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Abstract 

In previous papers we have proposed a graphical query 
language for expressing traversal recursions in labelled, 
directed graphs. A fundamental feature of the lan- 
guage is the use of regular expressions to specify con- 
straints on paths in these graphs. When only con- 
stants are allowed in regular expressions, it has been 
shown that these queries can be evaluated efficiently. 
In this paper, we study the inclusion of variables in 
regular expressions. We show that efficient evaluation 
algorithms still exist, and in so doing provide a trans- 
lation to a class of Datalog programs, the augmented 
regular chain programs, which can always be factored. 
This class of programs is incomparable to previously 
identified classes of factorable programs. 

1 Introduction 

The efficient evaluation of recursive queries on rela- 
tional databases remains a topic of much interest, 
most of the focus having been on the query lan- 
guage Datalog [Ullm85]. One of the approaches has 
been to concentrate on subclasses of Datalog pro- 
grams for which efficient evaluation can be guar- 
anteed; this has given rise to, among others, the 
separable programs [Naug88], the right-, left- and 
combined-linear programs [NRSUSSa], the commuta- 
tive programs [Ioan89], and the factorable programs 
[NRSU89b]. 
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Figure 1: Query to find what products people buy. 

At the same time, we have been involved in 
the development of a graph-based query language 
(CMW87,CMW88,MW89], the assumption being that 
most of the recursive queries that occur in practice 
can be modelled naturally in terms ,of graph traver- 
sals. Another reason for the graph-based approach is 
again motivated by the search for efficient evaluation 
algorithms. 

Example 1.1 Consider the following example taken 
from INaug88). Assume there is a relation p(X, Y) of 
people X and products Y such that Y is perfect for 
X, as well as relations f(X, Y) of people X and their 
friends Y and c(X,Y) of products X and Y such that 
X is cheaper than Y. Suppose that a person will buy 
a product that is perfect for them, or if their friend 
has bought it, or if it is cheaper than another product 
they will buy. Then the following program P defines a 
relation b(X, Y) of people X and the products Y they 
buy. 

b(X,Y) : - f(x, 4, W, Y). 
b(X,Y) : - b(X ~),4’, 2). 
b(X Y) : - p(X,Y). 

Program P is separable and factorable. A graph-based 
query Q equivalent to P is shown in Figure 1. The 
query Q can be interpreted as follows. The relations 
p, f and c can be modelled as a single directed la- 
belled graph G in which each tuple from a relation 
corresponds to an edge in G labelled with the appro- 
priate relation name. Query Q asks for pairs of nodes 
in G that are connected by paths whose concatenation 
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Figure 2: Query to find cities connected by sequences 
of flights with at most two airlines. 

of edge labels is a string in the language denoted by 
the regular expression R appearing in Q. The symbol 
E in R means that edges labelled c in G are to be tra- 
versed from head to tail rather than from tail to head. 
Cl 

In this paper, we show that graph-based queries can 
indeed be evaluated efficiently by transforming them 
to a class of Datalog programs which we call the aug- 
mented regular chain programs (ARC-programs). As 
their name implies, these programs are related to the 
regular chain programs studied in [BKBR87], for ex- 
ample, where it was shown that a chain program is 
factorable if and only if it is regular. 

It turns out that ARC-programs can also always 
be factored-thereby admitting efficient evaluation 
algorithms-although the class of ARC-programs is 
incomparable to the class of factorable programs iden- 
tified in (NRSU89b]. 0 ne of the reasons for this is that 
ARGprograms may contain mutually recursive rules. 

Example 1.2 Suppose we have a relation j(X, Y, 2) 
of cities X and Y such that there is a flight with air- 
line Z between X and Y. The graph query Q depicted 
in Figure 2 asks for the pairs of cities that are con- 
nected by sequences of flights using at most two air- 
lines. The symbols u and u in the regular expression 
R in Q are variables that are instantiated to airline 
names. The use of such variables adds considerable 
power to the query language, an issue that is discussed 
further in Section 3. An ARC-program P equivalent 
to Q-which can be generated automatically (see Sec- 
tion 4)-is given below. 

c(X,Y,U,V) : - f(Gw)&,K~,v). 
c(X,Y,U,V) : - f(X,~,V),4wvJ). 
c(X,Y,U,V) : - f(X, y, a f(-, -m. 
c(X,Y,U,V) : - f(X y, VI, f(-, -, w 

Program P is not separable since, in the first two 
rules, the sets of argument positions of c in the body 
sharing variables with j are neither equal nor disjoint 

(Naug88]. Given query goal c(zo, Y, U, V) with the first 
argument bound, P is not right-linear according to 
the definition in [NRSU89a], since, for example, in the 
first rule, U appears in j as well as in both occur- 
rences of c. However, the first two rules of P commute 
[Ioan89], and P along with c(zo, Y, U, V) is right-linear 
according to [ NRSUSSb], and hence factorable. Later 
examples introduce ARC-programs that are not in 
any of the classes considered in [NRSU89a,NRSU89b], 
yet can nevertheless be factored using the methods in 
[ NRSU89al. •I 

The outline of the rest of this paper is as follows. In 
the next section, we define the graph-based query lan- 
guage GRE and describe how it differs from our previ- 
ous languages. Section 3 is devoted to the translation 
of GRE queries to ARC-programs. We also demon- 
strate that an alternative translation scheme does not 
lead to factorable programs. In Section 4, we show 
that, in the presence of constants in queries, these 
ARC-programs can always be factored, thus admit- 
ting efficient evaluation algorithms. Finally, conclu- 
sions and directions for future work are discussed in 
Section 5. 

2 The GRE Query Language 

In this section, we define the syntax and semantics 
of the GRE query language. We begin by defining 
the graph structures against which such queries are 
formulated. 

De&&ion 2.1 Let U be a set of con&ants, V be a 
set of variables, and P be a set of predicate symbols. A 
literal is of the form p[al, . . . , a,,], n 2 0, (a forward lit- 
eral) or F[ai, . . . , a,], n 2 0, (a reverse literal), where 
p is an n-ary predicate symbol and each ai E U U V, 
l<i<n. IfeachREU,l<iIn,thentheliteralis 
ground. We denote the set of forward ground literals 
over P and U by F(P, U). 

A database graph (db-graph, for short) G = 
(N, E, +, U, P, V, X) is a directed, labelled graph, where 
N is a set of nodes, E is a set of edges, and $ is an 
incidence junction mapping E to N x N. The node 
labelling junction v associates with each node z E N 
a distinct node label V(Z) E U, while A is an edge 
labelling junction mapping E to F(P, U), the set of 
forward ground literals. 0 

There is an obvious way in which a db-graph G can 
be viewed as a set R of relations. For each n-ary 
predicate symbol r labelling an edge in G, there is an 
(n+ 2)-ary relation r in R. The tuple (2, y, al, . . . , an) 
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appears in relation r if and only if there is an edge la- 
belled r[ai , . . . , a,] from the node with label z to the 
node with label y in G. We say that the set of relations 
R represents the db-graph G. 

Next, we turn our attention to the syntax of GRE 
queries, examples of which have already been pre- 
sented in Figures 1 and 2. 

Definition 2.2 A GRE query Q is a pair (H, S), 
where H is a pattern graph and S is a summary graph. 
Both H and S are labelled directed graphs compris- 
ing exactly two nodes connected by an edge’. Let the 
sets P, U and V be defined as above, and denote the 
set of liter& over P, U and V by T( P, U, V). Then 
the node labels of H are drawn from U U V, while 
the edge label is a regular ezpression, which is defined 
in the usual way [HU79], except that its alphabet is 
T(P, U, V). The edge label of S is a forward literal 
subject to the restriction that every variable that ap 
pears in S must also appear in H. q 

Example 2.1 Consider the GRE queries Qr and Q2 
shown in Figures 1 and 2, respectively. Pattern graphs 
appear in the left-hand boxes, while summary graphs 
appear in the right-hand boxes. In each case, the vari- 
able z in the pattern graph is called the Source variable 
and y the sink variable. The predicate symbols of Qr 
are f, p, c and b, all of which are O-ary. Literal E 
is a reverse literal, while f, for example, is a forward 
literal. In the pattern graph of Q2, f is the only pred- 
icate symbol and it is unary, giving rise to the literals 
flu] and fI4. 0 

The meaning of a GRE query applied to a db-graph 
is given by the following definitions. 

Definition 2.3 Let G = (N, E, 4, U, P, Y, A) be a db- 
graph and p = (~1, el, . . . , e,-1, u,-,), n > 2, where 
U; E N, 1 5 i 5 tz, and ej E E, 1 < i 5 IZ - 1, 
be a path in G in which edge directions are ignored. 
We call such a path an undirected path and the string 
A(el) .--A(e,-1) the path label of p, denoted by A(p). 
Let Q = (H, S) be a GRE query with source label z, 
sink label y, regular expression R, and set of variables 
V. A valuation 0 is a mapping from U U V to U such 
that if u E U then O(U) = u. We denote by O(R) and 
O(S) the application of 0 to all variables in R and S, 
respectively. We say that the path p in G satisfies 
6(R) if 

1. X(p) matches a string in L(O(R)), the language 
denoted by B(R), where “matches” means ‘iden- 
tical to” except that predicate symbol s matches 
5, and 

‘More powerful versions of the language allow more general 
pattern graphs. 

2. if x(ei) matches a forward literal then ei is from vi 
to ui+i, or if x(ei) matches a reverse literal then 
ei is from ui+r to vi. 

In addition, if I = e(z) and Y(u~) = B(y), then we 
say that p satiJfies O(H). The query Q on db-graph G 
is defined as 

u W) Id is a valuation of H and there is 
an undirected path in G satisfing B(H)}. 

0 

The above definitions of GRE differ in a number of 
ways from our previous graph-based query language 
G+ [CMW87,CMW88]. Among the most significant 
of these are that edges in db-graphs and graph queries 
can now effectively be typed, and that the seman- 
tics are defined in terms of matching arbitrary paths 
in db-graphs rather than simple paths, a restriction 
that makes the query evaluation problem NP-complete 
[MW89]. In th ese respects, ORE shares similarities 
with another modification of G+ called GraphLog 
(CM90]. 

For simplicity we assume from now on that there is 
only a single unary predicate symbol labelling edges 
in any db-graph, which can therefore be represented 
by a single ternary relation. Because of this, we will 
usually drop all occurrences of the predicate symbol 
from any regular expression, whose alphabet will thus 
comprise only constants and variables. 

3 From GRE-Queries to ARC- 
Programs 

In this section, we demonstrate how to translate a 
GRE query into a Datalog program such that the 
resulting program can be evaluated efficiently. Even 
though this program may contain mutually recursive 
rules, we show in the next section that every recur- 
sive predicate in the program can be factored, a result 
that is not true of .an alternative translation scheme 
also presented below. 

Example 3.1 Consider the GRE query Q of Exam- 
ple 1.2 in which the regular expression R is (f[u] + 
flu])“. The translation to an ARC-program proceeds 
in two stages. First we construct a regular chain 
program2 [BKBR87] from Q using the standard pro- 
cedure for generating a regular grammar from the reg- 
ular expression R [HU79]. 

aIn fact, the programs do not always conform exactly to the 
definition of regular chain programs in that base predicates may 
have additional arguments. 
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4x Y) : - fww),c(Z,y). 
4x, Y) : - f(X,Z,V),c(Z,Y). 
4x Y) : -, f(XY, U). 
4x9 Y) : - f(X,Y,V). 

In the second stage, we augment the regular chain pro- 
gram by propagating the variables of R through the 
program in a bottom-up manner. If the head H of 
a rule corresponds to the start symbol of the regular 
grammar, then all the variables from R must appear 
in H. Since the resulting rule may not be safe, we may 
have to add literals to the right-hand side in order to 
provide bindings for all the variables of R. 

Yl : +cv4v) : - f(X) z, U), 
4% y, wq. 

r2 : 4KY,U,V) : - f(X,Z,O 
4% y, u, V). 

r3 : +wvv) : - fwv-J),f(-,-,V). 
r4 : c(X,Y, U,V) : - f~XY,V),f(-,-J). 

Since c corresponds to the starting symbol of the as- 
sociated grammar, both U and V appear in the head 
of rules rs and rd. In order to provide bindings for U 
and V in rs and ~4, additional f literals are included 
as shown. Now, U and V are propagated first to the 
bodies and then to the heads of ri and r2. The result 
is a safe ARC-program. •I 

Perhaps an intuitively more appealing translation 
would be (1) to construct an expression tree from pars- 
ing R, and (2) to generate a Datalog program by as- 
signing IDB predicates to the interior nodes of the tree 
and interpreting . as join, + as union, and * as tran- 
sitive closure. For the above example, this would give 
rise to the following program. 

&wJu,v) : - P(X,~,U,V),C(~,Y,U,V). 
P(Xww) : - f w, Y, a f (-9 -a VI. 
PGVJW) : - f (X Y, VI, f t-9 -3 VI. 

Although the above method works well in this case, it 
does not always lead to factorable programs. Consider 
the regular expression R = (~1 us . us)* as part of 
a GRE query on a db-graph labelled with predicate 
symbol r. The following Datalog program P is that 
constructed from the expression tree of R. 

Q(X Y,h,V2, V3) : - P(x,Y,hv2,%)* 

q(x,y,vl,v2,v3) :- p(X,Z,%'1,v2,V3)r 

&w,vl,v2,v3). 

P(XJ, Vl,v,, V3) : - 4XZ,Vl,vZ), 
r(Z,Y,V3). 

3(~,Y,Vl,V2) : - r(X,Z,Vl),t(Z,Y,V2)- 
t(X, Y, v-2) : - r(XZ,Vz),@,Y,Vz). 

t(KXV2) : - r(-,-,V2). 

Although the last rule is not safe, this can easily be 
remedied and does not alter the point being made. 
It turns out that program P cannot be factored with 
respect to either of the recursive predicates q and t if X 
or Y is bound to a constant in query q(X, Y, VI, V2, V3). 
In contrast, our translation yields a program in which 
all recursive predicates can be factored simultaneously. 

Our general translation scheme is given below. For 
simplicity of exposition, we assume that only variables 
appear in regular expressions, and that all such vari- 
ables also label the edge in the summary graph. We 
comment on relaxing these and other restrictions at 
the end of the section. 

Assume we are given a GRE query Q = (H, S) com- 
prising source variable z, sink variable y, and regular 
expression R containing variables C = {vi,. . . , u,}. 
Furthermore, assume that Q is to be applied to a db- 
graph labelled with predicate symbol r, and that the 
literal labelling the edge in S is b[ur, . . . ,u,]. The 
translation from Q to an ARC-program P proceeds 
in three stages. 

1. 

2. 

3. 

Construct a regular grammar W = (C, N, D, B) 
for generating L(R) - {c}~, where C is the set 
of variables in R, N the set of nonterminals, D 
the set of productions, and B the start symbol, 
corresponding to the predicate symbol labelling 
the edge in S. 

For each production C in D, generate a Datalog 
rule as follows: 

(a) if C is of the form T --, VU, generate the rule 

w Y) : - r(X, Z, V), u(Z, Y). 

(b) if C is of the form T + u, generate the rule 

tv, Y) : - r(X,Y,V). 

Call the resulting program P. 

From P generate a new program Q by performing 
a bottom-up propagation of the regular expression 
variables as follows. 

(a) For each base rule in P of the form 

t(X, Y) : - r(X, Y, VI). 

add the rule 

t(X,Y,V,) : - r(X,Y,Vl). 

to Q. 

SThis is because we are interested in patha of non-mro length 
only. 
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(b) Repeat the following process until no (syn- 
tactically) new rule is added to Q. If there is 
a rule with head t(X, Y, v) in Q and a rule 
of the form 

4x J-7 : - r(X, 2, U), t(2, Y). 

in P, then add the rule 

4x9 K w : - r(X,Z,U),t(Z,Y,V). 

to Q, where w is a tuple including both U 
and all of v such that the ordering of vari- 
ables is consistent with that in the summary 
S. 

If, in either of the above cases, the head of the 
rule corresponds to the start symbol B, then 

(a) include all the variables of R in the head, 
and 

(b) if the rule is now unsafe because variable U 
does not appear in the body, add the literal 
j(-, -, U) to the body of the rule. 

Such a rule is called a stcrrting rule. 

In generating the program Q, we may use the same 
predicate symbol to denote relations of differing de- 
grees. This is done to make the derivation clearer, on 
the understanding that unique symbols could always 
be used instead. 

Example 8.2 Consider the regular expression R = 
(vi ~2)~. We first construct a regular chain program 
P for R. 

4x Y) : - r(X, z, VI), t(Z, Y). 
t(X,Y) : - r(X, z, va), SW, Y). 
t(X, Y) : - r(X, Y, V2). 

Note that P contains mutually recursive predicates s 
and t. Next, we augment P by propagating the bind- 
ings for the regular expression variables in a bottom-up 
manner. The ARC-program Q generated from P is as 
follows. 

3(X, Y,Vl, V2) : - r(X,Z,Vl),t(Z,Y,Vl,Vz). 
~(XY,Vl,VZ) : - r(X, Z, VZ), @, Y, VI, V2). 
4Jw~~J2) : - f-(X, Z, VI), t(Z, Y,V2). 

t(x Y, V2) : - r(X, Y, V2). 

Note that t is of degree both three and four. Instead 
of the last two rules we could have generated the rule 

t(X, y, Vl, V2) : - f-(X, 4 Va), r(-, -,VI). 

However, since t does not correspond to the start sym- 
bol of the grammar, it might be inefficient to do so- 
the corresponding tuples derived may not contribute 
to any answers. Cl 
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It can be shown that the above translation scheme 
is correct in the sense that, given a GRE query Q and 
dbgraph G, if program P is generated from Q and 
relation r represents G, then P(r) represents Q(G). 

Theorem 3.1 Let Q be a GRE query and P be the 
ARC-program generated from Q. Then Q and P rep- 
resent equivalent queries. 

Proof: The proof is similar to that given for translating 
graph-based queries to regular chain programs given in 
[WoodM]. q 

It is a simple matter to extend the translation prc+ 
cess to account for multiple predicate symbols in db 
graphs and GRE queries, giving rise to ARC-programs 
containing more than one base predicate. Also, if cer- 
tain variables in a regular expression do not appear in 
the summary graph of query Q, they can simply be 
projected out of the heads of starting rules in P. 

4 Factoring ARC-Programs 

We now turn our attention to properties of ARE 
programs, in particular their efficient evaluation in the 
presence of selection constants in a query. In thii sec- 
tion we show that for such queries the methods pre- 
sented in [NRSU89a] can be extended to apply to the 
factoring of ARC-programs as well 

In general, factoring refers to the process of replac- -- 
ing a recursive predicate p(X, YJ by predicates bp(x) 
(the bound part of p) and jp(Y) (the fne part of p) 
[NRSU89b]. Our use of the term is more specific and 
refers to the reduction of the degree of p by replacing it 
by jp, since the bound parts of predicates can always 
be deleted from ARC-programs. As a result, the more 
general factoring techniques of [NRSUSSb] are not nec- 
essary for ARC-programs and those of [NRSU89a] suf- 
fice. 

The programs considered in [NRSU89b] are re- 
stricted to RLCstable programs: those containing 
only right-linear, left-linear and combined-linear rules 
in terms of a single IDB predicate and one exit rule’. 
We have already seen that ARC-programs can contain 
multiple exit rules (Example 3.1), as well as more than 
one IDB predicate and mutually recursive rules (Ek- 
ample 3.2). Thus, there are ARC-programs that are 
not RLC-stable. On the other hand, ARC-programs 
do not contain combined-linear rules, so there are 
RLC-stable programs that are not ARC-programs. 

*There are other restrictions as well. 



Consider a typical ARC-program starting rule such 
as 

q, y, v’) : - r(X, Z,V,), t(Z,Y,V). 

Recall that X is the source variable, Y is the sink vari- 
able, and the variables in v are the regular expression 
variables. However, in ARC-programs what is more 
important is the means by which bindings are propa- 
gated in rules. In this respect, the sink variable and 
regular expression variables play similar roles in that 
they appear in the same position in both the head of 
each rule and the IDB predicate in the body. Borrow- 
ing terminology from (Ioan89], we will refer to these 
variables collectively as pcreistent variables’. There 
are two cases to consider, corresponding to whether 
source or persistent variables are bound in a query to 
an ARC-program. 

4.1 Bound Persistent Variables 

If any persistent variables are bound to constants in a 
query to an ARC-program P, we simply substitute the 
constants for the corresponding variables in all base 
predicates in P and delete the variables wherever else 
they appear in P. 

Example 4.1 Consider the ARC-program of Exam- 
ple 3.2. If we assume that Y is bound to yo and VZ 
is bound to uu in the query s(X, Y,Vl,Vs), then the 
factored program is as follows. 

s(X,V,) : - r(X, 2, Vl), w, Vl). 
t(X,h) : - r(X, 2, w), 4% VI). 

"(X,K) : - r(X, 2, VI), t(2). 

w : - +x Yo,%). 

All occurrences of Y and V+ in IDB predicates have 
been deleted, while all occurrences of Y and Vz in base 
predicates have been replaced by yo and vu, respec- 
tively. 0 

Let the query to the ARC-program be given by -- 
q(X, U, W), the tuple of persistent variables being -- 
U,W,wherev=Wr ,..., W,,,. Without loss of gener- 
ality, assume that Wi is bound to wi, 15 i 5 m, in the 
query, and let B be the substitution that replaces each 
Wi by wi, 1 5 i I_m. Let v - v denote the removal 
of all variables in W from 8, that is, the reduction of 
P by w. The general method is as follows. 

1. Given a base rule of the form 

t(X,V) : - RI )..., Rk. 

%trictly speaking, the variable VI ir semi-pemistent. 

where RI,..., Rk are r (EDB) literals, transform 
it to 

t(X,v - w) : - e(R1), . . . , e(R,J. 

2. Given a non-base rule of the form 

t(x T) : - r(X, 2, V), 3(2,-S). 

-- 
where all variables in T, S and V appear in n or 
W, transform it to 

t(x, T - W) : - B(r(X, 2, V)), a(Z, S - w). 

The query q(X,g) is now applied to the transformed 
program. 

Theorem 4.1 For a given query, the factored ARC- 
programs produce the same answer as the original pro- 
grams and are no less efficient. 

In fact, as shown in [NRSU89a,NRSUSSb], factored 
programs can lead to an order of magnitude improve- 
ment in terms of evaluation efficiency. 

4.2 Bound Source Variables 

If the source variable X in a query q(X, Y,v) is 
bound, we apply a transformation based on that of 
Magic Sets [BMSU86,BR87], similar to the technique 
in [NRSU89a]. The first step in such a transforma- 
tion is the top-down propagation of the binding pat- 
terns through a program P, leading to an adorned pro- 
gram Pd [Ullm85], in which each IDB predicate p has 
an adornment o indicating which arguments of p are 
bound and which are free. For example, p*f means 
that the first argument of p is bound while the second 
is free. In certain circumstances, the adorned pro- 
grams that we derive differ from the classical versions 
in that they exploit properties of ARC-programs. 

The second step in the transformation is to derive 
the set of magic rules for pod. In the final step, magic 
predicates are introduced into the base rules (those 
containg only EDB predicates) of Pd. Only the magic 
rules and these modified base rules are used to answer 
the original query. We present an example before de- 
scribing the general method. 

Example 4.2 Consider again the program of Exam- 
ple 3.1. If we assume that X is bound to ze in the 
query c( X, Y, U, V), then the adorned program Pod 
contains the rules 

260 



P-(X, Y, u, V) : - f(X, 2, U), 
c6fk’ (2, Y, u, V). 

Cbf”‘“‘(X,Y,U,V) : - f(X,Z,V), 
cbfalb(Z, Y, u, V). 

cbf =1=a (X, Y, u, V) : - fwxnf(-,-,v). 
cbfal- (X, Y, u, V) : - fW,Y,V),f(-,-,U). 

for al = b or f, and aa = b or f. In other words, there 
are 16 rules in p”d representing all possible binding 
patterns for the variables U and V. Now the Magic 
Sets transformation yields the following set of magic 
rules (where tn rather than ms is the magic predicate 
for c). 

mbfff (20) 
mblb/ (2, U) : - mbBf (Xl, f(X, Z, u). 
m”f”(Z,V) : - mbm(X), f(X 4 0 
mbfbl(Z,U) : - mbfbf(X, U), f(X, Z, U). 
mbflb(Z,V) : - mbBb(XV), f(X, &VI. 

mbfbb(Z, U,V) : - mbfbf(X, U), f(X, Z, V). 
mbfbb(Z, U,V) : - mbBb(X,V),f(X,4U). 
mbfbb(Z, U,V) : - mbfbb(X, U, V), f(X, Z, U). 
mbfbb(Z, U, V) : - mbfbb(X, U, V), f(X, Z,V). 

Once again, we have permitted the same predicate 
symbol to denote relations of differing degree. Finally, 
for each of the eight base rules in pod with head predi- 
cate P, we substitute the appropriate magic predicate 
ma into the body of the rule, and drop the adornments 
for c in order to complete the program. 

c(Y,U,V) : - mbdf (X), f(K Y, u), 
f (7 -m. 

c(Y,U,V) : - mb8/ (X), f(X Y, VI, 
f t-9 -a U). 

c(Y,U,V) : - mbfbf(X u), f (X Y, VI, 
f t-9 -J). 

c(Y,U,V) : - mbfbf (X u), f (X Y, V), 
f t-1 -8 0 

c(Y,U,V) : - mbflb(X, VI, f (X9 Y, U), 
f t-9 7 0 

c(Y,U,V) : - mbBb(XV), f(x,Y,Vh 
f t-9 -I U). 

c(Y,U,V) : - mb’bb(x,U,V),f(X,Y,U), 
f t-9 -n 

c(Y,U,V) : - mbf6*(X, f-4 V), f (4 Y,V), 
f t-9 -9 VI. 

Note that the degree of recursive predicates has been 
reduced from four to at most three. q 

Before defining the method of transformation in de- 
tail, we describe how our adorned program can differ 
from the classical one. Consider the rule 

4x, Y,Vl,V2) : - t-(X, Z, VI), $5 Y, V2). 

and the binding pattern bfif for s. Since, in a top 
down evaluation, variable VI is bound by the time t is 
considered, we add VI as an argument of t to yield the 
adorned rule 

abfif (X, Y, VI, V2) : - r(X, Z, VI), 
P’(Z,YJ5,V2). 

In this way, the adorned program mirrors the way the 
ARC-program was constructed from the correspond- 
ing GRE query, except that bound variables are now 
propagated top-down rather than bottom-up. A con- 
sequence of this is that all regular expression variables 
appear in the head of any base rule. As a result, some 
base rules in the adorned program may not be safe for 
bottom-up evaluation, but they will always be safe for 
top-down evaluation. 

Given an ARC-program P and query q(X, Y, v) 
with X bound to zo, the general method is as follows. 

1. Generate the adorned program Pd from P and 
the query, adding bound regular expression vari- 
ables to IDB predicates where applicable. 

2. From each non-base rule in pod of the form 

P’ (X, Y, a) : - r(X,Z,V),s”f(Z,Y,iv). 

generate its magic rule by (i) prefking both s and 
t with m-, (ii) deleting all free variables in s and 
t, and (iii) exchanging m-s and m-t. 

3. Generate the rule 

m-+0). 

4. For each base rule in pod of the form 

pa(X,Y,v) : - RI ,..., Rk. 

where RI,..., Rk are r (EDB) literals, generate 
the rule 

0, VI : - m-pp(X,v),R1 ,..., Rk. 

The query q(Y, VI. - is now applied to the generated pro- 
gram. 

In common with [NRSU89a], the above method has 
the advantage over Magic Sets that magic predicates 
are substituted into base rules alone, the remaining 
rules of the original program being discarded. The 
method generalizes naturally to handle multiple EDB 
predicates. 

Example 4.3 Consider again the program P of Ex- 
ample 3.2. If we assume that X is bound to zo in the 
query s(X,Y,Vl,V2), then the adorned program Pd 
is as follows. 

261 



s*qx,Y,vl,v~) : - r(X,Z,V& 
t*‘*‘(Z,Y,VJq. 

tb’*‘(x, Y, v,, V2) : - r(X, 2, V,), 
s*‘**(Z,Y,Vl,V2). 

s*‘**(x, Y, v,, V2) : - f(X, ZJ,), 
Pb(Z, Y, VI, v-2). 

t*yx, Y, v,, Vz) : - ‘(X, 2, V-Q), 
s*‘**(z,Y,V~,v~). 

.@‘(X,Y,V~,V2) : - f(X,Z,Vl), 
P’(Z,Y,Vl,V~). 

P-*(x, Y, v,, V.) : - ‘(X, 2, VI), 
t*‘**(Z, Y, VI, v-2). 

tbfbf (X, Y, VI, Va) : - r(X, Y, Vs). 
t*‘**(X, Y, VI, V2) : - r(X, Y, Va). 

Now the magic rules and base rules of P”’ yield the 
following program. 

m_sbfff (20) 
m_tbfbf(Z,Vl) : - m-sbff (X), r(X, 2, VI). 

mlrbfbb(Z,V~,V~) : - m-tb’*f(X,Vl), 
r(X Z, V22). 

m~tb~**(Z,V~,V2) : - m~sb~**(X,V~,V2), 
f-(X, Z, VI). 

m-sbJbb(Z,Vl,V2) : - m_tbfbb(X,VlrV2), 
r(X, 4 Vz). 

s(Y,VI,V~) : - m_tb/b’(X,Vl), 
r(X, Y,V2). 

3(KwT2) : - m_t*‘**(X, VI, V2), 
GY,V2,).. 

Note that both s and t have been factored. 0 

Theorem 4.2 For a given query, the factored ARC- 
programs produce the same answer as the original pro- 
grams and are no less efficient. 

Once again, factored programs can generally be 
evaluated far more efficiently than their unfactored 
counterparts, and can result in an order of magnitude 
improvement over Magic Sets. 

5 Conclusions 

We believe that a higher-level query language than 
Datalog is desirable for expressing recursive queries 
on relational databases. One problem with Datalog 
is the number of equivalent programs for expressing a 
query, for example, the three canonical forms for tran- 
sitive closure, for which a uniform efficient evaluation 
algorithm has only recently been proposed [NRSU89a]. 
Another problem is that, although Datalog programs 
may be read declaratively, they often seem to contain 
unnecessary verbosity, in particular with respect to the 
number of variables in rules. 

It is our contention that the GRE query language 
overcomes some of these limitations of Datalog. While 
it is not a general purpose query language, GRE is 
most suitable when the query can be viewed naturally 
as a graph traversal, a common feature of recursive 
queries. In addition, we have shown that an efficient 
evaluation algorithm exists for GRE queries by provid- 
ing a translation to a subclass of Datalog programs, 
the ARCprograms. These programs are interesting 
in their own right since we have shown that they can 
always be factored in the presence of single-selection 
queries, yet are incomparable to previously identified 
classes of factorable programs. 

ARC-programs deserve further study. On the one 
hand, because of their close relationship with regular 
expressions there are obvious strategies for optimizing 
them. For example, an ARC-program corresponding 
to the regular expression (u* . u*)* could be trans- 
formed into an equivalent program corresponding to 
the expression (u + u)*. Although such transforma- 
tions cannot in general be done efficiently, the poten- 
tial payoff in reducing the number of recursive rules is 
large. 

Another area for research is to try to establish 
whether the class of ARC-programs can be inte- 
grated in any way with previously discovered classes 
of factorable programs, thereby identifying a strictly 
broader class of factorable programs. 
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