
Rakesh Agrawal

IBM Almaden Research Center
San Jose, California 95120

ABSTRACT

We present a new family of hybrid transitive closure
algorithms, and present experimental results showing that
these algorithms perform better than existing transitive closure
algorithms, includmg matrix-based algorithms that divide a
matrix into stripes or into square blocks, and graph-based
algmtihms. This family of algorithms can be generalized to
solve path problems and to solve problems in which some
selection criteria have been specified for source or destination
nodes.

1. INTRODUCTION

Transitive closure is regarded to be an important operation
for the next generation of database systems
[2,5,6,12,13,15,17,19,21]. and considerable research has
been devoted to designing algorithms for computing the
transitive closure of database relations [1.4,9-11.16.241.
These algorithms can be classified into three major families.
Irerurive algorithms, such as semi-naive [4], logarithmic
[10.24]. and variations thereof [9.10.16]. compute transitive
closure by repeatedly computing a relational algebraic
expression, stopping when no more new answer tuples are
generated, after a mmrber of iterations that depends on the
underlying dambase. Direct algorithms. on the other hand,
process each element (a node or an edge) a constant number
of times (usually oncex and terminate after such processing is

Hybrid Transitive Closure Algorithms

H. V. Jagadish

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

complete independent of the underlying data. In direct
algorithms. there are two families. Matrix-bared direct
algorithms, such as in [l. 25.261. are best understood in terms
of a matrix representation and manipulation. Graph-bused
direct algorithms, such as in [7.8.11,18,20]. are best
understood in terms of a graph traversal. Graph-based
algorithms often coalesce nodes belonging to the same
strongly connected component into one node since these nodes
will have identical successors, and process nodes of the
condensed acyclic graph so obtained in a reverse topological
order, adding to a node the successor sets of its immediate
SUcCeSSOIS.

There is empirical evidence that blocked matrix-based
direct algorithms perform significantly better than the iterative
algorithms [l]. Three major factors contribute to their better
performance: i) better memory utilization due to blocking, ii)
efficient removal of duplicates, and iii) use of a careful
~ocessing order, rather than iteration, for termination. As
noted in [ll]. duplicates can be removed efficiently in the
graph-based algorithms as well, and they also do not require
repeated iteration for termination. An advantage of the
graph-based algorithms over the matrix-based algorithms is
that they are 0 (n *e) algorithms whereas the matrix algorithms
are 0 (d) algorithms, where n is the number of nodes and e
the number of arcs in the graph The problem with the
graph-based algorithms is that these algorithms are difficult to
implement efficiently in an environment where the database is
disk-resident [141.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is pivcn

that copying is by permission of the Very Larpc Data Base

Endowment. To copy otherwise. or to republish. requires ;I l’ce

and/or special permission from the Endowment.

We present a new family of hybrid transitive closure
algorithms and present experimental results showing that these
algorithms perform better than existing matrix-based and
graph-based algorithms.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

Recently a new transitive closure algorithm that processes
the matrix in squares rather than stripes has been proposed
[U]. and the worsf cure I/O complexity of this algorithm has
been shown to be better than than an algorithm in which the
matrix is divided into stripes. We show, through experiments,
that the new hybrid algorithm also outperform this algorithm
for a wide range of graph size and memory size choices.

326

Besides conqxrting reachability, the hybrid algorithms can
also be used to solve the class of well-formed decomposable
path problems. Included in this class are many problems of
practical interest such as bill of materials, shortest path,
critical path, path of maximum reliability, etc. They can also
be used to solve pobleans in which some selection criteria has
been specitied for source or destination nodes. For lack of
space, this generalization is not discussed here. See [3] for
details.

The rest of the paper is organ&d as follows. In Section
2. we give a brief review of matrix-based and graph-based
algorithms. Hybrid algorithms are introduced in Section 3.
Section 4 presents the result of the performance evaluation of
hybrid algorithms. We conchtde with some final observations
in !section 5.

2. BACKGROUND

We briefly review the features of matrix-based and graph-
based transitive closure algorithms that bear comparison with
the hybrid algorithms.

2.1 Matrix-Based Direct Algorithms

Given an nXn adjacency matrix of elements Uij Over an
n-node graph with Uij being 1 if there is an arc from node i
to node j, and 0 otherwise, the Warshall algorithm [26]
computes the transitive closure of the given graph as follows:

ji ik FOCeSS Uij

“Processing” of an element Uij involves examining whether
Uij is 1. and if it is, then making every successor of j a
successor of i. Thus, the Warshall algorithm computes
closure by “processing” every element of the matrix exactly
once, column by column from left to right, and from top to
bottom within a column.

It has been shown [l] that the matrix elements can be
processed in any order, provided the following two constraints
are maintained:

1. For all i. j. k, processing of the element uit precedes
ptxssing of the element aij, ifl k < j, and

2. For all i. j. k. processing of the element a# precedes
the processing of the element Uij, if k < j .

Various processing orders can be derived subject to these
two constraints, giving rise to a whole family of Wurshull-
derived algorithms. The Warren algorithm [25] that processes
matrix elements in row order but in two passes’:

can be viewed as a Warshsll-derived algorithm, since it

1. only lhc lower trimgulu half is cxunined in Ihe lint pas, and lhe upper
triquhr half is c.mm&d in the secand pass.

Observes the two precedence constraints listed above. The
blocked row and blocked column algorithms presented in [1]
are Warshall-derived algorithms that process matrix elements
in such a way that the Vo traffic between disk and memory is
minimized.

2.2 Graph-Based Direct Algorithms

Purdom, in [18]. made two key observations:

i. During the computation of transitive closure of a
directedacyclicgraph,ifnodeA precedesnodeE ina
topological sort of the nodes in the graph. additions to
the successor set of node A cannot sffect the successor
set of node B. One should therefore, compute the
successor set of B first and then that of A. By thus
processing nodes in reverse topological order, one need
add to a node only the successor liits of its immediate
successors, since the latter would already have been
fully expanded.

ii. All nodes within a strongly connected component in a
graph have identical reachability properties, and the
condensation graph obtained by collapsing all the nodes
in each strongly connected component into a single node
is acyclic.

Tarjan [22] developed an 0 (e) algorithm for de.temCning
strongly connected components of a graph by means of a
depth-first search, which also produces as a by-product a
topological sort on the components. It has been observed
[7.8.11,20] that it is possible to modify Tarjan’s algorithm in
a way that the successor lists are also expanded as the strongly
cormected components are being determmed and thus
compute the transitive closure.

3. HYBRID ALGORITHMS

The hybrid algorithms we propose in this section are best
described starting with the matrix-based algorithms described
in the previous section. In matrix-based algorithms, row i of
the adjacency matrix corresponds to the successor set of the
node numbered i, but the nodes are numbered arbitrarily.
Instead of arbitrary numbering, we use topological ordering to
assign node numbers, and then exploit this ordering to
incorporate the optimizmg features of the graph-based
algorithms in a matrix framework.

Our algorithms have two distinct passes. In the first pass,
we obtain a condensation graph for the given graph in which
each non-trivial strongly connected component is identiied
and coalesced into one no&. A topological sort of the
condensation graph is also obtained at the same tune. The
transitive closure is computed in the second pass. We present
algorithms only for the second pass, assuming that the first
pass has already been performed using, say, the Tarjan
algorithm [22].

3.1 Basic Algorithm

Let us consider an acyclic graph G and number its nodes
in a topological sort or&r. Thus, the source node of any arc
has a higher node number than its destination node. Obtain an
adjacency matrix representation M of G, such that row i

327

represents to successor set of node i, and matrix element (i j)

is 1 if there is an arc (ij) in G , and 0 otherwise. M will be
a lower triangular matrix.

Here is the basic hybrid algorithm:

Algorithm 1 (The basic hybrid algorithm):

For i from 1 to n
Copy row i into a temporary I
Forj fromi-ltol

P process from right to left within a row */
If~j)#O

p immediate successor optimization */
call add-succ(i , j , j7)

r add successors of j to i *I

procedure adc~succ(i, j, T):
Forkfromltoj-1

If(j,k)=l
IfCk)= 1

(i,k) = 0 P marking optimization */
else

(i.k) = 1

This algorithm is similar to the. waHen algorithm [25] in
that it processes matrix elements in row order. However,
unlike Warren

A. only those elements ej which were 1 to begin with
result in addition of successors of j to i (immediate
successor optimization);

B. while a row is being processed, some elements which
were 1 to begin with are treated as if they were 0
(marking optimization); and

C. matrix elements are processed right to left.

(A) implies that this algorithm. like graph-based
algorithms, adds to a node only the successor sets of its
immediate successors. The temporary row I is initialized to
the set of immediate successors of i, and I is used to
determme whether the successors of nodes j should be added
to i. Before IDW i is processed, all rows numbered less than
i have already been processed. Thus, before processing any
node, it is guaranteed that all its successors have been
processed ad fully expanded, since successors correspond to
rows that have a lower row number in the matrix than the row
number of the node being processed.

The effect of (B) and (C) is similar to the marking
. . .

m proposed in [ll]. If a node i has two immediate
successors j and k such that k is also a successor of j and it
is guaranteed that the node j has been fully expanded before i
is processed, then it is sufficient to add the successors of j to
i andthesum ofkneednotbeaddedtoi. (C)ensures
that if two immediate s- j and k of i are such that k
is also a successor of j. then j is processed before k. (B)
ensures that later on, when element (i,k) is processed. the
successorsetofk willnotbeaddedtoi.

Consider. for example, the simple graph shown in Figure
3.1 and contrast the computation of its transitive closure using
the Warren algorithm and Algorithm 1. In the Warren

algorithm, nodes are numbered arbitrarily, whereas nodes are
assigned numbers in the topological sort order in Algorithm 1.
Figure 3.1 also shows the adjacency matrix corresponding to
the two node numberings.

4

fi

1 3

2

4
P

2 3

1

1234 1234

(a) Warren (b) Directed Matrix

Figure 3.1. Difference in computations in Warren and
Directed algorithms

When processing row 3 using the Warren algorithm, first
the element (3,l) is processed, the successor set of 1 is fetched
into memory and added to the successor set of 3, thus
transforming the element (3.2) into a 1. Now the element
(3.2) is processed and the successor set of 2 is fetched. When
processing row 3 using Algorithm 1, only the successor set of
2 is fetched, and the successor set of 1 is not fetched due to
the immediate successor optimization. Similarly, when
processing row 4 using the Warren algorih the successor
sets of 1. 2. and 3 are fetched. However, when using
Algorithm 1. only the successor set of 3 is fetched The
successor set of 1 is not fetched due to the marking
optimization, and the successor set of 2 is not fetched due to
the immediate successor optimization.

There is never a case when Algorithm 1 will fetch a
successor se& but the Warren algorithm will not, irrespective
of node numbering. Provided that the node numbering is
same, the sizes of successor sets, when fetched, are identical.
Algorithm 1. therefore, for a given (reverse topologically
sorted) node ordering, performs less or equal I/O than the
Warren algorithm. The disadvantage of Algorithm 1 is that it
requires a topological sort of the given graph. However, our
experimental results (reported in Section 4) show that the cost
of topological sort is insignificant compared to the cost saving
when computing the transitive closure.

The major diierence between Algorithm 1 and the graph-
based algorithms is that the graph-based algorithms are depth-
first recursive descent algorithms, whereas Algorithm 1 is a
breadth-first algorithm, malting it amenable to efficient
blocking. Moreover, processing of elements from right to left
within a row in Algorithm 1 guarantees that the marking
optimization is performed in all possible cases. However, the
marking optimization in a graph-based algorithm depends on
the order in which children of a node are examined. Consider,
for example. the graph shown in Figure 3.2. In a graph-based
algorithm, if node i+l is visited before node i+2, the
successor set of node i+l will be added to the successor set of
node i+3 twice: once directly and then through the addition of
the successor set of node i+2. The hybrid algorithm, on the

328

other hand, will add the successors of node i+l to node i+3
only indkctly by adding the sumsors of node i+2 to node
i+3.

Figure 3.2. Order dependence of the marking optimization in
the graph-based algorithm

3.2 Blocked Algorithm

We now discuss how Algorithm 1 can be blocked.
Partition the matrix into blocks of contiguous rows. As we
will see shortly, blocks can be eed dynamically, and
the number of rows in a block could be different for different
blocks. If a block bl consists of rows i, through i,. then the
elements (ij) such that i, 5 i I i and i, I j I i, will be
referred to as the diagonal block elements of br and the
remaining elements in bl will be referred to as the off-
diagonal block elements. ‘IIe rest of the elements in the
lower triangular half of the matrix will be referred to as the
off-block elements (see Figure 3.3).

Algorithm 2 (The blocked hybrid algorithm):

Assume matrix partitioned into m blocks.

Do the following for each block bl. I = 1.2, m:

Let the block bt consist of rows i, to i..
Fetch rows i, through i, into memory.
Copy into rows 1: through 1:. respectively.

/* process the elements in the off-diagonal block
column-by-column from right to left */

Forjfromi,-ltol
For i from i, to i.

if c j) # 0 p immediate successor optimization */
fetch the row j if not already in memory

P blocking benefit */
add-succ(i. j, T)

p process the elements in the diagonal block
row-by-row from right to left */

For i from i, to &
Forj fromi toi,

Figure 3.3. Diagonal block, off-diagonal block, and off-block
elements for the block bl

3 4 5

T

12345
1

2
:

1 4
5

Figure 3.4. Benefit of blocking

block consisting of rows 3 through 5. the elements (3.2). (4.2).
and (5.2) are processed in that order, the successor set of 2 is
read once, and is added to the successor sets of 3. 4 and 5.
With the basic hybrid algorithm, elements are processed in
row-order. and the successor set of 2 will be read three time~.~

The elements in the diagonal block may be processed in
row-order without affecting the ID performance because all
the relevant rows are already in memory.

The immediate successor optimization is performed as in
the case of the basic algorithm. Within an off-diagonal block
and a diagonal block, elements are processed right to lefs but
the off-diagonal block is processed before processing the
diagonal block. The result is that the algorithm performs
marking optimizatioq, but separately within the off-diagonal
block and diagonal block.

3.3 Dynamic Blocking

Block sizes can be determined dynamically as in [l] using
the following greedy algorithm. Partition the memory into
three logical segments. In the tirst segment called the louding
urea the successor se& are loaded one at a time until the
loading area fills up. The number of successor sets that could

if (ij) # 0 p immediate successor optimization */
add-succ(i , j, I) 2 The auaxssor sets, in galcnl, UC large. so Ihat there is * ad p&biIity

Since the elements in the off-diagonal block are processed
of finding the s-m sa of 2 in system buffers when p-ins ~DW 4

column by column, an off-block successor set is fetched at
hXlW3hUOaenpd.

most once during the processing of a block. Consider, for
example, the graph shown in Figure 3.4. When processing the

329

be accommodated in the loading area determines the size of
the current block.

As the successors sets expand, new tuples are created in
the expansion area. The third segment of the memory, called
the off-block area is reserved for reading one successor set at a
tune. This successor set is used for expanding the successor
sets in the current block. The expansion area grows toward
the off-block area. As successors are added to the nodes in
current block, the expansion area may fill up and hit the
boundary of the off-block area. This situation can be handled
by dynamically reducing the size of the cutrent block.
Reblocking simply involves taking out the last row in the
current block and freeing up the space in the loading and
expansion areas devoted to it.

4. PERFORMANCE EVALUATION

We now present the results of simulation experiments
e~htting the performance of the hybrid algorithms. We
describe the algorithms studied. make a few observations on
the performance evaluation methodology, discuss the datasets,
and then present the results.

4.1 Algorithms

The pexfonnance of the hybrid algorithm was compared
against the Blocked Row algorithm presented in [l] and the
graph-based algorithm (refened to as the DFS algorithm in the
rest of the paper) presented in [ll].

Blocked Row and Hybrid algorithms were implemented by
partitioning the memory into three segments: i) the loading
area, for initial loading of successor sets in the current block,
ii) the expansion asea, for creating new tuples, and iii) the
off-block area, for re&mg one successor set that is used for
expanding the s- sets in the current block. Block sizes
were dekmmed using the greedy algorithm described in
Section 3.3. The simulation kept trPck of old values of tuples
in the cumnt block, necessary in the hybrid algorithm, and
reduced accordingly the memory availability for the hybrid
algorithm.

The strategy for implementing the DFS algorithm in a
disk-based envinmment is not presented in [ll]. Our
implementation of the DFS algorithm tries to keep as much of
the successor sets stack in memory as possible. If space in
memory runs out, the successor set at the bottom of the stack
is paged out. lf this set has been updated since it was last
read in to memory, then it is written out to disk, otherwise it
is simply purged from memory. The successor set at the
bottom of the stack is selected for paging out since the activity
is typically czmcmmd at the top of the stack.

To fully utilize the memory available, we added a further
optimizah After a successor set is fully expanded and
popped from the stack, it is written to disk, but not purged
from the memory. This buffering strategy avoids, for
example, re-reading of the successor set of D when processing
the node Z in Figure 4.1. The successor sets still on the stack
have priority for memory residency over these buffered
popped-off suaxsor sets. so that when memory fills up. all
these extra buffered sets are purged one by one, before any on

the stack is paged out.

A

B z

& C D

Figure 4.1. Buffering in the DFS algorithm

Marking optimization was also performed. Thus in a
graph such as in Figure 3.5, if the successor set of node 4 is
added to the successor set of node 5, it is not necessary also
to add the successor set of node 2. another immediate
successor of node 5 that is also a successor of node 4.
However, as noted in Section 3.1, the entire saving possible
hm marking optimization may not be realized depending on
the order in which the immediate successors of a node. are
expanded. At the expense of some additional book-keeping
and some additional memory space, it is possible to defer the
unioning of successor sets until the marking optimization can
be applied. But the optimization then applies only to the
effort to perform the union in memory and not to the effort in
fetching the successor sets from disk To the extent that the
r/o is the primary cost determinant for the algorithm, the
deferred unioning provides little benefit, and has the
disadvantage of constmCng additional memory. We, therefore,
did not defer successor set unions.

4.2 Experimental Set Up

Synthetic graphs were used in the performance evaluation
experiments. Two parameters of a graph were identified as
important: the number of nodes, and the average degree of
each node. These two parameters were varied to create a set
of random graphs.

We report here the results for the bill of materials
problem. We also considered reachability computations for all
the algorithms, and found trends to be similar to those for the
bill of material problem. Since bill of materials problem is
ill-defined for cyclic graphs, experiments were restricted to
acyclic graphs.

The number of ,tuple I/C& was used as the performance
metric. The size of memory was also specified in number of
tuples. Memory sizes were chosen so that the complete
closure of the graph would not fit in main memory, as would
be the case in a disk-based environment.

4.3 Performance Results

Figure 4.2 shows the relative performance of Hybrid,
Blocked Row. and DFS algorithms. We have normalized the
total number of tuple I/OS required to compute the closure
with respect to the tuple I/Os required for the directed matrix
algorithm. Total Vos have been plotted by varying both the
number of nodes and the average degree. The numbers for
the Blocked Row algorithm are for a version of the algorithm
in which the graph was first topologically sorted and then
processed using only the first pass of the Blocked Row

330

~Igcrithm. This version of the Blocked Row algorithm was
found to always perform bet&r than the two pass vasicm.
Both for hybrid and blocked tow algorithms, the total I/D
in&a+ the I/o for topologically sorting the graph and writing
outthesortedresult. Itisclearfromthegraphsthatthe
hybrid algorithm consistently performs better than both DFS
and Blocked Row algorithms.

Afh&Ih oBbckedRow oHylnid

Total
Ito

Ratio

Total
I/o

Ratio

Total
IP

Ratio

Nodes=500

3

1 Nodes = 750

-0;

3-

Nodes = loo0

2-

l-

-0 I I I I I
2 4 6 8 10

De%=

Figure 4.2. Comparative performance

Let us now analyze these performance results in detail.

The cost of topological sort in Hybrid and Blocked Row
algorithms tums out to be a small fraction of the cost of
computing transitive closure. Figure 4.3 shows the topological

sort wmpomnt as a fmction of the total closure cost for these
algorithms for 500 node graphs. Similar results were obtained
for graphs of other sixes.

o Blocked Row o Hybrid

0.02 Nodes-500
Im

Ratio
0.01

2 4 6 8 10

b3=

Figure 43. Cost of topological sort as a fraction of total cost

The sorting cost in number of tuple I/OS for all the
relations was twice the munher of tuples in the relation - for
each tuple, one I/O was incurred to read it into memory and
one to write it back in the sorted order. This result is not
surprising. Although relations were larger than the memory
size, the maximum mnnber of tuples that need to be memory
resident at any time depends on the length of the longest path
in the corresponding graph, which explains why no tuple was
reread during the topological sort.

Coming to the transitive closure cos& the I/O cost consists
Of:

1.

2.

3.

Ri: Reads of tuples when a successor set is brought into
memory to be expanded.

IVi: Writes of tuple~ when an expanded successor set is
written back to disk.

Rj: Reads of tuples when a successor set is brought into
memory to expand another successor set.

Ignoring (3) for the moment, both Hybrid and Blocked
Row are “read-once” and “write-once” algorithms in that
during the computation of a transitive closure a successor set
is read into memory, expanded, and written back to disk only
once. For both of these algorithms, Ri CX@S the number of
tuples in the original relation and ll’i equals the numlxr of
tuples in the closure. However, the DFS algorithm does not
have this “read-once” and “write-once” property. If the
graph is such that all successor sets currently on the stack
cannot be memory resider& some successor sets from the
stack must he paged out. If any of these successor sets have
heen updated. writes become necessary. In iiny event, the
paged out successors are re-read. Let the number of tuples in
the original relation be 1 R 1 and in the closure relation 1 TC I.
Define excess reads as Ri - IRI, and excess writes as Wi -
ITC I. Figure 4.4 shows excess reads and excess writes in the
DFS algorithm due to stack paging. Note that the size of the
closure relation, I TC 1, is several times the sire of the original
relation, I R I. (In this particular example, 20 to 70 times).

A Making Savings / Rj q Buffering savings/ Rj
o Rj /Total cost

2

1 Nodes = 500

uo 1
Ratio

5

-0 I I I I 1
2 4 6 8 10

Degree

Figure 4.7. Savings due to marking and buffering in the DFS
algorithm

paging of successor sets at the bottom of the stack.

Finally, we note that the performance of the Hybrid
algorithm can be further improved by using a buffering
strategy similar to the one implemented for the DFS algorithm
to reduce Rj. After processing block Bl consisting of rows i,
to i, we first process the off-diagonal block elements in the
next block Bl+l column by column and from right to left, that
is, we first process elements in the column j such that j = i,,
then elements in the column j such that j = L-1, and so on.
If there is a 1 for an element (i.i) in the column b,. the
successor set of i is added to the successor set of i. We,
therefore, can buffer the expanded successor sets resulting
from pocessing BI and purge the successor set of i only after
all elements in the column i, have been processed in Bl+l.
etc.

4.4 Comparison with the Grid algorithm

Recently a new transitive closure algorithm that processes
the matrix in 4uares rather than stripes has been proposed
[23], and the worst case I/O complexity of this algorithm has
been shown to be better than the blocked row algorithm by a
factor of (nnm&er of nodes)l(memory size in tuplefi). The
algorithm (referred to as the grid algorithm henceforth) is
repmduced hae for reference:

Partition the matrix into square sub-matrices
that will each fit into a specified fraction of memory.

L.43 there be f xf sub-matrices.
lf Mjj is a sub-man&

write its (reflexive and) transitive closure as MFi.

Then execute:

Fork=ltof
MkL = MlF.k ;
fori=ltof

for j = 1 to f

We compared the performance of the hybrid algorithm
with this algorithm also. A straightforward implementation of
the grid algorithm requires four submatrices Mk b, Mi), Mt j ,

and Mii to be in memory at the same time. However. for
matrix multiplication, the entire matrix need not be in memory
at the same time. Therefore, we implemented the grid
algorithm as follows:

Fork=ltof
Read Mkc from disk ;
Mk& = M:c ;
for i = 1 to f

(*) Read Mih from disk, row by row ;
Ti.t = MiJtxMkh ;
for j = 1 to f

(**) Read Mij and M~J from disk, column by column ;
Mij = Uij + TihXMtj ;

In step (*). after one row of Mih has been read from disk,
the corresponding row of Tih can be computed. The next row
Of Mi& can then OVermite tlE Current IOW Of Mi&. ThUS only
one row of Mih needs to be memory resident at a time, during
step (*). However, storage is required for all of Tih and all of
M&C.

In step (**). one column of M&j can be read from disk,
the co~~podiig ~01~mn of Mij CB~ be @ated. and then we
can proceed to the next column. Thus storage is required in
memory only for one column each of these matrices rather
than the entire matrix. Thus the size of the partition, b, is
determined from the equation 2xba + 2xb = memory size.

In [23]. better asymptotic bounds have been proved for
sparse acyclic graphs, and an intricate algorithm has been
presented We did not implement that algorithm because of
its complexity, but to take advantage of the sparseness and
acyclicity of the graphs we are studying, we also considered a
version of the grid algorithm in which the graph is
topo]ogicaRy sorted before the transitive closure computation
begins. Then the upper triangular half of the matrix will
consist of zeros and the grid algorithm can take advantage of
this property. In the following performance results, this
version of the grid algorithm is referred to as the
triangukuized grid algorithm.

Figure 4.8 shows the performance of the grid algorithm
compared to the hybrid algorithm for graphs of different sizes.
Clearly, the directed matrix algorithm uniformly outperforms
the grid algorithm.

Let us see why we see this performance difference.
Observe that the grid algorithm requires that the blocks all be
equal, in consequence of which, dynamic block sizing is
difficult. (One may have long finished computing with one
block before one discovers that it has to be decreased in sire
since some other block overflowed). As such, one has to be
pessimistic, and assume that each block may potentially fill
up, as we have done in the equation given in the previous
paragraph. Moreover, the grid algorithm doea not have the
“read-once, write-once” property, which the hybrid algorithm
has. Fiidl~, the marking and immediate successor
optimirations described in this paper are not applicable to this
algorithm either.

We also studied the effect of memory size on the relative
performance of two algorithms, since the asymptotic bound for

332

o@id aTrian@rrizedGfid o Hybrid

15 -

lo-
Total
40

Ratio
5-

-O-

Nodes=500

/i

0 ; ; 2 = ; ; ; 0

Total
uo

Ratio

2 4 6 8 10

NW

Figure 4.8. Comparative performance of grid and hybrid
algorithms

the grid algorithm improves as the memory size is reduced.
Figure 4.9 shows the performance of the triangularized grid
algorithm relative to the hybrid algorithm for 500 node graph.
The hybrid algorithm requires at least two successor sets
worth of main memory, which in the worst case can be 1000
tuples. We, therefore, varied memory size from 1000 tuples
and up. This graph shows that the hybrid algorithm has
uniformly better performance than the grid algorithm over all
memory sixes, with the relative performance of the hybrid
algorithm being even somewhat better for small memory sizes.

5. SUMMARY

We considered the problem of computing transitive closure
in an environment in which the database is disk-resident and
the transitive closure too big to fit in memory. We introduced
a new family of hybrid transitive closure algorithms and
presented experimental results showing that these algorithms
perform better than the blocked row [l] and the grid 1231
matrix-based algorithms, and the graph-baaed algorithms [ll].
The hybrid algorithms benefit from efficient blocking,
immediate successor optimization, and marking optimization.
The blocked row algorithm can also benefit from the
immediate successor optimization and blocking, but loses to
the hybrid algorithm due to the absence of marking

333

A TrianguIarized Grid o DireaedMatrix
4.

3.

Total
llo 2.

1.

-0 -

L N&zDegree=5

I I
5000 10000

Memory (in Tuples)

Figure 4.9. Comparative performance as memory is varied

optimization. The immediate successor optimization is an
inherent property of a graph-based algorithm, but the hybrid
algorithm wins over the graph-based algorithm due to better
blocking and larger savings in marking optimization and
excess IKI in the graph-based algorithm due to paging of
successor sets at the bottom of the stack. The grid algorithm
benefits from blocking that is very efficient,in the worst case.
but is static and hence may not do so well in the normal case.
In addition, it does not benefit from the immediate successor
or marking optimizations.

The algorithms presented in this paper may be used to
construct building blocks for future extended database
systems. Although presented in the context of database
systems, these algorithms have larger applicability and may be
used in other problem domains that require reachability or
path computation over a large graph.

ACKNOWLEDGEMENTS

We wish to thank Shaul Dar and Bruce Hillyer for their
insightful wmments and suggestions.

REFERENCES

Ul R. Agrawal. S. Dar, and H. V. Jagadish. “Direct
Transitive Closure Algorithms: Design and Performance
Evaluation,” ACM Trans. Database Syst.. to appear.
(Preliminary version appeared as: R. Agrawal and H.V.
Jagadish. “Direct Algorithms for Computing the
Transitive Closure of Database Relations”, Pmt. 13th
Int’l Conf. Very Lmge Data Bares, Brighton, England,
Sept. 1987) .

[2] R. Agrawal, “Alpha: An Extension of Relational
Algebra to Express a Class of Recursive Queries,”
Proc. IEEE 3rd Int’l Conf. Data Engineering, Los
Angeles, California, Feb. 1987. 580-590. Also in IEEE
Trans. Sojbvare Eng. 14. 7 (July 1988). 879-885.

[3] R. Agrawal and H. V. Jagadish, “Hybrid Transitive
Closure Algorithms,” AT&T Bell Laboratories
Technical Memorandum, 1990.

[4] F. Bartcilhon, “Naive Evaluation of Recursively Defined
Relations, ’ ’ Tech. Rept. DB-004-85. MCC, Austin,
Texas, 1985.

[5] J. Biskup, U. Raesch. and H. Stiefeling, “An Extended
Relational Query Language for Knowledgebase
Support,” Institut fuer Informatik. Hildesheim, West
Germany, 1987.

[6] I. F. Cruz and T. S. Norvell, “Aggregative Closure: An
Extension of Transitive Closure,” Proc. IEEE 5th I&l
Co@. Data Engineering, Los Angeles, California, Feb.
1989.

[7] J. Ebert, “A Sensitive Transitive Closure Algorithm,”
Information Processing Letters, 12, 1981. 255-258.

[8] J. Eve and R. Kurki-Suonio, “On Computing the
Transitive Closure of a Relation,” Acta Igormatica, 8,
1977, 303-314.

[9] U. Guntzer. W. Kiessling, and R. Bayer, “On the
Evaluation of Recursion in Deductive Database Systems
by Efficient Differential Fiipoint Iteration,” Proc. IEEE
3rd Int’l Co& Data Engineering, Los Angeles,
Calif~ Feb. 1987, 120-129.

[lo] Y. E. Ioartnidis, “On the Computation of the Transitive
Closure of Relational Operators.” Proc. 12th Int’f Co&
Very Large Data Bases, Kyoto. Japan, Aug. 1986, 403-
411.

[ll] Y. E. Ioarmidis and R. Ramakrishnan, “An Efficient
Transitive Closure Algorithm,” Proc. 14th Int’l Conf.
Very Large Data Bases, Aug.-Sept. 1988.382-394.

[12] H. V. Jagadish, R. Agrawal, and L. Ness, “A Study of
Transitive Closure as a Recursion Mechanism,” Proc.
ACM-SIGMOD 1987 Int’l Conf. m Management of
Data, San Fmcisco, California, Miy 1987.331-344.

[13] B. Jiang, “Making the Partial Transitive Closure an
Elementary Database Operation,” Proc. GI Co@
Datatxue Systems for O&e Antomabn, Engineering,
and Scientijic Applications, Zurich, 1989.

[14] B. Jiang, “A Suitable Algorithm for Computing Partial
Transitive Closures in Databases,” Proc. IEEE 6th Int’l
Con& Data Engineering, Los Angeles. California, Feb.
1990.

[IS] R. Kung, E. Hanson, Y. Ioannidis. T. Sellis. L. Shapiro,
and M. Stonebraker, “Heuristic Search in Data Base
Systems.*’ Proc. 1st Int’l Workshop Expert Dattie
System, Kiawah Island South Carolina, Oct. 1984. %-
107.

[16] H. Lu, “New Strategies for Computing the Transitive
Closure of a Database Relation,” Proc. I3th Int’l Co&
Very L.wge Data Bases, Brighton, England, Sept. 1987.

[17] T. H. Merrett, Relational Information System, Reston
publishing, Reston, Virginia, 1984.

[18] P. Purdom, “A Transitive Closure Algorithm,” Bfl, 10,
1970, 76-94.

[19] A. Rosenthal, S. Heiler, U. Dayal, and F. Manola,
“Traversal Recursion: A Practical Approach to
Supporting Recursive Applications,” Proc. ACM-
SIGMOD 1986 Int’l Coti. on Management of Data,
Washington D.C.. May 1986, 166-176.

[20] L. schmitz, “An Improved Transitive Closure
Algorithm,” Com&ng, 30, 1983, 359-371.

[21] S. Sippu and E. Soisalon-Soininen. “A Generalized
Transitive Closure for Relational Queries,” Proc. 7th
Symp. Principles of Database Systems, March 1988.

[22] R. Tarjan, “Depth-First Search and Linear Graph
Algorithms,” SIAM Journal of Computing, 1, 1972,
146-160.

[23] J. D. Ullman and M. Yannakakis. “On the Input/Output
Complexity of Transitive Closure,” Proc. of the ACM-
SIGMOD Int’l Co& on the Management of Data,
Atlantic City, NJ, May, 1990.

[24] P. Valduriez and H. Boral, “Evaluation of Recursive
Queries Using Join Indices,” Proc. 1st Int’l Con&
Expert Database Systems, Charleston, South Carolina,
April 1986. 197-208.

[25] H. S. Warren “A Modification of Warshall’s Algorithm
for the Transitive Closure of Binary Relations,”
Cotnmun. ACM, M(4). April 1975, 218-220.

[26] S. Warshall, “A Theorem on Boolean Matrices,” J.
ACM, 9(l). Jan 1962, 11-12.

334

