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Abstract 

Bottom-up evaluation of deductive database programs has 
the advantage that it avoids repeated computation by storing 
all intermediate results and replacing recomputation by table 
lookup. However, in general, storing all intermediate results 
for the duration of a computation wastes space. In this paper 
we propose an evaluation scheme that avoids recomputation, 
yet under fairly general conditions at any given time stores 
only a small subset of the facts generated. The results consti- 
tute a significant first step in compile-time garbage collection 
for bottom-up evaluation of deductive database programs. 

1 Introduction 
A fundamental advance in deductive database technology has 
been the invention of bottom-up query evaluation strategies 
that retain the “focussing” properties of top-down evaluation 
strategies. One of the key advantages of these bottom-up 
strategies over common top-down approaches (such as Pro- 
log) is that by storing all intermediate results, bottom-up 
evaluation is able to replace the recomputation of a fact by 
a simple lookup. In many cases this makes bottom-up eval- 
uation polynomial time when the corresponding top-down 
computation is exponential time. However, this efficiency in 
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the time domain is often accompanied by inefficiency in the 
space domain. 

In this paper we propose an evaluation scheme, called Slid- 
ing Window Tabulation, that retains the time efficiency of 
bottom-up computation while improving its space efficiency. 
Intuitively, Sliding Window Tabulation stores a fact as long 
as the fact could still be used to produce answers or avoid 
redundant computation, but no longer. The need for such 
an evaluation scheme is perhaps best demonstrated by an 
example. 

Example 1.1 Consider the problem of finding the longest 
common subsequence in a pair of strings. This problem is 
significant because it is paradigmatic of a number of problems 
that arise in DNA sequence analysis, an area that has been 
identified as a promising application for deductive database 
technology. 

The standard algorithm of Hirchberg [Hir75] for the 
longest common subsequence can be expressed simply and 
elegantly using Prolog notation (the program appears in Sec- 
tion 5 of this paper). Unfortunately, on strings of length n, 
the time complexity of Prolog is both O((2,“)) and 0((‘,“)). 

The function (‘l) is exponential in n and grows extremely 

quickly. For example, if n = 20, we have that (‘c) > 

275 x 10’; if n = 100, we have (‘c) > 1.8 x 105’. Clearly, the 
Prolog evaluation strategy cannot be used on this program 
for any but the shortest of strings. 

If we take the bottom-up approach of rewriting by Magic 
Templates [Ham881 followed by Seminaive bottom-up evalu- 
ation [Ban85], the running time is reduced to O(n’). This 
is a dramatic improvement; unfortunately, the space require- 
ment is also O(n’). In DNA sequence analysis, comparison 
of strings of over lo6 bases will be routine. (The human 
genome is estimated to contain over 10’ base pairs.) Even 
if each fact to be stored fits in a single byte, on strings of 
this size, the standard bottom-up approach will require over 
a terabyte (1012 bytes) of storage. 

The evaluation algorithm presented in this paper, “Sliding 
Window Tabulation,” evaluates the LCS program in O(n2) 
time and O(n) space. To our knowledge this is the first 
evaluation algorithm for deductive database queries that can 
feasibly be applied to evaluate queries on this program over 
large databases. 0 
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The tradeoffs between memoing, recomputation, and ef- 
ficient space management have been explored in the func- 
tional programming literature [Bir80, Coh83, Hil76], but to 
our knowledge have never been explored in the context of 
bottom-up evaluation of logic programs. A main contribu- 
tion of this paper is to identify the problem of improving 
memory utilization in bottom-up evaluation of logic pro- 
grams. 

Sliding Window Tabulation, presented in Section 4, differs 
significantly from techniques suggested for functional pro- 
grams in [Coh83, Bir80], and presents an interesting contrast: 
Rather than explore program schemas and schema transfor- 
mations, we develop a uniform approach based on optimizing 
the structure of programs generated by the Magic Templates 
algorithm. 

Our algorithm for tabulation of a program and query con- 
sists of three phases: 1) First, the program is analyzed to 
determine if tabulation can be profitably applied. 2) Next, 
the program is rewritten using the Magic Templates rewrit- 
ing algorithm. 3) Finally, the resulting rewritten program 
is evaluated by an algorithm that attempts to store facts 
only as long as necessary, using information derived from the 
analysis of the program done in step 1. 

The remainder of this paper is organized as follows. We 
give a brief overview of bottom-up evaluation in Section 2. 
We give an overview of Sliding Window Tabulation in Sec- 
tion 3, and consider the algorithm in more detail in Section 4. 
We present testable conditions for applicability of this algo- 
rithm and several results about its performance. We present 
a detailed discussion of the LCS problem introduced in Ex- 
ample 1.1 in Section 5. We present conclusions and directions 
for future work in Section 6. 

2 The Bottom-Up Approach 

To provide context for the discussion of Sliding Window Tab- 
ulation, and to make this paper self-contained, in this section 
we present an overview of the bottom-up approach t,o de- 
ductive database query evaluation. This approach has been 
developed without consideration for space utilization. 

The first step in bottom-up evaluation is to rewrite the 
program using the Magic Templates transformation [Ram88]. 
Magic Templates extends the Magic Sets rewriting algo- 
rithm [BMSUSG, BR87] to deal with non-ground facts. The 
important properties of the algorithm for the purposes of this 
paper is that given a program P and a query q, Magic Tem- 
plates produces a new program Pm9 such that evaluating 
Pm9 bottom-up produces no irrelevant facts. 

After applying the Magic Templates transformation, the 
resulting program Pm9 is evaluated bottom-up using a Sem- 
inaiue algorithm. Seminaive fixpoint evaluation [Ban851 en- 
sures that derivations are not repeated in subsequent itera- 
tions, by considering in each iteration only rule instantiations 
that utilize at least one new fact generated in the previous 
iteration. (This is considered in more detail in Section 4.2.) 

We now give a brief description of the Magic Templates al- 
gorithm. For details, consult [RamSb]. The Magic Templates 
algorithm [BMSU86, BR87, Ram881 transforms a program, 

for a given query form, in such a way that the Seminaive 
evaluation of the transformed program generates no irrele- 
vant facts. The initial rewriting of a program and query is 
guided by a choice of sideways information passing strategies, 
or sips. For each rule, the associated sip is the (partial) order 
in which the body literals are to be evaluated. 

The idea is to compute a set of auxiliary predicates that 
contain the goals. The rules in the program are then modified 
by attaching additional literals that act as filters and prevent 
the rule from generating irrelevant tuples. As a first step, 
however, we produce an adorned program in which predi- 
cates are adorned with an annotation that indicates which 
arguments are bound and which are free. Adornments for 
the program are determined from the query and the choice 
of sips. The Magic Templates algorithm is a two-step trans- 
formation in which we first obtain the adorned version of P 
and then apply the following transformation: 

Definition 2.1 [The Magic Transformation] We construct 
a new program Pmg. Initially, Pm9 is empty. 

Create a new predicate magic-p for each predicate p 
in P. The arity is that of p. 

For each rule in P, add the modified version of the rule 
to Pmg. If rule T has head, say, p(E), the modified ver- 
sion is obtained by adding the literal magic-p(t3 to the 
body. 

For each rule r in P with head, say, p(t), and for each 
literal qi(fi) in its body, add a magic rule to Pmg. The 
head is magic-qi(ti). The body contains all literals that 
precede qi in the sip associated with this rule, and the 
literal magic-p(Q. 

Create a seed fact magic-q(@)) from the query. 

A simple optimization is to delete all argument positions 
corresponding to free arguments from the magic predicates, 
since these positions always contain distinct variables. In the 
sequel, we will refer to the above two step transformation 
with this optimization as the Magic Templates algorithm. 
We now illustrate the bottom-up approach on a program to 
compute the Fibonacci numbers. 

Example 2.1 The following program computes the Fi- 
bonacci numbers; 

f ib(O,l). 
f ib(1, 1). 
fib(N, Xl + X2) :- N > 1, fib(N - 1, Xl), fib(N - 2, X2). 

Magic Templates applied to this program and the query 
fib(n, X)? produces the “magic” rules 

m-fib(n). 
mJib(N - 1) :- N > l,m-fib(N). 
m-fib(N - 2) :- N > 1, m-fib(N). 

and the modified original rules 
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fib(0, 1) :- m-fib(o). 
fib& 1) :- m-fib(l). 
fia(N,Xl +X2) :- m,fia(N),iV > l,fib(N - 1,X1), 

f ib(N - 2, X2). 

One may verify that this program, when evaluated using 
Seminaive bottom-up, computes the answer to the query in 
linear time. 0 

3 Overview of Sliding Window 
Tab&at ion 

Sliding window tabulation of a program/query pair (P,q) 
consists of two phases. In phase one, the magic rules of P”‘g 
are repeatedly applied in order to determine the set of all 
basis facts relevant to the query. In phase two, the modified 
program rules of Pm9 and the inverted magic rules of Pm9 
(inverted magic rules are defined in Definition 3.3 of Sec- 
tion 4) are repeatedly applied to work back up towards the 
query goal in order to generate answers. Only relevant basis 
facts may be used in this second phase of sliding window tab- 
ulation. Often we will refer to phase one as the “down” phase, 
since phase one works “downwards” toward basis facts. Sim- 
ilarly, we wiII refer to phase two as the “up” phase, since it 
works “upwards” toward answers. 

Both the “down” phase and the the “up” phase are per- 
formed using a modification of Seminaive evaluation. The 
main idea behind this modification is to partition the facts 
produced during the fixpoint into possibly overlapping sets 
called windows. We emphasize that the partitioning of facts 
into windows is conceptual; as detailed in Section 4, in prac- 
tice the algorithm accomplishes the partitioning by deriving 
a “windowing” function that maps facts to windows as they 
are produced during the query evaluation. 

The computation of the answer to (P, q) begins with the 
window containing the “seed” magic fact, and proceeds by 
sliding the window downward, using the magic rules of Pm9 
to compute new magic facts as it goes, deleting the facts in 
a given window after they have been processed. The down- 
ward phase terminates when the evaluation of the window 
containing the “lowest” magic fact reachable from the query 
goal has been completed. 

The upward phase starts with the lowest window that 
could contain a relevant basis fact, and proceeds by sliding 
the window upwards, computing program facts by applying 
the original rules and inverted magic rules of P along the 
way, again deleting the facts from a given window after it has 
been processed. The upward computation terminates when 
the current window has slid up to the window containing the 
highest answer to the query goal. 

The key property of Sliding Window Tabulation with 
respect to efficient space utilization is that 1) during the 
“down” phase, no magic fact m is stored after the current 
window has slid below the lowest window that contains m, 
and 2) during the “up” phase, no program fact f or magic 
fact m is stored after the current window has slid above the 
uppermost window that contains f. 

A variant of Sliding Window Tabulation stores all magic 
facts encountered in the down phase, and uses these stored 
magic facts instead of inverted magic rules in the up phase. 
Thii requires more storage than basic Sliding Window Tabu- 
lation, but can be more time-efficient if basic sliding window 
“overtabulates” on (P, q). (Overtabulation is described in 
Subsection 4.4.) 

We will use the program to compute Fibonacci numbers, 
given in Example 2.1, as a running example. While the pro- 
gram is simple, it illustrates some important aspects of slid- 
ing window tabulation. A more complex example of sliding 
window tabulation is given in Section 5. 

3.1 Detecting Applicability 
In this subsection we develop sufficient conditions for Sliding 
Window Tabulation to apply, and give an algorithm that 
tests for these conditions. 

A useful property of many programs is that the facts for 
magic predicates in Pm9 can be computed independent of 
the facts for derived predicates of the original program. This 
allows us to separate the evaluation of Pm9 into two phases: 
first, compute magic facts, and then compute program facts 
by applying the modified rules. To formalize this idea, we 
use the following definition: 

Definition 3.1 Define the relation p + q such p + q holds 
if there is a rule with a q literal in the head and a p literal in 
the body. We let : denote the transitive closure of +. 0 

Intuitively, if p 2 q, then p is used to define q. 

Definition 3.2 Let (P, q) be a program-query pair, and let 
Pm9 be the result of the Magic Templates rewriting of (P, q). 
Then (P, q) has the sliding window property if: 

1. If pm is a derived predicate in Pmg, and m-p, is a magic 
predicate, then pm : m-p,, does not hold. 

2. There are constants u and I, where J 5 u, and a set of 
windows Wi, where J 5 i 5 U, such that the following 
two conditions hold: 

(a) Consider a rule instantiation p :- m.-p, pl, ~2, . . , 
pk in the fixpoint evaluation of Pmg. Suppose 
that p appears in window Wi. Then there must 
be a window W,, where j 5 i, that cont,ains every 
fact that appears in the body. 

(b) Consider an instantiation of a magic rule m-p1 
:- m-p, PI, ~2, . . . , pk in the fixpoint evaluation 
of Pmg. Suppose that m-p1 appears in window 
Wi. Then there must be a window, say W, , where 
j > i, that contains every fact that appears in the 
body. 

0 

We now define inverted magic rules. 

Definition 3.3 [Inverted Magic Rules] Let 7 be a magic rule 
of the form m-p :- m-q, el,. . . , e,, where m-p and m-q are 
magic predicates and the e, are EDB predicates. Then the 
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inversion of r, denoted r’, is the rule m-q :- m-p, el, . , e,. 
The inverted magic rules for Pm9 consist of the inversion of 
each magic rule of Pmg. •I 

Example 3.1 For the Fibonacci program of Example 2.1, 
the inverted magic rules are 

m-fib(N) :- N > 1, m-fib(N - 1). 
m-fib(N) :- N > 1, mJib(N - 2). 

Note that the fact m-fib(n) does not have a corresponding 
inverted version. 0 

To discover whether or not a program has the sliding win- 
dow property, we first need to provide a mechanism for de- 
termining to which window or set of windows a given fact or 
goal belongs. We will assume that EDB facts cannot be dis- 
carded, and thus consider these facts to be in every window. 
Recall that the EDB relations are by definition those rela- 
tions that are defined by tuples stored in the system rather 
than defined by rules. A user might be justifiably upset if a 
query evaluation algorithm deleted these relations as a side 
effect of answering a query. For this reason, we can restrict 
our attention to the set of magic facts and derived program 
facts in determining windows. 

We simplify the search for windows by defining the set Wi 
in terms of the bound arguments of program facts and all ar- 
guments of magic facts. This uses the property that the set of 
bound arguments in the goals for a given predicate is exactly 
the set of bound arguments of the facts for that predicate 
whenever the bound arguments contain only ground terms. 

We determine the windows Wi by defining a function that 
maps goals and facts to integers. The intent is that a given 
window contains all goals and facts that map. to some spec- 
ified subrange of integers. In more detail, if the IDB predi- 
cates in the program under consideration are pl , ~2, . . ., pk, 
we require a set of k functions di, for 1 5 i 5 L, where the 
function #i maps p, facts and m-pi goals to the integers. 

For notational convenience, we will often use the generic 
function 4 to represent all the 4,. That is, if z is eithe; m-pi 
or pi, the meaning of 4(z) is d,(z). If a window Wi consists 
of {z 1 c 5 4(z) 5 c + h}, we call c the base of the window 
and Is the height. 

A high-level description of an algorithm to detect when 
a program has the sliding window property follows. The 
algorithm takes as input the program Pm9 corresponding to 
a program/query pair (P, q). If the algorithm can verify that 
Pm9 has the sliding window property, it returns 

l A function 4 that determines to which set of windows 
a given fact or goal belongs. 

l Two integers cu and cl, where cl is the base of the lowest 
window that needs to be considered in the evaluation of 
(P,q), and cU is the base of the highest such window. 

l An integer h such that the windows are of height h. 

With this terminology, the above parameters can be used to 
specify the windows Wi as follows: 

WC, = (5 1 Cl I 4(z) 5 ct + h} 

W cl+1 = {z I Cl + 1 5 d(z) L Cl + h + 1) 

WC,-, = {z 1 cu - 1 5 b(z) 5 CU - 1+ h} 

WC, = (2 1 GA L 4(z) I cu + h) 

The detection algorithm works by enumerating a set of possi- 
ble choices for 4 and checking for the sliding window property 
with each choice. 

Algorithm 3.1 (Sliding Window Detection) 
Input: Pmg, the output of the Magic Templates rewriting on 
a program/query pair (P, q). 
Output: Either a four-tuple (4, h, c,,, cl) such that Pm9 has 
the sliding window property with windows as defined by (4, 
h, c,,, cl), or FAIL if no such function could be found. 

1) if (Independent(Pmg , P) and AllBoundGround( P”“)) 

2) then while NextPhi(4, P”‘“) do 

3) if CheckMonotonic(4, Pm”) and 

4) FindHeight(4, P”‘“) and 

5) FindLimit(4, Pmg, cl, c,) 

‘3) then return (4, h, ~1, cU); 

7) endwhile; 

8) return FAIL; 

9) endif; 

10) return FAIL; 

We consider each of the procedures used in Algorit,hm 3.1 
in turn. 

Procedure 3.1 [MagicAndProgramIndependent] 
Input: A program Pmg. 
Output: True, if in Pmg, there are no pairs of IDB predicates 
p,q such that p z rnq as defined in Definition 3.1; false 
otherwise. 
Method: Construct the Rule/Goal graph for Pmg. For each 
IDB predicate p, check that there is no path from the node 
for p in this graph to the node for a magic predicate. 0 

The running time of this procedure is O(n’), where n is 
the number of predicates in Pmg. 

Procedure 3.2 [Groundness] 
Input: A program Pmg. 
Output: True, if the procedure can prove that in the bottom- 
up evaluation of Pmg, every bound argument is a ground 
term; False otherwise. 
Method: It is sufficient to check that the query and all EDB 
predicates contain only ground terms, and that the magic 
rules in Pm9 are range restricted. 0 

The running time of this procedure is linear in the size 
of Pm”. Procedures 3.1 and 3.2 are independent of the par- 
ticular class of candidate 4 functions considered by Algo- 
rithm 3.1. By contrast, the remainder of the procedures in 
that algorithm are highly dependent on the chosen class of 
candidate 4’s. We have presented the algorithm in generic 
form, to accommodate new classes of 4’s as they are de- 
veloped. In the remainder of this section, we give specific 
instances of the algorithms for an especially useful, class of 
4’s, as discussed below. 
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The class of candidate 4 functions considered in this paper 
are all based upon the sum of the sizes of a subset of the 
bound arguments of predicates, or the additive inverse of this 
sum of sizes. To define the site of an argument, we divide the 
bound arguments into two types: those that contain integers, 
and those that contain structured terms. 

We will use the convention that all terms are uninter- 
preted, with the exception of arithmetic expressions (as is 
standard in logic programming). With this convention, the 
“size” of an argument a, denoted s(a), is defined as follows: 

I. For an integer expression e: if e appears in an argument 
position of a term (that is uninterpreted), then s(e) = 1, 
else s(e) = e. (For example, s(5 + 6) = 1 in the term 
f(5 + 6), where f is an uninterpreted function symbol.) 

2. The size of a variable X is unknown, and is represented 
by 4-V. 

3. The size of an atom in a structured argument is I. 

4. The size of a term f(tl, t2, . . . , $) is defined by 

s(f(h, t2,. . . , tp)) = 1 + max(s(tl), s(t2), . . . , s(tp)) 

For example, suppose that 4 is the sum of arguments one and 
three of p, and that argument one has been determined to 
be a structured argument while argument three is an integer 
argument. Then 

d(p(f(dX), 6 + lo), X,4 + 2)) 
= s(f(dW)), 6 + 10)) + ~(4 + 2) 
= 1 + max(s(g((h(X))), ~(6 + 10)) + 4 + 2 
= 1 + max(1 + s(h(X)), 2) + 6 
= 1 + max(2 + s(X), 2) + 6 
=6+s(X) 

Note that in this case the expression 6 + 10 appears in a 
structured argument, hence is uninterpreted, and has size 2. 
On the other hand, the expression 4 + 2 appears in an in- 
teger argument, hence it evaluates to 6. Also, this example 
indicates that the result of applying 4 to a term may involve 
a variable. The function 4 computes the sum of the sizes 
of a subset of the bound arguments of its argument god or 
predicate. For this class of 4 functions, we can enumerate all 
such choices for 4 by enumerating the subsets of the bound 
arguments. 

Procedure 3.3 [NextPhi] 
Input: A program Pmg. 
Output: True, if there are alternatives for 4 that have not 
been returned by any previous call to NextPhi. In this case 
the variable 4 is set to the next such alternative. The proce- 
dure returns False otherwise. 
Method: NextPhi considers only functions 4 that are defined 
to be the sum of the sizes of a subset of bound arguments, or 
the negative of the sum of the sizes of a subset of bound argu- 
ments. NextPhi retains in static storage the subset of bound 
arguments it returned in the previous call, and whether it 
was returned with positive or negative sign; on each call it 
updates this static storage and returns either the additive in- 
verse of the current subset or the next subset in some order 

of enumeration. If in previous calls all subsets have been re- 
turned with both positive and negative sign, NextPhi returns 
false. 0 

Each call to NextPhi can be processed in time linear in 
the number of bound arguments. The total number of calls 
to NextPhi by Algorithm 3.1 is exponential in the number 
of bound arguments in a given predicate. However, since we 
expect the number of bound arguments to be small, an ex- 
haustive algorithm is sufficient. (In the examples considered 
in this paper, at most two arguments are bound; this means 
that the number of cases to be considered is six, three with 
each sign.) 

Next we turn to the procedures that check each candi- 
date 4 function to see if it satisfies the sliding window prop- 
erty. 

Procedure 3.4 [CheckMonotonic] 
Input: A program Pm9 and a candidate windowing func- 
tion 4. 
Output: True, if for every possible instantiation of a rule 
in the bottom-up evaluation of Pmg, if p is the predicate in- 
stance in the head of the rule, and pl , . . , pk are the recursive 
predicate instances in the body of the rule, 

b(P) 2 max(d(Pl)7.. . 1 (b(Pk)) 

must hold. 
Method: For each modified original rule. 7 in P”‘g, 

Apply (b to each literal in the head and body of r, and 
simplify using the definition of size of an argument and 
standard arithmetic. 

Determine the literal pi in the body of T such that q5(pl) 
is maximal over all predicates in the body. 

Attempt to produce an arithmetic tautology by sim- 
plifying g(p) 2 max(ti(pl), . . . , $(pl;)) using st.andard 
arithmetic. 

If the procedure succeeds on step 3 for all rules in P, return 
true, else return false. 0 

Example 3.2 Consider again the Fibonacci program of Ex- 
ample 2.1. Since in the Fibonacci program there is only one 
bound argument, the choices for 4 are just 4(fib(N, T)) = N 
or +(fib(N, 2)) = -N. The following shows that Procedure 
CheckMonotonic succeeds with the first alternative. 

To test for monotonicity, Procedure CheckMonotonic must 
compare the first instance of fib in the body of t,he rule 
and the instance in the head. That is, it must test if 
cb(fib(N,X)) 2 qQib(N - 1,X1)) for all possible instan- 
tiations of the two predicates. We have that 

d(fib(N, Xl) 2 4(fWN - 1, Xl)) 

holds if and only if s(N) 2 s(N - 1). Since this reduces 
to 0 2 -1, which holds unconditionally, the monotonicity 
constraint is satisfied. The monotonicity constraint for the 
second instance of fib and the instance of m-fib are similar. 

For an example where CheckMonotonic returns with fail- 
ure, consider the transitive closure 
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t(X, Y) :- e(X, Y). 
t(X, Y) :- e(X, W), t(W, Y). 

and the query t( 1, Y)? Here we will need to test monotonicity 
between 2(X, Y) and 2(W, Y). Again, since there is only one 
bound argument, there are only two choices for 4: either 
d(l(X, Y)) = s(X) or 4(2(X, Y)) = -s(X). Considering the 
first option, we have 

4tttx, Y)) 2 4(W? Y)) * 4X) > SW) 

Since no more simplifications are possible, and in general 
s(X) 2 s(W) does not hold, the condition fails. The case for 
4(2(X, Y)) = -s(X) is similar. 0 

Next consider finding the height of the windows. 

Procedure 3.5 [FindHeight] 
Input: A program Pm” and a candidate windowing func- 
tion 4. 
Output: True, if there is a constant h such that for every 
possible instantiation of a rule r in the bottom-up evaluation 
of Pmg, if pl through pk are the recursive predicates in the 
body of T, the difference 

max(d(pl),dt~z),. . ,4(pk)) - mid4(pl),d(p2), . . . r~(pk)) 

is at most h. In this case also return h; otherwise return 
false. 
Method: For each rule T in P, 

1. Apply 4 to each predicate instance in the head and body 
of T, and simplify using the definition of size of an ar- 
gument and standard arithmetic. 

2. Determine max(~(pl),~(p2),...,~(pk)) and 
min($(m ), I, . . . , ti(pk)) and their difference. 

3. Attempt to reduce this difference to a constant h by 
using standard arithmetic. 

If the procedure succeeds on step 3 for all rules in Pmg, return 
true and the maximal constant h used in step 3 over all rules; 
else return false. 0 

Example 3.3 Returning again to the Fibonacci example, 
Procedure FindHeight must find an h that bounds the dif- 
ference of 

max(4(mfib(N)), #(fib(N - 1, Xl)), 4(fib(N - 2, Xl))) 

and 

min(d(m-fib(N)), 4(fib(N - 1, Xl)), +S(fib(N - 2, Xl))) 

Since 

max(+(d(,m-fib(N)), fib(N - 1, Xl)),b(fib(N - 2, Xl))) 

reduces to max(s(N),s(N - l),s(N - 2)), which is just N, 
and 

min(r$(m-fib(N)), d(fib(N - 1, Xl)), 4(fib(N - 2, Xl))) 

reduces to min(s(N - l),s(N - 2)), which is N - 2, the 
difference N - (N - 2) = 2. It is simple to verify that h = 2 
works for the other rules of Pm9 and the inverted magic 
rules as well. For an example where FindHeight returns false, 
consider the binary transitive closure: 

2(X, Y) :- t(x, W), l(W, Y). 
t(X, Y) :- e(X, Y). 

and the query t(1, Y)? Here, again, there are only two choices 
for 4, the size of the first argument oft, or the additive inverse 
of the size of the first argument. With the first choice, we will 
have to verify that there exists an h such that the difference 

max(dtttX, WI), d4ttW Y))) - mint&tttX, W), 4tttW Y))) 

is less than w. Here we have 

max(4(t(Xu, W)), 4(W, Y))) - min(d(t(X, W)), d(W, Y))) 

reduces to max(s(X),s(W)) - min(s(X),s(W)). No more 
simplifications can be made, since nothing is known about X 
and W, so the test fails. The case for the other choice of 4 
is similar. 0 

Finally, we turn to finding limits on the windows involved. 

Procedure 3.6 [Find Limit] 
Input: A program Pm9 and a candidate windowing func- 
tion 4. 
Output: True, if there are constants cU and cr such that any 
answer a to q must have 4(u) 5 cU and any magic fact m 
produced in the bottom-up evaluation of Pm9 must have 
4(m) 1 cl. In this case return cU and cl. Otherwise return 
false. 
Method: We consider the cases for c, and cl separately. There 
are two cases to consider, depending on whether 4(X) 2 0 
for all facts X, or 4(X) 5 0 for all facts X. One or the other 
must hold, since sizes are never negative and 4 is either a 
sum of sizes or the inverse of a sum of sizes. 

First, consider the case where 4 1 0. 

1. Since by definition every answer agrees with q on the 
bound arguments, we may always set c, to d(q) - h. 

2. The constant cl is more complex. Suppose that 4 con- 
siders the arguments al,. . . , a,. Then if argument a, 
contains structured arguments, define li = 0. Other- 
wise, a, must contain an integer argument. If the vari- 
able in si is X - Ic, and X appears in the body of the 
rule in a predicate X 2 y, then define 1, = y - ii. Define 
cr = cy li. Verify by expansion that cl works for all 
predicates in P. 

For the case where 4 5 0, the roles of cU and cl are reversed. 
If Step 2 was successful, return cl and cur otherwise return 
failure. 0 

Example 3.4 Returning once more to the Fibonacci exam- 
ple, consider the magic rule 

m-fib(N - 2) :- N > 1, m-fib(N). 

and assume that we are considering c$(fib(N, -U)) = 
4(mJib(N)) = N. Then FindLimit must find some con- 
stant cl such that 

d(rn-fib(N - 2)) > cl 

In the body of the rule, we have that N > 1, which implies 
that N - 2 2 0, so this condition is satisfied for cl = 0. 
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Furthermore, if the query is fib(n, X)?, since we have already 
determined that h = 2, we set cu = n - 2. 

Combining everything in Examples 4.2 through 4.4, we get 
that for the query fib(n, X)? on the fibonacci example, the 
relevant windows are 

wo = {m-fib(N)andfib(N, X) / 0 5 N 5 2) 

Wl = { m-fib( N)andfib( N, X) 1 1 5 N 5 3) 

wn-3 = {m-fib(N)andfib(N, X) ( n - 3 5 N < n - 1) 

x-2 = {m-fib(N)andfib(N, X) 1 n - 2 5 N s n} 

0 

Theorem 3.1 If Algorithm 3.1 returns successfully when in. 
voked on (P, q), then (P, q) has the sliding window property. 

4 Sliding Window Tabulation 
In this section we consider Sliding Window Tabulation in 
more detail. 

4.1 A “Naive” Description 

The focus in Sliding Window Tabulation is on how we can 
discard facts as early as possible. An orthogonal concern is 
how to avoid repeating the same inferences. The Seminaive 
bottom-up evaluation algorithm can be adapted to ensure 
that Sliding Window Tabulation does not repeat any infer- 
ences. We consider this adaptation in the next subsection. 
(We consider the adaptation, or some equivalent technique 
for avoiding repeated inferences, to be an integral part of 
Sliding Window Tabulation. We have presented the ideas 
separately for ease of exposition.) 

Sliding Window Tabulation of a (rewritten) program Pm9 
proceeds in two phases. In phase one, the “down” phase, 
only the magic rules are applied. Initially, the only magic 
fact is the query, which is in the highest window. For each 
window, processing consists of repeatedly applying the magic 
rules until no new facts can be derived. The important con- 
straint is that in applying a magic rule, only facts in the 
current window can be used to instantiate the body. The 
Monotonicity condition in the definition of the sliding win- 
dow property ensures that generated facts belong to either 
the current window or to some lower window; those in lower 
windows are saved for processing later. 

After a window is processed, we discard all facts in this 
window that are not also in subsequent windows, except for 
“fringe” facts. A fringe fact is a magic fact m such that 

1. m appears in the current (processed) window, but does 
not appear in any lower window, and 

2. m was never used to instantiate a magic rule in the down 
phase. 

Intuitively, fringe magic facts correspond to leaf or basis 
nodes in a derivation. All fringe facts are saved. (Also, re- 
call that EDB facts are never discarded.) The “down” phase 
terminates when we have processed the lowest window. 

In phase two, the “up” phase, the fringe facts, which are 
the only facts saved from the down phase, are used to ini- 
tialize derived program facts in the lowest window; fringe 
facts in other windows are retained for initializing these win- 
dows when they are processed. For each window, processing 
consists of repeatedly applying the modified program rules 
in Pm9 and the inverted magic rules until no new facts can 
be derived. As in the “down” phase, in applying a rule, 
only facts in the current window can be used to instantiate 
the body. Also as in the “down” phase, in the “up” phase 
the Monotonicity condition in the definition of the sliding 
window property ensures that generated facts belong to ei- 
ther the current window or to some higher window; those in 
higher windows are saved for processing later. After a win- 
dow is processed, we discard all facts in this window that 
do not belong in subsequent windows also. The “up” phase 
terminates when we have processed the highest window; all 
answers to the query are contained in the facts that belong 
to this window. 

4.2 A “Seminaive” Formulation 
In this subsection we describe how Seminaive evalua- 
tion [Ban851 can be adapted to Sliding Window Tabulation. 

4.2.1 ‘Seminaive Evaluation 

We present a brief overview of Seminaive evaluation. Sem- 
inaive evaluation works by identifying’ “differentials,” which 
are new predicates that contain tuples produced in the last 
iteration. Consider a program that is to be evaluated using 
Seminaive evaluation. The program is first rewritten in or- 
der to define the new “differential” predicates. Suppose the 
program contains the following rule: 

P :-Pl,P2 ,... rPk,91,42,. ..r’h. 

Let the p’s be derived predicates and the q’s be EDB pred- 
icates. A set of rewritten rules is generated from this 
rule, each of the form 6~““” :- term, 91,. . , qm. There is 
one such rewritten rule for each term in the expansion of 
(pi”” + 6pfd). . . ( pzld + 6pfd) - (pfd . . pzld). In evaluating 
the program, in each iteration each of the seminaive rules is 
applied, followed by updating the relations as follows: 

old 
Pi := pp’d + bpp*d; 
bpp’d := 6p:‘” -.pp’d; 
6pl’” := 0; 

The iteration continues until all the relations 6ppfd are empty. 

4.3 Sliding Window 

For convenience, we introduce the function Gw, where for a 
set of facts S, we define au(S) to be the subset of S that is 
contained in window UJ. We also define unused(S) to be all 
facts in S that were never used in any instantiation of a rule. 

Recall that during the “down” phase of Sliding Window 
Tabulation, only the magic rules are applied. In t,he “up” 
phase, on the other hand, only the modified program rules 
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and the inverted magic rules are applied. Sliding Window 
Tabulation differs from Seminaive in the updating phase fol- 
lowing each iteration, both in the down and up phases. 

Also, for each magic predicate m-pi, we introduce the 
predicates m-pi”“” and mgfringe (in addition to the predi- 
cates introduced by the standard seminaive rewriting.) Intu- 
itively, mpfave stores magic facts that belong to a window 
other than the window currently being processed; m-pfringe 
stores the fringe magic facts encountered during the “down” 
phase. As is discussed below, there is no need for pf”“’ or 
p!riw= for program predicates pi. 

Consider first the down phase. The initialization is simple 
- the current window is set to the highest window, W,, and 
all relations are empty, with the exception that 6m$‘d = 
seed, where q is the query predicate and seed is the magic 
fact corresponding to the query. 

As with the standard Seminaive evaluation, alI magic rules 
are applied in every iteration. However, instead of perform- 
ing the Seminaive updates at the end of an iteration in the 
processing of window w, perform the following assignments 
for each magic predicate m-pi: 

1. m-pf”“’ := m-pf”“’ + 6m-prew - Qw(Gm-pleW); 
2. rn-ppld := rn&ld + 6m-ppld; 
3. 6rn-p41d := iBw(6rn-plew) - m-ppLd; 
4. 6m-pv” := 0; 

Step 1) just saves facts in lower windows for later process- 
ing. Steps 2) - 4) are the usual seminaive updates, except 
that St,ep 3) only retains facts in the current window from 
Gm-p:‘” (recall that the remaining facts are saved for later 
processing, in Step 1)). 

The processing of a window continues until all relations 
6m-pi Old are empty. Next, between the prodessing of win- 
dows w and w - 1, unless of course w is the lowest window, 
the following updates must be performed: 

5) 6rn-pPld := @Jw-l(mgfaVe); 

6) m-pp’d := @pw-l(m_pf’d); 
7) m-p!r’nge := m*!ringe + unused(@U(mgp’d) 

-@w-l(m-pP’d)); 

Steps 5) - 6) initialize the processing of the next window 
(w - 1). Note that Step 6) just discards some facts from 
window w that have been processed and are no longer needed. 
Step 7) saves “fringe” facts, to be used later in the up phase. 

The down phase terminates after the processing of the 
lowest window has been completed. At this point, we perform 
the update 

8) m-pfr’nge := unused(m-pp’d); 

for each magic predicate. 
To initialize the “up” phase, we begin with the updates 

9) mmpf”“’ := m-piringe; 
10) 6m-pfd := @‘cl(m-p~o”c); 

In the up phase, we fire the program rules and the inverted 
magic rules. The updates to the magic predicates after each 
iteration are identical to those of the down phase. However, 

the updates to the program predicates are simplified, for the 
following reason: for any program predicate p,, the predicate 
pf”“’ is uniformly empty. This follows because every origi- 
nal program rules with head pi is “guarded” by the magic 
predicate m-pp’d, which at all times contains only facts in 
the current window. Hence the updates for program predi- 
cates are just the usual seminaive updates, repeated here for 
convenience: 

11) pp’d := pp’d + app’d; 
12) spp’d := 6py - ppld; 
13) C5pyew := 0; 

In between the processing of windows w and w + 1 on the up 
phase, where w is not the top window, the following updates 
must be performed: 

14) 6m-ppLd := &+l(m-pfave); 
15) m-pqave := mgfave - aw+l (m-pfove); 
16) mqyd := 9,,,+l(m-pp’d); 

old __ 17) p, .- 0; 

Step 14) initializes the processing of the next window (UJ+ 1). 
Step 15) removes facts that have been selected for processing 
(in Step 14)) from m-pi”““. Steps 16) - 17) discard facts from 
window w that have been processed and are no longer needed. 
We illustrate this evaluation algorithm with an example. 

Example 4.1 Consider again the Fibonacci program of Ex- 
ample 2.1 with the query fia(n, X)?. The result of applying 
Magic Templates to this program appears in Example 2.1. 
We now turn to evaluating this program using Sliding Win- 
dow Tabulation. 

First we consider the down phase. Recall that t.he window- 
ing function here is 4(rn-fib(N)) = N, the window size is 2, 
and that if the original query was fib(n, X)?, t,he bounds 
are cU = n - 2 and cl = 0. Table 1 gives the values for 
the relations in question at the end of each iteration in the 
“down” phase for the query fib(5, X)?. The starting window 
for the “down” phase is W3. Table 2 gives the values for the 
relations in question at the end of each iteration in the “up” 
phase. 0 

4.4 Properties 

First, we verify that Sliding Window Tabulation correctly 
evaluates programs that have the sliding window property. 

Theorem 4.1 Let (P, q) have the sliding window property. 
Then Sliding Window Tabulation computes all answers to q 
and terminates. 

Next, we turn to the efficiency of the tabulation. One 
key advantage of seminaive as compared to naive is that it 
never repeats a derivation. This property is known as the 
%eminaive property.” In the next theorem we show that this 
is true of Sliding Window Tabulation also has the seminaive 
property. 

Theorem 4.2 Let (P,q) have the sliding window property. 
Then Sliding Window Tabulation has the seminaive property. 
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I 3 
3 2 t(5),(4),(3)) {(2),(l)) 0 
2 init I(4), (3)) {(l)) 
2 1 A t(4),(W)) {(l),(O)) ii 
1 init {(3),(2)) t(o)} 0 
1 1 U3)l(2)9(1)) {@)I 0 

0 init {(W)l 
0 1 + ~CwW)~ B” 0” 

end 0 0 0 {W,(l)1 

Window Iteration 1 6m-fib”‘* m-fib”‘* m-fib’““’ m-f ibfrlnge 
3 init I I(5)) 0 0 0 

Table 1: “Down” phase of evaluation of fib(5, X)?. 

The overall goal of Sliding Window Tabulation is to limit 
the storage required by the program evaluation. The fol- 
lowing set of definitions, culminating in Theorem 4.3, give 
bounds on the space efficiency of Sliding Window Tabula- 
tion. 

Definition 4.1 Let (P, q) have the sliding window property, 
with 4 the ordering function on the facts and goals of P”g. 
Also, let P be the set of goals and facts produced in the 
Sliding Window Tabulation of Pg. Then the goal width of 
(P, q) is the maximum, over all constants c, of the number of 
goals g E P such that d(g) = c. Similarly, the fact width of 
(P,q) is the maximum, over all constants c, of the number 
of facts f E P such that d(f) = c. The width of (P, q) is the 
larger of the goal or fact widths for (P,q). 0 

Definition 4.2 Let (P, q) have the sliding window property, 
with 4 the ordering function on the goals and facts of P. 
Then the goal span of (P, q) is the maximal value s such that 
for some rule firing in the Sliding Window Tabulation of Pmg, 
goal m-p1 appears in the head, pz appears in the body, and 
d(rn-pl) - 4(pz) = s. Similarly, the fact span of (P,q) is the 
maximal value s such that for some rule firing in the Sliding 
Window Tabulation of Pmg, fact pl appears in the head, pz 
in the appears in the body, and (b(pl) - 4(pz) = s. The span 
of (P, q) is the larger of the goal span or fact span of (P, q). 
0 

Definition 4.3 Let (P, q) have the sliding window property. 
Then the basis width b of (P, q) is the number of relevant basis 
facts determined by the down phase of the sliding window 
evaluation of (P, q). 0 

Theorem 4.3 Suppose that (P,q) has width w, span s, 
height h, and basis width b. Then Sliding Window Tabu- 
lotion stores at most w(s + h) + b goals or facts at any given 
time. 

Corollary 4.1 Suppose (P,q) has constant width, span, 
height, and basis width, and furthermore that any goal or 
fact of (P,q) can be stored in constant space. Then Sliding 
Window Tabulation runs in constant space. 

Example 4.2 Returning to the Fibonacci example, we have 
that s = 2, w = 1, h = 2, and b = 2. Since each fact is an 
integer and each goal is a pair of integers, if we assume that 
an integer can be stored in constant space, then Sliding Win- 
dow Tabulation is constant space on Fibonacci. An example 
of a program on which Sliding Window Tabulat,ion runs in 
linear space is given in Section 5. 0 

The time efficiency of Sliding Window Tabulation is more 
difficult to analyze than the space efficiency. The simplest 
way to calibrate the performance of Sliding Window Tabula- 
tion on (P, q) appears to be a comparison with the seminaive 
evaluation of Pmg. Even thii comparison is not st,raightfor- 
ward, for the following reasons: 

1. In some cases, sliding window “overtabulates”. That is, 
it may compute facts that are not computed by semi- 
naive evaluation of P”g; these facts are not. relevant to 
the query. 
To understand why, consider the “up” phase. This 
phase is initialized using the set of relevant basis facts. 
Subsequently, the modified original rules in P and the 
inverted magic rules are fired repeatedly. This elimi- 
nates the need to store all magic facts from the “down” 
phase, but it raises the possibility of computing irrele- 
vant program facts. Intuitively, this happens when some 
magic fact m can be generated from two distinct magic 
facts, say ml and mz, where only one of the magic facts 
was produced on the way down. On the way back up, 
there is no way to know which of the two magic facts 
produced m on the way down, so both are generated on 
the way up. 

2. There are overheads in Sliding Window Tabulat’ion that 
are not present in seminaive evaluation of Pm”. For ex- 
ample, when a new fact f is produced, we must evaluate 
d(f) before deciding where the fact should be saved. As 
another example, when “sliding” the window, any facts 
in the saved relations that belong in the new current 
window must be found, and moved from the save rela- 
tion to the corresponding “new” relation. 

3. On the other hand, often the number of facts stored by 
sliding window tabulation is. much less than that stored 
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i 
w,l~~l,l~l 0 {W,(1),(2)) i(3),(4)} 

0 3 ~(0,1),(L1M%4~ 1 init 
u383,1 

twMw~ l(al 
“r”c”l’~h$ w# 

1 1 
i 

{(1JMW~ U&),~3H {(4),(5)1 
1 2 {(l,l)>(%%(V)) 
2 init 

u4;5u 
{(W),(V)) 

i(;l 

m(2),(3)} WQ# 
{(2),(3)) 

2 1 {(Wh(V)) j(2),(3),(4)] {(5),(8)] 
2 2 {(2,2),(3,3),(4,5)) {GWh(4)} {@b(6)} 
3 init 

I&91 
{(3~3)~(4~5)1 

II%,1 
{(3M4)1 t(5)l 

3 1 {(3,3),(4,5)1 {(3),(4),(5)1 t(6),(7)) 
3 2 0 {(3,3),(4,5),(5,8)} 0 t(3),(4)9(5)1 t(6),(7)) 

Table 2: “Up” phase of evaluation of fib(5, X)?. 

by seminaive. The large number of facts to be stored 
can slow their retrieval, in the worst case requiring a 
great deal of I/O that is not required by sliding window 
tabulation. 

We can, however, prove the following two theorems. The 
first, Theorem 4.4, gives a worst case upperbound on the 
number of inferences; the second, Theorem 4.5, shows that 
much better performance can be guaranteed if the magic 
rules in Pm9 are “invertible”. 

Theorem 4.4 Sliding Window Tabulation of (P,q) newer 
infers more program facts than the seminaive evaluation 
of P. 

Note that the above theorem only addresses the set of 
program facts that are inferred; it can be extended by noting 
that Sliding Window never infers more facts than seminaive 
evaluation of P plus the magic facts inferred in seminaive 
evaluation of Pmg. 

Definition 4.4 [Invertibility] A magic rule T in Pm9 is said 
to be invertible if the following holds. Suppose that a r is 
instantiated so that the head is ml and the (only) magic fact 
in the body is m2. Given ml and r, we should be able to 
determine m2. 0 

Theorem 4.5 Suppose that all the magic rules in Pm9 
are invertible, and that the Seminaive evaluation of Pmg 
makes M magic fact inferences and P program fact infer- 
ences. Then Sliding Window Tabulation of (P,q) makes at 
most 2M magic fact inferences and P program fact infer- 
ences. 

5 An Example 
Deductive database technology has been proposed as a useful 
tool in DNA sequence analysis. The Longest Common Subse- 
quence (LCS) is representative of some of the low-level prob- 
lems that are involved in this type of analysis. We are given 

two strings, say A = aoal . . a,,,-~, and B = bo bl . . . b,-1, 
where the ai and b, are drawn from some common alphabet. 
The desired answer is the maximal z such that there is a 
stringC=cocl... ~~-1, where C is a subsequence of both A 
and B. Note that “subsequence” differs from “substring” in 
that the members of a subsequence C of A and B need not 
appear contiguously in either A or B; all that is required is 
that the elements of C appear in the same order in A and B. 

Hirchberg [Hir75] gives the following program to com- 
pute the LCS of two strings. (This is also discussed by 
Bird [BirbO] in the context of tabulation.) To express the 
problem in logic programming notation, we represent the 
string A = aoal . . . a,,,-] by the facts a(O,ao), a(l,al), . . . . 
a(m - 1, a,,,-1 ). Similarly, the string B = bo b1 . . b,-1 is 
represented as b(0, bo), b(1, bl), . . ., b(n - 1, a,-,). Then the 
following program defines the relation lcs(M, N, X), with the 
intended meaning that the longest common subsequence of A 
beginning at aM and B beginning at BN is of lengt,h X. 

lcs(m, N, 0). 
lcs( M, n, 0). 
lcs(M, N,X) :- M < m, N < n,a(M, C),b(N,C), 

lcs(M + 1, N + 1, X - 1). 
Ics(M, N,X) :- M < m, N < n,a(M, C), b(N, D),C <> D, 

lcs(M + 1, N, Xl), lcs(M, N + 1, X2), 
X = max(X1, X2). 

The longest common subsequence of the two strings is given 
by the query lcs(O,O, X)?. 

First, if we use Prolog to evaluate this query, in the worst 
case the running time is 0((-2”)). As noted in the intro- 
duction, this is impractically large for all but the smallest m 
and n. Another approach to evaluating the query is to use 
Magic Templates to rewrite the program, then to evaluate 
the result bottom-up. The resulting Magic rules are: 

mJcs(l,l). 
mJcs( M + 1, N + 1) :- M < m, N < n, a( M, C), b( N, C), 

mJcs(M, N). 
mJcs(M + 1, N) :- M < m, N < n, a( M, C), b( N, D), 
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C <> D, m-lcs(M, N). 
m-Jcs(M, N + 1) :- M < m, N < n, a(M, C), b(N, D), 

C <> D, m-Jcs(M, N). 

while the modified original rules are 

Jcs(m, N,O) :- m-Jcs(m, N). 
Jcs(M, n, 0) :- m-lcs(M, n). 
Jcs(M, N, X) :- m-Jcs(M, N), M < m, N < n, 

a(M,C),b(N,C), Jcs(M + 1, N + 1,X - 1). 
Zcs(M, N,X) :- m-lcs(M, N), M < m, N < n, 

a(M, C), b(N, D), C <> D, 
Jcs(M + 1, N, Xl), Jcs(M, N + 1, X2), 
X = max(X1, X2). 

One may verify that when evaluated bottom-up using Sem- 
inaive, and assuming co&ant time access to memoed facts, 
this program is O(mn) time in the worst case. However, the 
program is also O(mn) in space. For large m and n, this 
will also be impractical. Sliding Window Tabulation can be 
used to reduce the space requirement to O(m+n) (with time 
complexity remaining O(mn)). 

In order to appiy Sliding Window Tabulation, we first need 
to verify that the LCS program does indeed have the sliding 
window property by running Algorithm 3.1. First, Algo- 
rithm 3.1 attempts to find a windowing function 4. Since 
there are two bound arguments in the magic program, there 
are six choices for 4. The Sliding Window Detection al- 
gorithm will choose q5(Jcs(N, M, X)) = ql(mJcs(N, M)) = 
-(N + M). This means that the relevant windows for the 
query Jcs(m, n, X)? are 

w-(mtn) = {all Ics(N, M,X) and mJcs(N, M) 1 

-(m+n)IM+Ni-(m+n)+l} 

W-(mtn)tl = {all Jcs(N, M,X) and m-lcs(N, M) ( 

-(m+n)+l_<M+NL-(m+n)+2} 

w-2 = {all Jcs(N, M,X) and mJcs(N, M) 1 

-2_<M+N<-1) 

w-1 = {all Jcs(N, M,X) and mJcs(N, M) 1 

-l<M+N<o} 

Since 0 5 M 5 m and 0 5 N 5 n, each window can contain 
at most n + m facts or facts. 

Now consider the specific instance of the problem A = acbc 
and B = c&L. The query we wish to ask is Ica(O,O, X)?, and 
the correct answer is Jcs(O,O, 2). (There are two subsequences 
of length 2: ab and cb.) To save space we do not show the 
value of every relation on every iteration of the evaluation. 
Instead, in Table 3 we show tuples of m-lcs and Jcs computed 
by the up and down phases of Sliding Window Tabulation, 
partitioned by 4 value. 

Note that unlike the case with the Fibonacci example, not 
all of the basis program facts are relevant. Specifically, none 
of mJcs(0,4), mJcs(2,4), m-Jcs(4,4), or mJcs(4,O) are gen- 
erated. Also, notice that the basis facts do not all appear in 
the same window. 

Also, this is an example of overtabulation. Specifically, 
the magic facts mJcs(1, l), mJcs(2,0), or m-Jcs(3,O) are not 
generated on the way down. However, in the “up” phase, the 
facts mJcs(1, l), m&s(2,0), and m&a(3,0), and the corre- 
sponding lcs facts, are computed. If the magic facts were 
retained for the “up” phase, instead of being recomputed by 
the inverted magic rules, these Jcs facts would not have been 
generated. 

6 Conclusion 

We have presented a broad framework for compile-time 
garbage collection in bottom-up evaluation of logic programs. 
Since the space requirements for bottom-up methods are typ- 
ically much greater than for top-down methods, this is an im- 
portant area for optimization. Our results can be extended 
in many ways; in particular, we are considering the following 
problems. 

Refining sliding window techniques. 

The techniques presented here can be refined in many 
ways, including devising stronger tests for applicabil- 
ity, and developing techniques for “sliding” windows in 
bigger increments, thereby minimizing the processing of 
windows that contain few or no facts. 

Multiple recursive cliques. 

The Independence condition for the ipplicability of Slid- 
ing Window Tabulation disallows the dependence of 
magic predicates on any derived program predicates. If 
a program P contains more than one recursive clique, 
the magic predicates of one clique may depend upon 
program predicates from other cliques. It is desirable 
to extend Sliding Window Tabulation to deal with such 
programs. 

Dynamic methods. 

Sliding Window Tabulation is a static method in that it 
tries to determine window functions 4 at compile time. 
Sometimes, it may be possible to design suitable win- 
dows only at run-time. A good example is a program 
that traverses an acyclic graph, say a part-subpart hier- 
archy, and (possibly) does some additional computation. 
In such cases, an interesting problem is to devise dy- 
namic strategies that, possibly through some auxiliary 
run-time computation and/or additional stored facts, 
identify a set of windows that result in significant space 
savings overall. 

Integrating with general bottom-up evaluation. 

Finally, a number of issues must be addressed in order to 
incorporate the tabulation techniques investigated here 
into a system based upon rewriting and seminaive eval- 
uation. For example, it is likely that while tabulation 
is not applicable to the entire program, it is applica- 
ble to a subprogram. To deal effectively with t,his sit- 
uation, techniques must be developed to integrate the 
optimizations that are possible for the subprogram into 
the evaluation of the entire program. 
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1 down phase UD phase 
41 m-k3 

cl I {(O,O)l 

-1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 

0 0 
{cuM1~2)) ~cuM~~2)) 
t(3J)@JhW)) t(3J)@JhW)) 
{(4,1),(3,2),(2,3),(1 {(4,1),(3,2),(2,3),(1,4)) 4) 
t(3,3),(4,2)) t(3,3),(4,2)) 
{J3,4),(4?3)) {J3,4),(4?3)) 

iil,ojhw iiwj$w)) 
{((LlMw) ~(W,~M4OJ)) 
{(2,1),(1,2),(3,0)] ((2,1,1),(1,2,1),(3,0,1)) 
~(3,~hW),(~,3)) ((3,1,0),(2,2,1),(1,3,1)) 
{(4,1),(3,2),(2,3),(1,4)) ((4,1,0),(3,2,0),(2,3,1),(1,4,0)) 
t(3,3),(4,2)) tW,W4bAO)) 
{(3*4),(4,3)] {(3,4,0),(4,3>0)] 

Table 3: Values for mlcs and lcs in up and down phases in evaluation of ks(0, 0, X)? 

The tradeoff between recomputation and storage has received 
little attention in the domain of deductive database pro- 
grams, and to our knowledge has not been addressed at all in 
the context of bottom-up evaluation strategies. Thii paper 
demonstrates the potential gains from considering this prob- 
lem by presenting bottom-up evaluation schemes that avoid 
recomputation without saving every intermediate result for 
the duration of the computation. 
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