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ABSTRACT 

We present a new family of hybrid transitive closure 
algorithms, and present experimental results showing that 
these algorithms perform better than existing transitive closure 
algorithms, includmg matrix-based algorithms that divide a 
matrix into stripes or into square blocks, and graph-based 
algmtihms. This family of algorithms can be generalized to 
solve path problems and to solve problems in which some 
selection criteria have been specified for source or destination 
nodes. 

1. INTRODUCTION 

Transitive closure is regarded to be an important operation 
for the next generation of database systems 
[2,5,6,12,13,15,17,19,21]. and considerable research has 
been devoted to designing algorithms for computing the 
transitive closure of database relations [1.4,9-11.16.241. 
These algorithms can be classified into three major families. 
Irerurive algorithms, such as semi-naive [4], logarithmic 
[10.24]. and variations thereof [9.10.16]. compute transitive 
closure by repeatedly computing a relational algebraic 
expression, stopping when no more new answer tuples are 
generated, after a mmrber of iterations that depends on the 
underlying dambase. Direct algorithms. on the other hand, 
process each element (a node or an edge) a constant number 
of times (usually oncex and terminate after such processing is 
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complete independent of the underlying data. In direct 
algorithms. there are two families. Matrix-bared direct 
algorithms, such as in [l. 25.261. are best understood in terms 
of a matrix representation and manipulation. Graph-bused 
direct algorithms, such as in [7.8.11,18,20]. are best 
understood in terms of a graph traversal. Graph-based 
algorithms often coalesce nodes belonging to the same 
strongly connected component into one node since these nodes 
will have identical successors, and process nodes of the 
condensed acyclic graph so obtained in a reverse topological 
order, adding to a node the successor sets of its immediate 
SUcCeSSOIS. 

There is empirical evidence that blocked matrix-based 
direct algorithms perform significantly better than the iterative 
algorithms [l]. Three major factors contribute to their better 
performance: i) better memory utilization due to blocking, ii) 
efficient removal of duplicates, and iii) use of a careful 
~ocessing order, rather than iteration, for termination. As 
noted in [ll]. duplicates can be removed efficiently in the 
graph-based algorithms as well, and they also do not require 
repeated iteration for termination. An advantage of the 
graph-based algorithms over the matrix-based algorithms is 
that they are 0 (n *e ) algorithms whereas the matrix algorithms 
are 0 (d) algorithms, where n is the number of nodes and e 
the number of arcs in the graph The problem with the 
graph-based algorithms is that these algorithms are difficult to 
implement efficiently in an environment where the database is 
disk-resident [ 141. 
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algorithms and present experimental results showing that these 
algorithms perform better than existing matrix-based and 
graph-based algorithms. 
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Recently a new transitive closure algorithm that processes 
the matrix in squares rather than stripes has been proposed 
[U]. and the worsf cure I/O complexity of this algorithm has 
been shown to be better than than an algorithm in which the 
matrix is divided into stripes. We show, through experiments, 
that the new hybrid algorithm also outperform this algorithm 
for a wide range of graph size and memory size choices. 
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Besides conqxrting reachability, the hybrid algorithms can 
also be used to solve the class of well-formed decomposable 
path problems. Included in this class are many problems of 
practical interest such as bill of materials, shortest path, 
critical path, path of maximum reliability, etc. They can also 
be used to solve pobleans in which some selection criteria has 
been specitied for source or destination nodes. For lack of 
space, this generalization is not discussed here. See [3] for 
details. 

The rest of the paper is organ&d as follows. In Section 
2. we give a brief review of matrix-based and graph-based 
algorithms. Hybrid algorithms are introduced in Section 3. 
Section 4 presents the result of the performance evaluation of 
hybrid algorithms. We conchtde with some final observations 
in !section 5. 

2. BACKGROUND 

We briefly review the features of matrix-based and graph- 
based transitive closure algorithms that bear comparison with 
the hybrid algorithms. 

2.1 Matrix-Based Direct Algorithms 

Given an nXn adjacency matrix of elements Uij Over an 
n-node graph with Uij being 1 if there is an arc from node i 
to node j, and 0 otherwise, the Warshall algorithm [26] 
computes the transitive closure of the given graph as follows: 

ji ik FOCeSS Uij 

“Processing” of an element Uij involves examining whether 
Uij is 1. and if it is, then making every successor of j a 
successor of i. Thus, the Warshall algorithm computes 
closure by “processing” every element of the matrix exactly 
once, column by column from left to right, and from top to 
bottom within a column. 

It has been shown [l] that the matrix elements can be 
processed in any order, provided the following two constraints 
are maintained: 

1. For all i. j. k, processing of the element uit precedes 
ptxssing of the element aij, ifl k < j, and 

2. For all i. j. k. processing of the element a# precedes 
the processing of the element Uij, if k < j . 

Various processing orders can be derived subject to these 
two constraints, giving rise to a whole family of Wurshull- 
derived algorithms. The Warren algorithm [25] that processes 
matrix elements in row order but in two passes’: 

can be viewed as a Warshsll-derived algorithm, since it 

1. only lhc lower trimgulu half is cxunined in Ihe lint pas, and lhe upper 
triquhr half is c.mm&d in the secand pass. 

Observes the two precedence constraints listed above. The 
blocked row and blocked column algorithms presented in [1] 
are Warshall-derived algorithms that process matrix elements 
in such a way that the Vo traffic between disk and memory is 
minimized. 

2.2 Graph-Based Direct Algorithms 

Purdom, in [18]. made two key observations: 

i. During the computation of transitive closure of a 
directedacyclicgraph,ifnodeA precedesnodeE ina 
topological sort of the nodes in the graph. additions to 
the successor set of node A cannot sffect the successor 
set of node B. One should therefore, compute the 
successor set of B first and then that of A. By thus 
processing nodes in reverse topological order, one need 
add to a node only the successor liits of its immediate 
successors, since the latter would already have been 
fully expanded. 

ii. All nodes within a strongly connected component in a 
graph have identical reachability properties, and the 
condensation graph obtained by collapsing all the nodes 
in each strongly connected component into a single node 
is acyclic. 

Tarjan [22] developed an 0 (e) algorithm for de.temCning 
strongly connected components of a graph by means of a 
depth-first search, which also produces as a by-product a 
topological sort on the components. It has been observed 
[7.8.11,20] that it is possible to modify Tarjan’s algorithm in 
a way that the successor lists are also expanded as the strongly 
cormected components are being determmed and thus 
compute the transitive closure. 

3. HYBRID ALGORITHMS 

The hybrid algorithms we propose in this section are best 
described starting with the matrix-based algorithms described 
in the previous section. In matrix-based algorithms, row i of 
the adjacency matrix corresponds to the successor set of the 
node numbered i, but the nodes are numbered arbitrarily. 
Instead of arbitrary numbering, we use topological ordering to 
assign node numbers, and then exploit this ordering to 
incorporate the optimizmg features of the graph-based 
algorithms in a matrix framework. 

Our algorithms have two distinct passes. In the first pass, 
we obtain a condensation graph for the given graph in which 
each non-trivial strongly connected component is identiied 
and coalesced into one no&. A topological sort of the 
condensation graph is also obtained at the same tune. The 
transitive closure is computed in the second pass. We present 
algorithms only for the second pass, assuming that the first 
pass has already been performed using, say, the Tarjan 
algorithm [22]. 

3.1 Basic Algorithm 

Let us consider an acyclic graph G and number its nodes 
in a topological sort or&r. Thus, the source node of any arc 
has a higher node number than its destination node. Obtain an 
adjacency matrix representation M of G, such that row i 

327 



represents to successor set of node i, and matrix element (i j) 

is 1 if there is an arc (ij) in G , and 0 otherwise. M will be 
a lower triangular matrix. 

Here is the basic hybrid algorithm: 

Algorithm 1 (The basic hybrid algorithm): 

For i from 1 to n 
Copy row i into a temporary I 
Forj fromi-ltol 

P process from right to left within a row */ 
If~j)#O 

p immediate successor optimization */ 
call add-succ(i , j , j7) 

r add successors of j to i *I 

procedure adc~succ(i, j, T): 
Forkfromltoj-1 

If(j,k)=l 
IfCk)= 1 

(i,k) = 0 P marking optimization */ 
else 

(i.k) = 1 

This algorithm is similar to the. waHen algorithm [25] in 
that it processes matrix elements in row order. However, 
unlike Warren 

A. only those elements ej which were 1 to begin with 
result in addition of successors of j to i (immediate 
successor optimization); 

B. while a row is being processed, some elements which 
were 1 to begin with are treated as if they were 0 
(marking optimization); and 

C. matrix elements are processed right to left. 

(A) implies that this algorithm. like graph-based 
algorithms, adds to a node only the successor sets of its 
immediate successors. The temporary row I is initialized to 
the set of immediate successors of i, and I is used to 
determme whether the successors of nodes j should be added 
to i. Before IDW i is processed, all rows numbered less than 
i have already been processed. Thus, before processing any 
node, it is guaranteed that all its successors have been 
processed ad fully expanded, since successors correspond to 
rows that have a lower row number in the matrix than the row 
number of the node being processed. 

The effect of (B) and (C) is similar to the marking 
. . . 

m proposed in [ll]. If a node i has two immediate 
successors j and k such that k is also a successor of j and it 
is guaranteed that the node j has been fully expanded before i 
is processed, then it is sufficient to add the successors of j to 
i andthesum ofkneednotbeaddedtoi. (C)ensures 
that if two immediate s- j and k of i are such that k 
is also a successor of j. then j is processed before k. (B) 
ensures that later on, when element (i,k) is processed. the 
successorsetofk willnotbeaddedtoi. 

Consider. for example, the simple graph shown in Figure 
3.1 and contrast the computation of its transitive closure using 
the Warren algorithm and Algorithm 1. In the Warren 

algorithm, nodes are numbered arbitrarily, whereas nodes are 
assigned numbers in the topological sort order in Algorithm 1. 
Figure 3.1 also shows the adjacency matrix corresponding to 
the two node numberings. 

4 

fi 

1 3 

2 

4 
P 

2 3 

1 

1234 1234 

(a) Warren (b) Directed Matrix 

Figure 3.1. Difference in computations in Warren and 
Directed algorithms 

When processing row 3 using the Warren algorithm, first 
the element (3,l) is processed, the successor set of 1 is fetched 
into memory and added to the successor set of 3, thus 
transforming the element (3.2) into a 1. Now the element 
(3.2) is processed and the successor set of 2 is fetched. When 
processing row 3 using Algorithm 1, only the successor set of 
2 is fetched, and the successor set of 1 is not fetched due to 
the immediate successor optimization. Similarly, when 
processing row 4 using the Warren algorih the successor 
sets of 1. 2. and 3 are fetched. However, when using 
Algorithm 1. only the successor set of 3 is fetched The 
successor set of 1 is not fetched due to the marking 
optimization, and the successor set of 2 is not fetched due to 
the immediate successor optimization. 

There is never a case when Algorithm 1 will fetch a 
successor se& but the Warren algorithm will not, irrespective 
of node numbering. Provided that the node numbering is 
same, the sizes of successor sets, when fetched, are identical. 
Algorithm 1. therefore, for a given (reverse topologically 
sorted) node ordering, performs less or equal I/O than the 
Warren algorithm. The disadvantage of Algorithm 1 is that it 
requires a topological sort of the given graph. However, our 
experimental results (reported in Section 4) show that the cost 
of topological sort is insignificant compared to the cost saving 
when computing the transitive closure. 

The major diierence between Algorithm 1 and the graph- 
based algorithms is that the graph-based algorithms are depth- 
first recursive descent algorithms, whereas Algorithm 1 is a 
breadth-first algorithm, malting it amenable to efficient 
blocking. Moreover, processing of elements from right to left 
within a row in Algorithm 1 guarantees that the marking 
optimization is performed in all possible cases. However, the 
marking optimization in a graph-based algorithm depends on 
the order in which children of a node are examined. Consider, 
for example. the graph shown in Figure 3.2. In a graph-based 
algorithm, if node i+l is visited before node i+2, the 
successor set of node i+l will be added to the successor set of 
node i+3 twice: once directly and then through the addition of 
the successor set of node i+2. The hybrid algorithm, on the 
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other hand, will add the successors of node i+l to node i+3 
only indkctly by adding the sumsors of node i+2 to node 
i+3. 

Figure 3.2. Order dependence of the marking optimization in 
the graph-based algorithm 

3.2 Blocked Algorithm 

We now discuss how Algorithm 1 can be blocked. 
Partition the matrix into blocks of contiguous rows. As we 
will see shortly, blocks can be eed dynamically, and 
the number of rows in a block could be different for different 
blocks. If a block bl consists of rows i, through i,. then the 
elements (ij) such that i, 5 i I i and i, I j I i, will be 
referred to as the diagonal block elements of br and the 
remaining elements in bl will be referred to as the off- 
diagonal block elements. ‘IIe rest of the elements in the 
lower triangular half of the matrix will be referred to as the 
off-block elements (see Figure 3.3). 

Algorithm 2 (The blocked hybrid algorithm): 

Assume matrix partitioned into m blocks. 

Do the following for each block bl. I = 1.2, . . . . m: 

Let the block bt consist of rows i, to i.. 
Fetch rows i, through i, into memory. 
Copy into rows 1: through 1:. respectively. 

/* process the elements in the off-diagonal block 
column-by-column from right to left */ 

Forjfromi,-ltol 
For i from i, to i. 

if c j ) # 0 p immediate successor optimization */ 
fetch the row j if not already in memory 

P blocking benefit */ 
add-succ(i. j, T) 

p process the elements in the diagonal block 
row-by-row from right to left */ 

For i from i, to & 
Forj fromi toi, 

Figure 3.3. Diagonal block, off-diagonal block, and off-block 
elements for the block bl 

3 4 5 

T 

12345 
1 

2 
: 

1 4 
5 

Figure 3.4. Benefit of blocking 

block consisting of rows 3 through 5. the elements (3.2). (4.2). 
and (5.2) are processed in that order, the successor set of 2 is 
read once, and is added to the successor sets of 3. 4 and 5. 
With the basic hybrid algorithm, elements are processed in 
row-order. and the successor set of 2 will be read three time~.~ 

The elements in the diagonal block may be processed in 
row-order without affecting the ID performance because all 
the relevant rows are already in memory. 

The immediate successor optimization is performed as in 
the case of the basic algorithm. Within an off-diagonal block 
and a diagonal block, elements are processed right to lefs but 
the off-diagonal block is processed before processing the 
diagonal block. The result is that the algorithm performs 
marking optimizatioq, but separately within the off-diagonal 
block and diagonal block. 

3.3 Dynamic Blocking 

Block sizes can be determined dynamically as in [l] using 
the following greedy algorithm. Partition the memory into 
three logical segments. In the tirst segment called the louding 
urea the successor se& are loaded one at a time until the 
loading area fills up. The number of successor sets that could 

if (ij) # 0 p immediate successor optimization */ 
add-succ(i , j, I) 2 The auaxssor sets, in galcnl, UC large. so Ihat there is * ad p&biIity 

Since the elements in the off-diagonal block are processed 
of finding the s-m sa of 2 in system buffers when p-ins ~DW 4 

column by column, an off-block successor set is fetched at 
hXlW3hUOaenpd. 

most once during the processing of a block. Consider, for 
example, the graph shown in Figure 3.4. When processing the 
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be accommodated in the loading area determines the size of 
the current block. 

As the successors sets expand, new tuples are created in 
the expansion area. The third segment of the memory, called 
the off-block area is reserved for reading one successor set at a 
tune. This successor set is used for expanding the successor 
sets in the current block. The expansion area grows toward 
the off-block area. As successors are added to the nodes in 
current block, the expansion area may fill up and hit the 
boundary of the off-block area. This situation can be handled 
by dynamically reducing the size of the cutrent block. 
Reblocking simply involves taking out the last row in the 
current block and freeing up the space in the loading and 
expansion areas devoted to it. 

4. PERFORMANCE EVALUATION 

We now present the results of simulation experiments 
e~htting the performance of the hybrid algorithms. We 
describe the algorithms studied. make a few observations on 
the performance evaluation methodology, discuss the datasets, 
and then present the results. 

4.1 Algorithms 

The pexfonnance of the hybrid algorithm was compared 
against the Blocked Row algorithm presented in [l] and the 
graph-based algorithm (refened to as the DFS algorithm in the 
rest of the paper) presented in [ll]. 

Blocked Row and Hybrid algorithms were implemented by 
partitioning the memory into three segments: i) the loading 
area, for initial loading of successor sets in the current block, 
ii) the expansion asea, for creating new tuples, and iii) the 
off-block area, for re&mg one successor set that is used for 
expanding the s- sets in the current block. Block sizes 
were dekmmed using the greedy algorithm described in 
Section 3.3. The simulation kept trPck of old values of tuples 
in the cumnt block, necessary in the hybrid algorithm, and 
reduced accordingly the memory availability for the hybrid 
algorithm. 

The strategy for implementing the DFS algorithm in a 
disk-based envinmment is not presented in [ll]. Our 
implementation of the DFS algorithm tries to keep as much of 
the successor sets stack in memory as possible. If space in 
memory runs out, the successor set at the bottom of the stack 
is paged out. lf this set has been updated since it was last 
read in to memory, then it is written out to disk, otherwise it 
is simply purged from memory. The successor set at the 
bottom of the stack is selected for paging out since the activity 
is typically czmcmmd at the top of the stack. 

To fully utilize the memory available, we added a further 
optimizah After a successor set is fully expanded and 
popped from the stack, it is written to disk, but not purged 
from the memory. This buffering strategy avoids, for 
example, re-reading of the successor set of D when processing 
the node Z in Figure 4.1. The successor sets still on the stack 
have priority for memory residency over these buffered 
popped-off suaxsor sets. so that when memory fills up. all 
these extra buffered sets are purged one by one, before any on 

the stack is paged out. 

A 

B z 

& C D 

Figure 4.1. Buffering in the DFS algorithm 

Marking optimization was also performed. Thus in a 
graph such as in Figure 3.5, if the successor set of node 4 is 
added to the successor set of node 5, it is not necessary also 
to add the successor set of node 2. another immediate 
successor of node 5 that is also a successor of node 4. 
However, as noted in Section 3.1, the entire saving possible 
hm marking optimization may not be realized depending on 
the order in which the immediate successors of a node. are 
expanded. At the expense of some additional book-keeping 
and some additional memory space, it is possible to defer the 
unioning of successor sets until the marking optimization can 
be applied. But the optimization then applies only to the 
effort to perform the union in memory and not to the effort in 
fetching the successor sets from disk To the extent that the 
r/o is the primary cost determinant for the algorithm, the 
deferred unioning provides little benefit, and has the 
disadvantage of constmCng additional memory. We, therefore, 
did not defer successor set unions. 

4.2 Experimental Set Up 

Synthetic graphs were used in the performance evaluation 
experiments. Two parameters of a graph were identified as 
important: the number of nodes, and the average degree of 
each node. These two parameters were varied to create a set 
of random graphs. 

We report here the results for the bill of materials 
problem. We also considered reachability computations for all 
the algorithms, and found trends to be similar to those for the 
bill of material problem. Since bill of materials problem is 
ill-defined for cyclic graphs, experiments were restricted to 
acyclic graphs. 

The number of ,tuple I/C& was used as the performance 
metric. The size of memory was also specified in number of 
tuples. Memory sizes were chosen so that the complete 
closure of the graph would not fit in main memory, as would 
be the case in a disk-based environment. 

4.3 Performance Results 

Figure 4.2 shows the relative performance of Hybrid, 
Blocked Row. and DFS algorithms. We have normalized the 
total number of tuple I/OS required to compute the closure 
with respect to the tuple I/Os required for the directed matrix 
algorithm. Total Vos have been plotted by varying both the 
number of nodes and the average degree. The numbers for 
the Blocked Row algorithm are for a version of the algorithm 
in which the graph was first topologically sorted and then 
processed using only the first pass of the Blocked Row 
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~Igcrithm. This version of the Blocked Row algorithm was 
found to always perform bet&r than the two pass vasicm. 
Both for hybrid and blocked tow algorithms, the total I/D 
in&a+ the I/o for topologically sorting the graph and writing 
outthesortedresult. Itisclearfromthegraphsthatthe 
hybrid algorithm consistently performs better than both DFS 
and Blocked Row algorithms. 

Afh&Ih oBbckedRow oHylnid 

Total 
Ito 

Ratio 

Total 
I/o 

Ratio 

Total 
IP 

Ratio 

Nodes=500 

3 

1 Nodes = 750 

-0; 

3- 

Nodes = loo0 

2- 

l- 

-0 I I I I I 
2 4 6 8 10 

De%= 

Figure 4.2. Comparative performance 

Let us now analyze these performance results in detail. 

The cost of topological sort in Hybrid and Blocked Row 
algorithms tums out to be a small fraction of the cost of 
computing transitive closure. Figure 4.3 shows the topological 

sort wmpomnt as a fmction of the total closure cost for these 
algorithms for 500 node graphs. Similar results were obtained 
for graphs of other sixes. 

o Blocked Row o Hybrid 

0.02 Nodes-500 
Im 

Ratio 
0.01 

2 4 6 8 10 

b3= 

Figure 43. Cost of topological sort as a fraction of total cost 

The sorting cost in number of tuple I/OS for all the 
relations was twice the munher of tuples in the relation - for 
each tuple, one I/O was incurred to read it into memory and 
one to write it back in the sorted order. This result is not 
surprising. Although relations were larger than the memory 
size, the maximum mnnber of tuples that need to be memory 
resident at any time depends on the length of the longest path 
in the corresponding graph, which explains why no tuple was 
reread during the topological sort. 

Coming to the transitive closure cos& the I/O cost consists 
Of: 

1. 

2. 

3. 

Ri: Reads of tuples when a successor set is brought into 
memory to be expanded. 

IVi: Writes of tuple~ when an expanded successor set is 
written back to disk. 

Rj: Reads of tuples when a successor set is brought into 
memory to expand another successor set. 

Ignoring (3) for the moment, both Hybrid and Blocked 
Row are “read-once” and “write-once” algorithms in that 
during the computation of a transitive closure a successor set 
is read into memory, expanded, and written back to disk only 
once. For both of these algorithms, Ri CX@S the number of 
tuples in the original relation and ll’i equals the numlxr of 
tuples in the closure. However, the DFS algorithm does not 
have this “read-once” and “write-once” property. If the 
graph is such that all successor sets currently on the stack 
cannot be memory resider& some successor sets from the 
stack must he paged out. If any of these successor sets have 
heen updated. writes become necessary. In iiny event, the 
paged out successors are re-read. Let the number of tuples in 
the original relation be 1 R 1 and in the closure relation 1 TC I. 
Define excess reads as Ri - IRI, and excess writes as Wi - 
ITC I. Figure 4.4 shows excess reads and excess writes in the 
DFS algorithm due to stack paging. Note that the size of the 
closure relation, I TC 1, is several times the sire of the original 
relation, I R I. (In this particular example, 20 to 70 times). 
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Figure 4.7. Savings due to marking and buffering in the DFS 
algorithm 

paging of successor sets at the bottom of the stack. 

Finally, we note that the performance of the Hybrid 
algorithm can be further improved by using a buffering 
strategy similar to the one implemented for the DFS algorithm 
to reduce Rj. After processing block Bl consisting of rows i, 
to i, we first process the off-diagonal block elements in the 
next block Bl+l column by column and from right to left, that 
is, we first process elements in the column j such that j = i,, 
then elements in the column j such that j = L-1, and so on. 
If there is a 1 for an element (i.i) in the column b,. the 
successor set of i is added to the successor set of i. We, 
therefore, can buffer the expanded successor sets resulting 
from pocessing BI and purge the successor set of i only after 
all elements in the column i, have been processed in Bl+l. 
etc. 

4.4 Comparison with the Grid algorithm 

Recently a new transitive closure algorithm that processes 
the matrix in 4uares rather than stripes has been proposed 
[23], and the worst case I/O complexity of this algorithm has 
been shown to be better than the blocked row algorithm by a 
factor of (nnm&er of nodes)l(memory size in tuplefi). The 
algorithm (referred to as the grid algorithm henceforth) is 
repmduced hae for reference: 

Partition the matrix into square sub-matrices 
that will each fit into a specified fraction of memory. 

L.43 there be f xf sub-matrices. 
lf Mjj is a sub-man& 

write its (reflexive and) transitive closure as MFi. 

Then execute: 

Fork=ltof 
MkL = MlF.k ; 
fori=ltof 

for j = 1 to f 

We compared the performance of the hybrid algorithm 
with this algorithm also. A straightforward implementation of 
the grid algorithm requires four submatrices Mk b, Mi), Mt j , 

and Mii to be in memory at the same time. However. for 
matrix multiplication, the entire matrix need not be in memory 
at the same time. Therefore, we implemented the grid 
algorithm as follows: 

Fork=ltof 
Read Mkc from disk ; 
Mk& = M:c ; 
for i = 1 to f 

(*) Read Mih from disk, row by row ; 
Ti.t = MiJtxMkh ; 
for j = 1 to f 

(**) Read Mij and M~J from disk, column by column ; 
Mij = Uij + TihXMtj ; 

In step (*). after one row of Mih has been read from disk, 
the corresponding row of Tih can be computed. The next row 
Of Mi& can then OVermite tlE Current IOW Of Mi&. ThUS only 
one row of Mih needs to be memory resident at a time, during 
step (*). However, storage is required for all of Tih and all of 
M&C. 

In step (**). one column of M&j can be read from disk, 
the co~~podiig ~01~mn of Mij CB~ be @ated. and then we 
can proceed to the next column. Thus storage is required in 
memory only for one column each of these matrices rather 
than the entire matrix. Thus the size of the partition, b, is 
determined from the equation 2xba + 2xb = memory size. 

In [23]. better asymptotic bounds have been proved for 
sparse acyclic graphs, and an intricate algorithm has been 
presented We did not implement that algorithm because of 
its complexity, but to take advantage of the sparseness and 
acyclicity of the graphs we are studying, we also considered a 
version of the grid algorithm in which the graph is 
topo]ogicaRy sorted before the transitive closure computation 
begins. Then the upper triangular half of the matrix will 
consist of zeros and the grid algorithm can take advantage of 
this property. In the following performance results, this 
version of the grid algorithm is referred to as the 
triangukuized grid algorithm. 

Figure 4.8 shows the performance of the grid algorithm 
compared to the hybrid algorithm for graphs of different sizes. 
Clearly, the directed matrix algorithm uniformly outperforms 
the grid algorithm. 

Let us see why we see this performance difference. 
Observe that the grid algorithm requires that the blocks all be 
equal, in consequence of which, dynamic block sizing is 
difficult. (One may have long finished computing with one 
block before one discovers that it has to be decreased in sire 
since some other block overflowed). As such, one has to be 
pessimistic, and assume that each block may potentially fill 
up, as we have done in the equation given in the previous 
paragraph. Moreover, the grid algorithm doea not have the 
“read-once, write-once” property, which the hybrid algorithm 
has. Fiidl~, the marking and immediate successor 
optimirations described in this paper are not applicable to this 
algorithm either. 

We also studied the effect of memory size on the relative 
performance of two algorithms, since the asymptotic bound for 
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Figure 4.8. Comparative performance of grid and hybrid 
algorithms 

the grid algorithm improves as the memory size is reduced. 
Figure 4.9 shows the performance of the triangularized grid 
algorithm relative to the hybrid algorithm for 500 node graph. 
The hybrid algorithm requires at least two successor sets 
worth of main memory, which in the worst case can be 1000 
tuples. We, therefore, varied memory size from 1000 tuples 
and up. This graph shows that the hybrid algorithm has 
uniformly better performance than the grid algorithm over all 
memory sixes, with the relative performance of the hybrid 
algorithm being even somewhat better for small memory sizes. 

5. SUMMARY 

We considered the problem of computing transitive closure 
in an environment in which the database is disk-resident and 
the transitive closure too big to fit in memory. We introduced 
a new family of hybrid transitive closure algorithms and 
presented experimental results showing that these algorithms 
perform better than the blocked row [l] and the grid 1231 
matrix-based algorithms, and the graph-baaed algorithms [ll]. 
The hybrid algorithms benefit from efficient blocking, 
immediate successor optimization, and marking optimization. 
The blocked row algorithm can also benefit from the 
immediate successor optimization and blocking, but loses to 
the hybrid algorithm due to the absence of marking 
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optimization. The immediate successor optimization is an 
inherent property of a graph-based algorithm, but the hybrid 
algorithm wins over the graph-based algorithm due to better 
blocking and larger savings in marking optimization and 
excess IKI in the graph-based algorithm due to paging of 
successor sets at the bottom of the stack. The grid algorithm 
benefits from blocking that is very efficient,in the worst case. 
but is static and hence may not do so well in the normal case. 
In addition, it does not benefit from the immediate successor 
or marking optimizations. 

The algorithms presented in this paper may be used to 
construct building blocks for future extended database 
systems. Although presented in the context of database 
systems, these algorithms have larger applicability and may be 
used in other problem domains that require reachability or 
path computation over a large graph. 
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