 

mc-anc(C, C) et(C). 
The literal whose predicate is mc-p is not needed mcanc(C, Z) + ac2urc(C. Z). 

for pure left-linear rules, which can be transformed ac-anc(C, Y) + mc-anc(C, X), par(X, Y). 
into answers(C, Y) c t(C), ac-a.nc(C, Y). 

ac-p(c, P) - ac-p(c, v), Gr,. . . ,Gk. 

The rule transformations for basis rules and for 
queries are the same for left-linear and pseudo-left- 
linear predicates as for right-linear predicates. 

As usual, the context magic set is initialized with val- 
ues from relation t. The recursive derivation rule for 
mc-ant is built from the recursive rule for ant. As 
with right-linear recursion, the derivation rule for the 
predicate ac-ant is built from the basis rule for ant. 

Theorem 3.1 The context-transformation for left- 
linear rules preserves equivalence with respect to the 
query. 

4.2 General transformations 
multi-linear recursions 

3.3 Efficiency 

The rules produced by the context-transformation 
for left-linear rules compute approximately the same 
number of tuples as the magic set transformation, 
and so the context-transformation is not an improve- 
ment over magic sets in this case. However, our trans- 
formation can be easily combined with the context- 
transformation for right-linear rules to give an effi- 
cient transformation for predicates that have both 
left-linear and right-linear rules. This is the subject 
of section 5. 

Definition 4.1 A derivation rule for a recursive 
predicate p is multi-linear with respect to an adorn- 
ment a if it is of the form 

p<x, P) + Gr,. . . ,Gk, p(w, F). 

and the following conditions hold: 

If the number of variables in 5i; is m, then the 
m leftmost arguments of p are bound and the 
other arguments are free according to cr. 

4 Multi-linear recursions 

The variables in P do not occur in any of the 
Gi ‘s, but they do each occur in the same argu- 
ment position in the last recursive body literal 
as they do in the head. 

Our transformation can handle multi-linear recursive 
rules. Consider the following multi-linear rules and 
query for the ancestor relation: 

All the variables in m appear in G1, . . . , Gk, but 
none occur in X. 

At least one of the Gi’s has p as its predicate. 

anc(X, Y) + par(X, Y). 
anc(X, Y> + anc(X, Z), anc(Z, Y). 

+ anc(judy, Y). 

The NRSU-transformation gives the rules 

IfGi (i= 1,. . . , k) has p as its predicate then, 

- Its m leftmost arguments are identical to 
those of the head, i.e. those arguments 
contain all the variables in x in order, and 

for 
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- All of its other arguments have variables 
that do not occur in 5?. 

l If Gi (i = l,.. . , k) doesn’t have p as its pred- 
icate, then none of its variables are among x. 
4 

Definition 4.2 A recursive predicate p is multi- 
linear with respect to an adornment cr if the following 
conditions hold: 

l p is not mutually recursive with any other pred- 
icates. 

l each rule defining p is either non-recursive or 
multi-linear with respect to (Y. a 

The context-transformation for multi-linear pred- 
icates consists of three separate rule transformations: 
one for basis rules, one for multi-linear recursive rules, 
and one for the query. To apply the context-trans- 
formation to a multi-linear predicate p, we apply the 
appropriate rule transformation to the query and to 
each rule defining p; the transformed program is the 
union of all the transformed rules with the trans- 
formed query. 

The rule transformation for multi-linear rules 
transforms 

p(x, P) + GI, . . . ,Gk, p(w, P> . 

into 
-- 

mc-p(C, WI + G’,, . . . ,G;. 

where ?? is a vector of distinct variables that do not 
occur in the original rule, and the number of variables 
in c is equal to the number in x. The G: are the 
same as the Gi, except for those whose predicates are 
p. These are replaced by literals whose predicates are 
ac-p, whose leftmost m variables are replaced by c 
and whose remaining variables are the same variables 
as those of the literal being replaced. 

The basis rules and the query are transformed in 
exactly the same manner as in the previous sections. 

Theorem 4.1 The context-transformation for multi- 
linear rules preserves equivalence with respect to the 
query. 

5 Mixed-linear recursions 

When a predicate has a mixture of right-linear, left- 
linear, pseudo-left-linear and multi-linear rules, the 
transformations shown in the previous sections can 
still be applied. To illustrate this, we use the same 
example given in [13]. The predicate p is defined as 
follows: 

r1: p(X, Y, Z> + q(X, Y, Z>. 
rs: p(X, Y, 2) + a(X, U>, p(U, Y, Z). 
rg: p(X, Y, Z) *b(Y, VI, P(X, V, Z>. 
r4: p(X, Y, Z> + c(Z, WI, p(X, Y, WI. 

Suppose the query is 

+ p(christina, Y, Z>. 

With respect to this query, rule r2 is right-linear while 
rules rs and r4 are left-linear. The rules defining the 
magic predicate m-p are built from the query and rule 
r2 as follows: 

m-p(christina). 
m-p(U) + m-p(X), a@, U>. 

These magic rules combined with the following four 
rules make up the rules produced by the NRSU-trans- 
formation. 

a-p(Y, Z) + m-p(X), q(X, Y, Z). From rl. 
a-p(Y, Z) +- a-p(V, Z>, b(Y, VI. From rs. 
a-p(Y, Z) + a-p(Y. WI, c(Z, WI. From r.+. 
p(christina, Y, Z) + a-p(Y, Z). From query. 

These rules are at least as efficient as those produced 
by the magic set transformation, and our timing re- 
sults in section 7 show that they are considerably 
more efficient. 

5.1 Mixed-linear recursions with con- 
text informat ion 

Consider a query of the form 

+-t(C), p(C, Y, Z). 

Combining the context-transformation for left- and 
right-linear rules gives the following rules and query: 

mc-p(C, C> + t(C). 
mc-p(C. U> + mc-p(C, XI. a(X, W. 
ac-p(C, Y, Z) + mc-p(C, XI, q(X, Y, Z). 
ac-p(C, Y, Z) t ac-p(C, V, Z>, b(Y, VI. 
acp(C, Y. Z) +,ac-p(C, Y. WI. c(Z, U). 
c t(C), ac-p(C, Y, Z). 

5.2 General transformations 
mixed-linear recursions 

for 

Definition 5.1 A recursive predicate p is mixed- 
linear with respect to an adornment cr if the following 
conditions hold: 

l p is not mutually recursive with any other pred- 
icates. 
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l each rule defining p is either non-recursive, 
right-linear, left-linear, pseudo-left-linear, or 
multi-linear with respect to (Y. a 

To apply the context-transformation to a mixed- 
linear predicate p, we apply the appropriate rule 
transformation to the query and to each rule defin- 
ing p as they were defined in the previous sections; 
the transformed program is the union of all the trans- 
formed rules with the transformed query. 

Theorem 5.1 The context-transformation for 
mixed-linear rules preserves equivalence with respect 
to the query. 

Unlike the NRSU-transformation, the context- 
transformation works even when a mixed-linear pred- 
icate contains pseudo-left-linear rules: the arguments 
that carry context values provide bindings for the 
variables that make the rule pseudo-left-linear as op- 
posed to pure left-linear. This is a serendipitous side- 
effect of our approach. 

In a recent paper [8], J iawei Han and Ling Liu 
have suggested methods for processing a class of lin- 
ear recursions that they call multiple linear recur- 
sions. This class overlaps the class of procedures we 
consider in this paper: mixed-linear procedures with- 
out multi-linear rules belong to both classes. For such 
programs, the two techniques give the same results: 
a bottom-up evaluation of the rules that our trans- 
formation produces results in the same computation 
as the evaluation of the relational algebra formulae 
produced by the methods given in [8]. The most im- 
portant difference between the two methods is that 
only ours can handle multi-linear rules, whereas only 
their method can handle procedures such as same 
generation, in whose recursive rules the head and the 
recursive call share neither the full set of inputs nor 
the full set of outputs. (We intend to leave the op- 
timization of such rules to a separate counting-sets 
transformation.) The other main difference is that 
their methods produce relational algebra formulae di- 
rectly whereas our transformation yields logic pro- 
grams, making further optimizations easier. 

6 Calls in rule bodies 

In the previous four sections we have applied our 
transformation only to calls occurring in the query. 
However, our transformation can also handle calls 
within program rules, provided that the predicate of 
the call concerned is not mutually recursive with any 
other predicates. 

To see that our transformation works correctly 
in such situations, imagine the position of a to-be- 
transformed predicate in a maximally stratified data- 
base. (We are still talking about positive databases; 
we will discuss negation in a moment.) Our condi- 
tion forbidding mutual recursion guarantees that this 
predicate is the only one on its level. Now follow the 
course of a level-structured bottom-up computation. 
Such a computation applies the rules of the predi- 
cates in the bottom stratum until it can generate no 
more new facts; it then repeats the process with suc- 
cessively higher strata. By the time we get to the 
level containing the t&be-transformed predicate (and 
nothing else), all predicates in lower levels have been 
completely evaluated. Such a situation is isomorphic 
to the case of a single recursive predicate and a collec- 
tion of base relations. Our transformation therefore 
works as well when applied to calls in the bodies of 
rules as when applied to calls in queries. 

This kind of argument can show that the origi- 
nal NRSU-transformation could also handle calls that 
occur in the bodies of rules. The advantage of the 
context-transformation of course is that it can han- 
dle calls that have variables among their input argu- 
‘merits. Based on our experience with logic programs, 
we believe this to be a very significant advantage: 
constants simply do not occur anywhere near as of- 
ten in rules as variables do. The inputs of most calls 
are provided by the outputs of other calls in the same 
rule or by the inputs of the predicate being defined. 

In the presence of negation, the context-trans- 
formation suffers from a problem that magic sets also 
suffer from: the resulting program may be unstrati- 
fied even when the input program has a stratification. 
Since unstratified databases do not have an agreed- 
on semantics, this is not acceptable. Fortunately, the 
picture is not all bleak. Since the cause of the un- 
stratification is the same in each case (a rule defining 
a magic predicate may contain a negative reference to 
its parent predicate) we believe that the techniques 
that solve this problem for magic sets (labelling al- 
gorithms [2] and structured interpreters [14]) should 
also solve it for the context-transformation. We in- 
tend to explore this issue in more detail; we will report 
our results in a later paper. 

The context-transformation is compatible with 
most other optimization techniques but with some 
notable exceptions. First, like most optimizations, it 
is not compatible with itself, in the sense that apply- 
ing it twice to the same predicate will not improve 
performance and may in fact hurt (if the second ap- 
plication is possible at all). Second, it is not compati- 
ble with optimizations that derive their improvements 
from the same source: applying the magic set- or 
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the NRSU-transformation to a context-transformed 
program will likewise reduce performance. The rea- 
son is that the second transformation adds overhead 
but cannot reduce the number of intermediate tuples 
generated (the context-transformation already com- 
putes the necessary magic sets; computing them again 
will not help). On the other hand, techniques such 
as differential evaluation [3, 41, rule rectification [19] 
and constraint propagation [9] are as applicable to 
context-transformed programs as to any others. 

We have also devised an optimization technique 
that applies only to context-transformed programs. 
This optimization targets the overhead involved in 
copying contexts around by representing each context 
c by a single integer I. The optimization carries out 
this substitution in all of the rules defining ac-p and 
mc-p, and it further modifies the clauses containing 
calls to the transformed predicate and the basis rule 
of the context magic predicate. The body of a calling 
clause, which originally was of the form 

Fl,. . . ,Fj, ac-p(C, Y’>, Fj+i,. . . ,Ff 

now becomes 

Fl,... ,Fj, id-p(1, C). ac-p(1, P), Fj+l, . . ..Fj 

with the id-p relation storing the mapping between 
contexts and their identifiers. (This mapping must 
be established at run time; the underlying database 
system could easily provide special support for this.) 
Given this mapping, the rule for mc-p, which was orig- 
inally 

XlC-p(C, C) c Fl,...,Fj. 

(derived from the call to p) now becomes 

mc-p(1, C’> +- id-p(1, c). 

Unless the context was already of minimal size, this 
will reduce the size of the magic set (in bytes, not 
in tuples); and it will always eliminate the redundant 
evaluation of Fl, . . . , Fj . 

7 Performance results 

We have tested the effectiveness of the context-trans- 
formation using Aditi, a deductive database system 
currently under development at the University of Mel- 
bourne [20]. Aditi is designed to evaluate database 
queries using relational algebra operations like join 
and union, and has a compiler for transforming Pro- 
log rules into a low-level relational language. Aditi is 
designed to handle large databases, and so it stores 
all its intermediate relations on disk. To make our 
measurements as realistic as possible (specifically, to 

include disk access times) we measure performance 
by the real time required to perform a given query. 

We compared five transformation algorithms, the 
magic set algorithm, the supplementary magic set 
algorithm, the NRSU-transformation, the context- 
transformation, and the null transformation (as a 
control). We tried out each of these algorithms on 
four programs (one right-linear, one (pure) left-linear, 
one multi-linear and one mixed-linear). We ran each 
of the resulting transformed programs on five sets of 
data, asking two queries with different-sized input re- 
lations on each combination. (It turns out that the 
supplementary magic set transformation of the left- 
linear program gives the same rules as those given by 
the magic set transformation, and hence there was no 
need to do separate runs for this case.) Some results 
(those pairing the NRSU-transformation with large 
input relations) are missing due to the excessively 
large amount of time that would have been required 
to complete them. 

Our four test programs are shown in figure 1. In 
each case, q is the query predicate, the query being a 
call to q with all arguments free. 

Our test data consists of the relations par, v, a, 
b, and c. Our relation par is a set of tuples that 
describe a full binary tree: 

{par(l,l), par(i,3), par(2,4), par(2,6), . . ., 
par(n. 2n+ 1)) 

The four data sets differ in their value of n; we used 
the values 127, 255, 511, 1023, and 2047, correspond- 
ing to tree depths of 7, 8, 9, 10 and 11 respectively. 

The relation v is a set of tuples that can be re- 
garded as vectors in three dimensional space. They 
are arranged in a cubic grid, separated from each 
other by one hundred units, and contained in a 
cube which has opposite vertices of (O,O, 0) and 
(200,200,200). I n other words, v is the set 

{(z, y,z) : 2 = lOOi, y = lOOj, z = look, 0 < i 5 2, 
o<js2,0<k:<2} 

In our test data, the contents of the relations a, b, 
and c are identical; each is the set 

((2, y) : z = y + 1, y = 1ooi + j, 0 5 i 5 2, 
Oljlnl 

The three data sets differ in their value of n (which in 
this case we call the TUT length); we used the values 
3, 4, 5, 6 and 7. (The derived relation p consists of 
the cube described by v but with every point in v 
extended into a small cube, the length of whose sides 
is given by n.) 

Table 1 reports our results. The four sections of 
the table cover right-, left-, multi- and mixed-linear 
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Speedups for right-linear query evaluation 

11 depth = 7 11 depth = 8 /I depth = 9 II depth = 10 11 depth = 11 
#kl #k12 #kl 

1.0 1.0 1.0 
3.0 1.7 4.4 
1.9 1.0 3.2 
5.0 0.4 6.9 
4.6 2.8 7.1 

#k25 #kl 
1.0 1.0 
1.9 5.7 

i- 

1.2 4.6 
0.3 9.1 
3.5 9.0 

#t=5i #t=i #t=i02 #t=i 
1.0 1.0 1.0 1.0 
2.1 8.3 1.9 10.7 
1.5 7.8 1.4 10.5 
0.2 12.4 - 16.3 
3.7 12.4 3.8 16.0 

ITG- 
magic 
supmagic I. nrsu 
cntxt 

orig 
magic 
supmagic 
nrsu 
cntxt 

Speedups for left-linear query evaluation 

depth = 7 depth = 8 depth = 9 depth = 10 
#t=l #k12 #kl #k25 #t=l #k51 #t=l #t=102 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
4.2 2.6 7.6 4.1 13.4 5.6 23.7 7.9 
4.2 2.6 7.6 4.1 13.4 5.6 23.7 7.9 
5.6 0.3 8.6 0.3 16.5 0.2 25.6 - 
4.4 3.1 8.2 5.2 17.9 6.9 25.6 9.8 

depth = 11 

Speedups for multi-linear query evaluation 

depth = 7 depth = 8 depth = 9 depth = 10 depth = 11 
#t=l #k12 #kl #k25 #kl #k51 #kl #k102 #kl #t=204 

orig 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
magic 1.5 1.6 3.7 3.8 7.1 6.9 14.2 14.8 21.7 21.8 
supmagic 1.2 1.2 2.9 2.9 5.5 5.2 11.3 11.3 17.8 18.3 
nrsu 3.7 0.5 7.8 0.4 15.2 0.4 26.6 - 40.8 - 
cntxt II 3.5 I 3.7 II 7.7 I 7.9 II 14.5 I 13.7 II 26.4 I 26.3 11 39.7 1 39.3 I 

Speedups for mixed-linear query evaluation 

run length = 3 run length = 4 run length = 5 run length = 6 run length = 7 
#t=l #t=6 #t=l #t=7 #t=l #kg #t=l #t=lO #t=l #t=12 

orig 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
magic 3.6 1.3 4.8 1.5 7.0 1.4 9.7 1.2 10.6 1.1 
supmagic 3.2 1.2 4.4 1.4 6.7 1.3 9.3 1.2 10.4 1.1 
nrsu 4.9 1.0 6.7 1.2 9.8 1.2 13.8 1.2 15.1 1.2 
cntxt 4.5 2.6 6.3 2.7 9.1 2.8 13.4 2.6 14.3 2.4 

Table 1: Speedups using the Aditi deductive database 
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Right-linear query 

anc(X, Y) +par(X, Y). 
anc(X, Y> + par(X, Z), anc(Z, Y>. 
q(X, Y) + t(X), anc(X. Y). 

Multi-linear query 
anc(X, Y) +par(X, Y). 
anc(X, Y) + anccx, Z), a.nc(Z, y>. 
q(X, Y) t t(X), anc(X. Y). 

Left-linear query 
anc(x, Y> c par(X, Y>. 
anc(x, Y) t par(X, Z), a=(Z, Y). 
q(X, Y) et(Y), anc(X. Y). 

Mixed-linear query 
p(X, Y, z> * v(X, Y, Z). 
p(X, Y, Z) + a(X, W, p(U, Y, Z>. 
p(X, Y, Z) + b(Y, ‘0, p(X, V, Z). 
pa, y, Z) - c(Z, w, p(x, Y, w>. 
q(X, Y, Z> + t(X), p(X, Y, Z). 

Figure 1: Test Programs 

programs respectively. Each table section contains re- 
sults in five rows, measuring the performance of the 
original, the magic set transformed, the supplemen- 
tary magic set transformed, the NRSU-transformed, 
and the context-transformed programs respectively. 
The five major columns divide the four data sets: 
trees of depths 7, 8, 9, 10 and 11 for the right-, left- 
and multi-linear programs and cubes with run lengths 
of 3, 4, 5, 6 and 7 for the mixed-linear program. The 
two minor columns within each major column give 
the size of the t relation, i.e. the size of the input 
to the linear predicate. We consider two cases: the 
input contains one tuple or it contains several. When 
t contains just one tuple, the tuple is chosen from 
the middle level of the tree (for the right-‘, left- and 
multi-linear cases) or contains zero (for the mixed- 
linear cases). When t contains several tuples, the 
tuples were chosen randomly. For the right-, left- 
and multi-linear cases, the size of the t relation was 
fixed at five percent of the size of the par relation; for 
the mixed-linear cases, it was fixed at fifty percent of 
the possible argument values of the first argument of 
p. All computations used the differential evaluation 
strategy [3]. 

Each entry in table 1 gives the speedup achieved 
by the given transformation strategy on the given test 
data with the given query; the reference is the per- 
formance of the untransformed program on the same 
test data and the same query. The speedups com- 
pare real (wallclock) times on an Encore Multimax 
320 with 64 megabytes of memory under UMAX 4.2 
(revision 3.3.1). The test database was stored on an 
NEC D2362 disk drive connected via an asynchronous 
SCSI interface with a 1.5 Mb/s maximum transfer 
rate. 

Every figure we report is based on the average of 
several runs. When t contained just one tuple, the 
repetition served only to reduce timing errors. When 

t contained several tuples, the repetition served to 
eliminate the influence of the large variation in per- 
formance between different sets of input values: each 
measurement is an average of several runs with dif- 
ferent t relations. For the large times, two or three 
runs were enough, but in some cases we needed four 
or five runs to establish a reasonably firm value for 
the mean. The majority of the raw results lie within 
about five percent of the mean. 

Our results confirm our expectations about the 
relative efficiency of the various transformations. 
When the relation t had only one tuple, the NRSU- 
transformed and the context-transformed programs 
always performed better than the magic set and 
the supplementary magic set transformed programs, 
and these in turn performed better than the un- 
transformed programs. The NRSU-transformed pro- 
gram generally performed better than the context- 
transformed program as the tuples generated by the 
NRSU-transformed program were smaller. As the 
programs that we are considering are so simple, 
the supplementary magic set transformation actually 
adds an overhead to the magic set transformation and 
so it produces a less efficient program, except when 
applied to left-linear programs as it then produces the 
same rules. 

Also as expected, the results for the left-linear pro- 
gram show that there is little difference between the 
NRSU-transformed, the context-transformed and the 
magic set transformed programs. 

When the relation t had more than one tuple, the 
need to evaluate the query separately for each t,uple in 
t ruined the performance of the NRSU-transformed 
program. The context-transformed program, on the 
other hand, kept its efficiency: in. these cases it always 
performed better than any of the others. 

One should also exercise caution in the interpreta- 
tion of our results. The version of Aditi that we used 
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for these tests is only a prototype; further tuning may 
help some transformations more than others. Also, 
the results depend critically on the precise form of 
the rules defining the derived relations and the precise 
shape of the data in the base relations. For more au- 
thoritative results, one would need to run much more 
extensive tests using a much wider range of programs 
and test data (possibly using [6] as a base). 

8 Conclusions 

Our measurements prove that our optimization tech- 
nique can yield significant speedups, speedups that 
are better in most cases than those achieved by magic 
sets or the NRSU-transformation. It eliminates the 
main weakness of the NRSU-transformation: it works 
even when input arguments are variables, not con- 
stants, and hence it can be applied to far more calls 
in deductive database programs. 

In the future, we intend to perform further exper- 
iments to evaluate the effectiveness of the transform- 
ation under various conditions, including the cases 
of calls occurring in bodies, calls with more than 
one bound argument, and base relations of differ- 
ent shapes. We also intend to find out whether our 
transformation warrants the application of unfolding 
to convert a set of mutually recursive predicates into 
a single self-recursive predicate, and if so, under what 
conditions (beside the constraint that the references 
between the mutually recursive predicates must form 
a simple loop so that unfolding will terminate). 

We would like to thank Jayen Vaghani for hacking 
Aditi “above and beyond the call of duty”. We would 
also like to thank Isaac Balbin for his comments on 
previous drafts of this paper. 
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