
Adaptable Recovery Using Dynamic Quorum Assignments *

Bharat Bhargava and Shirley Browne

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907

Abstract. This research investigates the problem
of how to adapt the changing of quorum assignments
for objects in a replicated database to the duration
and extent of failures occurring in the underlying;
communication network. The concept of a view based
on a connected component of the network is used to
coordinate changes to quorum assignments of differ-
ent objects. A dynamic view formation protocol is
proposed that permits objects to join a new view on
demand. A new technique called inheritance enables
a new view to acquire quorum assignments from an
old view, so that only those objects that were ac-
cessed during a failure need to change their quorum
assignments back following repair of the failure. Ex-
tension of an existing view may be used to incorpo-
rate a recovering site into the network without form-
ing a new view, thus localizing the effects of the fail-
ure. We have made analytical performance estimates
for some sample network configurations and failure
situations to show the improvements of our method
over previously proposed methods. Following repair
of a failure, our method can begin processing transac-
tions almost immediately, but with less extra average
overhead than for previous methods. We describe a
prototype implementation of our method that will be
used for future experimentation.

*This research is sponsored by National Science Foundation
Grant IRI-8821398.

Permission to copy without fee all or part of this niatcrial is

prantcd provided that the copies arc not m~~dc or Jistrihutcd I’m

direct commercial advantage. the VLDB copqriphl notice and

the title ofthe publication ad its tlatc oppeor. and notice is gi\cn

that copying is hy permission of the Vcrq Large Ihra Raw

Endowment. To copy othcrwisc. or to republish. rcquircs ;I fee

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

1 Introduction

The need for adaptability and reconfigurability in
a distributed system has been discussed in [2], [3],
and [6]. In [6] a model for adaptability in a dis-
tributed database system is proposed and applied to
distributed concurrency control and commit proto-
cols, to network partitioning control, and to server
relocation. Data replication increases the opportuni-
ties for adapting to failures and changing conditions,
but adds the problem of maintaining mutual consis-
tency of the replicated copies. Maintaining mutual
consistency involves both concurrency control and
replication control protocols. The purpose of these
protocols is to achieve one-copy serializablity - that
is, to ensure that the concurrent execution of trans-
actions on the replicated database has the same effect
and appearance as a serial execution on a one-copy
database [4].

The use of quorums to deal with site failures and
network partitioning was proposed in [9]. A quorum
assignment for a replicated object specifies how many
or which copies must be accessed to carry out an
operation. A quorum method may be either static
or dynamic. With a static method, quorum assign-
ments are fixed. A dynamic method allows quorum
assignments to be changed in order to increase avail-
ability. Methods for coordinating changes to quorum
assignments have been proposed in [l], [lo], and [ll].
Changes to quorum assignments are typically coordi-
nated by means af views. A view of the database is
essentially a set of sites that can communicate with
each other, together with the copies of objects resid-
ing at those sites. Dynamic quorum methods are ex-
pensive in processing and communication overhead.
The cost is incurred either all at once when a new
view of the database is formed, or incrementally as
database objects are accessed in the new view. In
[l] and [lo], all objects in a connected component of
the network change t,heir quorum assignments at the
same time by means of a single reconfiguration trans-
action. The same reconfiguration protocol is always

231

invoked, regardless of the extent of the failure. In
[ll], objects may change quorum assignments one at
a time, but a cascade effect causes the quorum as-
signments for all objects to eventually be changed.

The problem addressed in our research is how to
make dynamic quorum methods adaptable to the du-
ration and extent of failures in order to reduce com-
munication costs and overheads during recovery. The
cost should be proportional to the severity of the fail-
ure, rather than to the size of the database.

Our approach to handling failures is to change the
quorum assignment for an object only when that ob-
ject is accessed by a transaction, as in [ll]. By us-
ing a new technique called inheritance, however, quo
rum assignments that have not been changed during
a network partitioning failure may remain in effect
after the failure has been repaired. A new view is
formed following repair, but this new view inherits
quorum assignments from the old view that existed
prior to the failure. Hence, the amount of work re-
quired following repair is proportional to the num-
ber of quorum assignment changes made during the
failure, which depends on the length of the failure.
Alternately, to handle repair of a lengthier failure,
quorum assignments may be inherited by the new
view from the current view for the largest partition
of the network. In this way, the cost of repair is local-
ized to objects that were accessed during the failure
in smaller partitions. Objects that were accessed in
the larger partition need only to extend their quorum
assignments to include the copies being merged in.

To handle a recovery from a brief site failure, in-
heritance from the old view that existed prior to the
site failure may be used. To recover from a lengthier
site failure, we propose a new view ettension tech-
nique followed by extension of quorum assignments
to include copies at the recovered site.

Because our adaptable dynamic quorum method
can change quorum assignments on demand and can
re-use unchanged assignments following repair, it
adapts to the access pattern of transactions that run
during the failure. By localizing the effects of a site
failure or of the separation of a small number of sites,
our method also adapts to the extent of the failure.

In this paper, we describe our adaptable dynamic
quorum method and briefly describe measurements
from a prototype implementation based on a version
of the distributed database system in [7]. These mea-
surements are used to evaluate the estimated perfor-
mance of our method analytically under various fail-
ure situations. A proof that our method ensures one-
copy serializability of transaction processing is given
in-b].

2 Quorum Model and Termi-
nology

A set of copies that suffices to carry out an opera-
tion is called a quorum. With an appropriate quo-
rum intersection requirement for conflicting opera-
tions, the use of quorums, together with distributed
concurrency control and atomic commitment proto-
cols, ensures the consistency of replicated data as seen
by user transactions. The possible quorums that may
be used are listed in a quorum assignment. We as-
sume that an object’s quorum assignments are stored
with each copy of the object. Two types of quorum
assignments may be maintained for an object:

1. The active quorum assignment is read to deter-
mine what copies of the object must be accessed
to carry out an operation.

2. The backup quorum assignment is used following
a site or partitioning failure that renders active
quorums unavailable to determine what the new
active quorum assignment should be.

A coquorum for a set S of quorums in a quorum as-
signment is a set of copies that intersects every quo-
rum in S.

Quorum intersection rules that must be followed by
quorum assignments for a dynamic quorum method
have been given in [lo, 111 for abstract data types.
These rules are stated in the read-write model as fol-
lows:

1. An active write quorum must intersect all active
read quorums (i.e., an active write quorum must
be an active read coquorum).

2. A backup write quorum must intersect all
backup read quorums.

3. An active write quorum must intersect all
backup read quorums.

Using both types of quorums yields better avail-
ability during failures without sacrificing perfor-
mance in the absence of failures. An object may
change its active quorum assignment even when
currently active quorums are unavailable, provided
backup quorums are available.

To achieve one-copy serializability, objects coordi-
nate changes to their active quorum assignments by
means of views. In our model, a view is a set of copies
of objects that agree to use a particular set of quo-
rum assignments that satisfy the quorum assignment
rules. Each view has a unique integer view id. The

232

view formation protocol given in section 3 ensures
that the view ids for views in which a given copy of an
object participates are increasing over time. A view
is based on a connected component of the network,
that is, a set of sites that can communicate with each
other. A view is associated with a connection vector,
indexed by the sites in the system, with a 1 entry for
each site in the view’s underlying component and a 0
entry for the other sites.

A transaction must execute entirely within a sin-
gle view. The quorum intersection rules guarantee
that transactions executed in the same view are se-
rializable among themselves. Our proof of correct-
ness, given in [8], shows that transactions executed in
different views are serializable in order of their view
identifiers.

3 Adaptability Techniques

Our dynamic quorum method has the following five
components, with the last two specifically designed
for adaptability:

0 a view formation protocol,

l a protocol for changing quorum assignments that
can be used when currently active quorums are
unavailable but involves a move to a new view,

l a lightweight protocol for changing quorum as-
signments that requires a read and a write quo-
rum to be available but does not require new
view formation,

l an inheritance mechanism that permits a new
view to acquire objects from an old view without
changing their quorum assignments,

l a view extension protocol that changes the con-
nection vector for a view without changing the
view id.

Recovery actions that do not require formation of a
new view, such as the lightweight and view extension
protocols, are cheaper than those that form a new
view with a new view id. There are two reasons for
the difference in cost. The first is that formation of
a new view requires participation of all sites in the
new view, whereas a quorum assignment change that
does not require a move to a new view need involve
only those sites having copies of the object. The sec-
ond reason is that changing the view id is likely to
cause transactions that are in progress concurrently

to abort and restart in the new view, because a trans-
action must execute entirely with a single view.

We assume that the distributed database system
runs a correct distributed conflict-preserving concur-
rency control protocol, as well as conventional disk-
based crash recovery algorithms [4]. We also assume
the use of transaction commit and termination pro-
tocols, as described in [13].

3.1 New View Formation

New view formation may be invoked by a transaction
manager when failures prevent the use of the quo
rum assignments associated with the current view, or
when repair of a failure makes more copies available
for inclusion in active quorum assignments. Follow-
ing formation of a new view, which is initially empty
of any objects, objects are moved to the new view on
demand as they are accessed by transactions. Trans-
actions will typically attempt to execute in the most
recent view known to have been formed.

To request that a new view be formed, a trans-
action manager sends a view formation request to
all sites in the new view’s component. The request
contains the connection vector for the new view. A
site replies to a request by returning the highest view
id it has seen so far. The view formation coordina-
tor chooses a unique new view id greater than any
of those received and sends it out in a commit mes-
sage. Logging the new view id to stable storage is
not required. If the view formation is interrupted by
a failure, then any site may initiate still another new
view formation, regardless of whether the site is able
to determine the outcome of the previous attempt.

A separate view formation protocol is not actu-
ally required for correctness, as a new view could be
formed incrementally in conjunction with moving ob-
jects to the new view. However, we conjecture that
using a separate view formation protocol will help cut
down on the number of transaction aborts that occur
following repair. of multiple failures.

3.2 Moving an Object to a New View

After a new view has been formed, it will not at first
contain any objects. Hence, when a transaction at-
tempts to execute in a newly formed view, it will find
that the objects it wants to access are not present in
the view. If an object that the transaction wants to
access is accessible in the view’s component (i.e., the
object has a backup quorum in the component), the
transaction ca.n attempt to move the object into the
new view with a new active quorum assignment. If

233

the object is both read- and write-accessible, then the
new active quorum assignment can be any assignment
that satisfies the quorum intersection rules given in
section 2. If the object is only write-accessible, then
the new active assignment is set equal to the backup
assignment. If the object is only read-accessible, then
the active assignment may instead be set equal to the
most recent active assignment, because no other dis-
joint view can have write access. To move an object
into a new view, a transaction manager carries out
the following steps:

Send view change request messages with the new
view id and new active quorum assignment to all
copies of the object in the new view. If the ob-
ject is read accessible in the new view, include
a read request for the object to members of a
backup read quorum. Each copy checks that its
view id is less than the new view id. If so, the
copy write locks its quorum assignment, logs the
proposed change, and, if requested to do so as a
member of a backup read quorum, returns infor-
mation about the object. Otherwise, if its view
id is greater or equal, the copy returns the newer
view id and the corresponding active quorum as-
signment. If some copy returns a newer view id,
the view change is aborted. Otherwise, proceed
to step 2.

If the object is not read-accessible in the new
view, go to step 3. Otherwise, send enough infor-
mation about the object, obtained from a backup
read quorum,to a new active write quorum so
as to ensure that all members of the new write
quorum are up-to-date After replies are received
from members of the new write quorum indicat-
ing that they have logged any new events or val-
ues, proceed to step 3.

Send a commit message to all copies in the new
view. Upon receiving a commit message, a copy
marks itself deleted in the old view (it may retain
read access there, however, as long as the old
version is kept), adds itself to the new view with
the new active quorum assignment, and releases
the write lock on the quorum assignment.

3.3 Lightweight Quorum Assignment
Change

If both a read quorum and a write quorum for an ob-
ject are available, then its quorum assignment may
be changed without forming a new view. Note that a
read quorum is a write coquorum (i.e., a read quorum

intersects every write quorum) and a write quorum is
a read coquorum. Hence, notifying both a read quo-
rum and a write quorum of the change ensures that
at least one member of every old quorum has been
notified. This rule applies equally well to both active
and backup quorum assignments. Either type of quo-
rum assignment may be changed without changing
the other, provided the resulting active and backup
quorum assignments satisfy the quorum intersection
rules given in section 2.

To change a quorum assignment for an object, a
transaction manager carries out the following steps:

Send a request for a quorum assignment change
containing the old quorum assignment version
number to all available old quorum members and
to all new quorum members. If the change is
for an active quorum assignment, include a read
request for the object to members of an old read
quorum.

Upon receiving a request for quorum assignment
change, a quorum member write locks the quo-
rum assignment and logs the new assignment to
stable storage. It also checks if its quorum as-
signment version number agrees with the one in
the request. If its own quorum assignment is
more recent, it sends back its own quorum as-
signment. If requested to do so as a member of
a read quorum, it sends back information about
the object. After replies are received from all
new quorum members and from at least one old
read quorum and one old write quorum, proceed
to step 3. (If a more recent quorum assignment
was received from some site, restart the protocol
with step 1).

If the change is only for a backup quorum as-
signment, proceed to step 4. Otherwise (the ac-
tive quorum assignment is being changed), send
enough information about the object (obtained
from the old read quorum) to a new write quo
rum to ensure that all members of the new write
quorum are up-to-date. After replies are received
from members of the new write quorum indicat-
ing they have logged any new values or events,
proceed to step 4.

Send a commit message to at1 new quorum mem-
bers and to all available old quorum members.
Upon receiving a commit message, a quorum
member updates the quorum assignment and re-
leases the write lock on the quorum assignment.

234

3.4 Inheritance of Quorum Assign-
ments by Views

Inheritance essentially permits re-use of an old view
that is still largely intact. When coordinating the
formation of a new view, a site may check whether
some old view has the same connection vector as the
new one. If so, and if a large number of dynamic ob-
jects still reside in the old view, it may choose to have
the new view inherit these objects from the old view.
If it decides on inheritance, it sends the view id for
the old view with the view formation request. Upon
receiving the request, each site returns the names of
any objects that it has deleted from the old view.
The coordinator sends the names of all deleted ob-
jects with the commit message. Upon receiving the
commit message, each site checks that all named ob-
jects have been deleted and switches the view id of
the old view to that of the new one. If each object
stores a pointer to the location of the view id, rather
than the view id itself, then the view id for all the
objects can be changed with a single write operation.
Alternatively, the site can change the view ids of all
the objects.

The idea behind our proof of correctness for inher-
itance is that at least one member of any old quorum
must know about the deletion of an object. This
knowledge prevents an old quorum assignment from
being used for a deleted object. Propagating the
names of deleted objects to all sites in the new view
ensures that this condition holds for any object that
was accessible in the old view.

It is not essential that the new connection vector
be exactly the same as the new one. If the sites in
the new view’s component are a superset of those in
the old one, then inheritance may still be used. Quo-
rum assignments can then be extended to the new
sites using the lightweight quorum change protocol.
Thus, inheritance may be used to merge a small par-
tition into the main network. If there are sites in
the connection vector for the old view that are not in
the new one, however, then using inheritance could
result in transactions not being serializable in order
of their view ids. Transactions should be serializable
in the order of their view ids because our proof of
correctness depends on this fact.

3.5 Extending a View

View extension can be used to avoid forming a new
view when a site recovers from a failure. The con-
nection vector for the current view is extended to
include the recovered site. Then the lightweight pro-

tocol described in section 3.3 may be used to change
the quorum assignments for those objects that have
a copy at the recovered site.

To extend the current view, a recovering site carries
out

1.

2.

3.

the following steps:

Copy the connection vector and view id for the
current view from an operational site.

Send a join view request containing the view id
to all sites in the view. If the current view id
at a site receiving a request message agrees with
the view id in the request, the site modifies its
connection vector for the view and sends a pos-
itive acknowledgment. Otherwise, it returns the
newer view id and corresponding connection vec-
tor.

If no site returns a newer view id, the view ex-
tension is completed. Otherwise, repeat step 2
using the newest view id received.

Because correctness of our method does not depend
on the accuracy of a view’s connection vector, the
connection vector may be treated as a hint. Bather
than using a separate protocol, we could even prop-
agate changes in the connection vector along with
lightweight quorum change requests. The one-phase
protocol is not expensive, however, and should cut
down on the disparity between the connection vec-
tors at different sites. Because sites are only added
and never deleted from the connection vector for a
particular view, view extension may be used safely
together with inheritance.

4 Prototype Implementation

As a first step in studying the behavior of our pro-
posed algorithms, we carried out a prototype imple-
mentation of our quorum-based transaction process-
ing and view formation protocols in an environment
of a local-area network of Sun workstations. Our
implementation was based on, but independent of,
the distributed database system described in [7]. We
adapted the existing software to incorporate support
for partial replication and the use of views and quo-
rums for replication control.

Transactions and view formations/extensions were
run on five Sun 3/50’s connected by a ten
megabit/second Ethernet for configurations with
three sites, five sites, and ten sites. The degree of
data replication was set to two, three, and six, re-
spectively (i.e., to approximately 0.6 times the num-
ber of sites). Active quorum assignments were set to

235

T Norm TNV TLW
3 sites .48 .54 .64
5 sites .51 .64 .57
10 sites .69 .92 .74

Table 1: Execution time in seconds for read-write
transactions

Table 2: Execution time in seconds for view forma-
tion and extension

read-one write-all (in the current view) and backup
quorum assignments were set to read-majority write-
majority. Each user transaction accessed a single re-
lation consisting of 100 tuples of length 50 bytes. A
read operation read the entire relation, a write op-
eration wrote 10 tuples. Each run of an experiment
measured the elapsed time for execution of a single
transaction, using the Sun clock chip with granular-
ity of 20 msec. Data values were averaged over 20
runs to obtain 90 percent confidence intervals, calcu-
lated using the Student’s distribution [12], off 0.05
set for values under 0.40 set and f ten percent for
values greater than or equal to 0.40 sec. In the tables
of data, TN~~,.,, denotes a normal transaction, TNV
a transaction that moves a relation to a new view,
and TLW a transaction that carries out lightweight
quorum assignment change.

Normal transactions. Execution time for a
transaction was measured at the coordinating site
from the time the transaction was submitted for pro-
cessing until the commit decision was reached. This
time did not include the cost of interpreting the query
nor of translating it to a transaction. Execution time
for a normal read-write transaction in the absence of
failures included a local read and phase one of the
commit protocol. Phase one sends a round of ap-
proximately 1400-byte messages to the members of
a write quorum, with each site of which does local
logging. Times for normal transactions are shown in
Table 1.

Empty view formation and moving a rela-
tion to a new view. Elapsed time for empty view
formation included a round of approximately 60-W

messages to all sites, but no disk accesses. Times
for empty view formation are shown in Table 2. Ex-
ecution times for read-write transactions that move
relations to a new view are shown in Table 1. These
times are 20 to 40 percent greater than normal for
the five- and ten-site cases, due to the need for two
additional rounds of messages during the read phase
to contact a backup read quorum and read an up-
to-date copy of the relation. Additional rounds are
not needed for the three-site case, however, since the
degree of data replication for this case is two and
backup read quorums are of size one.

View formation with inheritance. Execution
times for view formation with inheritance are shown
in Table 3. The increase with the number of deleted
relations is due to the longer messages needed to con-
tain the identifiers of deleted relations. Following
view formation with inheritance, a transaction ac-
cessing a relation that had not been deleted from the
old view took the same amount of time as in the ab-
sence of failures. A transaction accessing a relation
that had been deleted took the same amount of time
as if the transaction had followed empty view forma-
tion, because it had to move the relation to the new
view.

View extension. Times for view extension are
shown in Table 2. View extension took about the
same amount of time as empty view formation. Fewer
total messages are required for view extension, but
the number and sizes of messages sent between when
the timing starts and the view change is committed
are the same in both cases.

Lightweight quorum assignment change. Ex-
ecution times for transactions that carry out a
lightweight quorum assignment changes following
view extension are shown in Table 1. The increase
over the normal execution time, about 10 to 20 per-
cent for the five- and ten-site cases, is less than the
additional time for a move to a new view. This is
because only one additional round of messages is re-
quired in the read phase and only one site needs to
be read from for lightweight change, compared to two
additional rounds and reading from a backup read
quorum for a move to a new view. The exception
is the three-site case, where the degree of data repli-
cation is two. Our software was not smart enough
to recognize in this case that, with a backup write
quorum consisting of both sites having copies, the
local copy of a relation was guaranteed to be up-to
date following view extension. Instead the transac-
tion read at the remote site, making the lightweight
change more expensive for the three-site case than a
move to a new view.

236

No deleted 5 deleted 10 deleted 50 deleted 100 deleted
relations relations relations relations relations

3 sites .08 .lO .lO .14 .16
5 sites .lO .lO .12 .16 .18
10 sites .22 .24 -25 .30 .34

Table 3: Execution time in seconds for view formation with inheritance

5 Analytical Performance Es-
timates

In this section, we evaluate different ways of handling
new view formation and/or view extension following
failures and subsequent repairs. We investigate how
the relative performance of different techniques de-
pends on the length of time between failure and re-
pair. We have claimed that our techniques allow a
replicated database system to adapt to the duration
of a failure. In particular, we hypothesize that inheri-
tance from the old view that existed prior to a failure
will give good results if the failure is of short dura-
tion. For a longer failure, we expect that inheritance
from the view for the larger component of the parti-
tioned network (in the case of network partitioning)
or extension of the current view (in the case of site
recovery) will be better.

For our analytical model, we have made the follow-
ing assumptions:

1.

2.

3.

4.

5.

Copies of relations are distributed uniformly
among the sites.

The access pattern of relations by transactions
has a random uniform distribution.

Each transaction reads and writes a single rela-
tion out of a database of 100 relations.

Moves to a new view and lightweight quorum
assignment changes are integrated with transac-
tion processing.

Transaction throughput is limited by the rate
at which servers can handle requests, rather
than by network bandwidth. This assumption is
based on the fact that high-bandwidth networks
are becoming readily available.

The first two assumptions make the analytical model
tractable. The third assumption allows us to give an
explicit solution for an instance of the model. Below
we discuss the implications when these three assump-
tions do not hold.

Our analytical model has the following parame-
ters (Let ~~~~~ denote a normal transaction, TN”
a transaction that moves an object to a new view,
and TLW a transaction that carries out a lightweight
quorum assignment change):

NVresp - the ratio of the response time for TNV to
the response time for TN,,~~.

LWresp - the ratio of the response time for TLW to
the response time for TN*~,,,.

NVload - the ratio of the load on the Transaction
Manager servers for TNV to the load for TN~~,,,.

LWload - the ratio of the load on the Transaction
Manager servers for TLW to the load for TN~~,,,.

We estimated values for these parameters from mea-
surements for the prototype implementation de-
scribed in section 4. Using the response times mea-
sured for ten sites, rough estimates for NVresp and
LWresp are 1.4 and l.li respectively. In our imple-
mentation, a normal transaction generates an aver-
age of 1.8 requests per Transaction Manager server,
while a transaction that moves the relation to a new
view generates an average of 2.4 requests per server.
Hence, disregarding the lengths of the requests, a
rough estimate for NVload is 1.3. The average num-
ber of requests per TM server for a transaction that
does a lightweight quorum assignment change is 1.9
for a lo-site configuation, compared to 1.8 for a nor-
ma1 transaction. Thus, a rough estimate for LWload
is 1.05.

Our calculations are based on the solution of a sys-
tem of differential equations that describe how vari-
ous quantities in the system change over time. These
equations represent a continuous approximation to

the discrete system. Experimental results in [5] give
credence to a similar differential equation model for
analysis of the fail-lock technique for doing site re-
covery.

The quantities solved for are the following:

move(t) - the number of relations remaining to be
moved to a new view at time t following new
view formation.

237

hut(t) - the number of relations still needing
lightweight quorum assignment change at time t
following new view formation or view extension.

Resp(t) - the ratio of average response time at time t
following new view formation to normal average
response time.

Z%(t) - the ratio of throughput at time t following
new view formation to normal throughput.

The quantities Resp(t) and Th(t) depend on one or
both of move(t) and It&(t), depending on the type
of view formation used. The equations and projected
performance for different cases of failure and recovery
are detailed in the following subsections.

5.1 Network partitioning failure and
repair

Following a simple network partitioning, the network
is divided into two components, and a new view has
been formed for each component. If new view forma-
tion with reconfiguration has been used, all quorum
assignments have been m-adjusted by the view for-
mation transaction. If empty new view formation
has been used, quorum assignments will be adjusted
incrementally as relations are moved to the new view
on demand by the transactions that access them.

Following empty view formation, the quantity
moues(i) is the number of relations that remain to
be moved to the new view at time t following the
partitioning. Transactions will be committing at a
rate A(t) which depends on the value of moveo(t),
because the additional overhead of moving relations
to the new view will slow down the transaction pr*
cessing rate. Given our assumption that relations are
equally likely to be accessed, the transaction process-
ing rate should be scaled by the fraction of relations
that remain to be moved to obtain the rate of change
of moveo(t). Thus, a continuous approximation to
the integer-valued quantity moveo(t) is given by the
solution to the following differential equation:

where

d moveo(t) = -A(t)moveo(t)
dt dbsire

A(t) = NormX * Th(t)

is the transaction processing rate of the system at
time t and

n&o(t) =
1

(1 - s) + NVload * s

is the ratio of throughput at time t to normal
throughput. The initial condition for moveo(t) is

moveo(0) = dbsize

The ratio of average response time at time t following
new view formation to normal response time is given
by the following equation:

Respo(t) = (l- mJE.i(et)) + N Vresp * mJG.ip’

Although response time and throughput are nor-
mal following view formation with reconfiguration,
successful transaction processing cannot resume until
after the time required for reconfiguration. The time
required for empty view formation is insignificant,
and transaction processing can resume almost imme-
diately following the failure. Then as relations are
moved to the new view, response time and through-
put gradually return to normal.

Repair of network partitioning. We compared
the following ways of handling the repair of a network
partitioning:

1. new view formation with reconfiguration,

2. empty new view formation,

3. view formation with inheritance from the old
view that existed prior to the partitioning,

4. view formation with inheritance from the current
view for the larger component.

For methods 3 and 4, we assumed that empty view
formation was used following the network partitipn-
ing failure. Following 3, relations that were deleted
from the old view while the network was partitioned
need to be moved back. The number of such rela-
tions increases with the duration of the partitioning.
Following 4, relations that have not yet been moved
to the view for the larger component still need to
be moved. Relations that have been moved to the
view for that component but that have copies in the
smaller component need to have their quorum assign-
ments extended using lightweight quorum assignment
change.

In the analysis that follows, we denote the average
response time ratio for method i at time t by lIespi
and the throughput ratio for method i at time t by
Thi(t). We let t, denote the time of the repair. EX-
pressions for Respi(t) and Thi(t) are given in Tables
4 and 5, respectively.

238

Table 4: Response time ratios at time t, for t 1 t,

i Thi(t)
1 1
2 l/((l - ““‘$‘) + NVload * *gyJ)

3 10 ----dvl + NV,oad * mouc31tflje
dbsirr

4 Ij((l--moucr:f)fltwt4’tl) + LWload * “>~~f~f-! + NVload + mJ’S~?~‘)

Table 5: Throughput ratios at time t, for t 2 t,

For methods 2, 3, and 4, the differential equation
for movei(for t > t,, is

d movej(t) = -X(t)?lXOW!i(t)

tit dbsize

The initial condition for method 2 is movez(t,) =
dbsize. For method 3, the initial condition is
movea = dbsize - moweo(t,). For method 4, the
differential equation for ltwt,(t), the number of re-
lations still needing lightweight quorum assignment
change at time t, is

d lt&(t) = -A(t) ltWta(t)
dt dbsize

Based on the assumption of a uniform distribution
of relations among the sites, we calculated values for
the initial conditions moved(&) and Nwt4(t,). De-
tails of how movea and ltwt4(t,) were calculated
may be found in [8].

Comparison of the different methods. We
solved the above equations numerically with dbsize =
100 and nsites = 10 to obtain the curves in Figures
1 and 2 that show the calculated average response
time and throughput ratios following the different
methods of handling repair of the partitioning for dif-
ferent durations of the partitioning. For the lo-site
case shown, the sizes of the two partitioned compo-
nents were 4 and 6 sites. We used values for NVresp,
LWresp, NVload, and LWload as suggested by the
preliminary experimental data reported in section 4.

The curves for view formation with reconfiguration
(labeled hkspl (t) in Figure 1 and 2%1(t) in Figure 2)
illustrate the performance achieved by the methods

in [l] and [lo]. The curves for empty view formation
(labeled Respz(t) in Figure 1 and Thz(t) in Figure 2)
illustrate the performance achieved by the method in
Pll.

The results of our preliminary experiments and
analysis show that, under our assum$ions of ran-
dom access to objects and uniform distribution of
objects among the sites, a significant improvement
in transaction processing performance during the re-
covery period can be achieved by inheriting quorum
assignments from a previous view. For a failure that
is of short duration, Figures l(a) and 2(a) illustrate
saving of greater than 50 percent of the average over-
head for moving objects to a new view, when inheri-
tance from the pre-failure view is used. For a failure
of longer duration, Figures l(b) and 2(b) illustrate
savings of close to 50 percent, when inheritance from
the larger failure view is used.

The analysis that produced Figures 1 and 2 is based
on equal percentages of read and write operations.
With a higher proportion of read operations, inheri-
tance would achieve even greater savings by reducing
the number of times read-only access must be con-
verted to read-write access. The database size of 100
relations used in our analysis is fairly small. For a
constant transaction processing rate, increasing the
database size would increase the savings achieved by
inheritance from the old pre-failure view, because the
relative proportion of objects needing to be moved
back to the old view would be smaller. We have
assumed randon access to database objects. With
an access pattern that exhibits high locality of ref-
erence, the savings achieved by inheritance from the

239

NVmp

1

10 sites. dbsue = IQ.3

Resp,W

0 100 200 300

time t (in units of 1Mormh

(a) Repair after 5O*(l/NormA) seconds

10 sites. dbsizc - 100

I I I I I
0

I
100 2cO 300 400 500

time t (in unio of l/Norm A)

(b) Repair after 2CQ*(l/NomA) seconds

Figure 1: Comparison of response time for different methods of handling repair of network partitioning

l-

lllw

r 10 sifes. dbsize - 100
Tll.lB

F+-~
0’ /’ .’
Thp .: /1;--

I
I I I

0 100 200 300

the t (in units of l/Nom i)

(a) Repair after 5O’(lINom1~) sewn&

l-

l-m

t4woai

10 sites. dbsize - 100
-MO

0 100 200 300 400 500

dmet(inlmitsoflINomlh)

(b) Repair after 2W(l/NcmA) wmnds

Figure 2: Comparison of throughput for different methods of handling repair of network partitioning

240

pre-failure view would again be greater, for the same
reason as for an increase in database size. The effect
of a non-uniform distribution of relations among the
sites is unknown and remains to be investigated.

5.2 Site recovery

We compared the following alternatives for handling
the site recovery process:

1. new view formation with reconfiguration,

2. empty new view formation,

3. view formation with inheritance from the old
view that existed prior to the site failure,

4. extension of the current view to include the re-
covering site.

As an alternative to method 4, inheritance from the
current view would also be possible, but view exten-
sion is cheaper since fewer messages are sent. View
extension also has the advantage that transactions in
progress concurrently will not be aborted because of
a change in view id. Hence, extending the current
view seems clearly preferable to inheriting from it.

Using an analysis similar to that in section 5.1, we
observed the same relationship between the methods
for site recovery as for the repair of network parti-
tioning. Details of this analysis may be found in [8].

6 Conclusions

We have investigated techniques for adapting the re-
covery actions of a dynamic quorum method to the
length and extent of site failures and network parti-
tioning. The major contributions of this research are
the following:

l We have proposed a new recovery technique
called inheritance that allows restoration of a
previous configuration of quorum assignments
with a minimal amount of work. Inheritance
should be useful for recovery from a short-lived
single site failure or simple partitioning, or from
multiple site failures if all are repaired fairly
quickly. For example, inheritance would be ap-
plicable to a redundant system with backup com-
ponents that may be brought on-line quickly.
For longer failures, inheritance allows the system
to acquire quorum assignments from the largest
current configuration, with the additional work
required depending on the number of sites out-
side this configuration.

For the special case of site recovery, we allow
extension of the current view to include the re-
covered site. Such view extension is expected to
provide efficient recovery from lengthy site fail-
ures.

We have narrowed down the need for formation
of a new view to the case where no active quorum
is available for an operation. Quorum assign-
ment changes invoked for other reasons, such as
addition or deletion of copies or the restructur-
ing of backups quorums, may be done without
forming a new view.

We have implemented our dynamic quorum
method in a distributed system collected preliminary
experimental data. More work is needed to validate
the experimental model.

Algorithms are needed that take as input all the in-
formation available about previous and current views
and determine whether an old or current view should
be used for inheritance or extension. Rather than
making simplifying assumptions about the access pat-
terrn and processing rate of transaction that run dur-
ing the failures, as we did in our analyses, these al-
gorithms should use actual transaction execution his-
tories, or summaries thereof, to do a more accurate
comparison of the different options for recovery.

The analyses for cases of multiple partitioning
(when the network is partitioned into more than two
components) and multiple site failures remain to be
done. In these cases, repair may be partial, in that
proper subsets of the network may recover, and per-
haps be subject to further failures, before the entire
network is reconnected. We expect that the analyses
for these cases will be more complicated, but use will
use similar techniques.

References

[l] A. E. Abbadi and S. Toueg. Maintaining
availability in partitioned replicated databases.
ACM lhns. Database Syst., 14(2):264-290,
June 1989.

[2] N. A. Alexandridis. Adaptable software and
hardware: Problems and solutions. IEEE Com-
puter, 19(2), Feb. 1986.

[3] A. Avizienis. Fault-tolerant systems. IEEE
Transactions on Computers, C-25(12):1304-
1312, Dec. 1976.

241

[4] P. A. Bernstein, V. Hadzilacos, and N. Good-
man. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[5] B. Bhargava, P. Noll, and D. Sabo. An experi-
mental analysis of replicated copy control during
site failure and recovery. In Proc. 4th IEEE Data
Engineering Conference, pages 82-91, Los Ange-
les, Feb. 1988.

[6] B. Bhargava and J. Riedl. A model for adaptable
systems for transaction processing. IEEE Trans.
on Knowledge and Dais Engineering, 1(4):433-
449, Dec. 1989.

[7] B. Bhargava and J. Riedl. The RAID distributed
database system. IEEE Trans. on Software En-
gineering, SE-15(6):726-736, June 1989.

[8] S. Browne. Quorum-based Recovery in Repli-
cated Database Systems. PhD thesis, Purdue
University, May 1990.

[9] D. K. Gifford. Weighted voting for replicated
data. In Proc. Seventh Symposium on Operating
Sysiems Principles, pages 150-162. ACM, Dec.
1979.

[lo] A. A. Heddaya. Managing Even&based Replica-
tion for Abstract Data Types in Distributed Sys-
tems. PhD thesis, Harvard University, Oct. 1988.
TR-20-88.

[ll] M. Herliiy. Dynamic quorum adjustment for
partitioned data. ACM l+ans. Database Sysl.,
12(2):170-194, June 1987.

[12] A. M, Law and W. D. Kelton. Simulation Model-
ing and Analysis, chapter 4. McGraw-Hill Book
Company, 1982.

[13] D. Skeen. A quorum-based commit protocol. In
Proc. 6th Berkeley Workshop, pages 69-80, Feb.
1982.

242

