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Abstract 

This paper deals with one of the most com- 
mon and important types of recursion: transi- 
tive closure. Since many real world problems 
reduce to generalized transitive closure compu- 
tations, efficient computation is essential. To 
gain a significant speedup in processing, we 
consider distributed (i.e. parallel) computa- 

By fragmenting the data beforehand accord- 
ing to rules stemming from the application do- 
main, queries can be split into several indepen- 
dent subqueries. These subqueries are com- 
puted in parallel on only a part of the data 
and are more specialized in the sense that ex- 
tra selections are applied on each fragment. 
The disconnection set approach introduced in 
this paper takes benefit from such a fragmen- 
tation; it is applicable to several queries that 
are based on transitive closure, such as con- 
nectivity, shortest path, and bill of materials. 
Moreover, it may be generalized to work for 
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other application domains. Since we consider 
real world problems to deal with a large up- 
datable volume of data, we take an algebraic 
approach to computation of queries. Our pro- 
posal is such that updates will, in general, not 
affect the fragmentation. This is also explained 
in the paper. 

Some preliminary simulations are included in 
the paper as well. They show that our ap- 
proach leads to a speedup that is almost pro- 
portional to the number of processors, without 
significant overhead. 

1 Introduction 

The idea behind the use of distributed systems is that 
data are partitioned and allocated to several sites. The 
computation can then be done on a number of sites in 
parallel. This is possible both in the context of dis- 
tributed database systems, such as [7], [27], [28], and 
in the context of parallel database machines, such as 
PRJSMA [6], [21]. Tl le main goal is, of course, to speed 
up processing by the use of more resources (processors). 
Recently, transitive closure queries have become more 
and more important: a body of research has been per- 
formed [l, 3, 19, 20, 24, 261, and transitive closure is 
being supported by some database systems [lo]. The 
transitive closure of a relation R is defined as Uy=, Ri 
(which is equal to RUr(R W R)Ur(R W a(R W R)). . .). 

Over the past decade we see a trend towards dis- 
tributed computation of queries. First selections were 
distributed to fragments of a relation, then fragmenta- 
tion was used to compute joins in a distributed way (see 
e.g. [9]). The next step in this process is to compute 
transitive closure queries in a distributed way. Since 
computation of the tra,nsitive closure of a relation is such 
a well-defined problem, studying it closer may lead to 
considerable insight. in the use and possible benefit of 
parallelism. 
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1.1 Transitive closure in a centralized 
environment 

Transitive closure has been studied in the context of 
centralized databases, where several methods have been 
developed in order to support efficient evaluation. In [2] 
it is shown how to summarize information on transitive 
closure and store it together with the data of the base 
relation; it is also possible to maintain this additional in- 
formation when the base relation is updated. Similarly, 
[3] shows how to store additional information with the 
base table of a relation in order to speed up the com- 
putation of the transitive closure, and [23] shows how 
to materialize the transitive closure, so that queries are 
efficiently answered to the price of supporting a large 
amount of information. 

It is worth noticing that e.g. [2, 241 solve only a par- 
ticular type of query (that we call ‘connectivity’ query), 
while [23] may also support shortest path and bill-of- 
material queries. Further, it should be noticed that all 
these approaches apply to the problem of computing the 
transitive closure on a single processor; as such, they 
are orthogonal to the issues discussed in this paper, and 
they may indeed be applied on each processor indepen- 
dently in order to speed up its own computation. 

1.2 Transitive closure in a distributed 
environment 

Only recently, transitive closure is being studied in 
a distributed environment. Some research focuses on 
parallel evaluation in a logic programming context 
[17,29]. Other research focusies on parallel computation 
of matrix-based algorithms for the transitive closure [4]. 
We will now shortly discuss two algebraic approaches to 
distributed computation. 

It has been noticed that the expression for the tran- 
sitive closure (c=, R’), may be rewritten in several 
ways [18]. A first straightforward approach to paral- 
lelism that uses this idea is power splitting. It may lead 
e.g. to a computation where we start with R on one 
processor, R2 on an other processor, and continuously 
join the result on each processor with R2. This leads to 
the computation of R, R3, R5, . . . on one processor, and 
R2,R4,R6,... on the other processor. There are, how- 
ever, several drawbacks to this approach. First, there 
is a considerable amount of data redundancy; the re- 
lation R2 is present at two processors. Second, since 
there are in general several paths between a pair of 
nodes, paths may be generated more than once, and 
used more than once in the subsequent computation. 
This leads to many redundant computations, which is 
a huge disadvantage. For example, given that there ex- 
ist paths of both odd and even length between a pair 
of nodes a and b, both processors will store the infor- 
mation that there exists a path between a and b, and 
both processors will use this information in the sub- 
sequent computations; thereby generating unnecessary 
(duplicate) tuples. Third, to get the final result avail- 
able at one location (and to remove duplicate tuples) 

a union of the results has to be computed. This leads 
to a considerable amount of data transmission, which 
is usually expensive. And fourth, the transitive closure 
computation as sketched uses a naive approach on each 
processor, which is, in general, not a very efficient ap- 
proach. An advantage of the approach as sketched is 
that it can easily be generalized for n nodes, although 
this enlarges the amount of redundant computation. If 
one tries to use a more efficient central algorithm for 
the computation on each node, the use of parallelism 
is not so straightforward any more. It results in a lot 
of inter-processor communication, which increases the 
network load and slows down computations due to the 
necessary synchronization between processors. 

A more intricate algorithm for parallel computation 
of the transitive closure of a relation is described in [25]. 
Here, several processors are used to compute the tra.n- 
sitive closure of a relation R. Some processors serve 
to store a union of particular powers R’, while other 
processors serve to filter out duplicate tuples. This ap- 
proach suffers from several of the drawbacks just men- 
tioned. The removal of duplicate tuples causes a lot of 
inter-processor communication. Also, the computation 
strategy necessitates the transmission of certain powers 
R’ between processors; this leads to serious delays be- 
cause processors have to wait for the results of other 
processors. 

If additional information is known about the structure 
of the relation one wants to compute the transitive clo 
sure of, this can be used advantageously. For instance, 
if the relation represents a tree it may be fragmented 
in such a way that the transitive closure of complete 
subtrees is computed in parallel. The construction of 
the final result then requires a union of the subresults 
and a small number of joins. Such an approach may thus 
achieve a speedup that is more or less linear in the num- 
ber of processors. Of course, a relation that represents 
a tree is a special case, which limits the applicability of 
the method just sketched. 

From the approaches sketched above, we may learn 
that the advantageous use of parallel processing is not. 
at all obvious. For a parallel process to work efficiemly 
(in a database environment), the subtasks handed out 
to the processors should be relatively independent. The 
task to be performed on each processor should be large 
enough to be worthwhile shipping to this processor. The 
computation of duplicate tuples on different processors 
should be avoided. And the amount of communica- 
tion between the processors should be minimal to avoid 
inter-process synchronization. In this paper a strategy 
is developed that conforms to these characteristics, by 
assuming a particular fragmentation of the data. The 
knowledge about the fragmentation of the data enables 
an efficient, distributed computation of transitive clo- 
sure queries. 

1.3 Organization of the paper 

The organization of the paper is as follows. In Sec. 2 we 
introduce the disconnection set approach, this includes 
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a formal model and computation of transitive closure 
queries on relations consisting of n fragments. In Sec. 3 
we discuss algebraic query formulation of transitive clo- 
sure queries. In Sec. 4 we discuss the effect of updates 
on our approach. In Sec. 5 results of preliminary simu- 
lations concerning our approach are presented. Finally, 
Sec. 6 presents some conclusions and future research. 

2 Disconnection Set Approach 

A strategy that is particularly interesting when study- 
ing parallel computation of transitive closure queries, is 
what we call the disconnection set approach [13], [14]. 
The basic idea that underlies our approach can perhaps 
best be illustrated by an example. Consider a rail- 
way network connecting cities in Europe, and a ques- 
tion about a connection between Amsterdam and Mi- 
lan. This question can be split into several parts: find a 
path from Amsterdam to the eastern Dutch border, find 
a path from the Dutch border to the southern German 
border, find a path from the German border to the Ital- 
ian border, and find a path from the Italian border to 
Milan. These questions all have the same structure, but 
apply to only a part of the data and can be executed 
in parallel. Moreover, the points where one can cross a 
border are relatively few. This leads to a highly selec- 
tive search process in an intermediate fragment, from 
one border city to another. Such border regions be- 
tween countries are good candidates for splitting the 
original graph into subgraphs. In addition, some mini- 
mal, ‘complementary information’ about the identity of 
border cities and the properties of their connections has 
to be stored. This will be described in more detail later 
011. 

The idea as sketched above leads us to consider a 
fragmentation of a graph that enables such a search 
process. (Remember that a relation may be viewed as 
the representation of a graph, with the tuples repre- 
senting edges.) The graph G is partitioned into several 
subgraphs Gi, with each subgraph stored at a separate 
site. The node intersection of these subgraphs, called 
disconnection set, is small compared to the number of 
nodes in the subgraphs. For each disconnection set some 
‘complementary information’ is stored. This informa- 
tion enables a reformulation of the transitive closure 
query into several subqueries, such that each subquery 
requires only one fragment. Hence, these subqueries 
can be processed in parallel, which leads to a consid- 
erable improvement in response time. Moreover, every 
subquery starts from a disconnection set and ends in a 
disconnection set; and as such they all consist of a selec- 
tion on a query. This means, for instance, that a query 
consisting of a selection on a start node is reformulated 
in several subqueries on smaller fragments, where each 
subquery consists again of a selection on a node. 

The structure of this section is as follows. In Sec. 2.1 
a formal model for a graph is introduced, and func- 
tions that allow query formulation on this graph. In 
Sec. 2.2 partitioning a graph in two fragments is consid- 

ered, and the reformulation of a transitive closure query 
into several subqueries is discussed. And in Sec. 2.3 this 
is generalized to partitioning a graph in n fragments. 

2.1 Formal Model 
In this section an abstract data structure for a graph 
is introduced, and functions that allow formulation of 
transitive closure queries on this graph. Given a set of 
vertices V and a set of arcs A, a directed graph G is 
defined as follows: 

G = (V, 4, V(G) is a finite set, A(G) C V x V. 

Furthermore, a weight function W, is defined that as- 
signs a (positive) weight to arcs in G. 

WC : A(G) --*IV. 

Now that this graph has been defined, some impor- 
tant functions can be defined that operate upon it. They 
allow the formulation of transitive closure queries. First 
the definition of the function closure: 

closure(G) = {( VI,VZ) I (w,v2) E A 

v3w~V:((vr,w)~A 
A (w, 02) E closure(G))}. 

The function closure results in all direct and indirect 
connections that exist in a graph G. The next definition 
is that of the function jclosure: 

fclosure(G,f) = O(Q,VJ,C) I ((Q,w) E A 
AC = WG(Vl, 212)) 

v(~wEV:(~~,W)EA 

A(w,v~,z) E fclosure(G, f) 

AC= f(WG(Vl,W),2))t). 

The function jclosure has as parameters a graph G and 
a function j. It results in a new graph which consists 
of the old graph G and some additional labeled arcs. 
These arcs represent paths in the transitive closure of 
the graph G, and their label is determined by using 
the function j on the labels of the arcs this path was 
created from. Usually, the label of an arc represents 
a weight and the function j is an arithmetic function, 
for example, an addition of the labels of the consisting 
arcs. Note that the result of jclosure is a multiset, which 
is indicated by the special brackets that are used; this 
means that duplicates are not removed. A last definition 
is that of the function gen-closure: 

genxlosure(G, ji, j2) = ji( jclosure(G, jz)). 

The function jz is a function that is used in the call to 
jclosure, and is of the required type. The function jr is 
a function that operates on a multiset of labeled arcs, 
as is returned by jclosuw, and returns a set of labeled 
arcs with some arithmetic operat,ion performed on the 
labels of arcs tha.t connect the same nodes. Note that. 
in general, the functions fclosvre and yen-closure do not 
result in a finite struct.ure. 
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With the help of the previously defined functions it 
is possible to pose all sorts of transitive closure queries. 
For instance, a query about the existence of a connection 
between two nodes can be answered by computing: 

closure(G). 

This results in the computation of the complete transi- 
tive closure of G. In the same way, a query about the 
bill of material problem (over an acyclic graph repre- 
senting parts and their components) can be answered 
by computing: 

gen-closure(G, c, x). 

The application of the multiplication function results 
in arcs denoting a part, its subpart, and the number of 
times this subpart is used for the production of the part. 

, The summation then adds the number of parts for all 
tuples with the same part and subpart component, to 
result in an arc denoting the total number of times a 
particular part is used for the production of the other. 

Finally, a query about the minimum cost can be an- 
swered by computing: 

gen-closure(G, min, +). 

Here, the application of the addition function results 
in arcs denoting two nodes that are connected and the 
cost associated with this connection. By searching for 
the path with minimum cost for each pair of nodes, the 
result consists of arcs that indicate for every pair of 
nodes the minimum cost to go from one node to the 
other. 

Notice that these queries are defined on an abstract 
graph structure. They do not imply an implementation 
of the actual computation. Implementation of transi- 
tive closure queries in terms of Relational Algebra is 
described in Set 3. 

2.2 Binary Fragmentation 

Now that a formal model of a graph G and some transi- 
tive closure queries has been introduced, let us suppose 
that the graph G is partitioned into two fragments: Gr 
and Gz. (Partitioning in n fragments is discussed in the 
next section.) This partitioning is done according to the 
following definitions: 

G = (V,A) GI = (Vl,Al) Gz = (Vzr AZ) 
AlnAz=0 AluA2=A 
v, u v, = v vl n v, f 0 

Ds= vlnv2. 
The structure DS is a so-called disconnectron set; re- 
moval of the nodes in DS from G leaves G disconnected. 
Note that since the fragments have no edges in common, 
an edge between nodes that are part of the disconnec- 
tion set DS may reside in precisely one fragment, where 
the choice of the fragment is arbitrary. 

An example of a binary fragmentation is given in 
Fig. 1. It shall be clear that any possible path be- 
tween nodes that reside in different fragments has to 

DS 

Figure 1: Binary fragmentation 

Gl G2 

Figure 2: A zigzag path 

go through the disconnection set at least once. The 
problem, therefore, is to find a node i in the disconnec- 
tion set such that there is a connection from a given 
start node a via i to a given end node b. (From now on, 
the terms connected and connection are used both for 
direct and indirect connections.) However, there may 
be several nodes from the disconnection set on the path 
from a to b; a path originating from a can cross the bor- 
der several times before actually staying in the fragment 
that includes b. Imagine, for instance, a river to form 
the border of two countries; a train may then cross the 
river several times, alternatingly using connections from 
each of the two countries, before reaching a main sta- 
tion that is connected with the bulk of the destination 
country. This is illustrated in Fig. 2. 

To overcome problems in tht case of zigzagging paths, 
we will use some ‘complementary information’. This 
‘complementary information’ contains a small amount, 
of information to solve the various transitive closure 
queries. It is different for different queries. For connec- 
tivity queries it contains for each node in the disconnec- 
tion set the other nodes in the same disconnection set 
it is connected with. With the help of this ‘complemen- 
tary information’ a query such as “Is node a connected 
with node b in graph G?” may now be reformulated 
in the following way: “Are there any nodes i and j in 
the disconnection set such that a is connected with i in 
Gr , i and j are connected in G (this is the ‘complemen- 
tary information’), and j is connected with b in G27” Of 
course, every node is connected with itself, hence, i may 
be the same node as j. Notice that the subqueries for 
the fragments can completely be computed in parallel. 

To process a shortest path query, the procedure is 
much the same. The ‘complementary information’ now 
consists of the shortest path in G-i.e. the cost of the 
minimum cost path-for each pair of nodes from the 
disconnection set. Again, this information is small com- 
pared to the fragments. The query “What is the length 
of the shortest path from a to b in G?” now can be re- 
formulated in the following way: “Find nodes i and j 
in the disconnection set, such that the cost of the path 
from a to i in Gi, plus the cost of the path from i to 
j in G, plus the cost of the path from j to b in G2 is 
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minimal.” Because every path from node a in Gi to 
node b in Gs has to go through the disconnection set, 
the path that is found in this way has to be the short- 
est path. Again, the subqueries for the fragments can 
be computed completely in parallel. Queries concerning 
the bill of material problem are dealt with in the same 
way, and described in [14]. 

2.3 N-ary Fragmentation 

The binary fragmentation of a graph as considered in 
the previous section, and the solution methods for tran- 
sitive closure problems, can now be generalized to a 
graph that consists. of n fragments. Consider the fol- 
lowing definitions: 

G = (V,A) GI = (Vl,Al) G, = (V,,A,) 
Vi,j<n,i#j:AiC1Aj=0 

AI U A2 U . . U A,-1 U A, = A 
Vl u v, u u v,-1 u v, = v 

DSij=&fIvj,i#j 

In the graph defined above, every arc is part of exactly 
one fragment. The nodes of fragments can overlap; 
these node intersections of the fragments are the dis- 
connection sets. As may be seen, these definitions are 
a straightforward extension of the definitions for a bi- 
nary fragmented graph as presented in Sec. 2.2. For 
the disconnection set approach to be profitable in the 
case of n fragments, three requirements are now intro- 

,duced. They are referred to as the disconnection set 
requirements: 

1. The disconnection sets should be small compared 
to the fragments. 

2. The amount of ‘complementary information’ should 
be small. 

3. Disconnection sets should be disjoint. 

The rationale for these requirements is as follows: 

1. The main idea underlying the disconnection set ap- 
proach, as stated before in Sec. 2, is to enable a 
highly selective search process in each fragment sep- 
arately. Therefore, the size of the disconnection 
set (which contains the start and end nodes of the 
search) should be small compared to that of the 
fragment: Vi, j: DSij << &. 

2. Since the disconnection fragment is to be used in 
the computation, it should be as small as possible. 

3. To avoid replication of ‘complementary informa- 
tion’, disconnection sets should not overlap: DSij f~ 
DSk, # 0 j i = k A j = /. Moreover, if the discon- 
nection sets were overlapping, information would 
also have to be stored about possible connections 
for nodes residing in different disconnection sets. 

Before discussing query reformulation over an n-ary 
fragmentation, let us first introduce a concept to rep- 
resent such a fragmentation. 

Figure 3: A fragmented relation 

0 
G7 

0 0 
G D&2 G2 DS24 G, DS,e Gs OS,, Gs 

Figure 4: Fragmentation graph of fragmented relation 

The fragmentation of a graph may be described by an 
undirected fragmentation graph FG, defined as follows. 
FG = (W, E) where W = {z ( 3: is a disconnection set 

or 2 is a fragment} 
E = {(t, y) ] t is a fragment and 

y is one of its disconnection sets] 
Hence, in the fragmentation graph FG there exists a 
node for every fragment and a node for every discon- 
nection set. There is an edge between nodes ni and n2 
iff ni is a fragment and n2 is its disconnection set; note 
that the fragmentation graph is undirected. An exam- 
ple of a fragmentation and its fragmentation graph is 
shown in Figs. 3 and 4. 

We initially assume that the fragmentation graph 
is acyclic. Let us now consider the computation of 
a shortest path query for the fragmentation graph as 
depicted in Fig. 4. If the shortest path in the origi- 
nal graph from node a in Gi to node b in Gs has to 
be found, the path between Gi and Gs in the frag- 
mentation graph FG has to be determined. This path 
P is Gl, DS12, Gz, D&4, Gq, D&e, Ge, D&s, Gs; where 
DSij stands for the disconnection set between Gi and 
Gj. If the shortest path from a to b in G stays within 
fragments on path P, it may be computed local to the 
fragments on this path. This means computing the 
shortest path from a to all nodes in the disconnection 
set D&z, combining it with the ‘complementary in- 
formation’ SPD.52, computing the shortest path from 
all nodes in DS12 to all nodes in the disconnection set 
D&4, and so on; finally taking the minimum over the 
costs of the paths between a and b. Note that by using 
the small amount of ‘complementary information’, the 
above computation computes theshortest path between 
a a.nd b even if the shortest path between a and b goes 
back and forth between the fragments on path P (see 
Sec. 2.2). 
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There is, however, no reason why the shortest path 
from a to b in G should not use arcs residing in fragments 
Gs and Gs. But if it does, the path is guaranteed to 
contain nodes that reside in the disconnection set D&s. 
Since the shortest path between each pair of nodes from 
a disconnection set has already been precomputed over 
the complete graph G-and stored as ‘complementary 
information’ SPDSij-it suffices to compute the cost of 
the shortest path between nodes of D&z and D&4 in 
the union of GZ and SPDS23. 

Let us now consider a general fragmentation graph, 
with cycles. In this case, we add one additional con- 
straint: shortest paths between two nodes from differ- 
ent disconnection sets should only use edges included 
in the fragment itself or edges connecting two nodes 
of the same disconnection set, that are therefore rep- 
resented by “complementary information” of that frag- 
ment. Note that this is a natural constraint, since a 
path from one border to another is likely to stay in the 
country itself, except for small deviations at the borders. 

In general, the solution strategy for finding the short- 
est path between an arbitrary pair of nodes a and b is 
as follows. One should start by looking at the fragmen- 
tation graph, locating the fragments the nodes are in, 
and finding all acyclic paths connecting the two frag- 
ments. Let Fl, , F,, be the fragments along such a 
path, with n > 1, a E Fl, b E F,,. Each intermediate 
fragment Fi with i > 1 and i < n (if existing), has to 
be traversed from the disconnection set between Fi-1 
and Fi to the disconnection set between Fi and Fi+l. 
The computation to find the paths from all nodes in 
the former disconnection set to all nodes in the latter 
disconnection set is then done over the union of the 
intermediate fragment and all its associated ‘comple- 
mentary information’. (With R = 1, a and b fall within 
the same fragment and the computation can be done 
completely local to the fragment and its ‘complemen- 
tary information’.) The solution is the minimum over 
all found paths. 

What has just been shown, is that a shortest path 
query may be computed over an acyclic path in FG be- 
tween the fragments that contain the start node and 
end node of the requested path in G. This is done by 
taking for each fragment the union with precomputed 
information for all its disconnection sets. Thereby, the 
computation can be done in parallel for each fragment 
and the solution is given by a combination of the com- 
puted answers. 

The process as just described has to be done for each 
acyclic path in the fragmentation graph that connects 
F1 and F, (when a fragment is part of several paths, 
the computation is, of course, only done once for that 
fragment). This leads to a desired property of the frag- 
mented relations that are subject to the disconnection 
set approach: their fragmentation graph should prefer- 
ably be acyclic. The fewer paths from Fl to F, the frag- 
mentation graph contains, the more efficient the dis- 
connection set approach is. In the remainder of the 
paper we will only consider fragmentations that have 

function conFxtiF( From : {V}, Graph : G, To : {V}) : 

begin 
New + Graph DC From; 

Result + New; 
l=l 

while New # B do 
New - x1,4 (New W~=I,V#Z Graph) 

- Result; 
Result .-- Result u New 

end; 
return Result K To 

2=1 
end 

Figure 5: Transitive closure algorithm 

an acyclic fragmentation graph; these represent special 
cases, but are fully general in the sense that the solution 
process in the case of a cyclic fragmentation graph can 
be expressed by a number of computations for acyclic 
fragmentation graphs, as sketched above. 

The reformulation of queries as sketched here is sound 
and complete. In [12], [14], and [15] we have proven 
this for connection, bill of material, and shortest path 
queries. 

3 Algebraic Query Formulation 

In this section algebraic query formulation over frag- 
ments is discussed. We concentrate on the connection 
problem, algorithms for bill of material and shortest, 
path computations are described in [13], [14]. A graph, 
and, therefore, also a fragment, is assumed to be repre- 
sented as a binary relation. The first attribute denotes 
the from node, the second one denotes the 20 node. This 
representation models a directed graph, but because an 
undirected graph can be represented as a directed one 
this is no restriction. 

3.1 Connection Problem 

The connection problem is essentially a simple transitive 
closure over a graph, where the cost of the connections 
is irrelevant. Therefore, we may use any kind of algo- 
rithm that is suited to the database system we are using 
[5]. An example of a relational program to compute the 
transitive closure of a relation is shown in Fig. 5. It uses 
a semi-naive approach with an integrated selection on 
the start node. The result of this program is a relation 
denoting which nodes from a certain set are connected 
with nodes from another set. Note that this program 
even works for cyclic relations, because of the join con- 
dition that describes that a connecting path should not 
return to its start node. 

Now that a relational program for the computation of 
the connection between nodes in an arbitrary graph has 
been formulated, this program can be used to compute 
the connection between nodes in different fragments. 
And because these fragments are residing at different, 
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processors, the computation can mainly be done in par- 
allel 

Consider a graph consisting of 3 fragments: G,, Gz, 
and Gs; where the fragmentation graph is acyclic. In the 
design process the disconnection sets DSls and D.923 
have been determined and the corresponding disconnec- 
tion fragments CDSij have been computed and stored 
in a relation. These disconnection fragments represent 
the ‘complementary information’; they are represented 
as binary tables, indicating all pairs of nodes in DSij 
that are connected in G. With a E G1 and b E G3, the 
existence of a path between a and b can be computed 
as follows: 

Cl + connection( { a}, G1, DS’lz) 

c2 + connection(DSl2, G2, DS23) 

c3 + connection(DSzs, Gs, {b}). 

The computation of Cl, C,, and Cs can be done in par- 
allel. Cl now contains all connections between a and 
nodes in DS12. Similarly, CZ contains all connections 
between nodes in DS12 and nodes in DS23. Note that 
a join between Cl and C2 does not suffice to compute 
all connections between a and nodes in D&3. As dis- 
cussed in Sec. 2.2, a path can go back and forth be- 
tween fragments; therefore, we have to compute a join 
with the precomputed disconnection fragments to find 
all connections. The solution is given by the following 
expression: 

~1,4(~1,4(~l,4(~l~~~cDs12~~~,K1,4(~2~~,cDs23~)~~~~3)~ 

Again, most of these joins can be computed in paral- 
lel; only the final join has to be computed on a single 
processor. 

To simplify the expression when n fragments are con- 
sidered, a slight adaptation is made. The function con- 
nection is not computed over the fragment itself, but 
over the union of the fragment with all its disconnec- 
t,ion fragments; as discussed in Sec. 2.3. (Remember 
that the disconnection fragments are very small cc,n- 
pared to the data fragments.) A connection between 
nodes in different fragments is now computed by the 
following expressions, which are computed in parallel: 

Cl - connection({a}, G1 U U CDSli, DS12) 
i 

cn - connection( DScn- ljn, Gn U U CD&i, {b}). 
i 

Where G1 is the fragment a belongs to, G, is the frag- 
ment b belongs to, and CDSij are the disconnection frag- 
ments for the disconnection sets that have a non-empty 
intersection with fragment Gi. The solution is given by 
the following expression: 

~1,4(7b,4(Cl 2y c ,“-:-2 ) 2y C7a), 

where 
C Ml 

2-l = C? 

C wi 
z-1 = 7b,4(C ,“_i;l 2!l G,l). 

and R > 2 (with n the number of fragments). This 
way of formulating the solution allows us to compute 
Cl,. . , C, on n processors in parallel. 

4 Updating Fragments 
In this section, we show how insertion and deletion of tu- 
ples within fragments can be managed efficiently. This 
is required, since we assume a large updatable data col- 
lection. We consider the elementary actions insert(a, 
b, w) and delete(a, b, w), where a, b are nodes and w is 
the weight (length) associated to the directed edge (a, b) 
from a to b. The fragment update problem is formulated 
as follows: given an insertion (deletion) of a tuple repre- 
senting an edge in G, determine the fragment F; where 
the tuple has to be inserted (deleted), and preserve the 
correctness of the ‘complementary information’ stored 
with Fi. 

4.1 Insertion 

Let us consider the elementary action insert(a, b, w). 
We should initially determine whether it is localized in 
one fragment. This happens if there exists a fragment 
F; such that a E r5: and b E vi; we assume that most 
updates have such a property. 

With non-localized updates, we have the following 
situation: a E Fi, b E Fj, i # j In this case, some of 
the present properties of fragmentation are affected (e.g. 
the number of adjacent fragments or the size of discon- 
nection sets). This may either be accepted, or lead to 
restarting the design process. The worst case occurs if 
Fi and Fj are not even adjacent; in that event, we have 
to distinguish two situations: 

l If connecting Fi to Fj introduces a cycle in the 
Fragmentation Graph, then a restart of the design 
process should be considered. 

l If connecting Fi to Fj preserves the acyclicity in 
the Fragmentation Graph, then we can accept the 
insertion by adding the tuple (a, b, w) to either J’i 
or Fj; if the former case occurs, then DSij = {b}. 
No ‘complementary information’is required, siuce 
DSij is a singleton set. 

If we assume Fi and Fj to be adjacent, then again we 
have two cases: 

If neither a E DSij, nor 6 E DSij, then it is re- 
quired to increase the size of DSij. If the tuple 
(a, b, w) is added to Fi, then b becomes part of 
DSij; the ‘complementary information’ has to be 
extended with information for b. 

Otherwise, let assume a E DSij; then the tu- 
ple (a, b, w) must be added to Fj, and the inser- 
tion is localized in Fj (see later). Similarly, if 
b E DSij , then the insertion is localized in Fi. If 
both a E DSi, and b E DSij, then the insertion 
can be locahzed in either fragment. (the choice is 
arbitrary). 

Finally, we consider localized insertzons. This is the 
most common case in practical problems, as we assume 
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that fragments correspond to well-defined geographic 
regions with well-defined boundaries. Let a,b E 6; 
we consider the problem of recomputing CDSij and 
SPDSij for one specific j such that Fj is adjacent to 
Fi. 

Connection problem. We consider the edges of Ei, 
and evaluate whether a is connected to b prior to the 
insertion. If so, then the operation has no effect on 
CDS,. Otherwise, let R, be the set of nodes of DSij 
that can be reached from a, Rb the set of nodes of DSij 
that reach b. Then, we compute the new value CDSij 
from the old value CDSij a~: 

CDS~j = CDSij U (R, X Rb) 

Shortest path problem. We consider the edges Ei and 
evaluate whether a is connected to b through a path 
shorter than w prior to the insertion. If so, then the 
operation has no effect on SPDSij. Otherwise, it is re- 
quired to compute the shortest paths connecting nodes 
of DSij and substitute the new values if they improve 
over the old values (hence, (a, b) is part of the new path). 
This is easily achieved by computing the shortest paths 
between b and nodes of DSij; then summing up w. This 
procedure may be shortened if some sufficient conditions 
occur; for instance, the computation can be immediately 
halted when the update occurs in an area which is %uIIi- 
ciently remote” from the disconnection set, or when w is 
greater than the maximum shortest path in SPDSij, or 
finally halted when the partial shortest paths including 
(a, b) all become greater than the corresponding short- 
est path stored in SPDSij. 

Both with the connection problem and the shortest 
path problem, some further processing is required if 
C’DSij or SPDSij are modified a~ effect of an update 
in fragment Fi. In fact, the ‘complementary informa- 
tion’ about disconnection sets describes global proper- 
ties about the original graph G, and not just about 
Fi. Thus, inserted tuples into CDSij or SPDSij have 
to be communicated to the computer storing fragment 
Fj, in order to be propagated into symmetric structures 
CDSji and SPDSji. 

Further, these changes in connectivity or shortest 
path of nodes in the disconnection set can cause ad- 
ditional changes in CDSij and SPDSij; they are evalu- 
ated as new insertions into the ‘complementary informa- 
tion,’ through methods discussed above. If any further 
changes arises in CDSji or SPDSji, it has to be propa- 
gated back to Fi; this process is iterated until the com- 
putation reaches a fixpoint (guaranteed by the finite- 
ness of the graph G and by monotonicity of operations 
involved). A a matter of fact, even other auxiliary in- 
formation of disconnection sets DSjk, wiht /C # i might 
be affected by a change in CDSji or SPDSji. However, 
especially in the case of an acyclic fragmentation graph 
such a propagation is quite unlikely. 

4.2 Deletion 
Let us consider the elementary action delete(a, b, w). 
Obviously, deletions are all localized; let a E Ni, b E 

Ni; we consider the problem of recomputing CDS, and 
SPDSij. 

Connection problem. We consider, the remaining 
edges Ei, and evaluate whether a is still connected to 
b. If SO, then the operation has no effect on CDSij. 
Otherwise, it is required to recompute CDSij, as it is 
not easy to understand otherwise the implications of the 
deletion operation. 

Shortest path problem. We consider the remaining 
edges Ei, and evaluate whether a is connected to b 
through a path shorter than w. If so, then the operation 
has no effect on SPDsij. Otherwise, it is required to 
recompute SPDSij, as it is not easy to understand oth- 
erwise the implications of the deletion operation. Once 
again, this might be unnecessary if sufficient conditions 
occur; for instance, the computation can be immedi- 
ately halted when the update occurs in an area which 
is “sufficiently remote” from the disconnection set. 

We envision applications in which queries are much 
more frequent then updates, all update operations are 
localized into one fragment, and changes to ‘comple- 
mentary information’ occur very rarely; in these cases, 
the test for existence of side effects of insertions and 
deletions on auxiliary information can be performed in 
polynomial time for all considered update operations, 
and is largely dependent on the size of the disconnec- 
tion set. 

5 Simulation Results 

The ideas presented in the previous sections regarding 
the use of disconnection sets for the computation of 
transitive closure queries seem promising; and to get 
a better idea of the benefits it seems worthwhile to in- 
vestigate them in a more practical way, by conduct- 
ing simulations. This has been done in the context 
of the PRISMA database machine [21]. This is a dis- 
tributed main-memory database system running on a 
multi-processor system. Such a system seems especially 
suited to profit from the proposed strategy. Since the 
processors are connected by a high speed network, par- 
allel processing may be used profitably. The discou- 
nection set approach is, of course, suited for standard 
distributed da.tabases as well, but the benefits may be 
seen more clearly in the context of a tightly coupled 
distributed database system. 

For the simulations we used relations that were ran- 
domly generated as explained shortly. We have not re- 
stricted our simulations to trees and DAGs (as e.g. in 
[4]) since these present special cases; instead, we fo 
cussed on graphs in general. In this paper we will focus 
on the results of the simulations and not discuss the 
simulation model and implementation of relational op- 
erations (this can be found in [22], [12]). Just let us 
note that the PRISMA machine is based on a message- 
passing paradigm (no shared memory), where each pro- 
cessor has 16 Mbyt,e of private memory and the proces- 
sors are connected by a high speed network. The im- 
plementation of the relational operations is hash-based, 
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RBO-1 R100-1 RZOO-1 R25-2 R50.2 RlOO-2 
DSSl 2.97 10.93 43.10 13.66 54.17 159.37 
PS2 2.30 7.61 40.29 28.48 103.39 423.90 
RS7 2.80 10.47 56.77 54.69 230.09 - 

11 R50-1 1 RIOO-1 1 R200.1 I R25.2 1 R50-2 1 MOO-2 1 

[ lRTl 11 147 1 433 1717 I 409 1730 1 5455 

Table 1: Simulation results for actual relations 

since this proves to be fastest in a main-memory envi- 
ronment [ 111. 

The structure of this section is as follows. In Sec. 5.1 
a comparison is made between central computation and 
parallel computation; this section explains some of the 
problems parallel approaches have to cope with. And 
in Sec. 5.2 the simulation results for the disconnection 
set approach are presented, and the benefits of this ap- 
proach are made obvious. 

5.1 Central versus Parallel 

For the execution of the simulations, binary relations 
were generated in a random way. This was done ac- 
cording to two parameters: the connection average (i.e. 
the chance that there is a direct connection between two 
nodes), and the number of tuples in the start relation. 
To have an honest comparison, it was assumed that ev- 
ery simulation started with the relation R on a single 
node; transmitting this relation to other nodes is part of 
the computation strategy and the costs are taken into 
account. 

In Table 1 some typical results for a fast single- 
processor algorithm and two parallel strategies are pre- 
sented. The single-processor algorithm is the so-called 
delta smart squaring algorithm [8], [12]; it combines 
semi-naive and logarithmic approaches. The parallel 
strategies are a strategy based on power splitting (PS), 
as described in Sec. 1.2, and an optimized version of 
an algorithm based on [25], which uses 7 processors for 
the computation of the transitive closure. In Table 1 the 
subscript of the algorithms indicates the number of pro- 
cessors used, the name of the relations is derived from 
the number of tuples and the connection average of the 
relations. Hence, RS7 means that the results for the 
RS-algorithm are shown, where 7 processors are used 
by the algorithm; and RlOO-2 means that the relation 
R that was used consisted of 100 tuples, with a connec- 
tion average of 2. The numbers in Fig. 1 indicate the 
response time for each algorithm on each relation, the 
cardinality of the transitive closure of the relations is 
indicated as well. 

The results as presented in Fig. 1 might seem sur- 
prising: the benefit of parallel processing seems to be 
virtually nil. Especially when the graph is not sparsely 
connected the behaviour of the parallel algorithms de- 
teriorates rapidly. To gain better insight in the fac- 
tors that determine the efficiency of parallel computa- 
tion and explain the disappointing results of the parallel 
algorithms, the processor activities have been put int.o a 

Figure 6: Processor activity F&algorithm for relation 
50-2 

graphical form. Fig. 6 presents the activity for the RS,- 
algorithm. In this diagram, the relational operations on 
each processor are shown over a period of time. The 
operations are marked with a character indicating their 
purpose: U for union, J for join, and T for transmit. 

From Fig. 6 we may conclude that in the RS7- 
algorithm the processors are used only a part of the 
time. Much time is spent on waiting for results of other 
processors. The time spent on waiting for transmission 
leads to a low amount of operational parallelism. Only 
for short intervals of time the processors are all working 
in parallel. Another drawback of this approach is the 
production of duplicate tuples; this results in a compu- 
tation that goes on longer than necessary. The proces- 
sor activity for the PS-algorithm is not shown here; this 
algorithm does achieve a reasonable amount of paral- 
lelism, but at the cost of generating many redundant 
tuples and thereby a longer computation time. 

All in all, the comparison between central and paral- 
lel processing does not seem hopeful for the effective use 
of parallelism in the computation of transitive closure 
queries. It seems that one can achieve a high degree of 
operational parallelism-by making the computations 
on the different processors more or less independent- 
at the cost of generating many duplicate (i.e. useless) 
tuples. Or one can use many processors that have to 
exchange information and, thereby, achieve only a low 
degree of operational parallelism due to necessary syn- 
chronization between processors. In the next section 
simulations for the disconnection set approach are pre- 
sented, to see if this approach does a better job in effec- 
tively using parallel processing. 

5.2 Disconnection Set Approach 

Since the disconnection set approach avoids the gen- 
eration of duplicate t.uples as much as possible, it is 
beneficiary in a central environment as well. Therefore. 
we compare a parallel implementation of the disconnec- 
tion set. approach wit,h a single processor one. Now, 
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RJ-178 Ry309 &-16141 

Single processor 6.59 16.73 1940.62 
Multi processor 3.29 5.09 336.91 

Figure 7: Simulation results disconnection set approach 

the results may be compared without giving one of the 
approaches some unforeseen advantage. The transitive 
closure computation on each processor is done using a 
semi-naive approach with integrated selection, as de- 
picted in Fig. 5. 

In Fig. 7 the results of the simulations are shown. 
The approach has been tested for relations consisting 
of 3, 5, and 8 fragments (as indicated by the subscripts 
in the figure). For the relations that consist of 3 or 5 
fragments the selection assumed two start nodes and 
two end nodes. For the relation consisting of 8 frag- 
ments the selection assumed four start nodes and four 
end nodes; the disconnection sets contain 2 to 6 nodes. 
Since relations with a high connection average proved to 
be the most difficult for parallel approaches, this type 
of relations is used for the simulations; the value of the 
connection average used in the simulations is 2. 

The names for the relations are chosen to represent 
the number of fragments and the total number of tu- 
ples in the relation. Hence, Rs-309 indicates a relation 
consisting of 5 fragments and 309 tuples. The cardinal- 
ity of the final result of the transitive closure query is 4 
for the relations consisting of 3 or 5 fragments, and 16 
for the relation consisting of 8 fragments. Of course, in 
the multi-processor algorithms as much processors were 
used as there were fragments. 

From the results as depicted in Fig. 7, we may con- 
clude that the disconnection set approach indeed is very 
promising. For instance, the use of 8 processors results 
in a computation that requires only 18% percent of the 
time required for a central computation. For the rela- 
tion that consists of 8 fragments, the processor activity 
is depicted in Fig. 8. It shows that the degree of op- 
erational parallelism is very high indeed. For a large 
interval of time all processors are working in parallel. 
At the end of the computation, the joins of the results 
per fragment with the disconnection fragments are exe- 
cuted. These joins require only a few processors and a 
relatively short period of time. 

The benefit of the disconnection set approach, as was 
made clear by the simulations, is due to a number of 
aspects. First, the computations on the processors are 
almost completely independent. A processor can keep 
on working right until it finishes its task, only then it 
might have to wait before being able to transmit the 
results. Second, no tuple is generated on more than one 
processor. This avoids a great number of redundant 
computations-an important difference with other par- 
allel approaches. And third, the computation does not 
depend on the diameter of the graph (the length of the 
longest path) as do the central and parallel approaches 

Figure 8: Processor activity for Rs-16141 

sketched before. It now depends on the diameter of 
the fragments, which is, therefore, in the design process 
best chosen as directly related to the number of frag- 
ments the graph is partitioned in. A possibility that 
has not been investigated, but seems worthwhile, is to 
choose different transitive closure algorithms for each 
fragment, depending on its connection average. 

6 Conclusions and F’uture Research 

In this paper it was shown that the profitable use of par- 
allel processing in the computation of transitive closure 
queries is a difficult problem. More often than not par- 
allel strategies fail to achieve a reasonable gain in perfor- 
mance. For a parallel strategy to be really worthwhile, 
it should strive for equally-sized independent tasks; this 
means that inter-processor communication should be 
avoided. It is also very important to minimize the num- 
ber of redundant tuples generated. The development 
of this kind of beneficiary parallel strategies requires 
knowledge about the structure of the relation and about 
the type of queries. 

The disconnection set approach conforms to these rel- 
evant characteristics. It allows a reformulation of tran- 
sitive closure queries into similar queries that require 
only one fragment. This reformulation has been proven 
correct (in [12, 14, -151) and the small amount of ‘comple- 
mentary information’ needed for this reformulation has 
been discussed. The disconnection set approach works 
for queries based on transitive closure, such as connec- 
tivity, shortest path, and bill of material (this paper con- 
centrated on connectivity). Algebraic query formulation 
for these queries has been described, to show that they 
can actually be implemented on a relational database 
system. We have also described how updates may in- 
fluence the ‘complementary information’ and how they 
can be handled efficiently. An interesting aspect of the 
disconnection set approach is that its benefits may also 
be used in a central environment, although no use can 
be made then of parallel processing. 



We have not discussed fragmentation design in this 
paper. Here, the focus was on efficiently computing 
transitive closure queries in parallel. At the moment 
we are studying fragmentation design, where we try to 
concentrate on fragmentations that have an acyclic frag- 
mentation graph. As noted in the paper, the discon- 
nection set is fully general and applicable to all sorts 
of fragmentations, but it is much more efficient when 
the fragmentation graph is acyclic. In [13] we have de- 
scribed a combinatorial algorithm for such a fiagmenta- 
tion design, but we feel that in general knowledge of the 
application domain is required for a good fragmentation 
design. Note that many application domains conform 
to the characteristics that are desirable when using the 
disconnection set approach, for instance, public trans- 
portation, part-subpart. 

The simulations in the paper showed that a number 
of methods described before did not gain a significant 
speed up by parallel processing in our multiprocessor 
environment. Simulations concerning the disconnection 
set approach showed that it did achieve a significant 
speedup; due to the division of work among several pro- 
cessors, and the use of extra selections on each subquery 
(stemming from the disconnection sets on the path from 
start node to end node). In fact, this last aspect is also 
important in a central environment and will lead to a 
performance improvement even in such a central envi- 
ronment [22). W e will conduct more simulations investi- 
gating these issues, and plan to make a full comparison 
with other approaches. 
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