
A Parallel Strategy for Transitive Closure using Double Hash-Based Clustering

Jean-Pierre Cheiney *, Christophe de Maindreville **

l Ecole Nationale Sup&ieure des T&kommunications
46, rue Barrault, 75013 Paris, France

w Institut National de la Recherche en Informatique et Automatique
Rocquencourt, BP 105,78153 Le Chesnay C&ex, France

network addresses: cheiney@inf.enst.fr
maindrev@madonna.inria.fr

Abstract

We present a parallel algorithm to compute the
transitive closure of a relation. The transitive
closure operation has been recognized as an
important extension of the relational algebra. The
importance of the performance problem brought by
its evaluation brings one to consider parallel
execution strategies. Such strategies constitute one
of the keys to efficiency in a very large data base
environment. The innovative aspects of the
presented algorithm concern: 1) the possibility of
working with a reasonable amount of memory space
without creating extra Inputs/Outputs; 2) the use of
on-disk clustering accomplished by double hashing;
and 3) the parallelization of the transitive closure
operation. The processing time is reduced by a
factor of p, where p is the number of processors
allocated for the operation. Communication times
remain limited; a cyclic organization eliminates
the need for serialization of transfers. The
evaluation in a shared nothing architecture, shows
the benefits of the proposed parallel transitive
algorithm.

Permission to copy kbilhout VW all or par1 of thi\ material i5

oranted provided that the copies arc not maclc OI- cli~trihuted ~‘oI- t
direct commercial advantage. the VLDH copy I-ight notice‘ and

the title of the publication and it\ Jarc appmr. ;~nd notice k gi\cn

that copying is hq pcmmi~sion of the Vcr! Large Data Haw
Endowment. To copy othcrwisc. or IO rcpuhlish. rccttlirc\ :I fee

and/or special permission from the Endowrncnt.

1. Introduction

The efficient implementation of a transitive closure
operator today appears to be one of the keys to the
evaluation of recursive queries in a deductive
DBMS. Numerous algorithms have been proposed
[BANC861, [VALD861, [AGRA871, [HAN881,
[GARD881, [IOAN881. However, if these algorithms
are examined in an environment of very large
relations, two aspects are uncovered that until now
have received little attention :

- the first concerns taking into account the memory
space available for the operation. Tuples under
manipulation are generally assumed to be held in
main memory; the possibility of multiple read-
operations due to memory saturation is too often
either treated optimistically or not even
considered.

- the secoxid concerns the parallelization of the
transitive closure operation. Even though this is a
solution for executing the operation within
acceptable time limits, parallel algorithms are
rarely proposed.

This situation is all the more surprising because a
lot of these proposed algorithms use multiple joins,
either directly or implicitly. However, all of the
recent works on efficient join implementation show
the advantages of parallel processing and the need
for taking into consideration available memory
space [DEWI84]. Indeed, this guarantees a parallel
execution in a single read-operation of on-disk
relations. After a period of defining operations and
algorithms, we feel that today it is crucial, for- the
sake of execution efficiency, to study physical
implementations, the use of clustering and access

Proceedings of the 16th VLDB Confi-rencl:
Brisbane, Australia 1990

347

methods, and the unique advantages of multi-
processor architectures [CHEI89].

Some recent papers approach the operator
implementation problem by considering efficient
transitive closure execution or using multi-processor
architectures. [AGRA871 and [IOAN881 consider
Input/Output minimization on direct algorithms
(where transitive closure is considered as a
problem of graphs). [VALD88a] proposes an exe-
cution of the operation in a parallel architecture.
Transitive closure is executed in several passes and
uses a two-way merge type operation from locally
generated results. The relation is partitioned and,
in n passes, with 2” processor nodes, the total
closure is calculated. However, the sequencing
requires a coordinating node as well as a delicate
balancing of overall system loading. [CHEI89]
examines the efficient execution of a transitive
closure that permits searches on a large number of
rules.

In this paper we propose a multi-processor
implementation of a transitive closure operator
based on double hashing. This implementation
aims to reconcile the processing of very large
relations with acceptable response times. The
framework is one of execution by join loops
]BANC86]. Choosing a simple, well-known
algorithm allows us to show more clearly the
advantages of the “divide and conquer” strategy:
the task is divided into a number of smaller tasks
that can then be assigned to several processors. A
very large transitive closure thus amounts to a
collection of smaller operations. This
decomposition provides:

(iI the guarantee that each operation takes
place in main memory without requiring extra read
and write operations due to a lack of available
memory space;

(ii) the assignment of the set of operations to
several parallel processors, each of which performs
the same task on a section of data (multiple
backend operation).

We propose an algorithm based on double hashing
of a binary relation to be joined, which is named
“Double Hash Transitive Closure” (DI-ITCI. This
algorithm uses direct clustering of the relation to be
joined without overburdening the memory for the
linearization of the transitive closure operation,

and can be directly implemented in a parallel
structure. In a multi-processor arrangement with a
multiple backend configuration [I-ISI~AtB]~ in which
each processor performs the same relational
operation, one can expect to achieve a reduction
factor of p in the processing time of large transitive
closures on on-disk clustering. Data transfers
between processors are minimized and a cyclic
organization eliminates the need for serialization
of tasks caused by an occupied bus.

After this introduction, section 2 presents the basic
concept of the algorithm applied for a general
transitive closure denoted R*. Section 3 develops
the parallel algorithm in a multi-processor
architecture environment without shared memory.
Finally, sections 4 and 5 present an evaluation of
the algorithm, first from the point of view of
memory space requirements, and then from the
point of view of execution time. Section 6 concludes
the paper.

2. A generh algorithm for very large relations

In this paragraph we present the DHTC algorithm.
The innovative aspects of the DHTC concern: i) the
possibility of working with a reasonable amount of
memory space without creating too many
Inputs/Outputs; 2) the use of on-disk clustering ac-
complished by double hashing; and 3) the
parallelization of the transitive closure operation.

Using the same basic idea, a parallel algorithm
has been proposed in IVALD88bl. In fact, this
algorithm does not use a clustering technique and
re-hashes the new tuples during each iteration. In
this paper, no consideration is given to the main
memory size.

Most of the evaluations published on transitive
closures use very optimistic hypotheses for
analysing the number of Inputs/Outputs needed by
the execution. Indeed, for algorithms that use join
loops, it is generally supposed that join operations
take place in main memory. Unless additional
strategies are employed, this would call for a very
large amount of memory space: if one considers a join
loop algorithm, the memory has to be able to
accomodate the largest possible AR generated
during the processing, where AR is an intermediate
relation in which newly generated tuples are stored
in one iteration. As for the R pages, they are read

348

one after the other. This hypothesis is especially
overstated for certain distributions of the initial
relation data. In addition, most algorithms use the
set operations of union and difference for testing
stop conditions. Such operations require sorts and
suppression of duplicate tuples; furthermore, their
efficient execution (i.e. calling for only one read
operation of data from the disk) imposes severe
constraints on available memory space.

When contemplating the manipulation of very
large relations clustered on-disk, one can no longer
consider the relation on which transitive closure is
performed as a simple sequence of tuples. The main
idea is to use clustering to reduce greatly the cost of
the operation. Clustering characteristics, which
are already largely used in the execution of other
relational operators (selection, join, etc.) can
likewise be exploited in transitive closure
processing.

2.1. Basic concept

Let us consider a binary relation R(X, Y) where X
and Y are defined on the same domain D. The
relation R defines a graph G, where a node is an
element of D and an edge (x,y) denotes a tuple (x,yl
of R. The transitive closure R* of the relation R
consists of the transitive closure of its corresponding
graph G, i.e. a tuple (x,y) is in R* iff there exists a
path from x to y in G.

R is clustered on-disk. The size of this relation can
be very large and thus, no optimistic hypothesis
can be made regarding the comparison between this
size and the size of available main memory. The
join loop will be performed by a semi-naive itera-
tive algorithm IBANC861. The major point we want
to study is the limitation of Input/Output
operations. In order to guarantee the linear aspect
of the join operations, we want to reduce the size of
the data which fits in mai,n memory at a given
time.

In an iterative algorithm, each iteration generates
new tuples from R (stored on-disk) and AR tuples
which were produced during the previous iteration.
The latter may also possibly be m-written on the
disk. During the initialization AR is composed of
the set of R tuples. The generation of new tuples is
based on joining the R relation with AR. In this
configuration the use of a hash-based join

algorithm is attractive [KITS83]: it permits
efficient execution of the operator with reduced use
of memory space [DEWMI. In addition, the hash
buckets used by the algorithm can correspond to an
on-disk clustering of the relation. In order to use
this possibility, the relation tuples are considered
according to an on-disk clustering implemented
with a hashing in n buckets, and the new AR tuples
are considered as a set of n buckets that correspond
to an identical hashing function.

Let’s look at an iteration: with a hash-based join
algorithm, each relation is divided into n buckets
obtained by the same function applied to the join
attribute. Only buckets having the same index are
joined two by two, (buckets having different indices
cannot join together). However, these algorithms
are insufficient for executing a join loop because the
result of one step must be rehashed according to a
different attribute in order to form the usable
buckets for the next step. Thus, if R is only hashed
(and clustered) according to Y and AR according to
X, the join resulting from a step permits only the
joining of buckets where (R.Y) modulo n = (AR.X)
modulo n ; but in order to form the AR tuples used in
the next step, it is necessary to rehash the result
according to the new value of X (the projection on
the attributes R.X and AR.Y is immediately
computed after the join).

Our proposal permits this rehashing to be avoided.
The idea is to use a multi-attribute clustering
technique which provides suitable hash buckets for
each iteration. In order to do this, a double-hashed
clustering of the relation R is performed. First R is
hashed by a modulo function in n buckets according
to the value of X; then each of these buckets is
rehashed by the same function according to the
value of Y. For example, one can use a Predicate
Tree technique [GARD84] which guarantees a
multi-attribute, dynamic hashing (necessary in the
case of expansion). The tuples of the permanent re
lation R are thus hashed simultaneously according
to the values of both X and Y. This technique
allows the relation to be looked at according to two
different partitionings [CHEI86]. The first
(according to the value of Y) will be used for the
join algorithm for hash buckets having the same
index; the second (according to the value of X1 will
prevent the loss of the hash value information of
each tuple according to the value of X and will thus
avoid the need for a write-operation hashing
during the following step.

349

The algorithm is illustrated on the following
relation R:

R -

Y mod&2

+ o l

The relation is hashed in 4 buckets according to the
values of X and Y. During initialization AR is
composed entirely by R. Thanks to the on-disk
double hashing, AR appears as 2 buckets (according
to the values of XI.

itexation Q

AR0
-

bucket 0

-1-11

bucke.t1

X

4
2
2

.-

1
1
1

Y
-
2
3
5

.-w.

2
4
3

The first iteration of the algorithm will only
perform joins between buckets 00, 10 of R and the
bucket 0 of AR0 on the one hand, and between
buckets 10 and 11 of R and the bucket 1 of AR0 on the
other hand.

The results are stored directly in AR1 without
rehashing, according to the hash values of X which
will be used during the following iteration.
Iteration 2 can then proceed:

The stop condition is satisfied since no more new
tuples are generated.

More generally, figure 1 represents, for the
iteration p, the join between the buckets of index 3
of the R relation and the AR relation which has
been obtained at the previous step. For this step,
the join between the buckets of index 3 follows the
join between the buckets of indices 0 to 2; it will be
followed by the join between the buckets of index 4.
The tuples of the AR relation which will be used at
the next step are directly built without any
rehashing, through accumulation of the tuples
according to their hash values on X.

Fieure 1 : Join loop with double hashing technique

2.2. Algorithm

We give in this section a more formal description of
the algorithm.

- R is the permanent relation having the schema
w, w

- R is clustered on the two attributes X and Y. The
hashing function used for this clustering is the same
for both attributes; it is a modulo n function. The R

350

relation is recursively hashed into n* buckets. First,
it is hashed in n buckets according to the X
attribute, and then, each one of these bucket is
hashed into n buckets according to the Y attribute.
The integer i represents the hash value for X and j
represents the hash value for Y. R = U ij Rij
Oliln-1, O<j<n-1

- AR is a temporary relation composed of n buckets
named k. ARk store the tuples from AR having for k
the hash value for the X attribute.

-a=ukLi& Olkln-1

- AR corresponds to one iteration of the construction
of the transitive closure of R, denoted by R*. The
schema of this relation is (X, Y).

The join operation is assumed to include the
projection that eliminates the join attribute. The
join followed by the projection, i.e. the composition
of R with S, will be denoted RoS :
R 0 S = I-I 1,4 (Rz3S)

function R* (R) : relation ;
begin

R* :=R;

~2contains new tuples dp
sr?d!l
z:=0;
fqLk:=O&n-ldp
f9r i:=O &I n-l dp

&&
RTik := A&’ Rik ;
Zi:= q u RTik

d;
AR := Vi Zj;

R* :=R* u AR
!ai

!x!d;

The Z (w Zi) relation is necessary to stack all the
tuples built in one iteration: AR has to be assigned
to u Zi only when all the tuples of the previous
generation are generated. In fact, the tuples of Zi
are obtained from the L\RI< , with k between 0 and n-
1.

The stop condition test and the elimination of
redundant processing make it necessary to
determine the existence of new tuples during each
iteration. The determination of tuples must always
be made in pairs. By the distributive property of
the union operation, this condition can be
determined separately on each hash bucket. The
result is formed by an AND operation of the results
evaluated on each bucket. Since the buckets are
composed in order to be kept in main memory, the
cost of the stop condition test is greatly minimized
in the DHTC algorithm. We can take advantage of
the partitioning of AR into several hRk’S, thanks to
the double hashing.

3. Parallel algorithm

The idea of decreasing execution times of relational
operations by the intensive use of parallelism is
very prevalent. Its effectiveness has been proven in
numerous propositions and parallel
implementations [KITS83], [DEWI86], [CHEI861.
The more recent data base machine architectures
base their execution strategies around parallel
algorithms. The multiple backend approach is very
dominant [HSIA86]; besides the performance
improvements, it provides other advantages such
as reliability and possibilities for operating in a
degraded mode. This approach lends itself to
situations in which high-volume sequential
processing is performed [GARD86], which is the
case with transitive closures. One of the bases for
this type of architecture is the division among the
processors of the data to be processed. A simple,
generally adopted way to perform this division is
to form, using an appropriate function, as many
hash buckets as there are processors available.

The DHTC algorithm is directly usable in such an
environment. Thanks to the use of hashing, it lends
itself naturally to parallelization. With a
multiple backend configuration, as in [CHEI86], the
join loop processing time can be divided by p, where
p is the number of processors available.

The advantages of parallelization rest on the
following principle: the initial relation is divided
horizontally into several fragments, each of which
is then processed by a separate processor. In an
environment where memory is not shared (“shared
nothing”), each processor processes the data from
its own disk in its own memory. Each processor-

351

memory-disk set can be viewed as a node in a
network. In a centralized multi-processor
architecture, the network consists simply of a bus,
whereas with a divided configuration it consists of
a veritable communication network. The main
problem for parallel execution of a relational
operation in general, and of a transitive closure in
particular, is to give a maximum amount of local
tasks to each processor while limiting data and
message transfers at the same time. Unlike joins,
the execution of a transitive closure cannot be
totally “localized” by simple horizontal
partitioning of the initial relation. In fact, tuples
newly-produced in a particular node at a particular
moment in the processing can be required by another
node in order to continue the task. Transfers are thus
absolutely necessary during execution of the
transitive closure. However, inter-processor
transfers can be limited to the smallest set
necessary for each step.

We maintain the idea of a division of tuples among
several nodes thanks to a partitioning by hashing
on the attribute that will be the join attribute. The
second hashing permits the composition of the
buckets to be transfered in preparation for the next
iteration. The sets of tuples exchanged between
processors are minimized and formed directly. The
bucket indices (i.e. the hash values) represent, for
each bucket, the receiving node. Without extra
processing or special messages, transfers are thus
performed in a minimum of time. No extra
synchronization or master node is necessary.

In a multiple backend configuration, each processor
performs the same action. The data are divided
into as many subsets as there are processors
available for the operation. If each processor has
its own disk (we shall assume, for simplicity’s
sake, such a configuration), the data are divided
among these disks by hashing. At the outset, the
relation R is distributed among as many sub-
relations as there are processors. This division is
calculated by hashing on the X attribute. Each sub-
relation is rehashed locally according to the Y
values. Overall, n* sub-buckets are to be dealt with
(hashing in n buckets on the X attribute followed by
rehashing of each bucket in n buckets on the Y
attribute). If p processors are available, n = p is
chosen.

Let p be the processor index; the buckets of index ip
from R, i between 0 and n-l, will be clustered on the

disk assigned to processor p (it is supposed that
there is one disk per proces$orl. The buckets of index
p from the different AR’s, produced during each
step, are likewise distributed. In this way, for one
iteration, the join of buckets Rip and ARp remains
local to each processor. No transfers whatsoever
are necessary per iteration for the processing of
each step of an algorithm. The processing time
during this phase of the algorithm is thus divided
by the number of processors p. Actually, a non-
uniformity in the hashing can considerably reduce
this factor because the total time used is that of the
slowest processor, i.e. the processor processing the
largest volume of data. This problem, shared by all
hashing methods, emphasizes the importance of a
careful choice of the partitioning function.

The results from each join RiP IXI ARP must next be
processed by processor i. Indeed, these tuples have
the i hash value according to X; they form the ARi
sub-relation for the next iteration, which will be
processed by processor i. A transfer is thus
necessary.’ However, no rehashing has to be
performed. The tuples destined for .processor i are
already stored in a specific sub-relation, thanks to
the values from the second hashing. An initial
version of the parallel algorithm can be given:

foreach=p&2
R*p := Rp
ARp:=Rp;
&& ARp contains new tuples Pp

lz54!hl
&i:=OlQpp-1 pn

bu!l
Z. iP := ARp o Rip ;

send Zip to node i
axk

RCeiVe (p-1) zpk ; k=O..p-1, k+p
fiRp:=+?&; k= O..Pl
Rp* := Rp* u ARp

!ad;

The final result (R*) will be formed simply by the
union of the different R*p’s. It must be pointed out
that this union does not require a suppression of
duplicate tuples. Indeed, the sets to be combined are
hash buckets and are thus necessarily disjoint.

In this algorithm, each processor awaits the
arrival of all of the new tuples produced during one

352

iteration in order to begin the next iteration (each
of the p processors receives p-l sub-relations coming
from p-l other nodes). A procedure that performs
the “receive” function can easily take this role and
verify that all the sub-relations have arrived.

One thing slows down this processing, however. A
serialization, according to the order of write
operations, can occur. In fact, if each processor p
computes the buckets Rip with the ordering (i:=O to
n), the serialization by the bus might slow down
the entire computation: the processors compute all
the buckets Rip at the same time and try to send
their results towards the same processor i (figure 2).

FiPure 2 : inter-processor transfers and serialization
according to order of write operations

This problem can be solved by a cyclic organization
of the data transfers. Each processor first computes
the bucket Rpp and thus forms its own result. Then
it computes the following bucket (R(p+I)p) and
transfers the result to the processor p+l. Thus, the
data transfer is done in a cyclic way, each processor
receiving one subrelation at a time, without a slow-
down caused by simultaneous write operations in
one node

(parallel join loop)
forn==rp&

i:=p ;
Z ip:= Rip ’ ARp ; (set of local joins)
transfer Zip towards the disk used by the

processor i ;
i := (i+l) module p

mi=p;

The implementation can be further improved by
pipelining the operations. Sub-relations transfered
between nodes in fact don’t need do be fully formed
before being transfered. They can be transfered,
page by page, as soon as they become available.
Lost time due to possible loading imbalances
between processors is thus minimized (such
imbalances being due to a non-uniform hashing).

4. Single read execution conditions

The evaluation of the algorithm brings out two
critical elements: available memory size, and the
cost of data transfers between processors. In order to
simplify things, we shall first give the constraints
on memory size which guarantee that each local
operation remains linear. Then, since these
conditions are not severe, we shall assume that
they are satisfied and shall proceed to evaluate
the time-performance of the algorithm.

4.1. Main memory size required for a single
readexecution in the case of a single processor

One difficult problem with large joins is making
sure that their execution stays “linear”; each
relation is read from disk only once. Therefore, this
problem is very important with an ‘iterative
transitive closure algorithm, where a join is made
in each iteration. The proposed algorithm reduces
the memory requirement for a single read execution.

We use the following parameters to evaluate the
main memory requirement:

IRI :sizeofRinpages;
IMI : main memory size in pages ;
F : uniformity ratio of hashing function .

The algorithm is, for an iteration :

353

Thus, when one relation R (size I R I 1 is hashed in n
buckets, the size of the largest bucket (or sub-
relation) is F. I R I / n..

Let n be the number of different hash values on X
and Y. We want to determine the size of main
memory required to guarantee one single read of the
R relation, for each iteration.

During the join step, the buckets of identical hash
values R and AR must join in main memory. The
smallest sub-relation (ARj) stays in F. I R I / n pages
(the Rij pages for one i value, are read one after
another). In order to have full pages, we must keep
n pages for Z. They correspond to the stacking of the
produced tuples during an iteration (according to
the Y hash values). These pages are written on disk
as soon as they are full. R is hashed in n* buckets.

Fizure 3 : “‘single read” join

The condition is :

IMI 2F. IARI /n+l+n

With a cylindrical distribution of tuples
[BANC86], the size of I AR I (new tuples generated
during one step) can be considered equal to the size
of the R relation. Thus, a sufficient condition is

lMl>F/n IRl+l+n

Thisconditionistruewhen(l- IMI)* 24F. IRI
.This constraint is easily met, it is :

1Ml 2JIRI condition 1

The in-memory execution of each join loop step is
guaranteed. If the memory is larger, the
performance is improved because the Z result is
kept in memory. The substitution of the old I AR I
buckets by the new I AR I buckets is entirely

performed in main memory. With this distribution,
the relation has a maximum size I R I :

IMI %F/n IRI +l+ IRI

let IMI 2 (F/n+11 IRI +l condition 2

Condition 2 is harder to meet but guarantees an
execution of the transitive closure in a single read.

4.2. Multi-processor case

An overall memory size of I B I = p. I M I is presently
available, where I M I remains the local memory
size available to a node in the network of processor-
memory-disk sets. Since clustering is used, the
hashing for partitioning is already done. At each
node, the size of the sub-relations to be processed
during each iteration is reduced, but the buckets
remain the same as in the single-processor case. The
memory size condition sought for is:

ISI 2~4 IRI
condition 3

We notice that the multi-processor configuration
doesn’t permit a reduction in local memory size. For
a high number of processors, this situation brings
about a significant increase in the cost of the
architecture. However, if condition 3 is not true, it
is possible to do a local re-hashing. This re-
hashing implies two additional read-write
operations. Indeed, they can be avoided by pipe-
lining the transfers and the re-hashing tCHEI861.
On the other hand, it should be pointed out that
each processor processes only one bucket out of the p
buckets that form the relation R and the AR.

5. Analysis and comparisons

This evaluation concerns the parallel processing of
transitive closure. In this section we analyze the
DHTC algorithm’s performance and compare it to
the performance of: 1) a simple iterative algorithm
(Iterative Transitive Closure or ITC); and 21
Valduriez and Khoshafian’s Parallel Transitive
Closure (PTC) algorithm [VALD88al. In order to
make the comparison simpler, we shall use the
same model and hypotheses as [VALD88al. We
thus assume that new tuples are uniformly

354

produced, both by each processor and during each
iteration of the join loop.

Likewise, we assume that the Input/Output times
are identical for the three algorithms. This
assumption is an optimistic hypothesis in favor of
the ITC and PTC algorithms because they both
require a large amount of memory space if on-disk
re-read and re-write operations are to be avoided.
In fact, the production time of new tuples taken into
account in this evaluation includes both the
processing and the necessary Inputs/Outputs. We
consider this time as directly proportional to the
number of new tuples produced, independent of the
number of basic tuples processed (which are as-
sumed to be read only once thanks to a sufficient
amount of main memory). This hypothesis imposes
much more substantial size requirements on the
main memory for the ITC and PTC than for the
DHTC.

5.1. Response time

In the following analysis, we shall use the
following parameters :

R :
t :
RlE!W

trf :
P :

T
:

number of R tuples ;
time to produce a new tuple ;
number of new tuples produced by
the transitive closure ;
time to transfer one tuple ;
number of processo rsor nodes;
time to transfer one message ;
number of join loop iterations ;

In this evaluation, we assume that the transfers do
not saturate the network. The response time can be
broken down into two parts: communication time
and processing time. As for communication,
messages between processors must be considered.
These messages correspond to the operation of the
algorithm’s “send” and “receive” functions. Thus,
the necessary time for transfering a bucket of n
tuples equals n.trf + msg.

Pm==- 1 2 3 4

Rl R2 R3 R4

f--
*

R= U(Ri)

result= lTC(R)

The response time consists of the communication
time plus the processing time. The communication
time corresponds to (p-1) times the transfer time of
one sub-relation. In fact the serialization of
transfers is inevitable here because one single node
must receive all of the buckets. The communication
time is thus:

@-l)($If+msg)

The processing time corresponds to the the
production time of new tuples, i.e. simply : Rnew.t
The response time RT of the ITC algorithm is thus:

$-1)(+.) tlf+nlsg +Rnew.t
PTC alporithm
Valduriez and Koshafian give in [VALDSSal a
complete evaluation of their algorithm. Let us
recall that the PTC algorithm performs the
transitive closure of a relation R distributed among
p nodes, in log2p passes. During each pass, a
“fusion” of two previous local results is performed.
Redundant processing is avoided in this “fusion”.
With the same parameters, the number of tuples
produced during each pass is [Rnew / ([log2 p + 11 I
where [xl indicates the integer part of x. The
sequence of processing and transfers is illustrated
below:

Alporithme ITC
The ITC algorithm is performed by a single
processor, after all the sub-relations on this node
have been returned to their respective nodes of
origin.

355

procgsors 1 2 3 4

Rl R2 R3 R4

TCf TC :

On the whole, the final cost is [VALDSga] : 5.2 Performance comparisons

(transfer time) I processing time 1

where DL is the number of new tuples produced in
one pass.

DHTC alporithm
The number of new tuples generated during each
iteration equals Rnew/d. Rnew/pd new tuples are
generated in parallel per node and per iteration.
These Rnew/pd tuples are seen in the form of p
distinct sub-buckets which correspond to the p
receiving nodes (actually pl, since one sub-bucket
stays where it is). The size of the sub-buckets sent is
thus Rnew/dp2. p of these buckets are sent together
without serialization (cyclic organization).
Overall, a small bucket of size Rnew/dp2 is sent p
times per iteration. It’s this decomposition into
small buckets that makes it possible to avoid the
rehashing and the Inputs/Outputs.

PO- 1 2 3 4

Rl R2 R3 R4

Rij kj Rij Rij

dtim
ptitlta

P
itamion

The transfer time of all the tuples together is thus :

P-d
Rnew

f y.trf + msg I

With the hypothesis of uniformity, all the
processors produce new tuples in parallel, and the
processing time is divided by the number of active
processors :

Rnew.t
P

Overall the expression for the response time is :

RileW Rnew
RT(clhk$ = -.

P
af + p.d.msg + -.t

P

Two general remarks can be immediately
formulated. First of all, it is noticed that DHTC
requires more messages than the two other
algorithms. This number equals the depth of the
join loop times the number of parallel transfers
during one iteration. Indeed, DHTC performs more
transfers (hence the increased number of messages),
but the buckets are smaller (hence the certainty of
not having to write and re-read the buckets on-
disk). And secondly, a close look allows one to
notice that the result is localized differently
according to the algorithm: for ITC and PTC, it’s
entirely located in one node, while for DHTC it’s
distributed in p disjoint buckets over p nodes. Two
different architectures must therefore be
considered. The first concerns a multiple backend
operation, where each node constitutes a backend
processor. A host processor submits the operation
and receives the result. In this case, the response
times mentioned in the previous section are directly
applicable. The second concerns an operation where
each node constitutes a site of a system In this case,
the result is requested at a particular site, and, for
DHTC, the time to transfer the result to the final
site must be added in. This case is of less interest for
DHTC. This analysis will compare the per-
formance of a multiple backend architecture
implementing the three algorithms as well as the
case of a utilization where the result is requested at
a determined site.

The following values are chosen for the comparison:

R = 1,000,000 tuples
Rnew = 2,ooO,000 tuples

lYlSg=lmS
trf=5l.ls
t = 0,2 ms

356

The first curve shows the effect of the depth d of
the join loop. It is noticed that this effect is only
significant for a very large number of iterations and
for a considerable number of processors. In current
situations (up to 100 processors with depths of 100
loops), d is not a determining factor. We shall
therefore neglect its effect in the rest of the
evaluation and we shall choose an average value
(d=lOO) for the comparisons.

600
1

seconds

1 2 4 8 16 32 64 128 256 512 1024 P

Firmre 4 : effect of the depth of the join loop

The figure below permits a visual comparison of the
response times of ITC, PTC and DHTC as a function
of the number of processors.

1 2 4 8 16 32 64 128 256 512 1024~

Fieure 5 : performance as a function of the number of
nodes

(multiple backend configuration, Rnew=2,000,000)

The elevated number of messages induced by the
DHTC algorithm limits its possibilities when the
number of processors becomes very large. The
communication times between processors therefore
become prohibitive. In fact, the message cost can be
strongly reduced with, for example, new transputer-
based machines [KUB@8]. A clear superiority is

noticed however for the range in number of
processors in current use. DHTC thus shows a
performance improvement factor of two to four over
PTC for a number of processors between 4 and 128,
which are typical values in present multi-processor
configurations.

In order to examine the performance of DHTC in an
architecture where the result must be recomposed at
a site, the transfer time for the (p-l) results
available at the other sites can be added to
RT(dhtc) :

(pl) (&+.trf+ msg)

The response times in a utilization where the result
is composed at a single site can therefore be plotted:

1000 seconds

-
104 : : ! : : : : : : 1

1 2 4 8 16 32 64 128 216 S12 1024 P

Fipure 6 : performance as a function of the number of
nodes

(resdt at one site, Rnew=2,0000,000)

As anticipated, RT(dhtc-site) is less performant
than RT(dhtc-backend); however DHTC remains
better than PTC for all configurations in current use.

6. Conclusions

We have presented in this paper a solution for
efficiently implementing the transitive closure of a
very large relation stored on-disk. The algorithm
executes a join loop for which we propose an
optimization based on clustering of the relations
and parallelization. Thanks to a double hashing,
the size of the sub-relations to be manipulated
together in memory is reduced and a linearization
of joins with substantially relaxed main memory
size constraints can be guaranteed. The processing is

357

divided into p parallel operations divided among p
processors. This article goes only so far as, to con-
sider a semi-naive algorithm for transitive closure.
Our future research will consist of doing a more in-
depth analysis of other possibilities for parallel
executions.

7. References

]AGRA87l R. AGRAWAL, H.V. JAGADISH:
“Direct Algoritms for Computing The Transitive Closure
of Database Relations”, 13th VLDB, Brighton ,1987.

LAGRA891 R. AGRAWAL, A. BORGIDA, H.V.
JAGADISH: “Efficient Management of Transitive
Relationships in Large Data and Knowledge Bases”,
ACM SIGMOD, Portland, June 1989.

[BANC8f4 F.BANCILHON, R.
RAMAKRISHNAN: “An Amateur’s Introduction To Re-
cursive Query Processing Strategies” , ACM SIGMOD,
Washington, May 1986.

[CHEI86] J.P. CHEINEY, R. MICHEL, P.
FAUDEMAY, J.M. THEVENIN : “A Reliable Multiple
Backend Using A Select-join Operator”, 12th VLDB,
Kyoto, Aug 1986.

[CHEI89] J.P. CHEINEY, C. DE MAINDREVILLE:
“Relational Storage and Efficient Retrieval of Rules in a
Deductive DBMS”, 5th Int. Conf. on Data Engineering,
Los Angeles, 1989.

[DEW1841 D.J. DEWITT et al: “Implementation
Techniques for Main Memory Database Systems”, ACM
SIGMOD, Boston 1984.

[DEW&] D.J. DEWITT et al: “GAMMA- A Hight
Performance Dataflow Database Machine *, 12th VLDB,
Kyoto, Aug 1986.

[GARD84] G. GARDARIN, P. VALDURIEZ,
Y.VIEMONT: “Predicate Trees: A Way for Optimizing
Relational Queries”, Computer Engineering Conf., Los
Angeles, 1984.

]GARD86] G. GARDARIN: “Efficient Processing of
Very Large Databases : A Comparative Analysis of
Architectures” , IFIP, 1986.

[GARD88] G. GARDARIN, P. PUCHERAL: “A
Graph Operator to Process Efficiently Linear Recursive
Rules in Mnin Memory Oriented DBMS”, 3rd Database
Bresilian Symposium, Recife-Pemambuco, March 1988.

[HAN881 J. HAN, G.QADAH, C. CHAOU: “The
Processing and Evaluation of Transitive Closure
Queries”, Proc. of EDBT, Venice, 1988.

[HSIA851 D.K. HSIAO, S. -DEMURJIAN:
“Benchmarking Database Systems in Multiple Eackend
Configuration *, A Quatterly Bulletin of the IEEE
Computer Society, Technical Comitee on Database
Systems, V8, N“1.1985.

BOAN881 Y. IOANNIDIS, R. RAMAKRISHNAN :
“Efficient Transitive Closure Algorithms”, 14th VLDB,
Los Angeles, 1988. .

wlS831 M. KITSUREGAWA et al : “Application
of Hash to Database Machines”, New Generation
Computing, NO1, 1983.

[KUBL88] F.D. KUBLER: “Cluster Oriented
Architecture for the Mapping of Parallel Processor
Networks to High Performance Applications”, Int. Conf.
on Super Computing, St Malo, France, 1988.

]SCHN891 D. A. SCHNEIDER, D.J. DEWITT : “A
Performance Evaluation of Four Parallel Join Algorithms
in a Shared-Nothing Multiprocessor Environment”,
ACM SIGMOD, Portland, June 1989.

[VALD86] P. VALDURIEZ, H. BORAL:
“Evaluation of Recursive Queries Using Join Indices”, Int.
Conf. on Expert Database Systems, Charleston, South
Carolina, April 1986.

IVALD88al P. VALDURIEZ, S. KHOSHAFIAN:
“Transitive Closure of Transitively Closed Relations “, 2nd
Int. Conf. on Expert Database Systems, Tysons Lorner,
Virginia, April 1988.

]VALD88b] P. VALDURIEZ, S KOSHAFIAN:
“Parallel Evaluation of the Transitive Closure of a
Database Relation”, Int. Journal of Parallel
Programming, Vol 17. N’l. Feb. 1988.

