
The Tree Quorum Protocol: An Efficient Approach for Managing Replicated Data*

D. Agrawal A. El Abbadi
Department of Computer Science

University of California
Santa Barbara, CA 93106

Abstract

In this paper, we present an efficient algorithm for
managing replicated data. We impose a logical tree
structure on the set of copies of an object. In a failure-
free environment the protocol executes read operations
by reading one copy of an object while guaranteeing
fault-tolerance of write operations. It also exhibits the
property of graceful degradation, i.e., communication
costs are minimal in a failure-free environment but may
increase as failures occur. This approach in designing
distributed systems is desirable since it provides fault-
tolerance without imposing unnecessary costs on the
failure-free mode of operations.

1 Introduction

In a distributed database system, data is replicated
to achieve fault-tolerance. One of the most important
advantages of replication is that it masks and tolerates
failures in the network gracefully. In particular, the
system remains operational and available to the users

*This research is supported by the NSF under grant numbers

CCE8809387 and IRI-8809284.

Permission to copy without fee all or part of this material

is granted provided that the copies are not made or dis-

tributed for direct commercial advantage, the VLDB copy-

right notice and the title of the publication and its date

appear, and notice is given that copying is by permission of

the Very Large Data Base Endowment. To copy otherwise,

or to republish, requires a fee and/or special permission

from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

despite failures. However, complex and expensive
synchronization protocols [Giffg, BG87, ES83, DB85,
JM87, PL88] are needed to maintain the replicas.
There has been a considerable research effort to re-
duce the cost of executing operations while maintain-
ing data availability in replicated databases. A com-
mon approach is to use network configuration informa-
tion [ESC85, Her87, ET89]. This information is used
to allow operations to adapt to changes in the network
configuration.

In this paper, we present a replica control protocol
that reduces the cost of executing operations without
the need for reconfiguration. This is achieved by im-
posing a logical tree structure on the set of copies of
each object. We describe a protocol that operates by
reading one copy of an object while guaranteeing fault-
tolerance of write operations and still does not require
any reconfiguration on account of a failure and sub-
sequent recovery. The protocol provides a compara
ble degree of data availability as other replica control
protocols [GiflS] at substantially lower costs. Further-
more our approach is fault-tolerant, and exhibits the
property of graceful degradation [MS85]. In a failure-
free environment, the communication costs are mini-
mal and as failures occur the cost of replica control
may increase. However, when failures are repaired the
protocol reverts to its original mode without undergo-
ing any reconfiguration.

In the next section, we present the model of a dis-
tributed replicated database. Section 3 motivates the
usefulness of logical structures for replica control. The
tree quorum protocol, which incorporates these ideas,
is presented in Section 4. Analysis of the tree quorum
protocol and its comparison with other protocols are
presented in Sections 5 and 6. We conclude with a
discussion of our results.

243

2 Model

A distributed system consists of a set of distinct sites
that communicate with each other by sending messages
over a communication network. No assumptions are
made regarding the speed, connectivity, or reliability of
the network. We assume that sites are faiJ-slop [SSSZ]
and communication links may fail to deliver messages.
Combinations of such failures may lead to partilioning
failures [DGMS85], h w ere sites in a partition may com-
municate with each other, but no communication can
occur between sites in different partitions. A site may
become inaccessible due to site or partitioning failures.

A distributed database consists of a set of objects
stored at several sites in a computer network. Users
interact with the database by invoking transaclion pre
grams. A transaction is a partially ordered sequence
of read and write operations that are executed atom-
ically. The execution of a transaction must appear
atomic, i.e., a transaction either commits or aborts. A
commonly accepted correctness criteria in distributed
databases is the serializable execution of transactions
[EGLT76]. The serializable execution is guaranteed by
employing a concurrency control mechanism, e.g., two-
phase locking, timestamp ordering, or an optimistic
concurrency control protocol.

In a replicated database, copies of an object may
be stored at several sites in the network. Multiple
copies of an object must appear as a single logical ob-
ject to the transactions. This is termed as one-copy
equivalence [BG87] and is enforced by the replica con-
trol protocol. The correctness criteria for replicated
databases is one-copy serializability [BG87], which en-
sures one-copy equivalence and serializable execution
of transactions.

In order to ensure one-copy equivalence, a replicated
object z may be read by reading a read quorum of
copies, and it may be written by writing a write quo-
rum of copies. The following restriction is placed on
the choice of quorum assignments:

244

Quorum Intersection Property: For any two operations
O[Z] and o’[zJ on an object 2, where at least one
of them is a write, the quorums must have a non-
empty intersection.

Version numbers or timestamps are used to identify
the current copy in a quorum. When timestamps are
used intersection of write operations is not necessary
[Her86].

3 Motivation

The simplest example of a protocol for managing repli-
cated data is one where read operations are allowed to
read any copy, and write operations are required to
write all copies of the object. The read-one write-all
protocol provides read operations with a high degree
of availability at a very low cost: a read operation ac-
cesses a single copy. On the other hand, this protocol
severely restricts the availability of write operations
since they cannot be executed after the failure of any

COPY.
Two main approaches have been used to address

the issue of increasing the fault-tolerance of the read-
one write-all protocol. The voting approach, both
static [GiffS] and dynamic [DB85, JM87, PL88], does
not require write operations to write all copies, and
thus increases their fault-tolerance. The price paid
is that read operations must, in general, read several
copies, rendering read operations more costly than in
the read-one write-all protocol. The second approach
[ESC85, ET89, Her871 uses configuration information
to provide fault-tolerant operations without requiring
read operations to access several cop&. In particular,
each site maintains some information about its commu-
nication capabilities, and may use that to ensure that
read operations access a single copy. This improved
performance is, however, attained by requiring a spe-
cial reconfiguration protocol to be executed whenever
a change in the network configuration occurs.

In this paper we present a new protocol that achieves
the main advantage of the read-one write-all protocol,
i.e., a read operation accesses a single copy, when there
are no failures in the system. As failures occur read op-
erations may be required to access more copies. Write
operations, on the other hand, tolerate failures, and
no reconfiguration protocol is used. This behavior is
attained by imposing a logical tree structure on the set
of copies of the object. This structure is used by op-
erations to determine the copies that must be read or
written. In Figure 1, an example of a ternary tree with
thirteen copies of an object is presented. We note that
this structure is logical, and does not have to corre-
spond to the actual physical structure of the network
connecting the sites storing the copies. We will use
this tree structure to motivate the protocol.

A straight forward replica control protocol that uses
the tree structure is one where a write operation is
required to write a majority of copies at all levels of

Figure 1: A tree organization of 13 copies of an object

the tree, e.g., in the tree of Figure 1, any set consisting
of the root, and any two copies from {2,3,4} as well as
a majority from {5,6,7,8,9,10,11,12,13}. In this case a
read operation can be executed by accessing a majority
of copies at any single level of the tree. For example,
any of the following sets could form a read quorum:
the set consisting of the root, or any set containing two
copies from {2,3,4}, or any set containing a majority
from {5,6,7,8,9,10,11,12,13}. It is clear that any read
operation must have at least one copy in common with
any write operation, and hence the protocol ensures
one-copy equivalence.

The simple protocol has similar performance for
read operations as the read-one write-all but has bet-
ter fault-tolerance for write operations. In particular,
when the root is accessible, read operations can always
be executed by accessing a single copy. Furthermore,
write operations can be executed after the failure of
several copies at different levels (for example, the fail-
ure of copies 4, 7, 8, 11 and 12 does not prohibit write
operations). The protocol is therefore similar to the
read-one write-all protocol in that when there are no
failures read operations access a single copy. As fail-
ures occur, this protocol may still allow write and read
operations to execute but at a higher cost. In par-
ticular, read operations can tolerate the failure of all
except a majority of copies at some level, and write
operations can tolerate the failure of a minority’ of
copies at all levels.

Although correct, the performance of this protocol
can be improved by further exploiting the tree struc-

‘A majority is [(n+l)/21 copies and a minority is [(n-1)/2J
copies.

ture. Instead of requiring a write operation to write a
majority of copies at all levels, consider a write oper-
ation that writes the root, a majority of its children,
and a majority of their children, and so forth. Hence
for the tree of Figure 1, a write operation could be
executed by writing the following set of copies only:

~WV,6,8,9~, h’ h w ic is smaller than the set required
by the simple protocol. To ensure the quorum inter-
section property, a read operation must try and access
the root, if the root is inaccessible, the read tries to
access a majority of the root’s children. For each inac-
cessible copies in this majority set, the read operation
tries to access a majority of its children. For example,
consider a network configuration where copies 1 (the
root), 2, and 3 are inaccessible. In this case the read
may form a quorum by accessing copy 4 and a major-
ity of copy 2’s children, e.g., 5 and 7. Alternatively,
the quorum may be formed from copy 4 and a major-
ity of copy 3’s children, e.g., 9, 10. A read quorum
could also have been formed by selecting a majority
of children of copies 2, 3, and 4. All read quorums
have a non-empty intersection with any write quorum,
e.g., {1,2,3,5,6,8,9}1 In the next section, we formally
develop the protocol and argue its correctness.

4 The Tree Quorum Protocol

In this section we present the tree quorum protocol for
accessing objects in a distributed replicated database.
The standard approach for implementing quorums as-
sociates with each copy a vote (often this vote is one).
The read quorum for an object z is any set of copies
with qr votes, and a write quorum is any set with qw

245

votes. TO ensure the quorum intersection property, the
sum of qr and qw must be greater than the total num-
ber of copies of z. A simple protocol would require
that both read and write quorums contain a major-
ity of copies. Our approach for implementing quorums
imposes a logical tree structure on the copies of an ob-
ject 2. Instead of counting votes, a special tree-based
protocol is used to construct quorums.

Given a set of n copies of an object t, we logically
organize them into a tree of height h, and degree 2d+ 1,
i.e., each node has 2d + 1 children, and the maximum
height is h. We will assume the standard tree termi-
nology, i.e., root, child, parent, leaf, level, etc. We also
assume that the tree is complete, i.e., it has the max-
imum number of nodes. The logical tree organization
may be viewed simply as an ordering of the name di-
rectory of copies maintained at each site for location
purposes. Extending it to a tree does not impose any
extra or special complications.

In Figure 2, we present a protocol for constructing
a valid write quorum. We assume that the tree has a
well defined root, and that a transaction attempting
to construct a write quorum calls the recursive func-
tion WriteQuorum with the root of the tree, CO, as
parameter. The protocol tries to construct a quorum
by selecting the root and a majority of its children. For
each selected child, the protocol adds a majority of its
children to the quorum. This process continues until
the leaves are reached. If successful, this set of copies
constitutes a write quorum. If the function is unable
to collect the required majority at any level, it returns
the empty set to indicate that the write quorum could
not be formed. Note that depending on the failures in
the system a write operation may construct different
write quorums.

In Figure 3, we present a protocol for constructing a
valid read quorum. A transaction attempting to con-
struct a read quorum calls the recursive function Read-

Quorum with the root of the tree, CO, as parameter.
The protocol tries to construct the quorum by select-
ing the root co. If successful, this node constitutes the
read quorum. If it fails, it tries to access a majority of
the root’s children. Again if successful this set consti-
tutes the read quorum, otherwise, for each copy, which
is inaccessible, the protocol tries to replace it with a
majority of its children. This process is repeated re-
cursively until a set of copies is included in the read
quorum, or no such copies are accessible. In this case,
the function returns the empty set and the operation

246

is aborted.

Consider a replicated object with thirteen copies.
We superimpose a ternary tree on the copies as illus-
trated in Figure 1, with the sites numbered as shown.
In this case 2d + 1 = 3 and h = 2. According to the
protocol any write quorum must include the root. In
addition, it must include a majority of copies 2, 3, and
4 and for each such pair it must include a majority
of their children. For example the following sets form
a write quorum: {1,2,3,5,6,8,9}, {1,2,4,6,7,12,13}, etc.
A read quorum, in the best case, is required to access
only the root. However, as a result of the failure of the
root, a read quorum can be formed from any majority
of the root’s children, i.e., {2,3} or {2,4} or {3,4}. If
a majority or more of the root’s children have failed,
then each such copy can be replaced by a majority of
its children. Hence, if copies 1, 2, and 3 are inacces-
sible, then a quorum can be formed from copy 4 and
a majority of either copy 2 or copy 3’s children, e.g.
the sets {4,5,6} and {4,8,10} form quorums. Similar
quorums can be formed if copies 3 and 4 are inacces-
sible or copies 2 and 4. Finally, if copies 1, 2, 3, and 4
are inaccessible, then a majority of the children of any
two of copies 2, 3 and 4 form a quorum. For example
the following sets are candidate quorums: {5,6,8,9},
{6,7,12,13}, {8,10,11,13}, etc.

We now present a discussion of the upper and lower
bounds on the sizes of quorums generated by the tree
quorum protocol. In the static voting scheme [GiflS],
quorum sizes are fixed although the membership in a
quorum may vary. In our approach the sizes of the read
quorums vary while the choice of members is relatively
less flexible. Consider a tree with n nodes, height h and
each node is of degree 2d + 1. In the case of read op-
erations the protocol exhibits, the property of graceful
degradation [MS85]. In the absence of failures the cost
of forming a quorum is minimal, and this cost increases
as failures occur in the system. In the best case, a read
operation is executed by accessing a single copy: the
root. However, if the root fails, the cost of forming
a quorum increases to d + 1, a majority of the root’s
children. As more failures occur, the quorum size in-
creases up to a maximum of (d + 1))‘. Note that, in
general, (d + l)h < n/2. A read operation may toler-
ate the failure of n - 1 specific copies, and can tolerate
the failure of any [(d + l)h+’ - l]/d - 1 copies. Write
operations, on the other hand, are all of the same size:
[(d + l)h+’ - II/d. Different failures, however, effect
write operations in different ways. In the worst case,

FUNCTION WriteQuorum(Tree : TREE) : QUORUM:
VAR

SubTrees, Majority: QUORUM;
BEGIN

IF Empty(Tree) THEN
RETURN({));

ELSE IF Tree 1 Boot is w&e accessible THEN
(* Collect majority of subtrees to be included with the root of the subtree *)

SubTrees = Ui~Ma.jority WriteQuosum(Tree 1 .SubTree[i]);

IF Unable to collect a majority THEN
RETURN({));

ELSE
RETURN(Tree 1 .Root u SubTrees);

END; (* IF l)
ELSE

RETURN({));
END; (’ IF l)

END WriteQuorum;

Figure 2: The Algorithm for constructing a Write Quorum on a Tree of Copies

FUNCTION ReadQuorum(Tree : TREE) : QUORUM;
VAR

MajorityQuorum, Majority: QUORUM;
BEGIN

IF Empty(Tree) THEN
RETURN({));

ELSE IF Tree T Boot is read accessible THEN
RETURN(TTee T .Root);

ELSE
(* Collect majority of subtrees to substitute for the root of the subtree *)
MajorityQuorum = UiEMajority ReadQuorum(Tsee T .SubTree[zj);

IF Unable to collect a majority THEN
RETURN({));

ELSE
RETURN(MajorityQuorum);

END; (* IF l)
END; (* IF ‘)

END ReadQuorum.

Figure 3: The Algorithm for constructiug a Read Quorum on a Tree of Copies

247

the failure of the root prohibits a write operation from
execution, while in the best case, a quorum can still
be formed after the failure of n - [(d + l)h+l - l]/d

specific copies.
The following theorem establishes the correctness of

the tree quorum protocol. We demonstrate that the
read and write quorums constructed by the tree pro
tocol will always have a non-empty intersection. Note
that two write quorums will always have a non-empty
intersection.

Theorem 1 The tree quorum protocol guarantees the
intersection of read and write quorums.
Proof. The proof is by induction on the height of the
trees.

Basis. The theorem holds for a tree of height zero,
since there is only one copy in the tree.

Induction Hypothesis. Assume that the theorem
holds for trees of height h.

Induction Step. Consider a tree of height h + 1. The
read and write quorums constructed for this tree will
be of the following form:

1. Read Quorum: {root} OR {majority of read quo
rums for subtrees of height h}.

2. Write Quorum: {root} U {majority of write quo-
rums for subtrees of height h}.

Now if a read quorum consists of the root of the tree, it
is guaranteed to have a nonempty intersection with any
write quorum. If, on the other hand, the read quorum
consists of a majority of read quorums for subtrees of
height h, it is guaranteed to have at least one subtree
in common with any write quorum. Since the subtrees
are of height h, the induction hypothesis guarantees
that read and write quorums will have a nonempty
intersection.

Hence, by induction, the tree quorum protocol guar-
antees non-empty intersection between read and write
quorums. cl

One of the restrictions imposed by the suggested im-
plementation for collecting read quorums is that the
reads are directed to a specific copy: the root. This
has the advantage that if the root is up, read operations
accesses a single copy. Read locality may, however, be
sacrificed and the root may become a bottleneck. To
solve this problem, it might be more desirable to gather
a quorum of several relatively-local copies rather than
one very remote root copy. This approach could also

248

be used for organizing the tree structure of the copies.
For example, consider a network composed of two rela
tively distant segments: the root could be placed in one
of the segments and the second level of the tree in the
other segment. In such an organization, transactions
executing in a particular segment will use the quorum
which is less expensive. If the root is in the trans-
action’s network segment, the root will be accessed.
Otherwise, the transaction will access the majority of
copies at the second level of the tree. The functions
depicted in Figures 2 and 3 should be appropriately
modified to enforce this policy.

5 Analysis of the Tree Protocol

In this section, we estimate the cost and the avail-
ability of read and write operations in the tree pro-
tocol and compare them with the read-one write-all
(ROWA) and th e voting (VOTE) protocols [Gif79].
It is particularly important to demonstrate that the
availability of write operations is not substantially de-
graded by the tree quorum protocol’s requirement that
all writes include the root.

The message cost of an operation is directly pro
portional to the size of quorums required to execute
the operation. Thus in the read-one write-all ap-
proach, read operations have a cost of one whereas
write operations have a cost of n. In the voting pro-
tocol, the quorum size corresponding to a majority is
[(n + 1)/2]. Th us, read and write operations have a
cost of [(n + 1)/2].

In the case of the tree quorum protocol (TREE),
the size of read quorums vary from 1 to (d + l)h. On
the other hand, the cost of write operations is [(d +

1) h+l - II/d. In order to compute the average cost
of read operations, we introduce a parameter f that
indicates the fraction of read operations that will use
the root of the tree to execute. Let Rck be the average
cost of executing read operations in a tree of height k.

Thus, the cost RCk+r for a tree of height k + 1 is:

Rck+l = f . 1 + (1 - f)(d + 1)RCk

where ‘RCo = 1. Note that the first term in the re-
currence relation corresponds to the fraction of read
operations, f, that execute using the root of the tree.
The second term corresponds to the situation when the
read operations collect a read quorum on a majority of
subtrees. Thus, f = 0 is the upper bound on the cost
of read operations which is (d+ l)h for a tree of height

h and degree 2d + 1, and f = 1 is the lower bound on
the cost, which is 1, the same as the read-one write-all
protocol.

Figure 4 illustrates the cost of executing read and
write operations in various replica control protocols.
For the read operations in the tree quorum protocol,
we indicate the upper and lower bounds on the cost,
and provide a realistic bound for the read costs which
corresponds to f = 0.5 (i.e., 50% of read operations
execute using the root). In fact, for a ternary tree
if f = 0.5, the above recurrence relation yields the
read cost to be (h + 1)/2 which is logarithmic in the
number of copies. The cost of executing read opera
tions is comparable in both the tree quorum and the
read-one write-all protocols. Write operations, on the
other hand, are significantly less costly. When com-
pared with the voting protocol, both read and write
operations are less costly. Thus, in terms of cost our
protocol has definite advantages. However, we need to
demonstrate that the availability of write operations is
not seriously compromised.

Let p be the probability that a copy of an object is
available for read or write operations. Furthermore,
assume that there are n copies of the object in the
system. Since read operations on this object can be
executed by accessing any copy of the object in the
read-one write-all protocol, the availability of read op-
erations is [l - (1 - p)“]. Since all copies ‘are needed
to execute write operations in this protocol, the avail-
ability of write operations is p”.

In the case of the voting protocol, the majority quo-
rum assignment is optimal for both read and write op-
erations [AA89]. Thus, the availability of read and
write operations is:

= Probability(majority copies are available)
+ Probability(majority + 1 copies are available)
. . .

+ Probability(majority + i copies are available)
. . .

+ Probability(al1 copies are available)

If we let n be equal to 2k + 1 for some non-negative
constant L, the above probabilities can be represented
by the following terms, i.e.,

= (tF=:) #+I(1 - p)k + . . . +

+ (2;;;)pL+i(l,-p)~-‘+l+...+p’“+l.

249

Note that Rc and Wo is p. Since the above recurrence
relations involve non-linear terms, we illustrate the op-
eration availabilities for specific replica configurations
of an object in Figures 5 and 6. In Figure 5, the ob-
ject is replicated at four sites. Furthermore, we assume
that the copies are organized as a tree of degree three
with height one. In Figure 6, the object is replicated
at thirteen sites. The tree is assumed to be a ternary
tree of height two. The availability of read operations
in all three protocols is almost identical. As expected,
write availability of the tree quorum protocol is infe-
rior to the voting protocol. However, it is substan-
tially superior to the write availability in the read-one
write all protocol. In particular, for the case of thir-
teen copies, write availability increases from 25% to
more than 85%, when p = 0.9. In conclusion, the tree
quorum protocol achieves the benefits of the read-one
write-all protocol while significantly improving both
the cost and the availability of write operations.

The availability of read and write operations in the
tree quorum protocol can be estimated by formulating
recurrence relations for both read and write availabil-
ities. The recurrence relation is in terms of the avail-
abilities of these operations in the subtrees of a tree of
copies of an object. Let Rh be the availability of read
operations in a tree of height h. Thus, the availability
for a tree of height h + 1 is given as:

Rh+l = Probability(Root is up)+
Probability(Root is down) x

[Read Availability of Majority of subtrees]

Assuming that the degree of each node in the tree is
2d + 1, where d > 0 and taking p as the probability
that the root is available and 1 - p as the probability
that the root is unavailable, we get:

Rh+l =P+(l-P)X

(fih)d+l (1 - Rh)d + . . . + (Rh)2d+’ 1
Similarly, let wh be the availability of write operations
in a tree of height h. Then:

wh+r = Probability(Root is up) x

[Write Availability of Majority of subtrees]

i.e.,

wh+l = px

(W,,)d+l (1 - Wh)d + . . . + (Wh)2d+1 1

120
0 Writes in ROWA

110 o: Reads in TREE (upper bound)

;oo

0: Reads in TREE (lower bound)

6 Reads in TREE (realistic)
6 Writes in TREE

e 90 Reads or Writes in VOTE

20 30 40 50 60 70 SO 9C
Number of copies of an object

Figure 4: Expected Cost (Note: The tree is of degree 3.)

Availability of a copy of an object

Figure 5: Availability of an object with four copies

250

0.95

0.90

0.85
A
”
a0.80
i
1
a0.75
b
i
, 0.70

i

;0.65

o 0.6C
f

00.55
P
e
r 0.5a

t"
i 0.45
0
n

s 0.40

0.35

0.30

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
Availability of a copy of an object

Figure 6: Availability of an object with thirteen copies

251

6 Related Work

In this section we describe different replica control pro-
tocols and compare them to the proposed tree quorum
protocol. The simplest replica control protocol is the
read-one write-all protocol, where a read operation is
executed by reading any copy and a write writes all
copies of the object. In a failure free system, read op-
erations in both protocols access a single copy while
write operations in the tree quorum protocol do not
write more than half the copies written by the read-one
write-all protocol. When failures occur write opera-
tions can never be executed using the read-one write-all
protocol. In the tree protocol write operations can be
executed even after certain failures have occurred and
the degree of write availability is significantly higher as
indicated by the results in Section 5. Read operations
may be required to access several copies, while attain-
ing a comparable degree of availability in the presence
of failures.

In order to increase the fault-tolerance of write op-
erations, voting protocols were proposed, where write
operations are not required to write all copies. In
the static voting protocol [Gif79], a write operation
writes w copies, and a read operation accesses r copies
where r + w is greater than the total number of
copies of the object. In the dynanaic voting protocol

[DB85, JM87, PL88], both read and write operations
must access a majority of the copies that were most re-
cently updated. In a failure free system, both the static
and the dynamic protocols require read operations to
access several copies. For write operations to tolerate
the failure oft copies, a read operation using the static
approach must always access t+ 1 copies and vice-versa.
In the dynamic approach, both read and write opera-
tions must access a majority of the copies. The tree
protocol, in a failure free system, never requires a read
operation to access more than one copy. Furthermore,
write operations access [(d+ l)h+l - 11/d copies, which
in general is less than a majority of copies. When fail-
ures occur, in the best case, the static voting protocols
can tolerate the failure of a minority of copies. This
improved availability requires that both read and write
operations access a majority of copies. The dynamic
voting protocol can tolerate the failure of any number
of copies. It, however, requires both operations to ac-
cess several copies (a majority of the copies most re-
cently written). Using our protocol, read operations
can tolerate the failure of any [(d + l)h+’ - l]/d - 1

copies, and n - 1 specific copies. If the root is acces-
sibk, read operations always access a single copy and
in the worst case access (d + l)h < n/2 copies. Write
operations, in the worst case, cannot be executed af-
ter the failure of the root, but can tolerate the failure
of n - [(d+ l)h+’ - 11/d specific copies. The analysis
of Section 5, shows that the read availability provided
by the tree quorum protocol is comparable to that of
the static voting protocol and that the degradation of
write availability is not substantial. The cost of both
operations is significantly less when the tree quorum
protocol is used.

To overcome the problem of expensive read oper-
ation in the voting protocols, several algorithms have
been proposed that use network configuration informa-
tion [ESC85, Her87, ET89]. This information is used
to allow operations to adapt to changes in the network
configuration. As a result read operations can always
be executed by accessing a single copy. To ensure cor-
rectness, a special protocol must be executed when-
ever a new network configuration occurs. This protocol
can be relatively costly since it involves communicat-
ing with several copies of several different objects. The
tree quorum protocol tries to achieve the advantages
of reconfiguration protocols, i.e., low cost operation
execution, while maintaining availability. However, it
avoids the cost of reconfiguration by encoding the re-
configuration information in the logical tree structure.
If failure patterns are more likely to occur in the levels
close to the leaves, the tree quorum protocol is ex-
pected to perform better than reconfiguration based
protocols. On the other hand, if failure patterns are
adverse to the tree structure, a reconfiguration based
approach will have better performance.

Finally, the notion of imposing logical structures on a
network of sites has been proposed before to solve dif-
ferent problems. Maekawa [Mae851 proposed imposing
a logical grid on a set of sites to derive efficient O(fi
solutions for mutual exclusion. Agrawal and El Ab-
badi [AESS] proposed imposing a logical tree to solve
the mutual exclusion problem using O(log n) messages.
This approach was extended to replica control protc+
cols that use several logical structures imposed on a
set of copies [AEgO]. Kumar [KumSO] constructs a
logical tree on a set of copies, where the copies actu-
ally correspond to the leaves of the tree. This results
in a protocol where read and write quorums are of size
2“‘ga n. Our protocol draws on many of these ideas, and
extends them to develop an efficient and fault-tolerant

252

replica control protocol. The distinguishing feature of
our approach is that we directly address the issue of
low cost read operations, and unlike other logical struc-
ture based approaches, the tree quorum protocol, in a
failure-free system does not require read operations to
access more than one copy.

7 Conclusions

In this paper we have proposed a fault-tolerant pro-
tocol for managing replicated data. The design of the
protocol directly addresses one of the main problems of
replicated data: the necessity of read operations to ac-
cess several copies in order to ensure the fault-tolerance
of write operations. Our approach imposes a logical
tree structure on the set of copies implementing a log-
ical object. The logical structure will be particularly
beneficial if it is organized such that the most reliable
site is chosen as the root and the least reliable sites as
the leaves. This tree structure is used by transactions
to determine how to execute read and write operations
both in failure-free and failure-prone environments. In
that sense, the structure encodes reconfiguration infor-
mation.

In any practical distributed database system, most
read operations should be executed by an access to a
single copy. Our approach ensures such performance
in a failure-free environment, and in particular when
a specific node, the root, is accessible. This perfor-
mance is attained without any reconfiguration require-
ments and without any substantial availability degra-
dation for write operations. Avoidance of reconfigura-
tion is especially attractive in systems where failures
may be frequent, and where the size of the database
is large and geographically dispersed. Several repli-
cated databases use the read-one write-all protocol for
its simplicity, low read costs, and because it does not
require any reconfiguration protocols. Our approach
is fairly simple, does not require any reconfiguration,
and significantly improves the availability of write op-
erations when compared with the read-one write-all
approach.

The tree quorum protocol can be easily extended to
provide the database designer with the flexibility of de-
termining the degree of availability as well as the cost
of different operations. For example, instead of requir-
ing write operations to write copies residing at all levels
of the tree, they would be required to write copies at
all levels except for one. In this case, a write opera-

tion does not have to write the root copy, if the site
on which it resides is inaccessible, thus increasing the
availability of write operations. On the other hand, to
ensure correctness, read operations would have to read
copies at two levels, thus increasing the cost of read
operations. In general a write operation would be re-
quired to write copies at w levels, and read operations
would read copies at 1 -w+ 1 levels (where I is the total
number of levels in the tree). This approach increases
the availability of write operations, while at the same
time increasing the cost of read operations. Another
extension of our protocol is to use a reconfiguration
protocol [ESC85, ET891 for restructuring the logical
tree. This approach will be particularly beneficial for
large distributed databases.

Finally, the proposed protocol exhibits the property
of graceful degradation [MS85], which is especially at-
tractive in distributed systems that may suffer from
failures. In a failure-free system, the costs imposed by
the tree quorum protocol are comparable to the sim-
plest and most efficient replica control protocol, the
read-one write-all protocol. When failures occur, and
unlike the read-one write-all protocol, the tree quorum
protocol continues executing both read and write op-
erations with a high probability, although at a higher
cost. This approach in designing distributed systems is
desirable since it provides fault-tolerance without im-
posing unnecessary costs on the failure-free mode of
operations.

Acknowledgements

We would like to thank the anonymous referees for
their constructive comments.

References

[AA891

[AE89]

[AEgo]

M. Ahamad and M. H. Ammar. Performance
Characterization of Quorum-Consensus Algo-
rithms for Replicated Data. IEEE Transations
on Software Engineering, 15(4):492-495, April
1989.

D. Agrawal and A. El Abbadi. An Efficient
Solution to the Distributed Mutual Exclusion
Problem. In Proceedings of the Eighth ACM
Symposium on Principles of Distributed Com-
puting, pages 193-200, August 1989.

D. Agrawal and A. El Abbadi. Exploiting Log-
ical Structures of Replicated Databases. Infor-

253

[BG87]

[DB85]

[DGMS85]

[EGLT76]

[ES831

[ESCSS]

[ET891

[Gif79]

[Her861

[Her871

[JM87]

mation Processing Letters, 33(5):255-260, Jan-
uary 1990.

P. A. Bernstein and N. Goodman. A Proof
Technique for Concurrency Control and Recov-
ery Algorithms for Replicated Databases. Dia-
tributed Computing, Springer- Verlag, 2(1):32-
44, January 1987.

D. Davcev and W. Burkhard. Consistency and
Recovery Control for Replicated Files. In Pro-
ceedings of the Tenth ACM Symposium on Op-
erating Systems Principles, pages 87-96, De-
cember 1985.

S. B. Davidson, H. Garcia-Molina, and
D. Skeen. Consistency in partitioned net-
works. ACM Computing Surveys, 17(3):341-
370, September 1985.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and
I. L. Traiger. The Notion of Consistency and
Predicate Locks in Database System. Commu-
nications of the ACM, 19(11):624-633, Novem-
ber 1976.

D. Eager and K. Sevcik. Achieving Robust-
ness in Distributed Database Systems. ACM
Transactions on Database Systems, 8(3):354-
381, September 1983.

A. El Abbadi, D. Skeen, and F. Cristian. An
efficient fault-tolerant protocol for replicated
data management. In Proceedings of the Fourth
ACM Symposium on Principles of Database
Systems, pages 215-228, March 1985.

A. El Abbadi and S. Toueg. Maintain-
ing Availability in Partitioned Replicated
Databases. ACM Transaction on Database Sys-
tems, 14(2):264-290, June 1989.

D. K. Gifford. Weighted Voting for Replicated
Data. In Proceedings of the Seventh ACM Sym-
posium on Operating Systems Principles, pages
150-159, December 1979.

M. Herlihy. A quorum-consensus replication
method for abstract data types. ACM Transac-
tions on Computer Systems, 4(1):32-53, Febru-
ary 1986.

M. Herlihy. Dynamic Quorum Adjustments
for Partitioned Data. ACM Tmnsactions on
Database Systems, 12(2):170-194, June 1987.

S. Jajodia and D. Mutchler. Dynamic Vot-
ing. In Proceedings of the ACM SIGMOD Inter-
nationat Conference on Management of Data,
pages 227-238, June 1987.

[KumSO]

[Mae851

[MS851

[PL88]

[SS82]

A. Kumar. Performance Analysis of a Hierar-
chical Quorum Consensus Algorithm for Repli-
cated Objects. In Proceedings of the Tenth In-
ternational Conference on Distributed Comput-
ing Systems, May 1990.

M. Maekawa. A fi algorithm for mutual exclu-
sion in decentralized systems. ACM Transac-
tions on Computer Systems, 3(2):145-159, May
1985.

S. R. Mahaney and F. B. Schneider. Inexact
agreement: Accuracy, precision, and graceful
degradation. In Proceedings of the Fourth ACM
Symposium on Principles of Distributed Com-
puting, pages 237-249, August 1985.

J. F. PLris and D. E. Long. Efficient Dy-
namic Voting Algorithms. In Proceedings of the
Fourth IEEE International Conference on Data
Engineering, pages 268-275, February 1988.

R. Schlicting and F. B. Schneider. Fail-Stop
Processors: An Approach to Designing Fault-
Tolerant Computing Systems. ACM Transac-
tions on Computer Systems, 1(3):222-238, Au-
gust 1982.

254

