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Abstract. This research investigates the problem 
of how to adapt the changing of quorum assignments 
for objects in a replicated database to the duration 
and extent of failures occurring in the underlying; 
communication network. The concept of a view based 
on a connected component of the network is used to 
coordinate changes to quorum assignments of differ- 
ent objects. A dynamic view formation protocol is 
proposed that permits objects to join a new view on 
demand. A new technique called inheritance enables 
a new view to acquire quorum assignments from an 
old view, so that only those objects that were ac- 
cessed during a failure need to change their quorum 
assignments back following repair of the failure. Ex- 
tension of an existing view may be used to incorpo- 
rate a recovering site into the network without form- 
ing a new view, thus localizing the effects of the fail- 
ure. We have made analytical performance estimates 
for some sample network configurations and failure 
situations to show the improvements of our method 
over previously proposed methods. Following repair 
of a failure, our method can begin processing transac- 
tions almost immediately, but with less extra average 
overhead than for previous methods. We describe a 
prototype implementation of our method that will be 
used for future experimentation. 
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1 Introduction 

The need for adaptability and reconfigurability in 
a distributed system has been discussed in [2], [3], 
and [6]. In [6] a model for adaptability in a dis- 
tributed database system is proposed and applied to 
distributed concurrency control and commit proto- 
cols, to network partitioning control, and to server 
relocation. Data replication increases the opportuni- 
ties for adapting to failures and changing conditions, 
but adds the problem of maintaining mutual consis- 
tency of the replicated copies. Maintaining mutual 
consistency involves both concurrency control and 
replication control protocols. The purpose of these 
protocols is to achieve one-copy serializablity - that 
is, to ensure that the concurrent execution of trans- 
actions on the replicated database has the same effect 
and appearance as a serial execution on a one-copy 
database [4]. 

The use of quorums to deal with site failures and 
network partitioning was proposed in [9]. A quorum 
assignment for a replicated object specifies how many 
or which copies must be accessed to carry out an 
operation. A quorum method may be either static 
or dynamic. With a static method, quorum assign- 
ments are fixed. A dynamic method allows quorum 
assignments to be changed in order to increase avail- 
ability. Methods for coordinating changes to quorum 
assignments have been proposed in [l], [lo], and [ll]. 
Changes to quorum assignments are typically coordi- 
nated by means af views. A view of the database is 
essentially a set of sites that can communicate with 
each other, together with the copies of objects resid- 
ing at those sites. Dynamic quorum methods are ex- 
pensive in processing and communication overhead. 
The cost is incurred either all at once when a new 
view of the database is formed, or incrementally as 
database objects are accessed in the new view. In 
[l] and [lo], all objects in a connected component of 
the network change t,heir quorum assignments at the 
same time by means of a single reconfiguration trans- 
action. The same reconfiguration protocol is always 
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invoked, regardless of the extent of the failure. In 
[ll], objects may change quorum assignments one at 
a time, but a cascade effect causes the quorum as- 
signments for all objects to eventually be changed. 

The problem addressed in our research is how to 
make dynamic quorum methods adaptable to the du- 
ration and extent of failures in order to reduce com- 
munication costs and overheads during recovery. The 
cost should be proportional to the severity of the fail- 
ure, rather than to the size of the database. 

Our approach to handling failures is to change the 
quorum assignment for an object only when that ob- 
ject is accessed by a transaction, as in [ll]. By us- 
ing a new technique called inheritance, however, quo 
rum assignments that have not been changed during 
a network partitioning failure may remain in effect 
after the failure has been repaired. A new view is 
formed following repair, but this new view inherits 
quorum assignments from the old view that existed 
prior to the failure. Hence, the amount of work re- 
quired following repair is proportional to the num- 
ber of quorum assignment changes made during the 
failure, which depends on the length of the failure. 
Alternately, to handle repair of a lengthier failure, 
quorum assignments may be inherited by the new 
view from the current view for the largest partition 
of the network. In this way, the cost of repair is local- 
ized to objects that were accessed during the failure 
in smaller partitions. Objects that were accessed in 
the larger partition need only to extend their quorum 
assignments to include the copies being merged in. 

To handle a recovery from a brief site failure, in- 
heritance from the old view that existed prior to the 
site failure may be used. To recover from a lengthier 
site failure, we propose a new view ettension tech- 
nique followed by extension of quorum assignments 
to include copies at the recovered site. 

Because our adaptable dynamic quorum method 
can change quorum assignments on demand and can 
re-use unchanged assignments following repair, it 
adapts to the access pattern of transactions that run 
during the failure. By localizing the effects of a site 
failure or of the separation of a small number of sites, 
our method also adapts to the extent of the failure. 

In this paper, we describe our adaptable dynamic 
quorum method and briefly describe measurements 
from a prototype implementation based on a version 
of the distributed database system in [7]. These mea- 
surements are used to evaluate the estimated perfor- 
mance of our method analytically under various fail- 
ure situations. A proof that our method ensures one- 
copy serializability of transaction processing is given 
in-b]. 

2 Quorum Model and Termi- 
nology 

A set of copies that suffices to carry out an opera- 
tion is called a quorum. With an appropriate quo- 
rum intersection requirement for conflicting opera- 
tions, the use of quorums, together with distributed 
concurrency control and atomic commitment proto- 
cols, ensures the consistency of replicated data as seen 
by user transactions. The possible quorums that may 
be used are listed in a quorum assignment. We as- 
sume that an object’s quorum assignments are stored 
with each copy of the object. Two types of quorum 
assignments may be maintained for an object: 

1. The active quorum assignment is read to deter- 
mine what copies of the object must be accessed 
to carry out an operation. 

2. The backup quorum assignment is used following 
a site or partitioning failure that renders active 
quorums unavailable to determine what the new 
active quorum assignment should be. 

A coquorum for a set S of quorums in a quorum as- 
signment is a set of copies that intersects every quo- 
rum in S. 

Quorum intersection rules that must be followed by 
quorum assignments for a dynamic quorum method 
have been given in [lo, 111 for abstract data types. 
These rules are stated in the read-write model as fol- 
lows: 

1. An active write quorum must intersect all active 
read quorums (i.e., an active write quorum must 
be an active read coquorum). 

2. A backup write quorum must intersect all 
backup read quorums. 

3. An active write quorum must intersect all 
backup read quorums. 

Using both types of quorums yields better avail- 
ability during failures without sacrificing perfor- 
mance in the absence of failures. An object may 
change its active quorum assignment even when 
currently active quorums are unavailable, provided 
backup quorums are available. 

To achieve one-copy serializability, objects coordi- 
nate changes to their active quorum assignments by 
means of views. In our model, a view is a set of copies 
of objects that agree to use a particular set of quo- 
rum assignments that satisfy the quorum assignment 
rules. Each view has a unique integer view id. The 
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view formation protocol given in section 3 ensures 
that the view ids for views in which a given copy of an 
object participates are increasing over time. A view 
is based on a connected component of the network, 
that is, a set of sites that can communicate with each 
other. A view is associated with a connection vector, 
indexed by the sites in the system, with a 1 entry for 
each site in the view’s underlying component and a 0 
entry for the other sites. 

A transaction must execute entirely within a sin- 
gle view. The quorum intersection rules guarantee 
that transactions executed in the same view are se- 
rializable among themselves. Our proof of correct- 
ness, given in [8], shows that transactions executed in 
different views are serializable in order of their view 
identifiers. 

3 Adaptability Techniques 

Our dynamic quorum method has the following five 
components, with the last two specifically designed 
for adaptability: 

0 a view formation protocol, 

l a protocol for changing quorum assignments that 
can be used when currently active quorums are 
unavailable but involves a move to a new view, 

l a lightweight protocol for changing quorum as- 
signments that requires a read and a write quo- 
rum to be available but does not require new 
view formation, 

l an inheritance mechanism that permits a new 
view to acquire objects from an old view without 
changing their quorum assignments, 

l a view extension protocol that changes the con- 
nection vector for a view without changing the 
view id. 

Recovery actions that do not require formation of a 
new view, such as the lightweight and view extension 
protocols, are cheaper than those that form a new 
view with a new view id. There are two reasons for 
the difference in cost. The first is that formation of 
a new view requires participation of all sites in the 
new view, whereas a quorum assignment change that 
does not require a move to a new view need involve 
only those sites having copies of the object. The sec- 
ond reason is that changing the view id is likely to 
cause transactions that are in progress concurrently 

to abort and restart in the new view, because a trans- 
action must execute entirely with a single view. 

We assume that the distributed database system 
runs a correct distributed conflict-preserving concur- 
rency control protocol, as well as conventional disk- 
based crash recovery algorithms [4]. We also assume 
the use of transaction commit and termination pro- 
tocols, as described in [13]. 

3.1 New View Formation 

New view formation may be invoked by a transaction 
manager when failures prevent the use of the quo 
rum assignments associated with the current view, or 
when repair of a failure makes more copies available 
for inclusion in active quorum assignments. Follow- 
ing formation of a new view, which is initially empty 
of any objects, objects are moved to the new view on 
demand as they are accessed by transactions. Trans- 
actions will typically attempt to execute in the most 
recent view known to have been formed. 

To request that a new view be formed, a trans- 
action manager sends a view formation request to 
all sites in the new view’s component. The request 
contains the connection vector for the new view. A 
site replies to a request by returning the highest view 
id it has seen so far. The view formation coordina- 
tor chooses a unique new view id greater than any 
of those received and sends it out in a commit mes- 
sage. Logging the new view id to stable storage is 
not required. If the view formation is interrupted by 
a failure, then any site may initiate still another new 
view formation, regardless of whether the site is able 
to determine the outcome of the previous attempt. 

A separate view formation protocol is not actu- 
ally required for correctness, as a new view could be 
formed incrementally in conjunction with moving ob- 
jects to the new view. However, we conjecture that 
using a separate view formation protocol will help cut 
down on the number of transaction aborts that occur 
following repair. of multiple failures. 

3.2 Moving an Object to a New View 

After a new view has been formed, it will not at first 
contain any objects. Hence, when a transaction at- 
tempts to execute in a newly formed view, it will find 
that the objects it wants to access are not present in 
the view. If an object that the transaction wants to 
access is accessible in the view’s component (i.e., the 
object has a backup quorum in the component), the 
transaction ca.n attempt to move the object into the 
new view with a new active quorum assignment. If 
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the object is both read- and write-accessible, then the 
new active quorum assignment can be any assignment 
that satisfies the quorum intersection rules given in 
section 2. If the object is only write-accessible, then 
the new active assignment is set equal to the backup 
assignment. If the object is only read-accessible, then 
the active assignment may instead be set equal to the 
most recent active assignment, because no other dis- 
joint view can have write access. To move an object 
into a new view, a transaction manager carries out 
the following steps: 

Send view change request messages with the new 
view id and new active quorum assignment to all 
copies of the object in the new view. If the ob- 
ject is read accessible in the new view, include 
a read request for the object to members of a 
backup read quorum. Each copy checks that its 
view id is less than the new view id. If so, the 
copy write locks its quorum assignment, logs the 
proposed change, and, if requested to do so as a 
member of a backup read quorum, returns infor- 
mation about the object. Otherwise, if its view 
id is greater or equal, the copy returns the newer 
view id and the corresponding active quorum as- 
signment. If some copy returns a newer view id, 
the view change is aborted. Otherwise, proceed 
to step 2. 

If the object is not read-accessible in the new 
view, go to step 3. Otherwise, send enough infor- 
mation about the object, obtained from a backup 
read quorum,to a new active write quorum so 
as to ensure that all members of the new write 
quorum are up-to-date After replies are received 
from members of the new write quorum indicat- 
ing that they have logged any new events or val- 
ues, proceed to step 3. 

Send a commit message to all copies in the new 
view. Upon receiving a commit message, a copy 
marks itself deleted in the old view (it may retain 
read access there, however, as long as the old 
version is kept), adds itself to the new view with 
the new active quorum assignment, and releases 
the write lock on the quorum assignment. 

3.3 Lightweight Quorum Assignment 
Change 

If both a read quorum and a write quorum for an ob- 
ject are available, then its quorum assignment may 
be changed without forming a new view. Note that a 
read quorum is a write coquorum (i.e., a read quorum 

intersects every write quorum) and a write quorum is 
a read coquorum. Hence, notifying both a read quo- 
rum and a write quorum of the change ensures that 
at least one member of every old quorum has been 
notified. This rule applies equally well to both active 
and backup quorum assignments. Either type of quo- 
rum assignment may be changed without changing 
the other, provided the resulting active and backup 
quorum assignments satisfy the quorum intersection 
rules given in section 2. 

To change a quorum assignment for an object, a 
transaction manager carries out the following steps: 

Send a request for a quorum assignment change 
containing the old quorum assignment version 
number to all available old quorum members and 
to all new quorum members. If the change is 
for an active quorum assignment, include a read 
request for the object to members of an old read 
quorum. 

Upon receiving a request for quorum assignment 
change, a quorum member write locks the quo- 
rum assignment and logs the new assignment to 
stable storage. It also checks if its quorum as- 
signment version number agrees with the one in 
the request. If its own quorum assignment is 
more recent, it sends back its own quorum as- 
signment. If requested to do so as a member of 
a read quorum, it sends back information about 
the object. After replies are received from all 
new quorum members and from at least one old 
read quorum and one old write quorum, proceed 
to step 3. (If a more recent quorum assignment 
was received from some site, restart the protocol 
with step 1). 

If the change is only for a backup quorum as- 
signment, proceed to step 4. Otherwise (the ac- 
tive quorum assignment is being changed), send 
enough information about the object (obtained 
from the old read quorum) to a new write quo 
rum to ensure that all members of the new write 
quorum are up-to-date. After replies are received 
from members of the new write quorum indicat- 
ing they have logged any new values or events, 
proceed to step 4. 

Send a commit message to at1 new quorum mem- 
bers and to all available old quorum members. 
Upon receiving a commit message, a quorum 
member updates the quorum assignment and re- 
leases the write lock on the quorum assignment. 
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3.4 Inheritance of Quorum Assign- 
ments by Views 

Inheritance essentially permits re-use of an old view 
that is still largely intact. When coordinating the 
formation of a new view, a site may check whether 
some old view has the same connection vector as the 
new one. If so, and if a large number of dynamic ob- 
jects still reside in the old view, it may choose to have 
the new view inherit these objects from the old view. 
If it decides on inheritance, it sends the view id for 
the old view with the view formation request. Upon 
receiving the request, each site returns the names of 
any objects that it has deleted from the old view. 
The coordinator sends the names of all deleted ob- 
jects with the commit message. Upon receiving the 
commit message, each site checks that all named ob- 
jects have been deleted and switches the view id of 
the old view to that of the new one. If each object 
stores a pointer to the location of the view id, rather 
than the view id itself, then the view id for all the 
objects can be changed with a single write operation. 
Alternatively, the site can change the view ids of all 
the objects. 

The idea behind our proof of correctness for inher- 
itance is that at least one member of any old quorum 
must know about the deletion of an object. This 
knowledge prevents an old quorum assignment from 
being used for a deleted object. Propagating the 
names of deleted objects to all sites in the new view 
ensures that this condition holds for any object that 
was accessible in the old view. 

It is not essential that the new connection vector 
be exactly the same as the new one. If the sites in 
the new view’s component are a superset of those in 
the old one, then inheritance may still be used. Quo- 
rum assignments can then be extended to the new 
sites using the lightweight quorum change protocol. 
Thus, inheritance may be used to merge a small par- 
tition into the main network. If there are sites in 
the connection vector for the old view that are not in 
the new one, however, then using inheritance could 
result in transactions not being serializable in order 
of their view ids. Transactions should be serializable 
in the order of their view ids because our proof of 
correctness depends on this fact. 

3.5 Extending a View 

View extension can be used to avoid forming a new 
view when a site recovers from a failure. The con- 
nection vector for the current view is extended to 
include the recovered site. Then the lightweight pro- 

tocol described in section 3.3 may be used to change 
the quorum assignments for those objects that have 
a copy at the recovered site. 

To extend the current view, a recovering site carries 
out 

1. 

2. 

3. 

the following steps: 

Copy the connection vector and view id for the 
current view from an operational site. 

Send a join view request containing the view id 
to all sites in the view. If the current view id 
at a site receiving a request message agrees with 
the view id in the request, the site modifies its 
connection vector for the view and sends a pos- 
itive acknowledgment. Otherwise, it returns the 
newer view id and corresponding connection vec- 
tor. 

If no site returns a newer view id, the view ex- 
tension is completed. Otherwise, repeat step 2 
using the newest view id received. 

Because correctness of our method does not depend 
on the accuracy of a view’s connection vector, the 
connection vector may be treated as a hint. Bather 
than using a separate protocol, we could even prop- 
agate changes in the connection vector along with 
lightweight quorum change requests. The one-phase 
protocol is not expensive, however, and should cut 
down on the disparity between the connection vec- 
tors at different sites. Because sites are only added 
and never deleted from the connection vector for a 
particular view, view extension may be used safely 
together with inheritance. 

4 Prototype Implementation 

As a first step in studying the behavior of our pro- 
posed algorithms, we carried out a prototype imple- 
mentation of our quorum-based transaction process- 
ing and view formation protocols in an environment 
of a local-area network of Sun workstations. Our 
implementation was based on, but independent of, 
the distributed database system described in [7]. We 
adapted the existing software to incorporate support 
for partial replication and the use of views and quo- 
rums for replication control. 

Transactions and view formations/extensions were 
run on five Sun 3/50’s connected by a ten 
megabit/second Ethernet for configurations with 
three sites, five sites, and ten sites. The degree of 
data replication was set to two, three, and six, re- 
spectively (i.e., to approximately 0.6 times the num- 
ber of sites). Active quorum assignments were set to 
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T Norm TNV TLW 
3 sites .48 .54 .64 
5 sites .51 .64 .57 
10 sites .69 .92 .74 

Table 1: Execution time in seconds for read-write 
transactions 

Table 2: Execution time in seconds for view forma- 
tion and extension 

read-one write-all (in the current view) and backup 
quorum assignments were set to read-majority write- 
majority. Each user transaction accessed a single re- 
lation consisting of 100 tuples of length 50 bytes. A 
read operation read the entire relation, a write op- 
eration wrote 10 tuples. Each run of an experiment 
measured the elapsed time for execution of a single 
transaction, using the Sun clock chip with granular- 
ity of 20 msec. Data values were averaged over 20 
runs to obtain 90 percent confidence intervals, calcu- 
lated using the Student’s distribution [12], off 0.05 
set for values under 0.40 set and f ten percent for 
values greater than or equal to 0.40 sec. In the tables 
of data, TN~~,.,, denotes a normal transaction, TNV 
a transaction that moves a relation to a new view, 
and TLW a transaction that carries out lightweight 
quorum assignment change. 

Normal transactions. Execution time for a 
transaction was measured at the coordinating site 
from the time the transaction was submitted for pro- 
cessing until the commit decision was reached. This 
time did not include the cost of interpreting the query 
nor of translating it to a transaction. Execution time 
for a normal read-write transaction in the absence of 
failures included a local read and phase one of the 
commit protocol. Phase one sends a round of ap- 
proximately 1400-byte messages to the members of 
a write quorum, with each site of which does local 
logging. Times for normal transactions are shown in 
Table 1. 

Empty view formation and moving a rela- 
tion to a new view. Elapsed time for empty view 
formation included a round of approximately 60-W 

messages to all sites, but no disk accesses. Times 
for empty view formation are shown in Table 2. Ex- 
ecution times for read-write transactions that move 
relations to a new view are shown in Table 1. These 
times are 20 to 40 percent greater than normal for 
the five- and ten-site cases, due to the need for two 
additional rounds of messages during the read phase 
to contact a backup read quorum and read an up- 
to-date copy of the relation. Additional rounds are 
not needed for the three-site case, however, since the 
degree of data replication for this case is two and 
backup read quorums are of size one. 

View formation with inheritance. Execution 
times for view formation with inheritance are shown 
in Table 3. The increase with the number of deleted 
relations is due to the longer messages needed to con- 
tain the identifiers of deleted relations. Following 
view formation with inheritance, a transaction ac- 
cessing a relation that had not been deleted from the 
old view took the same amount of time as in the ab- 
sence of failures. A transaction accessing a relation 
that had been deleted took the same amount of time 
as if the transaction had followed empty view forma- 
tion, because it had to move the relation to the new 
view. 

View extension. Times for view extension are 
shown in Table 2. View extension took about the 
same amount of time as empty view formation. Fewer 
total messages are required for view extension, but 
the number and sizes of messages sent between when 
the timing starts and the view change is committed 
are the same in both cases. 

Lightweight quorum assignment change. Ex- 
ecution times for transactions that carry out a 
lightweight quorum assignment changes following 
view extension are shown in Table 1. The increase 
over the normal execution time, about 10 to 20 per- 
cent for the five- and ten-site cases, is less than the 
additional time for a move to a new view. This is 
because only one additional round of messages is re- 
quired in the read phase and only one site needs to 
be read from for lightweight change, compared to two 
additional rounds and reading from a backup read 
quorum for a move to a new view. The exception 
is the three-site case, where the degree of data repli- 
cation is two. Our software was not smart enough 
to recognize in this case that, with a backup write 
quorum consisting of both sites having copies, the 
local copy of a relation was guaranteed to be up-to 
date following view extension. Instead the transac- 
tion read at the remote site, making the lightweight 
change more expensive for the three-site case than a 
move to a new view. 

236 



No deleted 5 deleted 10 deleted 50 deleted 100 deleted 
relations relations relations relations relations 

3 sites .08 .lO .lO .14 .16 
5 sites .lO .lO .12 .16 .18 
10 sites .22 .24 -25 .30 .34 

Table 3: Execution time in seconds for view formation with inheritance 

5 Analytical Performance Es- 
timates 

In this section, we evaluate different ways of handling 
new view formation and/or view extension following 
failures and subsequent repairs. We investigate how 
the relative performance of different techniques de- 
pends on the length of time between failure and re- 
pair. We have claimed that our techniques allow a 
replicated database system to adapt to the duration 
of a failure. In particular, we hypothesize that inheri- 
tance from the old view that existed prior to a failure 
will give good results if the failure is of short dura- 
tion. For a longer failure, we expect that inheritance 
from the view for the larger component of the parti- 
tioned network (in the case of network partitioning) 
or extension of the current view (in the case of site 
recovery) will be better. 

For our analytical model, we have made the follow- 
ing assumptions: 

1. 

2. 

3. 

4. 

5. 

Copies of relations are distributed uniformly 
among the sites. 

The access pattern of relations by transactions 
has a random uniform distribution. 

Each transaction reads and writes a single rela- 
tion out of a database of 100 relations. 

Moves to a new view and lightweight quorum 
assignment changes are integrated with transac- 
tion processing. 

Transaction throughput is limited by the rate 
at which servers can handle requests, rather 
than by network bandwidth. This assumption is 
based on the fact that high-bandwidth networks 
are becoming readily available. 

The first two assumptions make the analytical model 
tractable. The third assumption allows us to give an 
explicit solution for an instance of the model. Below 
we discuss the implications when these three assump- 
tions do not hold. 

Our analytical model has the following parame- 
ters (Let ~~~~~ denote a normal transaction, TN” 
a transaction that moves an object to a new view, 
and TLW a transaction that carries out a lightweight 
quorum assignment change): 

NVresp - the ratio of the response time for TNV to 
the response time for TN,,~~. 

LWresp - the ratio of the response time for TLW to 
the response time for TN*~,,,. 

NVload - the ratio of the load on the Transaction 
Manager servers for TNV to the load for TN~~,,,. 

LWload - the ratio of the load on the Transaction 
Manager servers for TLW to the load for TN~~,,,. 

We estimated values for these parameters from mea- 
surements for the prototype implementation de- 
scribed in section 4. Using the response times mea- 
sured for ten sites, rough estimates for NVresp and 
LWresp are 1.4 and l.li respectively. In our imple- 
mentation, a normal transaction generates an aver- 
age of 1.8 requests per Transaction Manager server, 
while a transaction that moves the relation to a new 
view generates an average of 2.4 requests per server. 
Hence, disregarding the lengths of the requests, a 
rough estimate for NVload is 1.3. The average num- 
ber of requests per TM server for a transaction that 
does a lightweight quorum assignment change is 1.9 
for a lo-site configuation, compared to 1.8 for a nor- 
ma1 transaction. Thus, a rough estimate for LWload 
is 1.05. 

Our calculations are based on the solution of a sys- 
tem of differential equations that describe how vari- 
ous quantities in the system change over time. These 
equations represent a continuous approximation to 

the discrete system. Experimental results in [5] give 
credence to a similar differential equation model for 
analysis of the fail-lock technique for doing site re- 
covery. 

The quantities solved for are the following: 

move(t) - the number of relations remaining to be 
moved to a new view at time t following new 
view formation. 
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hut(t) - the number of relations still needing 
lightweight quorum assignment change at time t 
following new view formation or view extension. 

Resp(t) - the ratio of average response time at time t 
following new view formation to normal average 
response time. 

Z%(t) - the ratio of throughput at time t following 
new view formation to normal throughput. 

The quantities Resp(t) and Th(t) depend on one or 
both of move(t) and It&(t), depending on the type 
of view formation used. The equations and projected 
performance for different cases of failure and recovery 
are detailed in the following subsections. 

5.1 Network partitioning failure and 
repair 

Following a simple network partitioning, the network 
is divided into two components, and a new view has 
been formed for each component. If new view forma- 
tion with reconfiguration has been used, all quorum 
assignments have been m-adjusted by the view for- 
mation transaction. If empty new view formation 
has been used, quorum assignments will be adjusted 
incrementally as relations are moved to the new view 
on demand by the transactions that access them. 

Following empty view formation, the quantity 
moues(i) is the number of relations that remain to 
be moved to the new view at time t following the 
partitioning. Transactions will be committing at a 
rate A(t) which depends on the value of moveo(t), 
because the additional overhead of moving relations 
to the new view will slow down the transaction pr* 
cessing rate. Given our assumption that relations are 
equally likely to be accessed, the transaction process- 
ing rate should be scaled by the fraction of relations 
that remain to be moved to obtain the rate of change 
of moveo(t). Thus, a continuous approximation to 
the integer-valued quantity moveo(t) is given by the 
solution to the following differential equation: 

where 

d moveo(t) = -A( t)moveo(t) 
dt dbsire 

A(t) = NormX * Th(t) 

is the transaction processing rate of the system at 
time t and 

n&o(t) = 
1 

(1 - s) + NVload * s 

is the ratio of throughput at time t to normal 
throughput. The initial condition for moveo(t) is 

moveo(0) = dbsize 

The ratio of average response time at time t following 
new view formation to normal response time is given 
by the following equation: 

Respo(t) = (l- mJE.i(et) ) + N Vresp * mJG.ip’ 

Although response time and throughput are nor- 
mal following view formation with reconfiguration, 
successful transaction processing cannot resume until 
after the time required for reconfiguration. The time 
required for empty view formation is insignificant, 
and transaction processing can resume almost imme- 
diately following the failure. Then as relations are 
moved to the new view, response time and through- 
put gradually return to normal. 

Repair of network partitioning. We compared 
the following ways of handling the repair of a network 
partitioning: 

1. new view formation with reconfiguration, 

2. empty new view formation, 

3. view formation with inheritance from the old 
view that existed prior to the partitioning, 

4. view formation with inheritance from the current 
view for the larger component. 

For methods 3 and 4, we assumed that empty view 
formation was used following the network partitipn- 
ing failure. Following 3, relations that were deleted 
from the old view while the network was partitioned 
need to be moved back. The number of such rela- 
tions increases with the duration of the partitioning. 
Following 4, relations that have not yet been moved 
to the view for the larger component still need to 
be moved. Relations that have been moved to the 
view for that component but that have copies in the 
smaller component need to have their quorum assign- 
ments extended using lightweight quorum assignment 
change. 

In the analysis that follows, we denote the average 
response time ratio for method i at time t by lIespi 
and the throughput ratio for method i at time t by 
Thi(t). We let t, denote the time of the repair. EX- 
pressions for Respi(t) and Thi(t) are given in Tables 
4 and 5, respectively. 

238 



Table 4: Response time ratios at time t, for t 1 t, 

i Thi(t) 
1 1 
2 l/((l - ““‘$‘) + NVload * *gyJ) 

3 10 ----dvl + NV,oad * mouc31tflje 
dbsirr 

4 Ij((l--moucr:f)fltwt4’tl) + LWload * “>~~f~f-! + NVload + mJ’S~?~‘) 

Table 5: Throughput ratios at time t, for t 2 t, 

For methods 2, 3, and 4, the differential equation 
for movei( for t > t,, is 

d movej(t) = -X(t)?lXOW!i(t) 

tit dbsize 

The initial condition for method 2 is movez(t,) = 
dbsize. For method 3, the initial condition is 
movea = dbsize - moweo(t,). For method 4, the 
differential equation for ltwt,(t), the number of re- 
lations still needing lightweight quorum assignment 
change at time t, is 

d lt&(t) = -A(t) ltWta(t) 
dt dbsize 

Based on the assumption of a uniform distribution 
of relations among the sites, we calculated values for 
the initial conditions moved(&) and Nwt4(t,). De- 
tails of how movea and ltwt4(t,) were calculated 
may be found in [8]. 

Comparison of the different methods. We 
solved the above equations numerically with dbsize = 
100 and nsites = 10 to obtain the curves in Figures 
1 and 2 that show the calculated average response 
time and throughput ratios following the different 
methods of handling repair of the partitioning for dif- 
ferent durations of the partitioning. For the lo-site 
case shown, the sizes of the two partitioned compo- 
nents were 4 and 6 sites. We used values for NVresp, 
LWresp, NVload, and LWload as suggested by the 
preliminary experimental data reported in section 4. 

The curves for view formation with reconfiguration 
(labeled hkspl (t) in Figure 1 and 2%1(t) in Figure 2) 
illustrate the performance achieved by the methods 

in [l] and [lo]. The curves for empty view formation 
(labeled Respz(t) in Figure 1 and Thz(t) in Figure 2) 
illustrate the performance achieved by the method in 
Pll. 

The results of our preliminary experiments and 
analysis show that, under our assum$ions of ran- 
dom access to objects and uniform distribution of 
objects among the sites, a significant improvement 
in transaction processing performance during the re- 
covery period can be achieved by inheriting quorum 
assignments from a previous view. For a failure that 
is of short duration, Figures l(a) and 2(a) illustrate 
saving of greater than 50 percent of the average over- 
head for moving objects to a new view, when inheri- 
tance from the pre-failure view is used. For a failure 
of longer duration, Figures l(b) and 2(b) illustrate 
savings of close to 50 percent, when inheritance from 
the larger failure view is used. 

The analysis that produced Figures 1 and 2 is based 
on equal percentages of read and write operations. 
With a higher proportion of read operations, inheri- 
tance would achieve even greater savings by reducing 
the number of times read-only access must be con- 
verted to read-write access. The database size of 100 
relations used in our analysis is fairly small. For a 
constant transaction processing rate, increasing the 
database size would increase the savings achieved by 
inheritance from the old pre-failure view, because the 
relative proportion of objects needing to be moved 
back to the old view would be smaller. We have 
assumed randon access to database objects. With 
an access pattern that exhibits high locality of ref- 
erence, the savings achieved by inheritance from the 
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pre-failure view would again be greater, for the same 
reason as for an increase in database size. The effect 
of a non-uniform distribution of relations among the 
sites is unknown and remains to be investigated. 

5.2 Site recovery 

We compared the following alternatives for handling 
the site recovery process: 

1. new view formation with reconfiguration, 

2. empty new view formation, 

3. view formation with inheritance from the old 
view that existed prior to the site failure, 

4. extension of the current view to include the re- 
covering site. 

As an alternative to method 4, inheritance from the 
current view would also be possible, but view exten- 
sion is cheaper since fewer messages are sent. View 
extension also has the advantage that transactions in 
progress concurrently will not be aborted because of 
a change in view id. Hence, extending the current 
view seems clearly preferable to inheriting from it. 

Using an analysis similar to that in section 5.1, we 
observed the same relationship between the methods 
for site recovery as for the repair of network parti- 
tioning. Details of this analysis may be found in [8]. 

6 Conclusions 

We have investigated techniques for adapting the re- 
covery actions of a dynamic quorum method to the 
length and extent of site failures and network parti- 
tioning. The major contributions of this research are 
the following: 

l We have proposed a new recovery technique 
called inheritance that allows restoration of a 
previous configuration of quorum assignments 
with a minimal amount of work. Inheritance 
should be useful for recovery from a short-lived 
single site failure or simple partitioning, or from 
multiple site failures if all are repaired fairly 
quickly. For example, inheritance would be ap- 
plicable to a redundant system with backup com- 
ponents that may be brought on-line quickly. 
For longer failures, inheritance allows the system 
to acquire quorum assignments from the largest 
current configuration, with the additional work 
required depending on the number of sites out- 
side this configuration. 

For the special case of site recovery, we allow 
extension of the current view to include the re- 
covered site. Such view extension is expected to 
provide efficient recovery from lengthy site fail- 
ures. 

We have narrowed down the need for formation 
of a new view to the case where no active quorum 
is available for an operation. Quorum assign- 
ment changes invoked for other reasons, such as 
addition or deletion of copies or the restructur- 
ing of backups quorums, may be done without 
forming a new view. 

We have implemented our dynamic quorum 
method in a distributed system collected preliminary 
experimental data. More work is needed to validate 
the experimental model. 

Algorithms are needed that take as input all the in- 
formation available about previous and current views 
and determine whether an old or current view should 
be used for inheritance or extension. Rather than 
making simplifying assumptions about the access pat- 
terrn and processing rate of transaction that run dur- 
ing the failures, as we did in our analyses, these al- 
gorithms should use actual transaction execution his- 
tories, or summaries thereof, to do a more accurate 
comparison of the different options for recovery. 

The analyses for cases of multiple partitioning 
(when the network is partitioned into more than two 
components) and multiple site failures remain to be 
done. In these cases, repair may be partial, in that 
proper subsets of the network may recover, and per- 
haps be subject to further failures, before the entire 
network is reconnected. We expect that the analyses 
for these cases will be more complicated, but use will 
use similar techniques. 
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