
How to Forget the Past Without Repeating It

Jeffrey F. Naughton’ and Raghu Ramakrishnan+
Computer Sciences Department

University of Wisconsin-Madison, WI 53706, U.S.A.

Those who cannot remember the past are
condemned to repeat it.

- George Santayana

Abstract

Bottom-up evaluation of deductive database programs has
the advantage that it avoids repeated computation by storing
all intermediate results and replacing recomputation by table
lookup. However, in general, storing all intermediate results
for the duration of a computation wastes space. In this paper
we propose an evaluation scheme that avoids recomputation,
yet under fairly general conditions at any given time stores
only a small subset of the facts generated. The results consti-
tute a significant first step in compile-time garbage collection
for bottom-up evaluation of deductive database programs.

1 Introduction
A fundamental advance in deductive database technology has
been the invention of bottom-up query evaluation strategies
that retain the “focussing” properties of top-down evaluation
strategies. One of the key advantages of these bottom-up
strategies over common top-down approaches (such as Pro-
log) is that by storing all intermediate results, bottom-up
evaluation is able to replace the recomputation of a fact by
a simple lookup. In many cases this makes bottom-up eval-
uation polynomial time when the corresponding top-down
computation is exponential time. However, this efficiency in

*Supported by NSF grant IRI-8909795.
tSupport.ed by a David and Lucile Packard Foundation Fellow-

ship in Science and Engineering, au IBM Faculty Development
Award and NSF grant IRI-8804319.

Permission. to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage. the VLDB copyright notice and
the title of the publication and its date appear. and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or lo republish. requires a fee
and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 199Q

the time domain is often accompanied by inefficiency in the
space domain.

In this paper we propose an evaluation scheme, called Slid-
ing Window Tabulation, that retains the time efficiency of
bottom-up computation while improving its space efficiency.
Intuitively, Sliding Window Tabulation stores a fact as long
as the fact could still be used to produce answers or avoid
redundant computation, but no longer. The need for such
an evaluation scheme is perhaps best demonstrated by an
example.

Example 1.1 Consider the problem of finding the longest
common subsequence in a pair of strings. This problem is
significant because it is paradigmatic of a number of problems
that arise in DNA sequence analysis, an area that has been
identified as a promising application for deductive database
technology.

The standard algorithm of Hirchberg [Hir75] for the
longest common subsequence can be expressed simply and
elegantly using Prolog notation (the program appears in Sec-
tion 5 of this paper). Unfortunately, on strings of length n,
the time complexity of Prolog is both O((2,“)) and 0((‘,“)).

The function (‘l) is exponential in n and grows extremely

quickly. For example, if n = 20, we have that (‘c) >

275 x 10’; if n = 100, we have (‘c) > 1.8 x 105’. Clearly, the
Prolog evaluation strategy cannot be used on this program
for any but the shortest of strings.

If we take the bottom-up approach of rewriting by Magic
Templates [Ham881 followed by Seminaive bottom-up evalu-
ation [Ban85], the running time is reduced to O(n’). This
is a dramatic improvement; unfortunately, the space require-
ment is also O(n’). In DNA sequence analysis, comparison
of strings of over lo6 bases will be routine. (The human
genome is estimated to contain over 10’ base pairs.) Even
if each fact to be stored fits in a single byte, on strings of
this size, the standard bottom-up approach will require over
a terabyte (1012 bytes) of storage.

The evaluation algorithm presented in this paper, “Sliding
Window Tabulation,” evaluates the LCS program in O(n2)
time and O(n) space. To our knowledge this is the first
evaluation algorithm for deductive database queries that can
feasibly be applied to evaluate queries on this program over
large databases. 0

270

The tradeoffs between memoing, recomputation, and ef-
ficient space management have been explored in the func-
tional programming literature [Bir80, Coh83, Hil76], but to
our knowledge have never been explored in the context of
bottom-up evaluation of logic programs. A main contribu-
tion of this paper is to identify the problem of improving
memory utilization in bottom-up evaluation of logic pro-
grams.

Sliding Window Tabulation, presented in Section 4, differs
significantly from techniques suggested for functional pro-
grams in [Coh83, Bir80], and presents an interesting contrast:
Rather than explore program schemas and schema transfor-
mations, we develop a uniform approach based on optimizing
the structure of programs generated by the Magic Templates
algorithm.

Our algorithm for tabulation of a program and query con-
sists of three phases: 1) First, the program is analyzed to
determine if tabulation can be profitably applied. 2) Next,
the program is rewritten using the Magic Templates rewrit-
ing algorithm. 3) Finally, the resulting rewritten program
is evaluated by an algorithm that attempts to store facts
only as long as necessary, using information derived from the
analysis of the program done in step 1.

The remainder of this paper is organized as follows. We
give a brief overview of bottom-up evaluation in Section 2.
We give an overview of Sliding Window Tabulation in Sec-
tion 3, and consider the algorithm in more detail in Section 4.
We present testable conditions for applicability of this algo-
rithm and several results about its performance. We present
a detailed discussion of the LCS problem introduced in Ex-
ample 1.1 in Section 5. We present conclusions and directions
for future work in Section 6.

2 The Bottom-Up Approach

To provide context for the discussion of Sliding Window Tab-
ulation, and to make this paper self-contained, in this section
we present an overview of the bottom-up approach t,o de-
ductive database query evaluation. This approach has been
developed without consideration for space utilization.

The first step in bottom-up evaluation is to rewrite the
program using the Magic Templates transformation [Ram88].
Magic Templates extends the Magic Sets rewriting algo-
rithm [BMSUSG, BR87] to deal with non-ground facts. The
important properties of the algorithm for the purposes of this
paper is that given a program P and a query q, Magic Tem-
plates produces a new program Pm9 such that evaluating
Pm9 bottom-up produces no irrelevant facts.

After applying the Magic Templates transformation, the
resulting program Pm9 is evaluated bottom-up using a Sem-
inaiue algorithm. Seminaive fixpoint evaluation [Ban851 en-
sures that derivations are not repeated in subsequent itera-
tions, by considering in each iteration only rule instantiations
that utilize at least one new fact generated in the previous
iteration. (This is considered in more detail in Section 4.2.)

We now give a brief description of the Magic Templates al-
gorithm. For details, consult [RamSb]. The Magic Templates
algorithm [BMSU86, BR87, Ram881 transforms a program,

for a given query form, in such a way that the Seminaive
evaluation of the transformed program generates no irrele-
vant facts. The initial rewriting of a program and query is
guided by a choice of sideways information passing strategies,
or sips. For each rule, the associated sip is the (partial) order
in which the body literals are to be evaluated.

The idea is to compute a set of auxiliary predicates that
contain the goals. The rules in the program are then modified
by attaching additional literals that act as filters and prevent
the rule from generating irrelevant tuples. As a first step,
however, we produce an adorned program in which predi-
cates are adorned with an annotation that indicates which
arguments are bound and which are free. Adornments for
the program are determined from the query and the choice
of sips. The Magic Templates algorithm is a two-step trans-
formation in which we first obtain the adorned version of P
and then apply the following transformation:

Definition 2.1 [The Magic Transformation] We construct
a new program Pmg. Initially, Pm9 is empty.

Create a new predicate magic-p for each predicate p
in P. The arity is that of p.

For each rule in P, add the modified version of the rule
to Pmg. If rule T has head, say, p(E), the modified ver-
sion is obtained by adding the literal magic-p(t3 to the
body.

For each rule r in P with head, say, p(t), and for each
literal qi(fi) in its body, add a magic rule to Pmg. The
head is magic-qi(ti). The body contains all literals that
precede qi in the sip associated with this rule, and the
literal magic-p(Q.

Create a seed fact magic-q(@)) from the query.

A simple optimization is to delete all argument positions
corresponding to free arguments from the magic predicates,
since these positions always contain distinct variables. In the
sequel, we will refer to the above two step transformation
with this optimization as the Magic Templates algorithm.
We now illustrate the bottom-up approach on a program to
compute the Fibonacci numbers.

Example 2.1 The following program computes the Fi-
bonacci numbers;

f ib(O,l).
f ib(1, 1).
fib(N, Xl + X2) :- N > 1, fib(N - 1, Xl), fib(N - 2, X2).

Magic Templates applied to this program and the query
fib(n, X)? produces the “magic” rules

m-fib(n).
mJib(N - 1) :- N > l,m-fib(N).
m-fib(N - 2) :- N > 1, m-fib(N).

and the modified original rules

279

fib(0, 1) :- m-fib(o).
fib& 1) :- m-fib(l).
fia(N,Xl +X2) :- m,fia(N),iV > l,fib(N - 1,X1),

f ib(N - 2, X2).

One may verify that this program, when evaluated using
Seminaive bottom-up, computes the answer to the query in
linear time. 0

3 Overview of Sliding Window
Tab&at ion

Sliding window tabulation of a program/query pair (P,q)
consists of two phases. In phase one, the magic rules of P”‘g
are repeatedly applied in order to determine the set of all
basis facts relevant to the query. In phase two, the modified
program rules of Pm9 and the inverted magic rules of Pm9
(inverted magic rules are defined in Definition 3.3 of Sec-
tion 4) are repeatedly applied to work back up towards the
query goal in order to generate answers. Only relevant basis
facts may be used in this second phase of sliding window tab-
ulation. Often we will refer to phase one as the “down” phase,
since phase one works “downwards” toward basis facts. Sim-
ilarly, we wiII refer to phase two as the “up” phase, since it
works “upwards” toward answers.

Both the “down” phase and the the “up” phase are per-
formed using a modification of Seminaive evaluation. The
main idea behind this modification is to partition the facts
produced during the fixpoint into possibly overlapping sets
called windows. We emphasize that the partitioning of facts
into windows is conceptual; as detailed in Section 4, in prac-
tice the algorithm accomplishes the partitioning by deriving
a “windowing” function that maps facts to windows as they
are produced during the query evaluation.

The computation of the answer to (P, q) begins with the
window containing the “seed” magic fact, and proceeds by
sliding the window downward, using the magic rules of Pm9
to compute new magic facts as it goes, deleting the facts in
a given window after they have been processed. The down-
ward phase terminates when the evaluation of the window
containing the “lowest” magic fact reachable from the query
goal has been completed.

The upward phase starts with the lowest window that
could contain a relevant basis fact, and proceeds by sliding
the window upwards, computing program facts by applying
the original rules and inverted magic rules of P along the
way, again deleting the facts from a given window after it has
been processed. The upward computation terminates when
the current window has slid up to the window containing the
highest answer to the query goal.

The key property of Sliding Window Tabulation with
respect to efficient space utilization is that 1) during the
“down” phase, no magic fact m is stored after the current
window has slid below the lowest window that contains m,
and 2) during the “up” phase, no program fact f or magic
fact m is stored after the current window has slid above the
uppermost window that contains f.

A variant of Sliding Window Tabulation stores all magic
facts encountered in the down phase, and uses these stored
magic facts instead of inverted magic rules in the up phase.
Thii requires more storage than basic Sliding Window Tabu-
lation, but can be more time-efficient if basic sliding window
“overtabulates” on (P, q). (Overtabulation is described in
Subsection 4.4.)

We will use the program to compute Fibonacci numbers,
given in Example 2.1, as a running example. While the pro-
gram is simple, it illustrates some important aspects of slid-
ing window tabulation. A more complex example of sliding
window tabulation is given in Section 5.

3.1 Detecting Applicability
In this subsection we develop sufficient conditions for Sliding
Window Tabulation to apply, and give an algorithm that
tests for these conditions.

A useful property of many programs is that the facts for
magic predicates in Pm9 can be computed independent of
the facts for derived predicates of the original program. This
allows us to separate the evaluation of Pm9 into two phases:
first, compute magic facts, and then compute program facts
by applying the modified rules. To formalize this idea, we
use the following definition:

Definition 3.1 Define the relation p + q such p + q holds
if there is a rule with a q literal in the head and a p literal in
the body. We let : denote the transitive closure of +. 0

Intuitively, if p 2 q, then p is used to define q.

Definition 3.2 Let (P, q) be a program-query pair, and let
Pm9 be the result of the Magic Templates rewriting of (P, q).
Then (P, q) has the sliding window property if:

1. If pm is a derived predicate in Pmg, and m-p, is a magic
predicate, then pm : m-p,, does not hold.

2. There are constants u and I, where J 5 u, and a set of
windows Wi, where J 5 i 5 U, such that the following
two conditions hold:

(a) Consider a rule instantiation p :- m.-p, pl, ~2, . . ,
pk in the fixpoint evaluation of Pmg. Suppose
that p appears in window Wi. Then there must
be a window W,, where j 5 i, that cont,ains every
fact that appears in the body.

(b) Consider an instantiation of a magic rule m-p1
:- m-p, PI, ~2, . . . , pk in the fixpoint evaluation
of Pmg. Suppose that m-p1 appears in window
Wi. Then there must be a window, say W, , where
j > i, that contains every fact that appears in the
body.

0

We now define inverted magic rules.

Definition 3.3 [Inverted Magic Rules] Let 7 be a magic rule
of the form m-p :- m-q, el,. . . , e,, where m-p and m-q are
magic predicates and the e, are EDB predicates. Then the

280

inversion of r, denoted r’, is the rule m-q :- m-p, el, . , e,.
The inverted magic rules for Pm9 consist of the inversion of
each magic rule of Pmg. •I

Example 3.1 For the Fibonacci program of Example 2.1,
the inverted magic rules are

m-fib(N) :- N > 1, m-fib(N - 1).
m-fib(N) :- N > 1, mJib(N - 2).

Note that the fact m-fib(n) does not have a corresponding
inverted version. 0

To discover whether or not a program has the sliding win-
dow property, we first need to provide a mechanism for de-
termining to which window or set of windows a given fact or
goal belongs. We will assume that EDB facts cannot be dis-
carded, and thus consider these facts to be in every window.
Recall that the EDB relations are by definition those rela-
tions that are defined by tuples stored in the system rather
than defined by rules. A user might be justifiably upset if a
query evaluation algorithm deleted these relations as a side
effect of answering a query. For this reason, we can restrict
our attention to the set of magic facts and derived program
facts in determining windows.

We simplify the search for windows by defining the set Wi
in terms of the bound arguments of program facts and all ar-
guments of magic facts. This uses the property that the set of
bound arguments in the goals for a given predicate is exactly
the set of bound arguments of the facts for that predicate
whenever the bound arguments contain only ground terms.

We determine the windows Wi by defining a function that
maps goals and facts to integers. The intent is that a given
window contains all goals and facts that map. to some spec-
ified subrange of integers. In more detail, if the IDB predi-
cates in the program under consideration are pl , ~2, . . ., pk,
we require a set of k functions di, for 1 5 i 5 L, where the
function #i maps p, facts and m-pi goals to the integers.

For notational convenience, we will often use the generic
function 4 to represent all the 4,. That is, if z is eithe; m-pi
or pi, the meaning of 4(z) is d,(z). If a window Wi consists
of {z 1 c 5 4(z) 5 c + h}, we call c the base of the window
and Is the height.

A high-level description of an algorithm to detect when
a program has the sliding window property follows. The
algorithm takes as input the program Pm9 corresponding to
a program/query pair (P, q). If the algorithm can verify that
Pm9 has the sliding window property, it returns

l A function 4 that determines to which set of windows
a given fact or goal belongs.

l Two integers cu and cl, where cl is the base of the lowest
window that needs to be considered in the evaluation of
(P,q), and cU is the base of the highest such window.

l An integer h such that the windows are of height h.

With this terminology, the above parameters can be used to
specify the windows Wi as follows:

WC, = (5 1 Cl I 4(z) 5 ct + h}

W cl+1 = {z I Cl + 1 5 d(z) L Cl + h + 1)

WC,-, = {z 1 cu - 1 5 b(z) 5 CU - 1+ h}

WC, = (2 1 GA L 4(z) I cu + h)

The detection algorithm works by enumerating a set of possi-
ble choices for 4 and checking for the sliding window property
with each choice.

Algorithm 3.1 (Sliding Window Detection)
Input: Pmg, the output of the Magic Templates rewriting on
a program/query pair (P, q).
Output: Either a four-tuple (4, h, c,,, cl) such that Pm9 has
the sliding window property with windows as defined by (4,
h, c,,, cl), or FAIL if no such function could be found.

1) if (Independent(Pmg , P) and AllBoundGround(P”“))

2) then while NextPhi(4, P”‘“) do

3) if CheckMonotonic(4, Pm”) and

4) FindHeight(4, P”‘“) and

5) FindLimit(4, Pmg, cl, c,)

‘3) then return (4, h, ~1, cU);

7) endwhile;

8) return FAIL;

9) endif;

10) return FAIL;

We consider each of the procedures used in Algorit,hm 3.1
in turn.

Procedure 3.1 [MagicAndProgramIndependent]
Input: A program Pmg.
Output: True, if in Pmg, there are no pairs of IDB predicates
p,q such that p z rnq as defined in Definition 3.1; false
otherwise.
Method: Construct the Rule/Goal graph for Pmg. For each
IDB predicate p, check that there is no path from the node
for p in this graph to the node for a magic predicate. 0

The running time of this procedure is O(n’), where n is
the number of predicates in Pmg.

Procedure 3.2 [Groundness]
Input: A program Pmg.
Output: True, if the procedure can prove that in the bottom-
up evaluation of Pmg, every bound argument is a ground
term; False otherwise.
Method: It is sufficient to check that the query and all EDB
predicates contain only ground terms, and that the magic
rules in Pm9 are range restricted. 0

The running time of this procedure is linear in the size
of Pm”. Procedures 3.1 and 3.2 are independent of the par-
ticular class of candidate 4 functions considered by Algo-
rithm 3.1. By contrast, the remainder of the procedures in
that algorithm are highly dependent on the chosen class of
candidate 4’s. We have presented the algorithm in generic
form, to accommodate new classes of 4’s as they are de-
veloped. In the remainder of this section, we give specific
instances of the algorithms for an especially useful, class of
4’s, as discussed below.

281

The class of candidate 4 functions considered in this paper
are all based upon the sum of the sizes of a subset of the
bound arguments of predicates, or the additive inverse of this
sum of sizes. To define the site of an argument, we divide the
bound arguments into two types: those that contain integers,
and those that contain structured terms.

We will use the convention that all terms are uninter-
preted, with the exception of arithmetic expressions (as is
standard in logic programming). With this convention, the
“size” of an argument a, denoted s(a), is defined as follows:

I. For an integer expression e: if e appears in an argument
position of a term (that is uninterpreted), then s(e) = 1,
else s(e) = e. (For example, s(5 + 6) = 1 in the term
f(5 + 6), where f is an uninterpreted function symbol.)

2. The size of a variable X is unknown, and is represented
by 4-V.

3. The size of an atom in a structured argument is I.

4. The size of a term f(tl, t2, . . . , $) is defined by

s(f(h, t2,. . . , tp)) = 1 + max(s(tl), s(t2), . . . , s(tp))

For example, suppose that 4 is the sum of arguments one and
three of p, and that argument one has been determined to
be a structured argument while argument three is an integer
argument. Then

d(p(f(dX), 6 + lo), X,4 + 2))
= s(f(dW)), 6 + 10)) + ~(4 + 2)
= 1 + max(s(g((h(X))), ~(6 + 10)) + 4 + 2
= 1 + max(1 + s(h(X)), 2) + 6
= 1 + max(2 + s(X), 2) + 6
=6+s(X)

Note that in this case the expression 6 + 10 appears in a
structured argument, hence is uninterpreted, and has size 2.
On the other hand, the expression 4 + 2 appears in an in-
teger argument, hence it evaluates to 6. Also, this example
indicates that the result of applying 4 to a term may involve
a variable. The function 4 computes the sum of the sizes
of a subset of the bound arguments of its argument god or
predicate. For this class of 4 functions, we can enumerate all
such choices for 4 by enumerating the subsets of the bound
arguments.

Procedure 3.3 [NextPhi]
Input: A program Pmg.
Output: True, if there are alternatives for 4 that have not
been returned by any previous call to NextPhi. In this case
the variable 4 is set to the next such alternative. The proce-
dure returns False otherwise.
Method: NextPhi considers only functions 4 that are defined
to be the sum of the sizes of a subset of bound arguments, or
the negative of the sum of the sizes of a subset of bound argu-
ments. NextPhi retains in static storage the subset of bound
arguments it returned in the previous call, and whether it
was returned with positive or negative sign; on each call it
updates this static storage and returns either the additive in-
verse of the current subset or the next subset in some order

of enumeration. If in previous calls all subsets have been re-
turned with both positive and negative sign, NextPhi returns
false. 0

Each call to NextPhi can be processed in time linear in
the number of bound arguments. The total number of calls
to NextPhi by Algorithm 3.1 is exponential in the number
of bound arguments in a given predicate. However, since we
expect the number of bound arguments to be small, an ex-
haustive algorithm is sufficient. (In the examples considered
in this paper, at most two arguments are bound; this means
that the number of cases to be considered is six, three with
each sign.)

Next we turn to the procedures that check each candi-
date 4 function to see if it satisfies the sliding window prop-
erty.

Procedure 3.4 [CheckMonotonic]
Input: A program Pm9 and a candidate windowing func-
tion 4.
Output: True, if for every possible instantiation of a rule
in the bottom-up evaluation of Pmg, if p is the predicate in-
stance in the head of the rule, and pl , . . , pk are the recursive
predicate instances in the body of the rule,

b(P) 2 max(d(Pl)7.. . 1 (b(Pk))

must hold.
Method: For each modified original rule. 7 in P”‘g,

Apply (b to each literal in the head and body of r, and
simplify using the definition of size of an argument and
standard arithmetic.

Determine the literal pi in the body of T such that q5(pl)
is maximal over all predicates in the body.

Attempt to produce an arithmetic tautology by sim-
plifying g(p) 2 max(ti(pl), . . . , $(pl;)) using st.andard
arithmetic.

If the procedure succeeds on step 3 for all rules in P, return
true, else return false. 0

Example 3.2 Consider again the Fibonacci program of Ex-
ample 2.1. Since in the Fibonacci program there is only one
bound argument, the choices for 4 are just 4(fib(N, T)) = N
or +(fib(N, 2)) = -N. The following shows that Procedure
CheckMonotonic succeeds with the first alternative.

To test for monotonicity, Procedure CheckMonotonic must
compare the first instance of fib in the body of t,he rule
and the instance in the head. That is, it must test if
cb(fib(N,X)) 2 qQib(N - 1,X1)) for all possible instan-
tiations of the two predicates. We have that

d(fib(N, Xl) 2 4(fWN - 1, Xl))

holds if and only if s(N) 2 s(N - 1). Since this reduces
to 0 2 -1, which holds unconditionally, the monotonicity
constraint is satisfied. The monotonicity constraint for the
second instance of fib and the instance of m-fib are similar.

For an example where CheckMonotonic returns with fail-
ure, consider the transitive closure

282

t(X, Y) :- e(X, Y).
t(X, Y) :- e(X, W), t(W, Y).

and the query t(1, Y)? Here we will need to test monotonicity
between 2(X, Y) and 2(W, Y). Again, since there is only one
bound argument, there are only two choices for 4: either
d(l(X, Y)) = s(X) or 4(2(X, Y)) = -s(X). Considering the
first option, we have

4tttx, Y)) 2 4(W? Y)) * 4X) > SW)

Since no more simplifications are possible, and in general
s(X) 2 s(W) does not hold, the condition fails. The case for
4(2(X, Y)) = -s(X) is similar. 0

Next consider finding the height of the windows.

Procedure 3.5 [FindHeight]
Input: A program Pm” and a candidate windowing func-
tion 4.
Output: True, if there is a constant h such that for every
possible instantiation of a rule r in the bottom-up evaluation
of Pmg, if pl through pk are the recursive predicates in the
body of T, the difference

max(d(pl),dt~z),. . ,4(pk)) - mid4(pl),d(p2), . . . r~(pk))

is at most h. In this case also return h; otherwise return
false.
Method: For each rule T in P,

1. Apply 4 to each predicate instance in the head and body
of T, and simplify using the definition of size of an ar-
gument and standard arithmetic.

2. Determine max(~(pl),~(p2),...,~(pk)) and
min($(m), I, . . . , ti(pk)) and their difference.

3. Attempt to reduce this difference to a constant h by
using standard arithmetic.

If the procedure succeeds on step 3 for all rules in Pmg, return
true and the maximal constant h used in step 3 over all rules;
else return false. 0

Example 3.3 Returning again to the Fibonacci example,
Procedure FindHeight must find an h that bounds the dif-
ference of

max(4(mfib(N)), #(fib(N - 1, Xl)), 4(fib(N - 2, Xl)))

and

min(d(m-fib(N)), 4(fib(N - 1, Xl)), +S(fib(N - 2, Xl)))

Since

max(+(d(,m-fib(N)), fib(N - 1, Xl)),b(fib(N - 2, Xl)))

reduces to max(s(N),s(N - l),s(N - 2)), which is just N,
and

min(r$(m-fib(N)), d(fib(N - 1, Xl)), 4(fib(N - 2, Xl)))

reduces to min(s(N - l),s(N - 2)), which is N - 2, the
difference N - (N - 2) = 2. It is simple to verify that h = 2
works for the other rules of Pm9 and the inverted magic
rules as well. For an example where FindHeight returns false,
consider the binary transitive closure:

2(X, Y) :- t(x, W), l(W, Y).
t(X, Y) :- e(X, Y).

and the query t(1, Y)? Here, again, there are only two choices
for 4, the size of the first argument oft, or the additive inverse
of the size of the first argument. With the first choice, we will
have to verify that there exists an h such that the difference

max(dtttX, WI), d4ttW Y))) - mint&tttX, W), 4tttW Y)))

is less than w. Here we have

max(4(t(Xu, W)), 4(W, Y))) - min(d(t(X, W)), d(W, Y)))

reduces to max(s(X),s(W)) - min(s(X),s(W)). No more
simplifications can be made, since nothing is known about X
and W, so the test fails. The case for the other choice of 4
is similar. 0

Finally, we turn to finding limits on the windows involved.

Procedure 3.6 [Find Limit]
Input: A program Pm9 and a candidate windowing func-
tion 4.
Output: True, if there are constants cU and cr such that any
answer a to q must have 4(u) 5 cU and any magic fact m
produced in the bottom-up evaluation of Pm9 must have
4(m) 1 cl. In this case return cU and cl. Otherwise return
false.
Method: We consider the cases for c, and cl separately. There
are two cases to consider, depending on whether 4(X) 2 0
for all facts X, or 4(X) 5 0 for all facts X. One or the other
must hold, since sizes are never negative and 4 is either a
sum of sizes or the inverse of a sum of sizes.

First, consider the case where 4 1 0.

1. Since by definition every answer agrees with q on the
bound arguments, we may always set c, to d(q) - h.

2. The constant cl is more complex. Suppose that 4 con-
siders the arguments al,. . . , a,. Then if argument a,
contains structured arguments, define li = 0. Other-
wise, a, must contain an integer argument. If the vari-
able in si is X - Ic, and X appears in the body of the
rule in a predicate X 2 y, then define 1, = y - ii. Define
cr = cy li. Verify by expansion that cl works for all
predicates in P.

For the case where 4 5 0, the roles of cU and cl are reversed.
If Step 2 was successful, return cl and cur otherwise return
failure. 0

Example 3.4 Returning once more to the Fibonacci exam-
ple, consider the magic rule

m-fib(N - 2) :- N > 1, m-fib(N).

and assume that we are considering c$(fib(N, -U)) =
4(mJib(N)) = N. Then FindLimit must find some con-
stant cl such that

d(rn-fib(N - 2)) > cl

In the body of the rule, we have that N > 1, which implies
that N - 2 2 0, so this condition is satisfied for cl = 0.

283

Furthermore, if the query is fib(n, X)?, since we have already
determined that h = 2, we set cu = n - 2.

Combining everything in Examples 4.2 through 4.4, we get
that for the query fib(n, X)? on the fibonacci example, the
relevant windows are

wo = {m-fib(N)andfib(N, X) / 0 5 N 5 2)

Wl = { m-fib(N)andfib(N, X) 1 1 5 N 5 3)

wn-3 = {m-fib(N)andfib(N, X) (n - 3 5 N < n - 1)

x-2 = {m-fib(N)andfib(N, X) 1 n - 2 5 N s n}

0

Theorem 3.1 If Algorithm 3.1 returns successfully when in.
voked on (P, q), then (P, q) has the sliding window property.

4 Sliding Window Tabulation
In this section we consider Sliding Window Tabulation in
more detail.

4.1 A “Naive” Description

The focus in Sliding Window Tabulation is on how we can
discard facts as early as possible. An orthogonal concern is
how to avoid repeating the same inferences. The Seminaive
bottom-up evaluation algorithm can be adapted to ensure
that Sliding Window Tabulation does not repeat any infer-
ences. We consider this adaptation in the next subsection.
(We consider the adaptation, or some equivalent technique
for avoiding repeated inferences, to be an integral part of
Sliding Window Tabulation. We have presented the ideas
separately for ease of exposition.)

Sliding Window Tabulation of a (rewritten) program Pm9
proceeds in two phases. In phase one, the “down” phase,
only the magic rules are applied. Initially, the only magic
fact is the query, which is in the highest window. For each
window, processing consists of repeatedly applying the magic
rules until no new facts can be derived. The important con-
straint is that in applying a magic rule, only facts in the
current window can be used to instantiate the body. The
Monotonicity condition in the definition of the sliding win-
dow property ensures that generated facts belong to either
the current window or to some lower window; those in lower
windows are saved for processing later.

After a window is processed, we discard all facts in this
window that are not also in subsequent windows, except for
“fringe” facts. A fringe fact is a magic fact m such that

1. m appears in the current (processed) window, but does
not appear in any lower window, and

2. m was never used to instantiate a magic rule in the down
phase.

Intuitively, fringe magic facts correspond to leaf or basis
nodes in a derivation. All fringe facts are saved. (Also, re-
call that EDB facts are never discarded.) The “down” phase
terminates when we have processed the lowest window.

In phase two, the “up” phase, the fringe facts, which are
the only facts saved from the down phase, are used to ini-
tialize derived program facts in the lowest window; fringe
facts in other windows are retained for initializing these win-
dows when they are processed. For each window, processing
consists of repeatedly applying the modified program rules
in Pm9 and the inverted magic rules until no new facts can
be derived. As in the “down” phase, in applying a rule,
only facts in the current window can be used to instantiate
the body. Also as in the “down” phase, in the “up” phase
the Monotonicity condition in the definition of the sliding
window property ensures that generated facts belong to ei-
ther the current window or to some higher window; those in
higher windows are saved for processing later. After a win-
dow is processed, we discard all facts in this window that
do not belong in subsequent windows also. The “up” phase
terminates when we have processed the highest window; all
answers to the query are contained in the facts that belong
to this window.

4.2 A “Seminaive” Formulation
In this subsection we describe how Seminaive evalua-
tion [Ban851 can be adapted to Sliding Window Tabulation.

4.2.1 ‘Seminaive Evaluation

We present a brief overview of Seminaive evaluation. Sem-
inaive evaluation works by identifying’ “differentials,” which
are new predicates that contain tuples produced in the last
iteration. Consider a program that is to be evaluated using
Seminaive evaluation. The program is first rewritten in or-
der to define the new “differential” predicates. Suppose the
program contains the following rule:

P :-Pl,P2 ,... rPk,91,42,. ..r’h.

Let the p’s be derived predicates and the q’s be EDB pred-
icates. A set of rewritten rules is generated from this
rule, each of the form 6~““” :- term, 91,. . , qm. There is
one such rewritten rule for each term in the expansion of
(pi”” + 6pfd). . . (pzld + 6pfd) - (pfd . . pzld). In evaluating
the program, in each iteration each of the seminaive rules is
applied, followed by updating the relations as follows:

old
Pi := pp’d + bpp*d;
bpp’d := 6p:‘” -.pp’d;
6pl’” := 0;

The iteration continues until all the relations 6ppfd are empty.

4.3 Sliding Window

For convenience, we introduce the function Gw, where for a
set of facts S, we define au(S) to be the subset of S that is
contained in window UJ. We also define unused(S) to be all
facts in S that were never used in any instantiation of a rule.

Recall that during the “down” phase of Sliding Window
Tabulation, only the magic rules are applied. In t,he “up”
phase, on the other hand, only the modified program rules

284

and the inverted magic rules are applied. Sliding Window
Tabulation differs from Seminaive in the updating phase fol-
lowing each iteration, both in the down and up phases.

Also, for each magic predicate m-pi, we introduce the
predicates m-pi”“” and mgfringe (in addition to the predi-
cates introduced by the standard seminaive rewriting.) Intu-
itively, mpfave stores magic facts that belong to a window
other than the window currently being processed; m-pfringe
stores the fringe magic facts encountered during the “down”
phase. As is discussed below, there is no need for pf”“’ or
p!riw= for program predicates pi.

Consider first the down phase. The initialization is simple
- the current window is set to the highest window, W,, and
all relations are empty, with the exception that 6m$‘d =
seed, where q is the query predicate and seed is the magic
fact corresponding to the query.

As with the standard Seminaive evaluation, alI magic rules
are applied in every iteration. However, instead of perform-
ing the Seminaive updates at the end of an iteration in the
processing of window w, perform the following assignments
for each magic predicate m-pi:

1. m-pf”“’ := m-pf”“’ + 6m-prew - Qw(Gm-pleW);
2. rn-ppld := rn&ld + 6m-ppld;
3. 6rn-p41d := iBw(6rn-plew) - m-ppLd;
4. 6m-pv” := 0;

Step 1) just saves facts in lower windows for later process-
ing. Steps 2) - 4) are the usual seminaive updates, except
that St,ep 3) only retains facts in the current window from
Gm-p:‘” (recall that the remaining facts are saved for later
processing, in Step 1)).

The processing of a window continues until all relations
6m-pi Old are empty. Next, between the prodessing of win-
dows w and w - 1, unless of course w is the lowest window,
the following updates must be performed:

5) 6rn-pPld := @Jw-l(mgfaVe);

6) m-pp’d := @pw-l(m_pf’d);
7) m-p!r’nge := m*!ringe + unused(@U(mgp’d)

-@w-l(m-pP’d));

Steps 5) - 6) initialize the processing of the next window
(w - 1). Note that Step 6) just discards some facts from
window w that have been processed and are no longer needed.
Step 7) saves “fringe” facts, to be used later in the up phase.

The down phase terminates after the processing of the
lowest window has been completed. At this point, we perform
the update

8) m-pfr’nge := unused(m-pp’d);

for each magic predicate.
To initialize the “up” phase, we begin with the updates

9) mmpf”“’ := m-piringe;
10) 6m-pfd := @‘cl(m-p~o”c);

In the up phase, we fire the program rules and the inverted
magic rules. The updates to the magic predicates after each
iteration are identical to those of the down phase. However,

the updates to the program predicates are simplified, for the
following reason: for any program predicate p,, the predicate
pf”“’ is uniformly empty. This follows because every origi-
nal program rules with head pi is “guarded” by the magic
predicate m-pp’d, which at all times contains only facts in
the current window. Hence the updates for program predi-
cates are just the usual seminaive updates, repeated here for
convenience:

11) pp’d := pp’d + app’d;
12) spp’d := 6py - ppld;
13) C5pyew := 0;

In between the processing of windows w and w + 1 on the up
phase, where w is not the top window, the following updates
must be performed:

14) 6m-ppLd := &+l(m-pfave);
15) m-pqave := mgfave - aw+l (m-pfove);
16) mqyd := 9,,,+l(m-pp’d);

old __ 17) p, .- 0;

Step 14) initializes the processing of the next window (UJ+ 1).
Step 15) removes facts that have been selected for processing
(in Step 14)) from m-pi”““. Steps 16) - 17) discard facts from
window w that have been processed and are no longer needed.
We illustrate this evaluation algorithm with an example.

Example 4.1 Consider again the Fibonacci program of Ex-
ample 2.1 with the query fia(n, X)?. The result of applying
Magic Templates to this program appears in Example 2.1.
We now turn to evaluating this program using Sliding Win-
dow Tabulation.

First we consider the down phase. Recall that t.he window-
ing function here is 4(rn-fib(N)) = N, the window size is 2,
and that if the original query was fib(n, X)?, t,he bounds
are cU = n - 2 and cl = 0. Table 1 gives the values for
the relations in question at the end of each iteration in the
“down” phase for the query fib(5, X)?. The starting window
for the “down” phase is W3. Table 2 gives the values for the
relations in question at the end of each iteration in the “up”
phase. 0

4.4 Properties

First, we verify that Sliding Window Tabulation correctly
evaluates programs that have the sliding window property.

Theorem 4.1 Let (P, q) have the sliding window property.
Then Sliding Window Tabulation computes all answers to q
and terminates.

Next, we turn to the efficiency of the tabulation. One
key advantage of seminaive as compared to naive is that it
never repeats a derivation. This property is known as the
%eminaive property.” In the next theorem we show that this
is true of Sliding Window Tabulation also has the seminaive
property.

Theorem 4.2 Let (P,q) have the sliding window property.
Then Sliding Window Tabulation has the seminaive property.

285

I 3
3 2 t(5),(4),(3)) {(2),(l)) 0
2 init I(4), (3)) {(l))
2 1 A t(4),(W)) {(l),(O)) ii
1 init {(3),(2)) t(o)} 0
1 1 U3)l(2)9(1)) {@)I 0

0 init {(W)l
0 1 + ~CwW)~ B” 0”

end 0 0 0 {W,(l)1

Window Iteration 1 6m-fib”‘* m-fib”‘* m-fib’““’ m-f ibfrlnge
3 init I I(5)) 0 0 0

Table 1: “Down” phase of evaluation of fib(5, X)?.

The overall goal of Sliding Window Tabulation is to limit
the storage required by the program evaluation. The fol-
lowing set of definitions, culminating in Theorem 4.3, give
bounds on the space efficiency of Sliding Window Tabula-
tion.

Definition 4.1 Let (P, q) have the sliding window property,
with 4 the ordering function on the facts and goals of P”g.
Also, let P be the set of goals and facts produced in the
Sliding Window Tabulation of Pg. Then the goal width of
(P, q) is the maximum, over all constants c, of the number of
goals g E P such that d(g) = c. Similarly, the fact width of
(P,q) is the maximum, over all constants c, of the number
of facts f E P such that d(f) = c. The width of (P, q) is the
larger of the goal or fact widths for (P,q). 0

Definition 4.2 Let (P, q) have the sliding window property,
with 4 the ordering function on the goals and facts of P.
Then the goal span of (P, q) is the maximal value s such that
for some rule firing in the Sliding Window Tabulation of Pmg,
goal m-p1 appears in the head, pz appears in the body, and
d(rn-pl) - 4(pz) = s. Similarly, the fact span of (P,q) is the
maximal value s such that for some rule firing in the Sliding
Window Tabulation of Pmg, fact pl appears in the head, pz
in the appears in the body, and (b(pl) - 4(pz) = s. The span
of (P, q) is the larger of the goal span or fact span of (P, q).
0

Definition 4.3 Let (P, q) have the sliding window property.
Then the basis width b of (P, q) is the number of relevant basis
facts determined by the down phase of the sliding window
evaluation of (P, q). 0

Theorem 4.3 Suppose that (P,q) has width w, span s,
height h, and basis width b. Then Sliding Window Tabu-
lotion stores at most w(s + h) + b goals or facts at any given
time.

Corollary 4.1 Suppose (P,q) has constant width, span,
height, and basis width, and furthermore that any goal or
fact of (P,q) can be stored in constant space. Then Sliding
Window Tabulation runs in constant space.

Example 4.2 Returning to the Fibonacci example, we have
that s = 2, w = 1, h = 2, and b = 2. Since each fact is an
integer and each goal is a pair of integers, if we assume that
an integer can be stored in constant space, then Sliding Win-
dow Tabulation is constant space on Fibonacci. An example
of a program on which Sliding Window Tabulat,ion runs in
linear space is given in Section 5. 0

The time efficiency of Sliding Window Tabulation is more
difficult to analyze than the space efficiency. The simplest
way to calibrate the performance of Sliding Window Tabula-
tion on (P, q) appears to be a comparison with the seminaive
evaluation of Pmg. Even thii comparison is not st,raightfor-
ward, for the following reasons:

1. In some cases, sliding window “overtabulates”. That is,
it may compute facts that are not computed by semi-
naive evaluation of P”g; these facts are not. relevant to
the query.
To understand why, consider the “up” phase. This
phase is initialized using the set of relevant basis facts.
Subsequently, the modified original rules in P and the
inverted magic rules are fired repeatedly. This elimi-
nates the need to store all magic facts from the “down”
phase, but it raises the possibility of computing irrele-
vant program facts. Intuitively, this happens when some
magic fact m can be generated from two distinct magic
facts, say ml and mz, where only one of the magic facts
was produced on the way down. On the way back up,
there is no way to know which of the two magic facts
produced m on the way down, so both are generated on
the way up.

2. There are overheads in Sliding Window Tabulat’ion that
are not present in seminaive evaluation of Pm”. For ex-
ample, when a new fact f is produced, we must evaluate
d(f) before deciding where the fact should be saved. As
another example, when “sliding” the window, any facts
in the saved relations that belong in the new current
window must be found, and moved from the save rela-
tion to the corresponding “new” relation.

3. On the other hand, often the number of facts stored by
sliding window tabulation is. much less than that stored

286

Window Iteration 6f ibold f iboLd am-f iboLd m-f iPd m-fib”““”

0 init 0
0 1
0 2

WhJ~~;;)l
t y;”

uo~:P~l r c&

i
w,l~~l,l~l 0 {W,(1),(2)) i(3),(4)}

0 3 ~(0,1),(L1M%4~ 1 init
u383,1

twMw~ l(al
“r”c”l’~h$ w#

1 1
i

{(1JMW~ U&),~3H {(4),(5)1
1 2 {(l,l)>(%%(V))
2 init

u4;5u
{(W),(V))

i(;l

m(2),(3)} WQ#
{(2),(3))

2 1 {(Wh(V)) j(2),(3),(4)] {(5),(8)]
2 2 {(2,2),(3,3),(4,5)) {GWh(4)} {@b(6)}
3 init

I&91
{(3~3)~(4~5)1

II%,1
{(3M4)1 t(5)l

3 1 {(3,3),(4,5)1 {(3),(4),(5)1 t(6),(7))
3 2 0 {(3,3),(4,5),(5,8)} 0 t(3),(4)9(5)1 t(6),(7))

Table 2: “Up” phase of evaluation of fib(5, X)?.

by seminaive. The large number of facts to be stored
can slow their retrieval, in the worst case requiring a
great deal of I/O that is not required by sliding window
tabulation.

We can, however, prove the following two theorems. The
first, Theorem 4.4, gives a worst case upperbound on the
number of inferences; the second, Theorem 4.5, shows that
much better performance can be guaranteed if the magic
rules in Pm9 are “invertible”.

Theorem 4.4 Sliding Window Tabulation of (P,q) newer
infers more program facts than the seminaive evaluation
of P.

Note that the above theorem only addresses the set of
program facts that are inferred; it can be extended by noting
that Sliding Window never infers more facts than seminaive
evaluation of P plus the magic facts inferred in seminaive
evaluation of Pmg.

Definition 4.4 [Invertibility] A magic rule T in Pm9 is said
to be invertible if the following holds. Suppose that a r is
instantiated so that the head is ml and the (only) magic fact
in the body is m2. Given ml and r, we should be able to
determine m2. 0

Theorem 4.5 Suppose that all the magic rules in Pm9
are invertible, and that the Seminaive evaluation of Pmg
makes M magic fact inferences and P program fact infer-
ences. Then Sliding Window Tabulation of (P,q) makes at
most 2M magic fact inferences and P program fact infer-
ences.

5 An Example
Deductive database technology has been proposed as a useful
tool in DNA sequence analysis. The Longest Common Subse-
quence (LCS) is representative of some of the low-level prob-
lems that are involved in this type of analysis. We are given

two strings, say A = aoal . . a,,,-~, and B = bo bl . . . b,-1,
where the ai and b, are drawn from some common alphabet.
The desired answer is the maximal z such that there is a
stringC=cocl... ~~-1, where C is a subsequence of both A
and B. Note that “subsequence” differs from “substring” in
that the members of a subsequence C of A and B need not
appear contiguously in either A or B; all that is required is
that the elements of C appear in the same order in A and B.

Hirchberg [Hir75] gives the following program to com-
pute the LCS of two strings. (This is also discussed by
Bird [BirbO] in the context of tabulation.) To express the
problem in logic programming notation, we represent the
string A = aoal . . . a,,,-] by the facts a(O,ao), a(l,al),
a(m - 1, a,,,-1). Similarly, the string B = bo b1 . . b,-1 is
represented as b(0, bo), b(1, bl), . . ., b(n - 1, a,-,). Then the
following program defines the relation lcs(M, N, X), with the
intended meaning that the longest common subsequence of A
beginning at aM and B beginning at BN is of lengt,h X.

lcs(m, N, 0).
lcs(M, n, 0).
lcs(M, N,X) :- M < m, N < n,a(M, C),b(N,C),

lcs(M + 1, N + 1, X - 1).
Ics(M, N,X) :- M < m, N < n,a(M, C), b(N, D),C <> D,

lcs(M + 1, N, Xl), lcs(M, N + 1, X2),
X = max(X1, X2).

The longest common subsequence of the two strings is given
by the query lcs(O,O, X)?.

First, if we use Prolog to evaluate this query, in the worst
case the running time is 0((-2”)). As noted in the intro-
duction, this is impractically large for all but the smallest m
and n. Another approach to evaluating the query is to use
Magic Templates to rewrite the program, then to evaluate
the result bottom-up. The resulting Magic rules are:

mJcs(l,l).
mJcs(M + 1, N + 1) :- M < m, N < n, a(M, C), b(N, C),

mJcs(M, N).
mJcs(M + 1, N) :- M < m, N < n, a(M, C), b(N, D),

287

C <> D, m-lcs(M, N).
m-Jcs(M, N + 1) :- M < m, N < n, a(M, C), b(N, D),

C <> D, m-Jcs(M, N).

while the modified original rules are

Jcs(m, N,O) :- m-Jcs(m, N).
Jcs(M, n, 0) :- m-lcs(M, n).
Jcs(M, N, X) :- m-Jcs(M, N), M < m, N < n,

a(M,C),b(N,C), Jcs(M + 1, N + 1,X - 1).
Zcs(M, N,X) :- m-lcs(M, N), M < m, N < n,

a(M, C), b(N, D), C <> D,
Jcs(M + 1, N, Xl), Jcs(M, N + 1, X2),
X = max(X1, X2).

One may verify that when evaluated bottom-up using Sem-
inaive, and assuming co&ant time access to memoed facts,
this program is O(mn) time in the worst case. However, the
program is also O(mn) in space. For large m and n, this
will also be impractical. Sliding Window Tabulation can be
used to reduce the space requirement to O(m+n) (with time
complexity remaining O(mn)).

In order to appiy Sliding Window Tabulation, we first need
to verify that the LCS program does indeed have the sliding
window property by running Algorithm 3.1. First, Algo-
rithm 3.1 attempts to find a windowing function 4. Since
there are two bound arguments in the magic program, there
are six choices for 4. The Sliding Window Detection al-
gorithm will choose q5(Jcs(N, M, X)) = ql(mJcs(N, M)) =
-(N + M). This means that the relevant windows for the
query Jcs(m, n, X)? are

w-(mtn) = {all Ics(N, M,X) and mJcs(N, M) 1

-(m+n)IM+Ni-(m+n)+l}

W-(mtn)tl = {all Jcs(N, M,X) and m-lcs(N, M) (

-(m+n)+l_<M+NL-(m+n)+2}

w-2 = {all Jcs(N, M,X) and mJcs(N, M) 1

-2_<M+N<-1)

w-1 = {all Jcs(N, M,X) and mJcs(N, M) 1

-l<M+N<o}

Since 0 5 M 5 m and 0 5 N 5 n, each window can contain
at most n + m facts or facts.

Now consider the specific instance of the problem A = acbc
and B = c&L. The query we wish to ask is Ica(O,O, X)?, and
the correct answer is Jcs(O,O, 2). (There are two subsequences
of length 2: ab and cb.) To save space we do not show the
value of every relation on every iteration of the evaluation.
Instead, in Table 3 we show tuples of m-lcs and Jcs computed
by the up and down phases of Sliding Window Tabulation,
partitioned by 4 value.

Note that unlike the case with the Fibonacci example, not
all of the basis program facts are relevant. Specifically, none
of mJcs(0,4), mJcs(2,4), m-Jcs(4,4), or mJcs(4,O) are gen-
erated. Also, notice that the basis facts do not all appear in
the same window.

Also, this is an example of overtabulation. Specifically,
the magic facts mJcs(1, l), mJcs(2,0), or m-Jcs(3,O) are not
generated on the way down. However, in the “up” phase, the
facts mJcs(1, l), m&s(2,0), and m&a(3,0), and the corre-
sponding lcs facts, are computed. If the magic facts were
retained for the “up” phase, instead of being recomputed by
the inverted magic rules, these Jcs facts would not have been
generated.

6 Conclusion

We have presented a broad framework for compile-time
garbage collection in bottom-up evaluation of logic programs.
Since the space requirements for bottom-up methods are typ-
ically much greater than for top-down methods, this is an im-
portant area for optimization. Our results can be extended
in many ways; in particular, we are considering the following
problems.

Refining sliding window techniques.

The techniques presented here can be refined in many
ways, including devising stronger tests for applicabil-
ity, and developing techniques for “sliding” windows in
bigger increments, thereby minimizing the processing of
windows that contain few or no facts.

Multiple recursive cliques.

The Independence condition for the ipplicability of Slid-
ing Window Tabulation disallows the dependence of
magic predicates on any derived program predicates. If
a program P contains more than one recursive clique,
the magic predicates of one clique may depend upon
program predicates from other cliques. It is desirable
to extend Sliding Window Tabulation to deal with such
programs.

Dynamic methods.

Sliding Window Tabulation is a static method in that it
tries to determine window functions 4 at compile time.
Sometimes, it may be possible to design suitable win-
dows only at run-time. A good example is a program
that traverses an acyclic graph, say a part-subpart hier-
archy, and (possibly) does some additional computation.
In such cases, an interesting problem is to devise dy-
namic strategies that, possibly through some auxiliary
run-time computation and/or additional stored facts,
identify a set of windows that result in significant space
savings overall.

Integrating with general bottom-up evaluation.

Finally, a number of issues must be addressed in order to
incorporate the tabulation techniques investigated here
into a system based upon rewriting and seminaive eval-
uation. For example, it is likely that while tabulation
is not applicable to the entire program, it is applica-
ble to a subprogram. To deal effectively with t,his sit-
uation, techniques must be developed to integrate the
optimizations that are possible for the subprogram into
the evaluation of the entire program.

288

1 down phase UD phase
41 m-k3

cl I {(O,O)l

-1
-2
-3
-4
-5
-6
-7
-8

0 0
{cuM1~2)) ~cuM~~2))
t(3J)@JhW)) t(3J)@JhW))
{(4,1),(3,2),(2,3),(1 {(4,1),(3,2),(2,3),(1,4)) 4)
t(3,3),(4,2)) t(3,3),(4,2))
{J3,4),(4?3)) {J3,4),(4?3))

iil,ojhw iiwj$w))
{((LlMw) ~(W,~M4OJ))
{(2,1),(1,2),(3,0)] ((2,1,1),(1,2,1),(3,0,1))
~(3,~hW),(~,3)) ((3,1,0),(2,2,1),(1,3,1))
{(4,1),(3,2),(2,3),(1,4)) ((4,1,0),(3,2,0),(2,3,1),(1,4,0))
t(3,3),(4,2)) tW,W4bAO))
{(3*4),(4,3)] {(3,4,0),(4,3>0)]

Table 3: Values for mlcs and lcs in up and down phases in evaluation of ks(0, 0, X)?

The tradeoff between recomputation and storage has received
little attention in the domain of deductive database pro-
grams, and to our knowledge has not been addressed at all in
the context of bottom-up evaluation strategies. Thii paper
demonstrates the potential gains from considering this prob-
lem by presenting bottom-up evaluation schemes that avoid
recomputation without saving every intermediate result for
the duration of the computation.

Acknowledgements

Divesh Srivastava and S. Sudarshan made several valuable
comments on an earlier draft of this paper.

References
[Ban851

[Bir80]

Francois BanciIhon. Naive evaluation of recur-
sively defined relations. In Brodie and Mylopou-
los, editors, On Knowledge Base Management
Systems - Integrating Database and AI Systems.
Springer-Verlag, 1985.

R. S. Bird. Tabulation techniques for recursive
programs. Computing Surveys, 12(4):403-417,
December 1980.

[BMSU86] Francois BanciIhon, David Maier, Yehoshua Sa-
giv, and Jeffrey D. UIIman. Magic sets and other
strange ways to implement logic programs. In
Proceedings of the ACM Symposium on Prin-
ciples of Database Systems, pages l-15, Cam-
bridge, Massachusetts, March 1986.

[BR87] Catriel Beeri and Raghu Ramakrishnan. On the
power of magic. In Proceedings of the A CM Sym-
posium on Principles of Database Systems, pages
269-283, San Diego, California, March 1987.

[Coh83] Norman H. Cohen. Eliminating redundant recur-
sive calls. ACM Transactions on Programming
Languages and Systems, 5(3):265-299, July 1983.

[Hi1761 J. HiIden. Elimination of recursive calls using a
small table of “randomly” selected function val-

[Hir75]

ues. Nor-disk Tidsckrijt For Injormationsbehan-
dling (BIT), 16(1):60-73, 1976.

D. S. Hirschberg. A linear space algorithm
for computing maximal common subsequences.
Communications of the ACM, 18(6):341-343,
June 1975.

[MR90] Michael J. Maher and Raghu Ramakrishnan.
Deja vu in fixpoints of logic programs. In Proceed-
ings of the Symposium on Logic Programming,
Cleveland, Ohio, 1990. To appear.

[NRSU89] Jeffrey F. Naughton, Raghu Ramakrishnan,
Yehoshua Sagiv, and Jeffrey D. UIIman. Argu-
ment reduction through factoring. In Proceed-
ings of the Fifteenth International Conference on
Very Large Databases, pages 173-182, Amster-
dam, The Netherlands, August 1989.

[Ram881 Raghu Ramakrishnan. Magic templates: A spell-
binding approach to logic programs. In Pro-
ceedings of the International Conference on Logic
Programming, pages 140-159, Seattle, Washing-
ton, August 1988.

[RBK88] Raghu Ramakrishnan, Catriel Beeri, and Ravi
Krishnamurthy. Optimizing existential datalog
queries. In Proceedings of the ACM Symposium
on Principles of Database Systems, pages 89-102,
Austin, Texas, March 1988.

289

