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Abstract 

We present a parallel algorithm to compute the 
transitive closure of a relation. The transitive 
closure operation has been recognized as an 
important extension of the relational algebra. The 
importance of the performance problem brought by 
its evaluation brings one to consider parallel 
execution strategies. Such strategies constitute one 
of the keys to efficiency in a very large data base 
environment. The innovative aspects of the 
presented algorithm concern: 1) the possibility of 
working with a reasonable amount of memory space 
without creating extra Inputs/Outputs; 2) the use of 
on-disk clustering accomplished by double hashing; 
and 3) the parallelization of the transitive closure 
operation. The processing time is reduced by a 
factor of p, where p is the number of processors 
allocated for the operation. Communication times 
remain limited; a cyclic organization eliminates 
the need for serialization of transfers. The 
evaluation in a shared nothing architecture, shows 
the benefits of the proposed parallel transitive 
algorithm. 
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1. Introduction 

The efficient implementation of a transitive closure 
operator today appears to be one of the keys to the 
evaluation of recursive queries in a deductive 
DBMS. Numerous algorithms have been proposed 
[BANC861, [VALD861, [AGRA871, [HAN881, 
[GARD881, [IOAN881. However, if these algorithms 
are examined in an environment of very large 
relations, two aspects are uncovered that until now 
have received little attention : 

- the first concerns taking into account the memory 
space available for the operation. Tuples under 
manipulation are generally assumed to be held in 
main memory; the possibility of multiple read- 
operations due to memory saturation is too often 
either treated optimistically or not even 
considered. 

- the secoxid concerns the parallelization of the 
transitive closure operation. Even though this is a 
solution for executing the operation within 
acceptable time limits, parallel algorithms are 
rarely proposed. 

This situation is all the more surprising because a 
lot of these proposed algorithms use multiple joins, 
either directly or implicitly. However, all of the 
recent works on efficient join implementation show 
the advantages of parallel processing and the need 
for taking into consideration available memory 
space [DEWI84]. Indeed, this guarantees a parallel 
execution in a single read-operation of on-disk 
relations. After a period of defining operations and 
algorithms, we feel that today it is crucial, for- the 
sake of execution efficiency, to study physical 
implementations, the use of clustering and access 
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methods, and the unique advantages of multi- 
processor architectures [CHEI89]. 

Some recent papers approach the operator 
implementation problem by considering efficient 
transitive closure execution or using multi-processor 
architectures. [AGRA871 and [IOAN881 consider 
Input/Output minimization on direct algorithms 
(where transitive closure is considered as a 
problem of graphs). [VALD88a] proposes an exe- 
cution of the operation in a parallel architecture. 
Transitive closure is executed in several passes and 
uses a two-way merge type operation from locally 
generated results. The relation is partitioned and, 
in n passes, with 2” processor nodes, the total 
closure is calculated. However, the sequencing 
requires a coordinating node as well as a delicate 
balancing of overall system loading. [CHEI89] 
examines the efficient execution of a transitive 
closure that permits searches on a large number of 
rules. 

In this paper we propose a multi-processor 
implementation of a transitive closure operator 
based on double hashing. This implementation 
aims to reconcile the processing of very large 
relations with acceptable response times. The 
framework is one of execution by join loops 
]BANC86]. Choosing a simple, well-known 
algorithm allows us to show more clearly the 
advantages of the “divide and conquer” strategy: 
the task is divided into a number of smaller tasks 
that can then be assigned to several processors. A 
very large transitive closure thus amounts to a 
collection of smaller operations. This 
decomposition provides: 

(iI the guarantee that each operation takes 
place in main memory without requiring extra read 
and write operations due to a lack of available 
memory space; 

(ii) the assignment of the set of operations to 
several parallel processors, each of which performs 
the same task on a section of data (multiple 
backend operation). 

We propose an algorithm based on double hashing 
of a binary relation to be joined, which is named 
“Double Hash Transitive Closure” (DI-ITCI. This 
algorithm uses direct clustering of the relation to be 
joined without overburdening the memory for the 
linearization of the transitive closure operation, 

and can be directly implemented in a parallel 
structure. In a multi-processor arrangement with a 
multiple backend configuration [I-ISI~AtB]~ in which 
each processor performs the same relational 
operation, one can expect to achieve a reduction 
factor of p in the processing time of large transitive 
closures on on-disk clustering. Data transfers 
between processors are minimized and a cyclic 
organization eliminates the need for serialization 
of tasks caused by an occupied bus. 

After this introduction, section 2 presents the basic 
concept of the algorithm applied for a general 
transitive closure denoted R*. Section 3 develops 
the parallel algorithm in a multi-processor 
architecture environment without shared memory. 
Finally, sections 4 and 5 present an evaluation of 
the algorithm, first from the point of view of 
memory space requirements, and then from the 
point of view of execution time. Section 6 concludes 
the paper. 

2. A generh algorithm for very large relations 

In this paragraph we present the DHTC algorithm. 
The innovative aspects of the DHTC concern: i) the 
possibility of working with a reasonable amount of 
memory space without creating too many 
Inputs/Outputs; 2) the use of on-disk clustering ac- 
complished by double hashing; and 3) the 
parallelization of the transitive closure operation. 

Using the same basic idea, a parallel algorithm 
has been proposed in IVALD88bl. In fact, this 
algorithm does not use a clustering technique and 
re-hashes the new tuples during each iteration. In 
this paper, no consideration is given to the main 
memory size. 

Most of the evaluations published on transitive 
closures use very optimistic hypotheses for 
analysing the number of Inputs/Outputs needed by 
the execution. Indeed, for algorithms that use join 
loops, it is generally supposed that join operations 
take place in main memory. Unless additional 
strategies are employed, this would call for a very 
large amount of memory space: if one considers a join 
loop algorithm, the memory has to be able to 
accomodate the largest possible AR generated 
during the processing, where AR is an intermediate 
relation in which newly generated tuples are stored 
in one iteration. As for the R pages, they are read 
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one after the other. This hypothesis is especially 
overstated for certain distributions of the initial 
relation data. In addition, most algorithms use the 
set operations of union and difference for testing 
stop conditions. Such operations require sorts and 
suppression of duplicate tuples; furthermore, their 
efficient execution (i.e. calling for only one read 
operation of data from the disk) imposes severe 
constraints on available memory space. 

When contemplating the manipulation of very 
large relations clustered on-disk, one can no longer 
consider the relation on which transitive closure is 
performed as a simple sequence of tuples. The main 
idea is to use clustering to reduce greatly the cost of 
the operation. Clustering characteristics, which 
are already largely used in the execution of other 
relational operators (selection, join, etc.) can 
likewise be exploited in transitive closure 
processing. 

2.1. Basic concept 

Let us consider a binary relation R(X, Y) where X 
and Y are defined on the same domain D. The 
relation R defines a graph G, where a node is an 
element of D and an edge (x,y) denotes a tuple (x,yl 
of R. The transitive closure R* of the relation R 
consists of the transitive closure of its corresponding 
graph G, i.e. a tuple (x,y) is in R* iff there exists a 
path from x to y in G. 

R is clustered on-disk. The size of this relation can 
be very large and thus, no optimistic hypothesis 
can be made regarding the comparison between this 
size and the size of available main memory. The 
join loop will be performed by a semi-naive itera- 
tive algorithm IBANC861. The major point we want 
to study is the limitation of Input/Output 
operations. In order to guarantee the linear aspect 
of the join operations, we want to reduce the size of 
the data which fits in mai,n memory at a given 
time. 

In an iterative algorithm, each iteration generates 
new tuples from R (stored on-disk) and AR tuples 
which were produced during the previous iteration. 
The latter may also possibly be m-written on the 
disk. During the initialization AR is composed of 
the set of R tuples. The generation of new tuples is 
based on joining the R relation with AR. In this 
configuration the use of a hash-based join 

algorithm is attractive [KITS83]: it permits 
efficient execution of the operator with reduced use 
of memory space [DEWMI. In addition, the hash 
buckets used by the algorithm can correspond to an 
on-disk clustering of the relation. In order to use 
this possibility, the relation tuples are considered 
according to an on-disk clustering implemented 
with a hashing in n buckets, and the new AR tuples 
are considered as a set of n buckets that correspond 
to an identical hashing function. 

Let’s look at an iteration: with a hash-based join 
algorithm, each relation is divided into n buckets 
obtained by the same function applied to the join 
attribute. Only buckets having the same index are 
joined two by two, (buckets having different indices 
cannot join together). However, these algorithms 
are insufficient for executing a join loop because the 
result of one step must be rehashed according to a 
different attribute in order to form the usable 
buckets for the next step. Thus, if R is only hashed 
(and clustered) according to Y and AR according to 
X, the join resulting from a step permits only the 
joining of buckets where (R.Y) modulo n = (AR.X) 
modulo n ; but in order to form the AR tuples used in 
the next step, it is necessary to rehash the result 
according to the new value of X (the projection on 
the attributes R.X and AR.Y is immediately 
computed after the join). 

Our proposal permits this rehashing to be avoided. 
The idea is to use a multi-attribute clustering 
technique which provides suitable hash buckets for 
each iteration. In order to do this, a double-hashed 
clustering of the relation R is performed. First R is 
hashed by a modulo function in n buckets according 
to the value of X; then each of these buckets is 
rehashed by the same function according to the 
value of Y. For example, one can use a Predicate 
Tree technique [GARD84] which guarantees a 
multi-attribute, dynamic hashing (necessary in the 
case of expansion). The tuples of the permanent re 
lation R are thus hashed simultaneously according 
to the values of both X and Y. This technique 
allows the relation to be looked at according to two 
different partitionings [CHEI86]. The first 
(according to the value of Y) will be used for the 
join algorithm for hash buckets having the same 
index; the second (according to the value of X1 will 
prevent the loss of the hash value information of 
each tuple according to the value of X and will thus 
avoid the need for a write-operation hashing 
during the following step. 
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The algorithm is illustrated on the following 
relation R: 

R - 

Y mod&2 

+ o l 

The relation is hashed in 4 buckets according to the 
values of X and Y. During initialization AR is 
composed entirely by R. Thanks to the on-disk 
double hashing, AR appears as 2 buckets (according 
to the values of XI. 

itexation Q 

AR0 
- 

bucket 0 

-1-11 

bucke.t1 

X 

4 
2 
2 

.- 

1 
1 
1 

Y 
- 
2 
3 
5 

.-w. 

2 
4 
3 

The first iteration of the algorithm will only 
perform joins between buckets 00, 10 of R and the 
bucket 0 of AR0 on the one hand, and between 
buckets 10 and 11 of R and the bucket 1 of AR0 on the 
other hand. 

The results are stored directly in AR1 without 
rehashing, according to the hash values of X which 
will be used during the following iteration. 
Iteration 2 can then proceed: 

The stop condition is satisfied since no more new 
tuples are generated. 

More generally, figure 1 represents, for the 
iteration p, the join between the buckets of index 3 
of the R relation and the AR relation which has 
been obtained at the previous step. For this step, 
the join between the buckets of index 3 follows the 
join between the buckets of indices 0 to 2; it will be 
followed by the join between the buckets of index 4. 
The tuples of the AR relation which will be used at 
the next step are directly built without any 
rehashing, through accumulation of the tuples 
according to their hash values on X. 

Fieure 1 : Join loop with double hashing technique 

2.2. Algorithm 

We give in this section a more formal description of 
the algorithm. 

- R is the permanent relation having the schema 
w, w 

- R is clustered on the two attributes X and Y. The 
hashing function used for this clustering is the same 
for both attributes; it is a modulo n function. The R 
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relation is recursively hashed into n* buckets. First, 
it is hashed in n buckets according to the X 
attribute, and then, each one of these bucket is 
hashed into n buckets according to the Y attribute. 
The integer i represents the hash value for X and j 
represents the hash value for Y. R = U ij Rij 
Oliln-1, O<j<n-1 

- AR is a temporary relation composed of n buckets 
named k. ARk store the tuples from AR having for k 
the hash value for the X attribute. 

-a=ukLi& Olkln-1 

- AR corresponds to one iteration of the construction 
of the transitive closure of R, denoted by R*. The 
schema of this relation is (X, Y). 

The join operation is assumed to include the 
projection that eliminates the join attribute. The 
join followed by the projection, i.e. the composition 
of R with S, will be denoted RoS : 
R 0 S = I-I 1,4 (Rz3S) 

function R* (R) : relation ; 
begin 

R* :=R; 

~2contains new tuples dp 
sr?d!l 
z:=0; 
fqLk:=O&n-ldp 
f9r i:=O &I n-l dp 

&& 
RTik := A&’ Rik ; 
Zi:= q u RTik 

d; 
AR := Vi Zj; 

R* :=R* u AR 
!ai 

!x!d; 

The Z (w Zi) relation is necessary to stack all the 
tuples built in one iteration: AR has to be assigned 
to u Zi only when all the tuples of the previous 
generation are generated. In fact, the tuples of Zi 
are obtained from the L\RI< , with k between 0 and n- 
1. 

The stop condition test and the elimination of 
redundant processing make it necessary to 
determine the existence of new tuples during each 
iteration. The determination of tuples must always 
be made in pairs. By the distributive property of 
the union operation, this condition can be 
determined separately on each hash bucket. The 
result is formed by an AND operation of the results 
evaluated on each bucket. Since the buckets are 
composed in order to be kept in main memory, the 
cost of the stop condition test is greatly minimized 
in the DHTC algorithm. We can take advantage of 
the partitioning of AR into several hRk’S, thanks to 
the double hashing. 

3. Parallel algorithm 

The idea of decreasing execution times of relational 
operations by the intensive use of parallelism is 
very prevalent. Its effectiveness has been proven in 
numerous propositions and parallel 
implementations [KITS83], [DEWI86], [CHEI861. 
The more recent data base machine architectures 
base their execution strategies around parallel 
algorithms. The multiple backend approach is very 
dominant [HSIA86]; besides the performance 
improvements, it provides other advantages such 
as reliability and possibilities for operating in a 
degraded mode. This approach lends itself to 
situations in which high-volume sequential 
processing is performed [GARD86], which is the 
case with transitive closures. One of the bases for 
this type of architecture is the division among the 
processors of the data to be processed. A simple, 
generally adopted way to perform this division is 
to form, using an appropriate function, as many 
hash buckets as there are processors available. 

The DHTC algorithm is directly usable in such an 
environment. Thanks to the use of hashing, it lends 
itself naturally to parallelization. With a 
multiple backend configuration, as in [CHEI86], the 
join loop processing time can be divided by p, where 
p is the number of processors available. 

The advantages of parallelization rest on the 
following principle: the initial relation is divided 
horizontally into several fragments, each of which 
is then processed by a separate processor. In an 
environment where memory is not shared (“shared 
nothing”), each processor processes the data from 
its own disk in its own memory. Each processor- 
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memory-disk set can be viewed as a node in a 
network. In a centralized multi-processor 
architecture, the network consists simply of a bus, 
whereas with a divided configuration it consists of 
a veritable communication network. The main 
problem for parallel execution of a relational 
operation in general, and of a transitive closure in 
particular, is to give a maximum amount of local 
tasks to each processor while limiting data and 
message transfers at the same time. Unlike joins, 
the execution of a transitive closure cannot be 
totally “localized” by simple horizontal 
partitioning of the initial relation. In fact, tuples 
newly-produced in a particular node at a particular 
moment in the processing can be required by another 
node in order to continue the task. Transfers are thus 
absolutely necessary during execution of the 
transitive closure. However, inter-processor 
transfers can be limited to the smallest set 
necessary for each step. 

We maintain the idea of a division of tuples among 
several nodes thanks to a partitioning by hashing 
on the attribute that will be the join attribute. The 
second hashing permits the composition of the 
buckets to be transfered in preparation for the next 
iteration. The sets of tuples exchanged between 
processors are minimized and formed directly. The 
bucket indices (i.e. the hash values) represent, for 
each bucket, the receiving node. Without extra 
processing or special messages, transfers are thus 
performed in a minimum of time. No extra 
synchronization or master node is necessary. 

In a multiple backend configuration, each processor 
performs the same action. The data are divided 
into as many subsets as there are processors 
available for the operation. If each processor has 
its own disk (we shall assume, for simplicity’s 
sake, such a configuration), the data are divided 
among these disks by hashing. At the outset, the 
relation R is distributed among as many sub- 
relations as there are processors. This division is 
calculated by hashing on the X attribute. Each sub- 
relation is rehashed locally according to the Y 
values. Overall, n* sub-buckets are to be dealt with 
(hashing in n buckets on the X attribute followed by 
rehashing of each bucket in n buckets on the Y 
attribute). If p processors are available, n = p is 
chosen. 

Let p be the processor index; the buckets of index ip 
from R, i between 0 and n-l, will be clustered on the 

disk assigned to processor p (it is supposed that 
there is one disk per proces$orl. The buckets of index 
p from the different AR’s, produced during each 
step, are likewise distributed. In this way, for one 
iteration, the join of buckets Rip and ARp remains 
local to each processor. No transfers whatsoever 
are necessary per iteration for the processing of 
each step of an algorithm. The processing time 
during this phase of the algorithm is thus divided 
by the number of processors p. Actually, a non- 
uniformity in the hashing can considerably reduce 
this factor because the total time used is that of the 
slowest processor, i.e. the processor processing the 
largest volume of data. This problem, shared by all 
hashing methods, emphasizes the importance of a 
careful choice of the partitioning function. 

The results from each join RiP IXI ARP must next be 
processed by processor i. Indeed, these tuples have 
the i hash value according to X; they form the ARi 
sub-relation for the next iteration, which will be 
processed by processor i. A transfer is thus 
necessary.’ However, no rehashing has to be 
performed. The tuples destined for .processor i are 
already stored in a specific sub-relation, thanks to 
the values from the second hashing. An initial 
version of the parallel algorithm can be given: 

foreach=p&2 
R*p := Rp 
ARp:=Rp; 
&& ARp contains new tuples Pp 

lz54!hl 
&i:=OlQpp-1 pn 

bu!l 
Z. iP := ARp o Rip ; 

send Zip to node i 
axk 

RCeiVe (p-1) zpk ; k=O..p-1, k+p 
fiRp:=+?&; k= O..Pl 
Rp* := Rp* u ARp 

!ad; 

The final result (R*) will be formed simply by the 
union of the different R*p’s. It must be pointed out 
that this union does not require a suppression of 
duplicate tuples. Indeed, the sets to be combined are 
hash buckets and are thus necessarily disjoint. 

In this algorithm, each processor awaits the 
arrival of all of the new tuples produced during one 
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iteration in order to begin the next iteration (each 
of the p processors receives p-l sub-relations coming 
from p-l other nodes). A procedure that performs 
the “receive” function can easily take this role and 
verify that all the sub-relations have arrived. 

One thing slows down this processing, however. A 
serialization, according to the order of write 
operations, can occur. In fact, if each processor p 
computes the buckets Rip with the ordering (i:=O to 
n), the serialization by the bus might slow down 
the entire computation: the processors compute all 
the buckets Rip at the same time and try to send 
their results towards the same processor i (figure 2). 

FiPure 2 : inter-processor transfers and serialization 
according to order of write operations 

This problem can be solved by a cyclic organization 
of the data transfers. Each processor first computes 
the bucket Rpp and thus forms its own result. Then 
it computes the following bucket (R(p+I)p) and 
transfers the result to the processor p+l. Thus, the 
data transfer is done in a cyclic way, each processor 
receiving one subrelation at a time, without a slow- 
down caused by simultaneous write operations in 
one node 

(parallel join loop) 
forn==rp& 

i:=p ; 
Z ip:= Rip ’ ARp ; (set of local joins) 
transfer Zip towards the disk used by the 

processor i ; 
i := (i+l) module p 

mi=p; 

The implementation can be further improved by 
pipelining the operations. Sub-relations transfered 
between nodes in fact don’t need do be fully formed 
before being transfered. They can be transfered, 
page by page, as soon as they become available. 
Lost time due to possible loading imbalances 
between processors is thus minimized (such 
imbalances being due to a non-uniform hashing). 

4. Single read execution conditions 

The evaluation of the algorithm brings out two 
critical elements: available memory size, and the 
cost of data transfers between processors. In order to 
simplify things, we shall first give the constraints 
on memory size which guarantee that each local 
operation remains linear. Then, since these 
conditions are not severe, we shall assume that 
they are satisfied and shall proceed to evaluate 
the time-performance of the algorithm. 

4.1. Main memory size required for a single 
readexecution in the case of a single processor 

One difficult problem with large joins is making 
sure that their execution stays “linear”; each 
relation is read from disk only once. Therefore, this 
problem is very important with an ‘iterative 
transitive closure algorithm, where a join is made 
in each iteration. The proposed algorithm reduces 
the memory requirement for a single read execution. 

We use the following parameters to evaluate the 
main memory requirement: 

IRI :sizeofRinpages; 
IMI : main memory size in pages ; 
F : uniformity ratio of hashing function . 

The algorithm is, for an iteration : 

353 



Thus, when one relation R (size I R I 1 is hashed in n 
buckets, the size of the largest bucket (or sub- 
relation) is F. I R I / n.. 

Let n be the number of different hash values on X 
and Y. We want to determine the size of main 
memory required to guarantee one single read of the 
R relation, for each iteration. 

During the join step, the buckets of identical hash 
values R and AR must join in main memory. The 
smallest sub-relation (ARj) stays in F. I R I / n pages 
(the Rij pages for one i value, are read one after 
another). In order to have full pages, we must keep 
n pages for Z. They correspond to the stacking of the 
produced tuples during an iteration (according to 
the Y hash values). These pages are written on disk 
as soon as they are full. R is hashed in n* buckets. 

Fizure 3 : “‘single read” join 

The condition is : 

IMI 2F. IARI /n+l+n 

With a cylindrical distribution of tuples 
[BANC86], the size of I AR I (new tuples generated 
during one step) can be considered equal to the size 
of the R relation. Thus, a sufficient condition is 

lMl>F/n IRl+l+n 

Thisconditionistruewhen( l- IMI )* 24F. IRI 
.This constraint is easily met, it is : 

1Ml 2JIRI condition 1 

The in-memory execution of each join loop step is 
guaranteed. If the memory is larger, the 
performance is improved because the Z result is 
kept in memory. The substitution of the old I AR I 
buckets by the new I AR I buckets is entirely 

performed in main memory. With this distribution, 
the relation has a maximum size I R I : 

IMI %F/n IRI +l+ IRI 

let IMI 2 (F/n+11 IRI +l condition 2 

Condition 2 is harder to meet but guarantees an 
execution of the transitive closure in a single read. 

4.2. Multi-processor case 

An overall memory size of I B I = p. I M I is presently 
available, where I M I remains the local memory 
size available to a node in the network of processor- 
memory-disk sets. Since clustering is used, the 
hashing for partitioning is already done. At each 
node, the size of the sub-relations to be processed 
during each iteration is reduced, but the buckets 
remain the same as in the single-processor case. The 
memory size condition sought for is: 

ISI 2~4 IRI 
condition 3 

We notice that the multi-processor configuration 
doesn’t permit a reduction in local memory size. For 
a high number of processors, this situation brings 
about a significant increase in the cost of the 
architecture. However, if condition 3 is not true, it 
is possible to do a local re-hashing. This re- 
hashing implies two additional read-write 
operations. Indeed, they can be avoided by pipe- 
lining the transfers and the re-hashing tCHEI861. 
On the other hand, it should be pointed out that 
each processor processes only one bucket out of the p 
buckets that form the relation R and the AR. 

5. Analysis and comparisons 

This evaluation concerns the parallel processing of 
transitive closure. In this section we analyze the 
DHTC algorithm’s performance and compare it to 
the performance of: 1) a simple iterative algorithm 
(Iterative Transitive Closure or ITC); and 21 
Valduriez and Khoshafian’s Parallel Transitive 
Closure (PTC) algorithm [VALD88al. In order to 
make the comparison simpler, we shall use the 
same model and hypotheses as [VALD88al. We 
thus assume that new tuples are uniformly 
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produced, both by each processor and during each 
iteration of the join loop. 

Likewise, we assume that the Input/Output times 
are identical for the three algorithms. This 
assumption is an optimistic hypothesis in favor of 
the ITC and PTC algorithms because they both 
require a large amount of memory space if on-disk 
re-read and re-write operations are to be avoided. 
In fact, the production time of new tuples taken into 
account in this evaluation includes both the 
processing and the necessary Inputs/Outputs. We 
consider this time as directly proportional to the 
number of new tuples produced, independent of the 
number of basic tuples processed (which are as- 
sumed to be read only once thanks to a sufficient 
amount of main memory). This hypothesis imposes 
much more substantial size requirements on the 
main memory for the ITC and PTC than for the 
DHTC. 

5.1. Response time 

In the following analysis, we shall use the 
following parameters : 

R : 
t : 
RlE!W 

trf : 
P : 

T 
: 

number of R tuples ; 
time to produce a new tuple ; 
number of new tuples produced by 
the transitive closure ; 
time to transfer one tuple ; 
number of processo rsor nodes; 
time to transfer one message ; 
number of join loop iterations ; 

In this evaluation, we assume that the transfers do 
not saturate the network. The response time can be 
broken down into two parts: communication time 
and processing time. As for communication, 
messages between processors must be considered. 
These messages correspond to the operation of the 
algorithm’s “send” and “receive” functions. Thus, 
the necessary time for transfering a bucket of n 
tuples equals n.trf + msg. 

Pm==- 1 2 3 4 

Rl R2 R3 R4 

f-- 
* 

R= U(Ri) 

result= lTC(R) 

The response time consists of the communication 
time plus the processing time. The communication 
time corresponds to (p-1) times the transfer time of 
one sub-relation. In fact the serialization of 
transfers is inevitable here because one single node 
must receive all of the buckets. The communication 
time is thus: 

@-l)($If+msg) 

The processing time corresponds to the the 
production time of new tuples, i.e. simply : Rnew.t 
The response time RT of the ITC algorithm is thus: 

$-1)(+. ) tlf+nlsg +Rnew.t 
PTC alporithm 
Valduriez and Koshafian give in [VALDSSal a 
complete evaluation of their algorithm. Let us 
recall that the PTC algorithm performs the 
transitive closure of a relation R distributed among 
p nodes, in log2p passes. During each pass, a 
“fusion” of two previous local results is performed. 
Redundant processing is avoided in this “fusion”. 
With the same parameters, the number of tuples 
produced during each pass is [ Rnew / ([log2 p + 11 I 
where [xl indicates the integer part of x. The 
sequence of processing and transfers is illustrated 
below: 

Alporithme ITC 
The ITC algorithm is performed by a single 
processor, after all the sub-relations on this node 
have been returned to their respective nodes of 
origin. 
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procgsors 1 2 3 4 

Rl R2 R3 R4 

TCf TC : 

On the whole, the final cost is [VALDSga] : 5.2 Performance comparisons 

( transfer time ) I processing time 1 

where DL is the number of new tuples produced in 
one pass. 

DHTC alporithm 
The number of new tuples generated during each 
iteration equals Rnew/d. Rnew/pd new tuples are 
generated in parallel per node and per iteration. 
These Rnew/pd tuples are seen in the form of p 
distinct sub-buckets which correspond to the p 
receiving nodes (actually pl, since one sub-bucket 
stays where it is). The size of the sub-buckets sent is 
thus Rnew/dp2. p of these buckets are sent together 
without serialization (cyclic organization). 
Overall, a small bucket of size Rnew/dp2 is sent p 
times per iteration. It’s this decomposition into 
small buckets that makes it possible to avoid the 
rehashing and the Inputs/Outputs. 

PO- 1 2 3 4 

Rl R2 R3 R4 

Rij kj Rij Rij 

dtim 
ptitlta 

--- 
P 
itamion 

The transfer time of all the tuples together is thus : 

P-d 
Rnew 

f y.trf + msg I 

With the hypothesis of uniformity, all the 
processors produce new tuples in parallel, and the 
processing time is divided by the number of active 
processors : 

Rnew.t 
P 

Overall the expression for the response time is : 

RileW Rnew 
RT(clhk$ = -. 

P 
af + p.d.msg + -.t 

P 

Two general remarks can be immediately 
formulated. First of all, it is noticed that DHTC 
requires more messages than the two other 
algorithms. This number equals the depth of the 
join loop times the number of parallel transfers 
during one iteration. Indeed, DHTC performs more 
transfers (hence the increased number of messages), 
but the buckets are smaller (hence the certainty of 
not having to write and re-read the buckets on- 
disk). And secondly, a close look allows one to 
notice that the result is localized differently 
according to the algorithm: for ITC and PTC, it’s 
entirely located in one node, while for DHTC it’s 
distributed in p disjoint buckets over p nodes. Two 
different architectures must therefore be 
considered. The first concerns a multiple backend 
operation, where each node constitutes a backend 
processor. A host processor submits the operation 
and receives the result. In this case, the response 
times mentioned in the previous section are directly 
applicable. The second concerns an operation where 
each node constitutes a site of a system In this case, 
the result is requested at a particular site, and, for 
DHTC, the time to transfer the result to the final 
site must be added in. This case is of less interest for 
DHTC. This analysis will compare the per- 
formance of a multiple backend architecture 
implementing the three algorithms as well as the 
case of a utilization where the result is requested at 
a determined site. 

The following values are chosen for the comparison: 

R = 1,000,000 tuples 
Rnew = 2,ooO,000 tuples 

lYlSg=lmS 
trf=5l.ls 
t = 0,2 ms 

356 



The first curve shows the effect of the depth d of 
the join loop. It is noticed that this effect is only 
significant for a very large number of iterations and 
for a considerable number of processors. In current 
situations (up to 100 processors with depths of 100 
loops), d is not a determining factor. We shall 
therefore neglect its effect in the rest of the 
evaluation and we shall choose an average value 
(d=lOO) for the comparisons. 

600 
1 

seconds 

1 2 4 8 16 32 64 128 256 512 1024 P 

Firmre 4 : effect of the depth of the join loop 

The figure below permits a visual comparison of the 
response times of ITC, PTC and DHTC as a function 
of the number of processors. 

1 2 4 8 16 32 64 128 256 512 1024~ 

Fieure 5 : performance as a function of the number of 
nodes 

(multiple backend configuration, Rnew=2,000,000 ) 

The elevated number of messages induced by the 
DHTC algorithm limits its possibilities when the 
number of processors becomes very large. The 
communication times between processors therefore 
become prohibitive. In fact, the message cost can be 
strongly reduced with, for example, new transputer- 
based machines [KUB@8]. A clear superiority is 

noticed however for the range in number of 
processors in current use. DHTC thus shows a 
performance improvement factor of two to four over 
PTC for a number of processors between 4 and 128, 
which are typical values in present multi-processor 
configurations. 

In order to examine the performance of DHTC in an 
architecture where the result must be recomposed at 
a site, the transfer time for the (p-l) results 
available at the other sites can be added to 
RT(dhtc) : 

(pl) (&+.trf+ msg ) 

The response times in a utilization where the result 
is composed at a single site can therefore be plotted: 

1000 seconds 

- 
104 : : ! : : : : : : 1 

1 2 4 8 16 32 64 128 216 S12 1024 P 

Fipure 6 : performance as a function of the number of 
nodes 

(resdt at one site, Rnew=2,0000,000) 

As anticipated, RT(dhtc-site) is less performant 
than RT(dhtc-backend); however DHTC remains 
better than PTC for all configurations in current use. 

6. Conclusions 

We have presented in this paper a solution for 
efficiently implementing the transitive closure of a 
very large relation stored on-disk. The algorithm 
executes a join loop for which we propose an 
optimization based on clustering of the relations 
and parallelization. Thanks to a double hashing, 
the size of the sub-relations to be manipulated 
together in memory is reduced and a linearization 
of joins with substantially relaxed main memory 
size constraints can be guaranteed. The processing is 
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divided into p parallel operations divided among p 
processors. This article goes only so far as, to con- 
sider a semi-naive algorithm for transitive closure. 
Our future research will consist of doing a more in- 
depth analysis of other possibilities for parallel 
executions. 
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