
Factoring Augmented Regular Chain Programs

Peter T. Wood
Department of Computer Science

University of Cape Town, Rondebosch 7700, South Africa

Abstract

In previous papers we have proposed a graphical query
language for expressing traversal recursions in labelled,
directed graphs. A fundamental feature of the lan-
guage is the use of regular expressions to specify con-
straints on paths in these graphs. When only con-
stants are allowed in regular expressions, it has been
shown that these queries can be evaluated efficiently.
In this paper, we study the inclusion of variables in
regular expressions. We show that efficient evaluation
algorithms still exist, and in so doing provide a trans-
lation to a class of Datalog programs, the augmented
regular chain programs, which can always be factored.
This class of programs is incomparable to previously
identified classes of factorable programs.

1 Introduction

The efficient evaluation of recursive queries on rela-
tional databases remains a topic of much interest,
most of the focus having been on the query lan-
guage Datalog [Ullm85]. One of the approaches has
been to concentrate on subclasses of Datalog pro-
grams for which efficient evaluation can be guar-
anteed; this has given rise to, among others, the
separable programs [Naug88], the right-, left- and
combined-linear programs [NRSUSSa], the commuta-
tive programs [Ioan89], and the factorable programs
[NRSU89b].

Permission to copy withour kc ail or part of this material i’r

grnnted provided that the copia arc not m;dc or cli\trihuted lb

direct commercial ad~ant+x the VLDB cop\ri~ht notice ;md

the title of the put&cation and its date appear. and notice i5 Fiten

that copying is by permission of the Vq Large Data Baw

Endowment. To cop) otherwix or to rcpuhlidi. rcquirc\ ;I 12~

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

/040/

Figure 1: Query to find what products people buy.

At the same time, we have been involved in
the development of a graph-based query language
(CMW87,CMW88,MW89], the assumption being that
most of the recursive queries that occur in practice
can be modelled naturally in terms ,of graph traver-
sals. Another reason for the graph-based approach is
again motivated by the search for efficient evaluation
algorithms.

Example 1.1 Consider the following example taken
from INaug88). Assume there is a relation p(X, Y) of
people X and products Y such that Y is perfect for
X, as well as relations f(X, Y) of people X and their
friends Y and c(X,Y) of products X and Y such that
X is cheaper than Y. Suppose that a person will buy
a product that is perfect for them, or if their friend
has bought it, or if it is cheaper than another product
they will buy. Then the following program P defines a
relation b(X, Y) of people X and the products Y they
buy.

b(X,Y) : - f(x, 4, W, Y).
b(X,Y) : - b(X ~),4’, 2).
b(X Y) : - p(X,Y).

Program P is separable and factorable. A graph-based
query Q equivalent to P is shown in Figure 1. The
query Q can be interpreted as follows. The relations
p, f and c can be modelled as a single directed la-
belled graph G in which each tuple from a relation
corresponds to an edge in G labelled with the appro-
priate relation name. Query Q asks for pairs of nodes
in G that are connected by paths whose concatenation

255

Figure 2: Query to find cities connected by sequences
of flights with at most two airlines.

of edge labels is a string in the language denoted by
the regular expression R appearing in Q. The symbol
E in R means that edges labelled c in G are to be tra-
versed from head to tail rather than from tail to head.
Cl

In this paper, we show that graph-based queries can
indeed be evaluated efficiently by transforming them
to a class of Datalog programs which we call the aug-
mented regular chain programs (ARC-programs). As
their name implies, these programs are related to the
regular chain programs studied in [BKBR87], for ex-
ample, where it was shown that a chain program is
factorable if and only if it is regular.

It turns out that ARC-programs can also always
be factored-thereby admitting efficient evaluation
algorithms-although the class of ARC-programs is
incomparable to the class of factorable programs iden-
tified in (NRSU89b]. 0 ne of the reasons for this is that
ARGprograms may contain mutually recursive rules.

Example 1.2 Suppose we have a relation j(X, Y, 2)
of cities X and Y such that there is a flight with air-
line Z between X and Y. The graph query Q depicted
in Figure 2 asks for the pairs of cities that are con-
nected by sequences of flights using at most two air-
lines. The symbols u and u in the regular expression
R in Q are variables that are instantiated to airline
names. The use of such variables adds considerable
power to the query language, an issue that is discussed
further in Section 3. An ARC-program P equivalent
to Q-which can be generated automatically (see Sec-
tion 4)-is given below.

c(X,Y,U,V) : - f(Gw)&,K~,v).
c(X,Y,U,V) : - f(X,~,V),4wvJ).
c(X,Y,U,V) : - f(X, y, a f(-, -m.
c(X,Y,U,V) : - f(X y, VI, f(-, -, w

Program P is not separable since, in the first two
rules, the sets of argument positions of c in the body
sharing variables with j are neither equal nor disjoint

(Naug88]. Given query goal c(zo, Y, U, V) with the first
argument bound, P is not right-linear according to
the definition in [NRSU89a], since, for example, in the
first rule, U appears in j as well as in both occur-
rences of c. However, the first two rules of P commute
[Ioan89], and P along with c(zo, Y, U, V) is right-linear
according to [NRSUSSb], and hence factorable. Later
examples introduce ARC-programs that are not in
any of the classes considered in [NRSU89a,NRSU89b],
yet can nevertheless be factored using the methods in
[NRSU89al. •I

The outline of the rest of this paper is as follows. In
the next section, we define the graph-based query lan-
guage GRE and describe how it differs from our previ-
ous languages. Section 3 is devoted to the translation
of GRE queries to ARC-programs. We also demon-
strate that an alternative translation scheme does not
lead to factorable programs. In Section 4, we show
that, in the presence of constants in queries, these
ARC-programs can always be factored, thus admit-
ting efficient evaluation algorithms. Finally, conclu-
sions and directions for future work are discussed in
Section 5.

2 The GRE Query Language

In this section, we define the syntax and semantics
of the GRE query language. We begin by defining
the graph structures against which such queries are
formulated.

De&&ion 2.1 Let U be a set of con&ants, V be a
set of variables, and P be a set of predicate symbols. A
literal is of the form p[al, . . . , a,,], n 2 0, (a forward lit-
eral) or F[ai, . . . , a,], n 2 0, (a reverse literal), where
p is an n-ary predicate symbol and each ai E U U V,
l<i<n. IfeachREU,l<iIn,thentheliteralis
ground. We denote the set of forward ground literals
over P and U by F(P, U).

A database graph (db-graph, for short) G =
(N, E, +, U, P, V, X) is a directed, labelled graph, where
N is a set of nodes, E is a set of edges, and $ is an
incidence junction mapping E to N x N. The node
labelling junction v associates with each node z E N
a distinct node label V(Z) E U, while A is an edge
labelling junction mapping E to F(P, U), the set of
forward ground literals. 0

There is an obvious way in which a db-graph G can
be viewed as a set R of relations. For each n-ary
predicate symbol r labelling an edge in G, there is an
(n+ 2)-ary relation r in R. The tuple (2, y, al, . . . , an)

256

appears in relation r if and only if there is an edge la-
belled r[ai , . . . , a,] from the node with label z to the
node with label y in G. We say that the set of relations
R represents the db-graph G.

Next, we turn our attention to the syntax of GRE
queries, examples of which have already been pre-
sented in Figures 1 and 2.

Definition 2.2 A GRE query Q is a pair (H, S),
where H is a pattern graph and S is a summary graph.
Both H and S are labelled directed graphs compris-
ing exactly two nodes connected by an edge’. Let the
sets P, U and V be defined as above, and denote the
set of liter& over P, U and V by T(P, U, V). Then
the node labels of H are drawn from U U V, while
the edge label is a regular ezpression, which is defined
in the usual way [HU79], except that its alphabet is
T(P, U, V). The edge label of S is a forward literal
subject to the restriction that every variable that ap
pears in S must also appear in H. q

Example 2.1 Consider the GRE queries Qr and Q2
shown in Figures 1 and 2, respectively. Pattern graphs
appear in the left-hand boxes, while summary graphs
appear in the right-hand boxes. In each case, the vari-
able z in the pattern graph is called the Source variable
and y the sink variable. The predicate symbols of Qr
are f, p, c and b, all of which are O-ary. Literal E
is a reverse literal, while f, for example, is a forward
literal. In the pattern graph of Q2, f is the only pred-
icate symbol and it is unary, giving rise to the literals
flu] and fI4. 0

The meaning of a GRE query applied to a db-graph
is given by the following definitions.

Definition 2.3 Let G = (N, E, 4, U, P, Y, A) be a db-
graph and p = (~1, el, . . . , e,-1, u,-,), n > 2, where
U; E N, 1 5 i 5 tz, and ej E E, 1 < i 5 IZ - 1,
be a path in G in which edge directions are ignored.
We call such a path an undirected path and the string
A(el) .--A(e,-1) the path label of p, denoted by A(p).
Let Q = (H, S) be a GRE query with source label z,
sink label y, regular expression R, and set of variables
V. A valuation 0 is a mapping from U U V to U such
that if u E U then O(U) = u. We denote by O(R) and
O(S) the application of 0 to all variables in R and S,
respectively. We say that the path p in G satisfies
6(R) if

1. X(p) matches a string in L(O(R)), the language
denoted by B(R), where “matches” means ‘iden-
tical to” except that predicate symbol s matches
5, and

‘More powerful versions of the language allow more general
pattern graphs.

2. if x(ei) matches a forward literal then ei is from vi
to ui+i, or if x(ei) matches a reverse literal then
ei is from ui+r to vi.

In addition, if I = e(z) and Y(u~) = B(y), then we
say that p satiJfies O(H). The query Q on db-graph G
is defined as

u W) Id is a valuation of H and there is
an undirected path in G satisfing B(H)}.

0

The above definitions of GRE differ in a number of
ways from our previous graph-based query language
G+ [CMW87,CMW88]. Among the most significant
of these are that edges in db-graphs and graph queries
can now effectively be typed, and that the seman-
tics are defined in terms of matching arbitrary paths
in db-graphs rather than simple paths, a restriction
that makes the query evaluation problem NP-complete
[MW89]. In th ese respects, ORE shares similarities
with another modification of G+ called GraphLog
(CM90].

For simplicity we assume from now on that there is
only a single unary predicate symbol labelling edges
in any db-graph, which can therefore be represented
by a single ternary relation. Because of this, we will
usually drop all occurrences of the predicate symbol
from any regular expression, whose alphabet will thus
comprise only constants and variables.

3 From GRE-Queries to ARC-
Programs

In this section, we demonstrate how to translate a
GRE query into a Datalog program such that the
resulting program can be evaluated efficiently. Even
though this program may contain mutually recursive
rules, we show in the next section that every recur-
sive predicate in the program can be factored, a result
that is not true of .an alternative translation scheme
also presented below.

Example 3.1 Consider the GRE query Q of Exam-
ple 1.2 in which the regular expression R is (f[u] +
flu])“. The translation to an ARC-program proceeds
in two stages. First we construct a regular chain
program2 [BKBR87] from Q using the standard pro-
cedure for generating a regular grammar from the reg-
ular expression R [HU79].

aIn fact, the programs do not always conform exactly to the
definition of regular chain programs in that base predicates may
have additional arguments.

257

4x Y) : - fww),c(Z,y).
4x, Y) : - f(X,Z,V),c(Z,Y).
4x Y) : -, f(XY, U).
4x9 Y) : - f(X,Y,V).

In the second stage, we augment the regular chain pro-
gram by propagating the variables of R through the
program in a bottom-up manner. If the head H of
a rule corresponds to the start symbol of the regular
grammar, then all the variables from R must appear
in H. Since the resulting rule may not be safe, we may
have to add literals to the right-hand side in order to
provide bindings for all the variables of R.

Yl : +cv4v) : - f(X) z, U),
4% y, wq.

r2 : 4KY,U,V) : - f(X,Z,O
4% y, u, V).

r3 : +wvv) : - fwv-J),f(-,-,V).
r4 : c(X,Y, U,V) : - f~XY,V),f(-,-J).

Since c corresponds to the starting symbol of the as-
sociated grammar, both U and V appear in the head
of rules rs and rd. In order to provide bindings for U
and V in rs and ~4, additional f literals are included
as shown. Now, U and V are propagated first to the
bodies and then to the heads of ri and r2. The result
is a safe ARC-program. •I

Perhaps an intuitively more appealing translation
would be (1) to construct an expression tree from pars-
ing R, and (2) to generate a Datalog program by as-
signing IDB predicates to the interior nodes of the tree
and interpreting . as join, + as union, and * as tran-
sitive closure. For the above example, this would give
rise to the following program.

&wJu,v) : - P(X,~,U,V),C(~,Y,U,V).
P(Xww) : - f w, Y, a f (-9 -a VI.
PGVJW) : - f (X Y, VI, f t-9 -3 VI.

Although the above method works well in this case, it
does not always lead to factorable programs. Consider
the regular expression R = (~1 us . us)* as part of
a GRE query on a db-graph labelled with predicate
symbol r. The following Datalog program P is that
constructed from the expression tree of R.

Q(X Y,h,V2, V3) : - P(x,Y,hv2,%)*

q(x,y,vl,v2,v3) :- p(X,Z,%'1,v2,V3)r

&w,vl,v2,v3).

P(XJ, Vl,v,, V3) : - 4XZ,Vl,vZ),
r(Z,Y,V3).

3(~,Y,Vl,V2) : - r(X,Z,Vl),t(Z,Y,V2)-
t(X, Y, v-2) : - r(XZ,Vz),@,Y,Vz).

t(KXV2) : - r(-,-,V2).

Although the last rule is not safe, this can easily be
remedied and does not alter the point being made.
It turns out that program P cannot be factored with
respect to either of the recursive predicates q and t if X
or Y is bound to a constant in query q(X, Y, VI, V2, V3).
In contrast, our translation yields a program in which
all recursive predicates can be factored simultaneously.

Our general translation scheme is given below. For
simplicity of exposition, we assume that only variables
appear in regular expressions, and that all such vari-
ables also label the edge in the summary graph. We
comment on relaxing these and other restrictions at
the end of the section.

Assume we are given a GRE query Q = (H, S) com-
prising source variable z, sink variable y, and regular
expression R containing variables C = {vi,. . . , u,}.
Furthermore, assume that Q is to be applied to a db-
graph labelled with predicate symbol r, and that the
literal labelling the edge in S is b[ur, . . . ,u,]. The
translation from Q to an ARC-program P proceeds
in three stages.

1.

2.

3.

Construct a regular grammar W = (C, N, D, B)
for generating L(R) - {c}~, where C is the set
of variables in R, N the set of nonterminals, D
the set of productions, and B the start symbol,
corresponding to the predicate symbol labelling
the edge in S.

For each production C in D, generate a Datalog
rule as follows:

(a) if C is of the form T --, VU, generate the rule

w Y) : - r(X, Z, V), u(Z, Y).

(b) if C is of the form T + u, generate the rule

tv, Y) : - r(X,Y,V).

Call the resulting program P.

From P generate a new program Q by performing
a bottom-up propagation of the regular expression
variables as follows.

(a) For each base rule in P of the form

t(X, Y) : - r(X, Y, VI).

add the rule

t(X,Y,V,) : - r(X,Y,Vl).

to Q.

SThis is because we are interested in patha of non-mro length
only.

258

(b) Repeat the following process until no (syn-
tactically) new rule is added to Q. If there is
a rule with head t(X, Y, v) in Q and a rule
of the form

4x J-7 : - r(X, 2, U), t(2, Y).

in P, then add the rule

4x9 K w : - r(X,Z,U),t(Z,Y,V).

to Q, where w is a tuple including both U
and all of v such that the ordering of vari-
ables is consistent with that in the summary
S.

If, in either of the above cases, the head of the
rule corresponds to the start symbol B, then

(a) include all the variables of R in the head,
and

(b) if the rule is now unsafe because variable U
does not appear in the body, add the literal
j(-, -, U) to the body of the rule.

Such a rule is called a stcrrting rule.

In generating the program Q, we may use the same
predicate symbol to denote relations of differing de-
grees. This is done to make the derivation clearer, on
the understanding that unique symbols could always
be used instead.

Example 8.2 Consider the regular expression R =
(vi ~2)~. We first construct a regular chain program
P for R.

4x Y) : - r(X, z, VI), t(Z, Y).
t(X,Y) : - r(X, z, va), SW, Y).
t(X, Y) : - r(X, Y, V2).

Note that P contains mutually recursive predicates s
and t. Next, we augment P by propagating the bind-
ings for the regular expression variables in a bottom-up
manner. The ARC-program Q generated from P is as
follows.

3(X, Y,Vl, V2) : - r(X,Z,Vl),t(Z,Y,Vl,Vz).
~(XY,Vl,VZ) : - r(X, Z, VZ), @, Y, VI, V2).
4Jw~~J2) : - f-(X, Z, VI), t(Z, Y,V2).

t(x Y, V2) : - r(X, Y, V2).

Note that t is of degree both three and four. Instead
of the last two rules we could have generated the rule

t(X, y, Vl, V2) : - f-(X, 4 Va), r(-, -,VI).

However, since t does not correspond to the start sym-
bol of the grammar, it might be inefficient to do so-
the corresponding tuples derived may not contribute
to any answers. Cl

259

It can be shown that the above translation scheme
is correct in the sense that, given a GRE query Q and
dbgraph G, if program P is generated from Q and
relation r represents G, then P(r) represents Q(G).

Theorem 3.1 Let Q be a GRE query and P be the
ARC-program generated from Q. Then Q and P rep-
resent equivalent queries.

Proof: The proof is similar to that given for translating
graph-based queries to regular chain programs given in
[WoodM]. q

It is a simple matter to extend the translation prc+
cess to account for multiple predicate symbols in db
graphs and GRE queries, giving rise to ARC-programs
containing more than one base predicate. Also, if cer-
tain variables in a regular expression do not appear in
the summary graph of query Q, they can simply be
projected out of the heads of starting rules in P.

4 Factoring ARC-Programs

We now turn our attention to properties of ARE
programs, in particular their efficient evaluation in the
presence of selection constants in a query. In thii sec-
tion we show that for such queries the methods pre-
sented in [NRSU89a] can be extended to apply to the
factoring of ARC-programs as well

In general, factoring refers to the process of replac- --
ing a recursive predicate p(X, YJ by predicates bp(x)
(the bound part of p) and jp(Y) (the fne part of p)
[NRSU89b]. Our use of the term is more specific and
refers to the reduction of the degree of p by replacing it
by jp, since the bound parts of predicates can always
be deleted from ARC-programs. As a result, the more
general factoring techniques of [NRSUSSb] are not nec-
essary for ARC-programs and those of [NRSU89a] suf-
fice.

The programs considered in [NRSU89b] are re-
stricted to RLCstable programs: those containing
only right-linear, left-linear and combined-linear rules
in terms of a single IDB predicate and one exit rule’.
We have already seen that ARC-programs can contain
multiple exit rules (Example 3.1), as well as more than
one IDB predicate and mutually recursive rules (Ek-
ample 3.2). Thus, there are ARC-programs that are
not RLC-stable. On the other hand, ARC-programs
do not contain combined-linear rules, so there are
RLC-stable programs that are not ARC-programs.

*There are other restrictions as well.

Consider a typical ARC-program starting rule such
as

q, y, v’) : - r(X, Z,V,), t(Z,Y,V).

Recall that X is the source variable, Y is the sink vari-
able, and the variables in v are the regular expression
variables. However, in ARC-programs what is more
important is the means by which bindings are propa-
gated in rules. In this respect, the sink variable and
regular expression variables play similar roles in that
they appear in the same position in both the head of
each rule and the IDB predicate in the body. Borrow-
ing terminology from (Ioan89], we will refer to these
variables collectively as pcreistent variables’. There
are two cases to consider, corresponding to whether
source or persistent variables are bound in a query to
an ARC-program.

4.1 Bound Persistent Variables

If any persistent variables are bound to constants in a
query to an ARC-program P, we simply substitute the
constants for the corresponding variables in all base
predicates in P and delete the variables wherever else
they appear in P.

Example 4.1 Consider the ARC-program of Exam-
ple 3.2. If we assume that Y is bound to yo and VZ
is bound to uu in the query s(X, Y,Vl,Vs), then the
factored program is as follows.

s(X,V,) : - r(X, 2, Vl), w, Vl).
t(X,h) : - r(X, 2, w), 4% VI).

"(X,K) : - r(X, 2, VI), t(2).

w : - +x Yo,%).

All occurrences of Y and V+ in IDB predicates have
been deleted, while all occurrences of Y and Vz in base
predicates have been replaced by yo and vu, respec-
tively. 0

Let the query to the ARC-program be given by --
q(X, U, W), the tuple of persistent variables being --
U,W,wherev=Wr ,..., W,,,. Without loss of gener-
ality, assume that Wi is bound to wi, 15 i 5 m, in the
query, and let B be the substitution that replaces each
Wi by wi, 1 5 i I_m. Let v - v denote the removal
of all variables in W from 8, that is, the reduction of
P by w. The general method is as follows.

1. Given a base rule of the form

t(X,V) : - RI)..., Rk.

%trictly speaking, the variable VI ir semi-pemistent.

where RI,..., Rk are r (EDB) literals, transform
it to

t(X,v - w) : - e(R1), . . . , e(R,J.

2. Given a non-base rule of the form

t(x T) : - r(X, 2, V), 3(2,-S).

--
where all variables in T, S and V appear in n or
W, transform it to

t(x, T - W) : - B(r(X, 2, V)), a(Z, S - w).

The query q(X,g) is now applied to the transformed
program.

Theorem 4.1 For a given query, the factored ARC-
programs produce the same answer as the original pro-
grams and are no less efficient.

In fact, as shown in [NRSU89a,NRSUSSb], factored
programs can lead to an order of magnitude improve-
ment in terms of evaluation efficiency.

4.2 Bound Source Variables

If the source variable X in a query q(X, Y,v) is
bound, we apply a transformation based on that of
Magic Sets [BMSU86,BR87], similar to the technique
in [NRSU89a]. The first step in such a transforma-
tion is the top-down propagation of the binding pat-
terns through a program P, leading to an adorned pro-
gram Pd [Ullm85], in which each IDB predicate p has
an adornment o indicating which arguments of p are
bound and which are free. For example, p*f means
that the first argument of p is bound while the second
is free. In certain circumstances, the adorned pro-
grams that we derive differ from the classical versions
in that they exploit properties of ARC-programs.

The second step in the transformation is to derive
the set of magic rules for pod. In the final step, magic
predicates are introduced into the base rules (those
containg only EDB predicates) of Pd. Only the magic
rules and these modified base rules are used to answer
the original query. We present an example before de-
scribing the general method.

Example 4.2 Consider again the program of Exam-
ple 3.1. If we assume that X is bound to ze in the
query c(X, Y, U, V), then the adorned program Pod
contains the rules

260

P-(X, Y, u, V) : - f(X, 2, U),
c6fk’ (2, Y, u, V).

Cbf”‘“‘(X,Y,U,V) : - f(X,Z,V),
cbfalb(Z, Y, u, V).

cbf =1=a (X, Y, u, V) : - fwxnf(-,-,v).
cbfal- (X, Y, u, V) : - fW,Y,V),f(-,-,U).

for al = b or f, and aa = b or f. In other words, there
are 16 rules in p”d representing all possible binding
patterns for the variables U and V. Now the Magic
Sets transformation yields the following set of magic
rules (where tn rather than ms is the magic predicate
for c).

mbfff (20)
mblb/ (2, U) : - mbBf (Xl, f(X, Z, u).
m”f”(Z,V) : - mbm(X), f(X 4 0
mbfbl(Z,U) : - mbfbf(X, U), f(X, Z, U).
mbflb(Z,V) : - mbBb(XV), f(X, &VI.

mbfbb(Z, U,V) : - mbfbf(X, U), f(X, Z, V).
mbfbb(Z, U,V) : - mbBb(X,V),f(X,4U).
mbfbb(Z, U,V) : - mbfbb(X, U, V), f(X, Z, U).
mbfbb(Z, U, V) : - mbfbb(X, U, V), f(X, Z,V).

Once again, we have permitted the same predicate
symbol to denote relations of differing degree. Finally,
for each of the eight base rules in pod with head predi-
cate P, we substitute the appropriate magic predicate
ma into the body of the rule, and drop the adornments
for c in order to complete the program.

c(Y,U,V) : - mbdf (X), f(K Y, u),
f (7 -m.

c(Y,U,V) : - mb8/ (X), f(X Y, VI,
f t-9 -a U).

c(Y,U,V) : - mbfbf(X u), f (X Y, VI,
f t-9 -J).

c(Y,U,V) : - mbfbf (X u), f (X Y, V),
f t-1 -8 0

c(Y,U,V) : - mbflb(X, VI, f (X9 Y, U),
f t-9 7 0

c(Y,U,V) : - mbBb(XV), f(x,Y,Vh
f t-9 -I U).

c(Y,U,V) : - mb’bb(x,U,V),f(X,Y,U),
f t-9 -n

c(Y,U,V) : - mbf6*(X, f-4 V), f (4 Y,V),
f t-9 -9 VI.

Note that the degree of recursive predicates has been
reduced from four to at most three. q

Before defining the method of transformation in de-
tail, we describe how our adorned program can differ
from the classical one. Consider the rule

4x, Y,Vl,V2) : - t-(X, Z, VI), $5 Y, V2).

and the binding pattern bfif for s. Since, in a top
down evaluation, variable VI is bound by the time t is
considered, we add VI as an argument of t to yield the
adorned rule

abfif (X, Y, VI, V2) : - r(X, Z, VI),
P’(Z,YJ5,V2).

In this way, the adorned program mirrors the way the
ARC-program was constructed from the correspond-
ing GRE query, except that bound variables are now
propagated top-down rather than bottom-up. A con-
sequence of this is that all regular expression variables
appear in the head of any base rule. As a result, some
base rules in the adorned program may not be safe for
bottom-up evaluation, but they will always be safe for
top-down evaluation.

Given an ARC-program P and query q(X, Y, v)
with X bound to zo, the general method is as follows.

1. Generate the adorned program Pd from P and
the query, adding bound regular expression vari-
ables to IDB predicates where applicable.

2. From each non-base rule in pod of the form

P’ (X, Y, a) : - r(X,Z,V),s”f(Z,Y,iv).

generate its magic rule by (i) prefking both s and
t with m-, (ii) deleting all free variables in s and
t, and (iii) exchanging m-s and m-t.

3. Generate the rule

m-+0).

4. For each base rule in pod of the form

pa(X,Y,v) : - RI ,..., Rk.

where RI,..., Rk are r (EDB) literals, generate
the rule

0, VI : - m-pp(X,v),R1 ,..., Rk.

The query q(Y, VI. - is now applied to the generated pro-
gram.

In common with [NRSU89a], the above method has
the advantage over Magic Sets that magic predicates
are substituted into base rules alone, the remaining
rules of the original program being discarded. The
method generalizes naturally to handle multiple EDB
predicates.

Example 4.3 Consider again the program P of Ex-
ample 3.2. If we assume that X is bound to zo in the
query s(X,Y,Vl,V2), then the adorned program Pd
is as follows.

261

s*qx,Y,vl,v~) : - r(X,Z,V&
t*‘*‘(Z,Y,VJq.

tb’*‘(x, Y, v,, V2) : - r(X, 2, V,),
s*‘**(Z,Y,Vl,V2).

s*‘**(x, Y, v,, V2) : - f(X, ZJ,),
Pb(Z, Y, VI, v-2).

t*yx, Y, v,, Vz) : - ‘(X, 2, V-Q),
s*‘**(z,Y,V~,v~).

.@‘(X,Y,V~,V2) : - f(X,Z,Vl),
P’(Z,Y,Vl,V~).

P-*(x, Y, v,, V.) : - ‘(X, 2, VI),
t*‘**(Z, Y, VI, v-2).

tbfbf (X, Y, VI, Va) : - r(X, Y, Vs).
t*‘**(X, Y, VI, V2) : - r(X, Y, Va).

Now the magic rules and base rules of P”’ yield the
following program.

m_sbfff (20)
m_tbfbf(Z,Vl) : - m-sbff (X), r(X, 2, VI).

mlrbfbb(Z,V~,V~) : - m-tb’*f(X,Vl),
r(X Z, V22).

m~tb~**(Z,V~,V2) : - m~sb~**(X,V~,V2),
f-(X, Z, VI).

m-sbJbb(Z,Vl,V2) : - m_tbfbb(X,VlrV2),
r(X, 4 Vz).

s(Y,VI,V~) : - m_tb/b’(X,Vl),
r(X, Y,V2).

3(KwT2) : - m_t*‘**(X, VI, V2),
GY,V2,)..

Note that both s and t have been factored. 0

Theorem 4.2 For a given query, the factored ARC-
programs produce the same answer as the original pro-
grams and are no less efficient.

Once again, factored programs can generally be
evaluated far more efficiently than their unfactored
counterparts, and can result in an order of magnitude
improvement over Magic Sets.

5 Conclusions

We believe that a higher-level query language than
Datalog is desirable for expressing recursive queries
on relational databases. One problem with Datalog
is the number of equivalent programs for expressing a
query, for example, the three canonical forms for tran-
sitive closure, for which a uniform efficient evaluation
algorithm has only recently been proposed [NRSU89a].
Another problem is that, although Datalog programs
may be read declaratively, they often seem to contain
unnecessary verbosity, in particular with respect to the
number of variables in rules.

It is our contention that the GRE query language
overcomes some of these limitations of Datalog. While
it is not a general purpose query language, GRE is
most suitable when the query can be viewed naturally
as a graph traversal, a common feature of recursive
queries. In addition, we have shown that an efficient
evaluation algorithm exists for GRE queries by provid-
ing a translation to a subclass of Datalog programs,
the ARCprograms. These programs are interesting
in their own right since we have shown that they can
always be factored in the presence of single-selection
queries, yet are incomparable to previously identified
classes of factorable programs.

ARC-programs deserve further study. On the one
hand, because of their close relationship with regular
expressions there are obvious strategies for optimizing
them. For example, an ARC-program corresponding
to the regular expression (u* . u*)* could be trans-
formed into an equivalent program corresponding to
the expression (u + u)*. Although such transforma-
tions cannot in general be done efficiently, the poten-
tial payoff in reducing the number of recursive rules is
large.

Another area for research is to try to establish
whether the class of ARC-programs can be inte-
grated in any way with previously discovered classes
of factorable programs, thereby identifying a strictly
broader class of factorable programs.

Acknowledgements

This work was supported by an award from the Foun-
dation for Research Development. The comments of
one referee in particular helped improve the paper sig-
nificantly.

References

[BMSU86] F. B ancilhon, D. Maier, Y. Sagiv and J.D.
Ullman, “Magic Sets and Other Strange
Ways To Implement Logic Programs,n
Proc. 5th ACM Symp. on Principles of
Database Systems, 1986, pp. 1-15.

[BKBR87] C. B eeri, P. Kanellakis, F. Bancilhon and
R. Ramakrishnan, UBounds on the Propa-
gation of Selection into Logic Programs,”
Proc. 6th ACM Symp. on Principles of
Database Systems, 1987, pp. 214-226.

[BR87] C. Beeri and R. Ramakrishnan, “On the
Power of Magic,” Proc. 6th ACM Symp.

262

[CM901

[CMW87]

[CMWSS]

[HU79]

[Ioan89]

[MW89]

[Naug88]

on Principle3 of Database Systems, 1987,
pp. 269-283.

M.P. Consens and A.O. Mendekon,
“GraphLog: A Visual Formalism for Real
Life Recursion,” Proc. 9th ACM Symp. on
Principles of Database Systems, 1999.

[Wood881 P.T. Wood, ‘Queries on Graphs,” Ph.D.
thesis, Tech. Report CSRI-223, Univ. of
Toronto, Toronto, Ont. Canada, 1988.

I.F. Crux, A.O. Mendelron, and P.T.
Wood, ‘A Graphical Query Language
Supporting Recursion,” Proc. ACM SIG-
MOD Int. Conf. on Management of Data,
1987, pp. 323-339.

I.F. Crux, A.O. Mendebon, and P.T.
Wood, ‘G+: Recursive Queries Without
Recursion,” Proc. gnd Int. Conf. on Ez-
pert Database Systems, 1988, pp. 355-368.

J.E. Hopcroft and J.D. Ullman, ‘ln-
troduction to Automata Theory, Lan-
gwm and Computation,A Addison-
Wesley, 1979.

Y.E. Ioannidis, ‘Commutativity and its
Role in the Processing of Linear Recur-
sion,’ Proc. 15th Znt. Conf. on Very Large
Data Bases, 1989, pp. 155-163.

A.O. Mendelson and P.T. Wood, ‘Find-
ing Regular Simple Paths in Graph Data-
bases,’ Proc. 15th Znt. Conj. on Very
Large Data Bases, 1989, pp. 185-193.

J.F. Naughton, ‘Compiling Separable
Recursions,” Proc. ACM SIGMOD Int.
Conf. on Management of Data, 1988, pp.
312-319.

[NRSU89a] J.F. Naughton, R. Ramakrishnan, Y. Sa-
giv and J.D. Ullman, “Efficient Evalua-
tion of right-, left-, and combined-linear
rules,’ Proc. ACM SIGMOD Int. Conf.
on Management of Data, 1989, pp. 235-
242.

[NRSUSSb] J.F. Naughton, R. Ramakrishnan, Y. Sa-
giv and J.D. Ullman, “Argument Reduc-
tion by Factoring,” Proc. 15th Znt. Con/.
on Very Large Data Bases, 1989, pp. 173-
182.

[UIbn85] J.D. Ulbnan, UImplementation of Logical
Query Languages for Databases,’ ACM
Zkans. on Database Syst. 10, 3 (Sept.
1985) pp. 289-321.

263

