
Hash-Based Join Algorithms for Multiprocessor Computers
with Shared Memory

Hong&n Lu * Kian-Lee Tan’ Ming-Chien Shan t

l Department of Information Systems and Computer Science, National University of Singapore
t Hewlett Packard Laboratory, Palo Alto, CA 94303

ABSTRACT
This paper studies a number of hash-based join algo-

rithms for general purpose multiprocessor computers
with shared memory where the amount of memory allo-
cated to the join operation is proportional to the number
of processors assigned to the operation and a global
hash table is built in this shared memory. The con-
current update and access to this global hash table is
studied. The elapsed time and total processing time for
these algorithms are analyzed. The results indicate that,
hybrid hash join that outperforms other hash-based algo-
rithms in uniprocessor systems does not always per-
forms the best. A simpler algorithm, hash-based nested
loops join, performs better in terms of elapsed time when
both the relations are of similar sizes.

1. Introduction
In database query processing, join is a very time con-

suming operation and thus a large amount of work has
been done to develop efficient algorithms to perform the
join operation. Wiih the trend moving towards multipro-
cessing environment, several parallel join algorithms
have been proposed and studied [DeWi85, Qada88,
Rich87, Schn89, Vald84). These algorithms are parallel
versions of the traditional nested loops, sort-merge,
hashing techniques or their combinations (Brat84,
DeWi84, Shap86]. Though the parallelized nested loops
and sort-merge join methods are simple and easy to
implement, work by [Dew%, Rich87, Schn89] have
shown that hash-based join algorithms outperform them
under most conditions. These algorithms, however, were
mostly developed and studied in the environment of
uniprocessor computers with large main memory
[Dew&I, Shap86). shared-nothing multiprocessor sys-
tems [Schn89] and database machines. The observa-
tions that multiprocessor computers are getting popular
and that most such machines are for general purpose
computing and not dedicated to database applications

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage. the VLDB copyright notice and
the title of the publication and its date appear. and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise. or to republish. requires a fee
and/or special permission from the Endowment.

motivated our study on database quety processing and
oprimization for general purpose multiprocessor com-
puter systems. This paper presents the result of the first
phase of our study - the performance of hash-based
join algorithms in such computer systems.

The major differences between our study and previ-
ous work are as follows: First, the number of processors
is a major architectural parameter and it can only be
determined when a join is to be performed. Furthermore.
considering the memory management mechanism used
by most operating systems, the amount of memory avail-
able for join processing is assumed to be proportional to
the number of processors allocated to the join operation.
That is, increase in number of processors for a join
operation implies that memory available for the operation
is also increased. Second, memory available to a join
operation is organized as a memory pool shared by all
processors participating in the operation. This memory
pool is managed by the database management system
and a global hash table is built for hash-based join algo-
rithms. A locking mechanism is used to regulate any
concurrent write to this global hash table with the
assumption that the architecture permits concurrent read
but exclusive write. Finally, though join algorithms over-
lap computations and disk transfers, most of the previous
work do not consider the overlap. In our study, both the
total processing time and the elapsed time of different
join algorithms are analyzed. The elapsed time is taken
as the maximum of disk l/O time and CPU time so that
the overlap is taken into account.

Our results show that the uniprocessor Hybrid Hash
Join algorithm is not always the best in a multiprocessor
environment. It does not exploit the memory well during
the partitioning phase resulting in high contention. A
modified version, which eliminates contention in the parti-
tioning phase, is proposed. The Hash-based Nested
Loops Join algorithm has better elapsed time perfor-
mance than the Hybrid HashJoin algorithm when both
relations are of similar sizes. We also see that an algo-
rithm with bw elapsed time may, not necessarily be the
better algorithm as it may require a higher total process-
ing cost.

In the following section, we describe the architectural
model for our multiprocessor system. In section 3, we
present the various hash-based jpin algorithms with their
cost formulas. Section 4 cqmpates the performance of
the algorithms. Finally, our conclusions and suggestions
for future research are contained in section 5.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

198

2. The Multiprocessor Computer System

2.1. The Architecture
The multiprocessor systems we are concerned are

general purpose systems without any special-purpose
hardware for database operations such as sorting of rela-
tions. Ensbw summarized the salient characteristics of a
multiprocessor system as follows [Ens177 :
l the system has a set of general-purpose processors

with identical capabilities,
l all the i/O devices and I/O channels are shared by all

the processors,
l all processors have accessed to a common pool of

memory modules,
l the processors, the l/O devices and the shared

memory modules are connected by an interconnec-
tion network,

l the operation of the entire system is controlled by
one operating system.

Such a general multiprocessor organization is shown in
Figure 2.1.

Mass Storage Device

.

Interconnection Network

I

Shared

Memory

() (J - .
Processors

Figure 2.1. A multiprocessor computer system.

The number of processors of such system is rela-
tively small compared to some database machines that
may consist of a few hundred or even thousands of pro-
cessors [Tera83]. Each processor shares the common
memory (shared memory) with other processors. It may
also have some buffers dedicated to itself (local memory)
for input/output. lt is reasonable to assume that, when a
processor is assigned some task to execute, it is also
allocated a certain amount of memory space. From the
view point of database operations, if a certain number of
processors is allocated to process a query, the control of
these processors and related memory will be transferred
to the database management system. lt is up to its
buffer management subsystem to efficiently use the
available memory space. Such a multiprocessor archi-
tecture can provide both inter- and intra-request parallel-
ism. That is, the processors may either independently
execute different relational database operations, or exe-
cute the same database operation at the same time.

The machine uses conventional disk drives for
secondary storage and databases (relations) are stored
on these disk storage devices. Both disks and memory
are organized in fixed-size pages. Hence, the unit of
transfer between the secondary storage and memory is a
page. The processors, disks and memory are linked by
an interconnection network. This network allows dif-
ferent processors to read from the same page of the
shared memory at the same time (broadcasting). For
writes, different processors can only wriie to duerent
pages at the same time. We assume that a lodting
mechanism is used to enforce this concurrent access
policy and the locking granularity is a page. We also
assume that there is no l/O cost associated with locking,
that is, the lode table is assumed to be in main memory.
Under this mechanism, a processor has to obtain a lock
on a memory page to which it intends to wriie. The lock
is released after data is written to the page. Since con-
current read is allowed, there is no need to lock a page if
the operation is a read operation. However, it is assumed
that the interconnection network has sufficient bandwidth
for the tasks at hand and the contention for the intercon-
nection network is not considered in our following
analysis.

Finally, though it is expected that main memory sizes
of a gigabyte or more will be feasible and perhaps even
fairly common within the next decade, we cannot assume
that a whole relation can be read from mass storage to
either the processor’s local memory or the shared
memory before processing. That is, in general, both the
total memory of the processors and the size of the
shared memory are not large enough to contain a whole
relation.

2.2. Concurrent write to the shared-memory
One major issue in analyzing the performance of

multiprocessor computers with shared memory is the
possible contention that happens when more than one
processor intends to write to the same memory page
concurrently. In the case of hash-based join algorithms,
there are two possible ways in which this might happen.
First, when a global hash table is used to explore the
benefit of the shared memory, it is likely that different
processors may hash different tuples into the same page
at the same time. Second, more than one processor
may output tuples of the same partition to the same
buffer page at the same time during the partitioning
phase.

As we mentioned above, a locking mechanism is
used to enforce our memory sharing policy. When a pro-
cessor cannot obtain the lock for writing, it must wait.
This implies that, if p processors should write to the some
page at the sa+ne time (i.e. with contention), the processing
cost (time) will be p times the processing cost without
contention, since the request would be queued for pro-
cessing serially.. Therefore, by letting the expected
number of processors that write to the same page at the
same time be 5, we have

Proc, = Proc,x 5

where Proc, and Proc, are CPU processing cost with
and without contention respectively.

199

To determine the expected concurrent writes, 5, we
formulate the problem as follows:

GivenllRll trcplesandMmemorypages, (I <MS
IlW VP tupla (P 5 IIRII - IIWM) um ~~-
do& selected from the II RI] tuples, jnd the
expected number of pages with at least one tuples
to be written to.

This is none other than the problem of characterizing the
number of granules (bloc&s) accessed by a transaction
[Yao77, Lang82]. The solution to the above problem is
given by Yao’s theorem [Yao77] which states that ‘the
expected number of blocks hit is given by

Therefore, the expected number of tuples falling on a
page at the same time can be expressed as E.= 9 It
should be noted that when M = 1, 5 =p. Since 5 is
dependent on JlRjl, M, and p, we also denote it as
C(llRII , M, p) in our later analysis.

r 5

I
I I I I I I I I I I
1 3 5 7 9 11 13 15 17 19

Number of Pages M (Processors = 4)

Figure 2.2. Contention 5 versus number of pages M.

Figure 2.2 depicts the value of 5 with respect to the
number of pages M. The number of processors is 4 and
the relation contains 1000 pages with 40 tuples per page.
So, for M = 1, that is, all tuples are supposed to be written
to the same page, 5 equals 4, that is, all writes must be
done sequentially. When M increases, the expected
number of tuples falling into the same page decreases
dramatically. We will see the effects of this contention
factor in later analysis.

3. The Hash-Based Join Algorithms
In this section, we discuss the hash-based join algo-

rithms for the system described in the previous section.
We first categorize the hash-based algorithms followed
by the general methodology used in our analysis. The
description of the algorithms and their cost formulas are

then presented.

3.1. Categorization of hash-based join algorithms
Given two relations, R and S, the basic approach of

hash-based join methods is to buikf a hash table on the
join attributes for one relation, say R, and then to probe
this hash table using the hash values on the join attri-
butes of tuples from the other relation, S. The join result
is formed by the matching tuples. Since we assume that
memory available is usually much smaller than the size
of relations to be joined, it is impossible to build the hash
table for the entire relation R. The hash-based join algo-
rithms !rsually process the join in batches. In each batch,
only a portion of R is read into memory and the
corresponding hash table is built. There are a few possi-
ble ways to form portions from relation R.

=

R

L

Partitioning prior on-fly no
keep R0 Hybrid-

prior
in memory Hash
Ro not
in memory GRACE

on-fly Simple
Simple w/toss

no Hash-
Loops

Table 3.1 : Categorization of hash-based join algorithms

1) To partition the relation prior to join process. All
tuples in the relation are read, hashed on the join
attributes and wriien back to disk as partitions
according to the hash values in such a way that
tuples of each partition can fit in memory. Each
batch of the processing will work on one partition in
the subsequent join process.

2) To partition the relation on-f/y- The partitioning of
the relation can also be done on-fly. That is, during
each batch, the tuples that have not been used to
build hash tables are read in and hashed. Those
tuples that belong to the current partition are inserted
into the hash table while other tuples are either
tossed away or written back to the disk and pro-
cessed in later batches.

3) No partithing according to hash value. The sim-
plest way to partition a relation is to read in pages
sequentially until memory is fully occupied by the
hash table.

Relation S that is used to probe the hash tables can be
treated in the same ways. The benefit of prior partition-
ing of S is that only those tuples from the corresponding
batches need to be compared to form the join results.
Otherwise, all tuples from relation S has to be used to
probe the hash table during each batch. One variation of
prior partitioning is to retain the first partition in memory
to reduce some disk l/O. The hash-based join algorithms
proposed so far can thus be categorized as shown in
Table 3.1. DeWitt and Gerber [DeWi85] reported some
experimental results on the performance of four algo-
riihms listed in Tabie 3.1, the Grace algorithm [GoodBl,

200

Kits83], the Hybrid algorithm [DeWi84], the Simple hash
and the Hash loops algorithms [DeWi85]. In the same
paper, they presented some simulation results on the
performance of the multiprocessor versions of the
Hybrid and Grace algoriihms.

3.2. The elapsed time versus total processing time
In most of the previous work on analytical modeling

of join algorithms [Bitt83 DeWi84, Vald84], the elapsed
time is used as a criteria to evaluate the performance of
an algorithm. In such cases, the best algorithm is that
which minimizes the elapsed time. Moreover, most
analysis assumed that there is no overlap in disk
transfers and computations. The elapsed time is essen-
tially the sum of the computation and disk transfers
times. An exception is the work of Richardson, Lu and
Krishna [Rich871 which models overlap in computation,
disk transfers and interconnection network transfers.

In our analysis, we like to emphasis two of our obser-
vations. First, in a multiprocessor or parallel processing
environment, it is possible to increase parallelism by
duplicating part of computation among different proces-
sors. Some algorithms deliberately use this duplication
to minimize the elapsed time. As the result, an algorithm
that achieves minimum elapsed time may require high
total processing time. This is different from what we
have in uniprocessor systems where shorter elapsed
time means lesser total processing time. An obvious
implication of high total processing time is that more
resources are tied down to the particular task and hence
may decrease the system’s overall petformance. Hence,
both the elapsed time and the total processing time are
important in choosing a suitable multiprocessor algo-
rithm. Second, the overlap between different resources
is quite important. The overlap should be taken into
account because we should not only model real systems
more closely but also understand the behavior of an
algorithm in more detail. It is highly desirable that an
algorithm make good use of both CPU and disk
resources. Especially for most parallel processing algo-
rithms, some subtasks can be done in parallel but others
have to be in sequential. Whether a subtask is CPU-
bound or l/O-bound becomes an important factor in
determining the overall performance of an algorithm.

WEth the above observations, both the elapsed time
and the total processing time of an algorithm are
analyzed in our study. The process of computing a join
is divided into phuses that are executed one after another.
Within each phase, there may be several passes of a
series of operations. In other words, phases are exe-
cuted in sequential while within a phase different tasks
can be either parallelized among processors or be over-
lapped among CPU and disks. To evaluate an algorithm,
we first compute the required disk I/O time per disk drive
and CPU time per processor for each phase i in execut-
ing an algorithm, Tb and T&,. For a multiprocessor
system with d disk drives and p processors, the total
processing time for phase i is then

T)=pxTh+dxTb (1)

The total processing for the algorithm that requires n
phases to complete the computation is

The elapsed time fi for phase i will in general be less
than T&, + Th due to overlap. It can be explained as fol-
lows. In each phase, the processors can begin its pro-
cessing as soon as some pages from both relations are
in memory. Moreover, while the processors are comput-
ing the join operation, the other pages may be read in at
the same time. Hence, the elapsed time can be com-
puted as the maximum of the above l/O time and CPU
time:

Ei=m (&uvTjO) (3)
That is, if a phase is CPU-bound, the elapsed time
equals to the CPU time needed and if it is l/O-bound, the
elapsed time equals to the VO time required. Here we
assume that, for a CPU-bound phase, the time to read in
the initial pages before the processing begins, and the
time to write out the final pages of the resulting tuples are
negligible compared to &u, while for an i/O-bound
phase, the time of processing the last few pages are
negligible compared to Tjo. Since all phases of an algo-
rithm are executed in sequential, the elapsed time of an
algorithm with n phases is

(4)

3.3. Algorithms and analysis
We analyzed four hash-based join algorithms for the

multiprocessor system described in section 2: Hybrid
HashJoin(HHJ), modified Hybrid HashJoin (MHHJ),
Simple Hash Join (SHJ) and Hash-based Nested Loops
Join (HNW). HHJ and MHHJ are variations of multipro-
cessor Hybrid HashJoin algorithms with different
memory allocation strategies during the partitioning
phase. They represent the algorithms that partition both
relations before the join process. HNW was chosen as
the representative of algorithms that do not partition S.
For this group of algorithms, the process of probing the
hash tables using tuples from S is the same but both
prior and on-fly partitioning require extra work to partition
R. It is therefore expected that the Hash-based Nested
Loops performs the best among them. The Simple Hash
was chosen as the representative of the algorithms that
partition relations on-fly. In the following discussion, we
only present the i/O and CPU times for each phase, Tb
and T&,, and the elapsed times, E, and E, and the total
processing times, F’ and T, can be easily computed
using equations (1) - (4). The detailed derivation of the
results can be found in [LuSO]. The parameters and their
values used in our analysis are listed in Table 3.2.

Hybrid Hash-Join
The Hybrid HashJoin algorithm [DeWi84] is a varia-

tion of the GRACE Hash-Join algorithm [Kits831 . Both
algorithms comprises of two phases - the purtitiming
and the joining phase. The former phase divides the rela-
tions R and s into disjoint buckets such that the buckets
of relation R are of approximately equal size. The latter
phase performs the join of the corresponding buckets of

201

join selectivity, defined by size (R JOIN S)/(lRI x ISI)

size of shared memory available for the join process (in pages)
size of relation R (in pages)
size of relation S (in pages)
number of tuples in relation R
number of tuples in relation S
number of tuples per page of relation R
number of tuples per page of relation S
number of disk drives
number of processors available for query processing

rtion of R that falls into partition R0 for Hybrid hash-join

effective time for a random disk I/O

number of tuples in the join result

Table 3.2. Parameters and test values.

R and S. The GRACE algorithm uses one page of the
memory as a buffer for each bucket of R so that there
are at most jMI buckets with each bucket containing
j f R f/f M I 1 pages. This means that each bucket requires
rF x I R j /I M I 1 pages of shared memory to construct a
hash table. Thus, the afgoriihm requires that

This restriction on the minimum amount of memory
required is still necessary for the Hybrid Hash-Join algo-
riihm. However, whereas the GRACE algorithm parti-
tions the relations into jMj buckets, the Hybrid algoriihm
chooses the number of buckets such that the tuples in
each bucket will fit in the memory so as to exploit the
additional memory to begin joining the first two buckets.
The extra memory, if any, is used to build a hash table
for a partition of R that is processed at the same time
while R is being partitioned. The corresponding partition
of S is used to probe the hash table while S is being par-
titioned. Hence, this partition is not rewriien back to disk
and processed again in the second phase. Let S+l be

the number of buckets that relation R is partitioned into,
where

B=ma 0, FxlRI-IMI
[i IMI -1 11

as given in [DeWi84]. The sizes of R. and Ri (1 pi I; S)

are 1 R,(= v and I Ri I = $-j- respectively.

The execution of the hybrid hash join can be divided
into four phases that are executed serially : (1) to parti-
tion R, (2) to partition S, (3) to build the hash table for
tuples from R and (4) to probe the hash tables using
tuples from S and to form the join results. The required
disk 110 and CPU processing time for each phase, T/c
and T&, (I s i < 4) can be computed as fol1ows.f

t In fact, for each phase, there are more than one batches. The
formulas sum up the processing times of all betches in the same
phase. This !s the same for all subsequent analysis.

202

Phase 1: To partiM relation R

T&= IRI xE/Ow+ IRI x(1-q)xEIo,,

T&,=~x(&+thrh+~~-x~,)

+ JIRll x(1-q) x (t,, + t- x 5,)
P

&me Cl= q x C(ll~II~ I MI - Bn P)+V - 4 x C(llW~ BP P)

Phase 2: To partition S and join R,, and SO

Tjj=(lSl +q’ I/?esI)xE/O*+ ISI x(1-q)xE/O,,&

T&,=y~(t~+t~~+t~~)

+JSllx(‘-q) x(tj)&+twqwtx(2)

+ Ax tbuJd ,cuJe
P

where Q=(l -9) x CWII, B, P)+ q

Phase 3: To buiM hash tables for R

T&=(1-q). IRI xEIOSw

%J=~ p Rllx(‘-q) x(thpsh+t~xE;3)

where 53 = C(JRII ‘i’ - ql, 1 MI, p)

Phase 4: To join S with R

T,$=(l -q).(lSI + IResl)xEIO,w

Tzm =us” x ‘l - ‘) X (t,& + t/j&-m&)
P

+ lwsll x (1 - ti x fbuiM_,(*JB
P

Modified Hybrid Hash-Join
In the above Hybrid HashJoin algorithm, each

bucket is allocated one buffer page during the partition-
ing phase. When the number of buckets is relatively
small to the number of processors, the contention due to
conflicting writes to the buffer during the partitioning
phase results in long waiting time. The modified Hybrid
HashJoin algorithm (MHHJ) intends to reduce this con-
tention by allocating more output buffer pages during the
partition phase. That is, p x B buffer pages are used for
writing out the tuples in buckets Ri, (1 5 i < 8). In this
way there are no buffer contention in the partitioning
phase. The available memory for RO, however,
decreases and the value of B becomes

11
and the sizes of RO and R\ change accordingly.

The execution of MHHJ is also divided into four
phases. For the first phase and the second phase, 5 will

be 1 since there are no contention. However, an extra
cost was introduced to merge the unfilled pages together
for each b&et before wriiing back to disk. In the worst
case, half the number of pages are moved for each
bucket for each processor. We have the following cost
formulas.

Phase 1: To partition relation R

Th= IRI xE/O-+ IRI x(1-q)xEK&,

TdpU=~X(t~+t~h+t&,,,,,,X~,)

+ JIW+q2.+!!.tURxt
P 2 2 -

whereSl= q x CCIIRII, I Ml - P x B, P) + (I- q)

Phase 2: To partition S andjoin R0 and So

T,$=(lSl +q. IResI)xEIo,,

+(lSl x(1 -q))xEOti

T,&,=F x (thash + thash + t/&id~?W~~9)

+ Jlsll x(’ - 9) x (thpdr + t-)

+9&?dlxb,
P

+s.tvsx,
2 2 -

The cost formulas for the third phase and the fourth
phase of MHHJ are exactly the same as those for HHJ
and are not repeated here.

Hash-based Nested Loops Join Algorithm
The Hash-based Nested Loops Join algoriihm is a

modified version of the traditional nested loops algorithm
- hash tables are built on the join attributes of the outer
relation to efficiently find the match tuples. When the
available memory is smaller than the size of the outer
relation, more than one pass is needed to complete the
join. During each pass, only H = min(I R 1, F) pages
of the outer relation R are read into the memory and a
hash table is constructed. Then the entire inner relation
S is scanned and each tuple is used to probe the hash
table. The use of a hash table avoids the exhaustive
scanning of all the R tuples in memory for every tuple in
S as is done in the nested loops algorithm. Though the
entire inner relation S is scanned at every pass of the
algorithm, the entire relation R is scanned only once.

The number of passes required, k, is given by

The cost of HNW can be computed as two phases,
one phase is to read in relation tuples of R and to insert
them into the hash table, and another phase is to scan S
and to probe the hash tables and to output the results.

203

Phase 7: To read in R and to construct hash tables

T&= IRI x NOW

T&,,=~~(t~,,+r~,-,xt) where5=C(llRII,HxF,p)

+ y x buikf&JB +-1 x ((k - 1) x IlSll
P

- w x (H x rus xj-$)) x (0 t r-)

Phase 2: To read in S, to probe the hash tab/e, and to
outPut the result

Th = (k x 1 S 1 + I Res I) x EIOsq

Simple Hash-Join Algorithm
The Simple Hash Join analyzed in our study is just a

multiprocessor version of the simple hash algorithm pro-
posed in [DeWi84]. As in Hash-based Nested Loops
Join algorithm, the join is completed in a number of
passes. During each pass, a hash tabfe is built for pan
of relation t?, and relation S is then scanned to probe
that hash table. The Simple Hash Join, however, does
the on-fly partitioning of R and S. That is, tuples that do
not bebng to the current partition are written back to the
disk. With this partitioning, the number of S tuples to be
scanned during each phase decreases. The cost is that
unprocessed R and S have to be wriiten back to disk.
From this description, it is easy to see that the number of
passes required to complete the join, k, will be

and on the im pass, i = 1,2, , k - 1, the number of
tuples of R that remains to be processed is

IIRII-ix I”lxuf3 Let /f=min(-@-j-
F

F , IRI). The pro-
cessing time can still be computed as two phases.

4. Performance Studies
The relative performance of the various algorithms

was studied using the cost formulas presented in section
3. The elapsed and total processing times of the algo-
rithms are compared under various conditions as the
number of processors increases. In particular, the perfor-
mance is compared by varying the amount of memory
allocated to each processor, the size of the larger rela-
tion relative to the smaller one and the number of disks
available in the system. The parameter settings is given
in Table 3.1. In this section, we present and discuss the
results.

4.1. Output buffer pages for Hybrid Hash-Join
The major difference between the Hybrid Hash Join

(HHJ) and the Modified Hybrid HashJoin (MHHJ) is the
number of buffer pages allocated to processors during
the partitioning phase. Figure 5.1 shows the elapsed
and total times of these two algorithms. ff can be seen
that HHJ has smaller elapsed times than MHHJ. This is
because the partition phases of both algorithms are I/O-
bound with the given parameters. Since more memory
pages are used as output buffers, the size of the R0 parti-
tion is smaller for MHHJ than HHJ. Thus, for MHHJ,
more pages need to be written back to disk, incurring
more l/O costs. Another factor is that, when the number
of processors is small, the joining phase of both algo-
riihms are CPU-bound. Since R0 is smaller for MHHJ, it
needs to process more pages during the joining phase,
resulting in higher CPU time too. The total effect is that
the elapsed time for MHHJ is longer than that for HHJ.

Phase 1: To read in R Up/es, to insert Portion of them
into the hash table and to write others back to disks

However, from the view point of total processing
time, MHHJ incurs less total processing time than HHJ.
The difference becomes laraer as the number of oroces-

T,j,- IRI +2x((k-1)x IRI -vxH)
[1 xE/O,,

sors increases. This is dui to conflicting writes’ during
partitioning. Algorithm HHJ only allocates one page for
each bucket. As the number of processors increases,

T&=yx(&,,,+r-xe) +kxfxFxr-
the amount of shared memory available increases and
hence the number of partitions decreases. This implies

+ $ W - 1) IIRII
that more tuples is to be written to the same buffer page
and the expected contention increases. In the extreme
case where R is partitioned into two buckets (RO and R,),

-vx(HxruR))x(rM+r-e)
50% of the tuples have to be written to the buffer page by
p processors and a long waiting time is expected. This

wet= 4lN. H. P)
increase in CPU time results in higher total processing
time. On the other hand, MHHJ eliminates the contention

Phase 2: to read in S &p/es, to join them with R, and to for wriiing to the output buffers.
wrtie unprocessed tuphes back to disks. Buffer allocation is always a sensitive issue where

performance is concerned. Algorithms HHJ and MHHJ
T&- ISI +2((k-1). 1.91 -

[
y-H.+-/-)+ IR~SI

1
are using two extreme strategies - either one buffer
page per bucket or p pages per bucket. There might be
some better strategies that could give better elapsed

x E/O,,,,, time than MHHJ but with lesser total processing time
than HHJ. Since the difference between the elapsed

T&=yx(tb,,+tMnrych)xtma.
times of the two algoriihm is not significant, in the subss
quent performance comparisons, we will only present the

204

. . Modified Hybd Hash-J&l

2.9

2.8

Figure 5.1. Comparison of hybrid and modified hybrid hash-join.

results of the MHHJ algorithm rather than both.

4.2. Relative performance
Figures 5.2 - 5.5 show the elapsed times and total

times of the Modified Hybrid HashJoin, the Hash-based
Nested Loops and the Simple HashJoin algorithms with
different amount of available memory, different relation
sizes and different number of disks in the system.

Among the three algorithms, the Simple Hash Join
algorithm performs worst in most cases. When the
number of processors increases and the amount of
memory available increases, its performance can be
comparable with the other algorithms but it is always
bounded by either the Hybrid Hash-Join or the Hash-
based Nested Loops Join. The major reason is that the
Simple Hash Join partitions the relations on-fly. It reads
and writes the relations repeatedly and thus incurs a
large number of disk VOs. The Hybrii HashJoin also
partitions the relations but it passes through them less
than three times. As for the Hash-based Nested Loops
Join, it has to scan relation S several times, but it only
scan R once. However there are some instances that
SHJ performs a little better than MHHJ. This can be
explained as follows: First, although the number of disk
I/OS for SHJ may be higher, but all the disk I/OS are
sequential reads and writes. For MHHJ, some writes are
random accesses. The time needed for random disk I/O
is 5/3 times that for sequential disk l/O in our analysis.
Second, there are p x 5 output buffer pages to be
merged before writing out while there are only p pages in
SHJ case.

The performance of all the three algorithms, both for
the elapsed time and the total processing time, become

better when the number of processors increases. This is
mainly because of the architectural assumptions of our
model. In our system, an increase in the number of pro-
cessors means both increase in the amount of memory
available for the join operation and the CPU processing
power. For The Modified Hybrid HashJoin, large amount
of memory means large Rs and reduces the number of
pages wriien back to the disks and reread during the
joining process. the number of disk I/O’s and thus
reduces both the elapsed time and the total processing
time. For both the Simple Hash Join and Hash-based
Nested Loops Join, larger memory size means lesser
number of scans of the S relation. Another interesting
fact is that when the number of processors is small, it is
very effective to introduce more processors to reduce the
elapsed time. But after the number of processors
reaches some point, the performance gain from allocat-
ing more processors will not be so much.

The total processing times show similar behaviors
with the exception of the Modified Hybrid HashJoin
where the total processing time does not decrease a lot
when the number of processors increases. This is
because the total processing time of MHHJ will only be
affected by the size of Rs. However, this increase is lim-
ited. For SHJ and HNW, the number of scans through s
is the major portion of the total processing time. With the
increase of memory, it will reduce the number of scans of
S and hence improve the performance of the algorithms.
For HNLJ, if the increase in memory is not large enough
to reduce the number of scans of S, the performance will
not be affected at all. The staircase shape of the HNW
curves clearly indicates this. For example, both the
elapsed time and the total processing time for the HNW
does not change when the number of processors

205

c_ Modified Hybrid Hash-Join A-------A Hash-based Nested-Loop Join m l Simple Hash-Join

IMI-32Xp

IsI=lRI=1ocm

d=6

: .:,
: \.
: i

\
i :g
: i

NumberofRoeessors NumberofRoeessors

‘btd Time
Cloos)

: \
: i
: \
:
:
:
i ‘:
:
:
: i
: L
A ‘\

:
: 8..

A
“A

‘.A

=..m..
- . A-

‘A-A-A-A

“A-A

NumkofFkocumm

i 1 5 3 4 il i3 I’s

5.2b.

i 4 3 ? 4 ii i3 I’5

5.3b.

Numba of Roceuors

i 9 4 3 4 ii 1’3 1’5

5.4b.

Figure 5.2. Base Experiment. Figure 5.3. IMj/p = 64. Figure 5.4. ISI = 4jRI.

5.3

4.3

3.3

2:

15.7

13.7

11.7

9.1

6.9

Ml=32Xp

:I
: i : Isl=4xlRI=4ocm
: ::
: :,
: i d=6
: i

Numhex of Rocesson

i 1 4 3 b 1’1 1)3 115

5.4a.

206

9.1

7.1

5.1

3.1

1.1

Figure 5.5. d = 12.

increases from 9 to 10 and from 11 to 14. During these
two regions, the processing is l/O-bound. Thus increas-
ing the number of processors will not decrease the
elapsed time. At the same time, the increase of memory
size is not large enough to reduce the number of times
required to scan relation S. This also accounts for the
better performance of SHJ than HNW when relation S is
much larger than relation FI.

While the performance of the Simple Hash Join is
bounded by the other two algorithms, the Modified Hybrid
HashJoin and the Hash-based Nested Loops Join out-
perform each other depending on the sizes of the rela-
tions and the system configuration. We discuss the
elapsed time first. The set of results presented indicates
that HNW performs quite well with the exception of Fig-
ure 5.4. The reason is that HNW has better overlap in
CPU and I/O processings when the number of proces-
sors is small. Most of the costs comes from the second
phase of the algorithm where the CPU and l/O costs are
both high. On the other hand, for MHHJ, with a small
number of processors, the partitioning phase is I/O-
bound while the joining phase is CPU-bound. The
elapsed time is thus higher than HNW. When the
number of processors increases, the amount of memory
available increases, HNLJ performs well since the
number of scannings of the entire S relation is reduced
(as discussed above). Figure 5.4 shows that MHHJ per-
forms much batter than HNW when the size of relation S
is four times the size of relation R. This is expected
because HNW eliminates prior partitioning with the cost
of repeated scannings of S. This cost is clearly shown
in the results of the total processing time. Although
HNW outperforms MHHJ with the elapsed time as the
metric, it requires much more total processing time when

6.5

55

4.5

3.5

2.5

the number of processors is small. If the total processing
time is taken as the metrii. then MHHJ is the best algo-
rithm in all cases when the number of processors is lim-
ited.

In Figure 5.5, the number of disks in the system is
increased to 12 from 6. This serves to represent the use
of faster disks as well as slower processors. By compar-
ing with Figure 5.2, we can see that the elapsed time in
Figure 5.5 is smaller than that in Figure 5.2 for all the
algorithms. However, the differences among them are
smaller. This indicates that the algorithms, on the whole,
are still slightly l/O bound with the testing parameters.
There are some phases that are not I/O bound and
hence the decrease of the elapsed time is not propor-
tional to the increase of the number of disks.

4.3. Comparison to previous work
The performance of hash-based join algoriihms have

been discussed in several literatures, so we would like to
compare the results of our study with two previous work
- [DeWi85] and [Rich87]. Both work are chosen
because overlap was considered in their studies. In
[DeWi85], results of actual implementations of the
uniprocessor version of the hash-based algorithms
[DeWi84] were presented. In (Rich87], the analytical
model considers overlap in disks, CPU and network
transfers.

The results of [DeWi85] shows that the Hash Loops
and the Hybrid Hash dominated the other algorithms and
that the Hybrid Hash performs well in uniprocessor
environment. This is also the case in our study (see Fig-
ure 5.3). Both results also show that when the size of
the larger relation S is much larger than the size of the

207

smaller relation R, the modified Hybrid Hash outperforms
the Hash-based Nested Loops in most cases. In
[DeWi85], there is no implementations of the parallel ver-
sion of the Hashed Loops algorithm. However, our study
shows that Hash-based Nested Loops can outperform
Hybrid Hash. This is because, in a multiprocessor
environment, the Hash-based Nested Loops is able to
exploit the shared memory to parallelize its operation.
Moreover, in our study, we assume the CREW (con-
current read exclusive write) model of a parallel system.
Hence, there is no waiting when several processors read
the same location in the hash table.

In [Rich87], the overlap in CPU, disk and network
communications is considered. The Hybrid HashJoin
was one of the join algorithms proposed. We have
shown that when CPU processing is not the bottleneck,
increasing the number of processors does not reduce the
elapsed times. In fact, in our study, the reduction in
elapsed times of the Hybrid Hash algorithms are due to
the increase in memory as a resuft of an increase in the
number of processors. Similarly, when the disk I/O is the
bottleneck, by increasing the number of disks will reduce
the elapsed time. The same conclusions were arrived at
in [Rich87]. However, in jRich87, it was shown that
there is not a big difference in elapsed time with different
memory sizes once the memory was large enough for
the algorithm to begin execution. This was so provided
the first phase of the Hybrid Hash was not I/O-bound. In
our study, memory size increases together with the
number of processors and a large enough amount of
memory is only available when the number of processors
are large too. As a result, the disk l/O becomes a
bottleneck. This results in the reduction in elapsed time
as memory increases.

5. Conclusion
In this paper, we have exploited the shared-memory

of a generalized multiprocessor system to parallelize the
costly join operation in database query processing. Such
a system comprises of conventional, commercially avail-
able components without the assistance of any special-
purpose hardware components. The system allows con-
current read from but exclusive write to the shared-
memory. Any conflict in writing the shared-memory is
regulated by a locking mechanism. Moreover, each pro-
cessor is allocated a fixed amount of shared-memory for
each operation. Thus, the amount of memory increases
as the number of processors increases.

The four parallel hash-based join algorithms
designed to be executed on such an environment -
Hybrid Hash, Modified Hybrid Hash, Hash-based Nested
Loops and Simple Hash - were studied. The perfor-
mance of the algorithms were modeled analytically, with
two key features, to determine the elapsed times. First,
we model the overlap between the CPU and i/O opera-
tions of each algorithm when analyzing the elapsed
times. Second, we consider the contention when there is
a write conflict.

Our study shows that the Hybrid HashJoin, which
outperforms other hash-based algorithms in uniprocessor
environment, does not always performs the best. It is

unable to exploit the memory as it is supposed to do,
especially when the number of partitions is small. This is
due to contention in such an environment. Our modified
version - Modified Hybrid Hash - eliminates the con-
tention by allocating one output buffer to each partition.
However, this is done at the expense of higher elapsed
time. The simpler Hash-based Nested Loops performs
better in elapsed times when the sizes of both relations
are similar. However, when the size difference between
the two relations are widened, the Modified Hybrid Hash
outperforms the other algorithms.

From the study, we may draw the following conclu-
sions :

Both the memory and the number of processors are
important factors in a multiprocessor environment.
More memory reduces disk I/OS in hash-based join
algorithms while more processors facilitates parallel-
ism. As such, a multiprocessor environment which
increases the memory whenever the number of pro-
cessors allocated to an operation increases is desir-
able.
Proper management of memory may reduce memory
contention. The two versions of the Hybrid Hash Join
proposed are two extreme strategies in allocating
buffers during the partitioning phase - one buffer
page per partition which may leads to high contention
and p buffer pages per partition where there is no con-
tention. We may explore for a balance between these
two extremes.
In a multiprocessor environment, the goal of improv-
ing the elapsed time and reducing the total process-
ing time may conflict. An algorithm which performs
well with respect to the elapsed time may do so at
the expense of consuming more resources. ft seems
that, using the elapsed time or the total processing
time as the only criteria of choosing an optimal join
method may not be sufficient for multiprocessor com-
puter systems. A more appropriate metric would
need to combine the effect of both the elapsed time
and the total processing time in order to simplify the
query optimization process. Intuitively, if both the
elapsed and total procession times of an algorithm
are the smallest among all algorithms under con-
sideration, then the algorithm should be selected.
Similarly, when both the elapsed and total processing
times are the largest, the algorithm should not be
considered. However, when two algorithms conflict
such that algoriihm A may have a lower elapsed time
but a higher total processing time than algoriihm B,
some metrics need to be defined to decide which one
is better. One possible metric is the product of E and
T:

p=ExT=&

The 8 value can be roughly interpreted as the ratio of
total processing cost and the system throughput (l/E)
and it satisfy the first two points of the above intuition.
In fact, if 8 is used as a metric, the h4odified Hybrid
HashJoin outperforms the Hash-based Nested
Loops in most instances.

208

The results of this paper can be extended in several
directions. First, we may study the trade off between
elapsed time and total processing time in order to arrive
at a more appropriate performance metric for multipro-
cessor computer systems. Second, a uniform distribu-
tion of the join attribute values is assumed in our
analysis. Some recent work [Laks88, LowsO] has indi-
cated that skew distributions of join attribute values may
significantly affect the performance of join algorithms.
One possible future work is to include this skew factor in
our analysis. Third, as an analytical analysis, it is very
difficult to model the effects of multiuser environment.
Further study using simulation is planed to evaluate the
performance of those algorithms in the multiuser
environment. Furthermore, in addtion to hash-based join
methods, we would like to further explore other join
methods for multiprocessor computer systems, such as
those methods based on index [Meno86].

References
[Bitt831

[Brat841

[DeWi84]

[DeWi85]

[EnsIn]

[Good811

[Kiis83)

[Laks88]

[Lang821

Bitton, D., et al., “Parallel Algorithms for
the Execution of Relational Database
Operations,” ACM Trans. Database Syst. ,
vol. 8, no. 3, Sept. 1983, pp. 324-353.
Bratsbergsengen, K., “Hashing Methods
and Relational Algebra Operations,” Pm.
VLDB 84, Singapore, Aug. 1984, pp. 323-
333.
Dewitt, D. J., et al.. “Implementation Tech-
niques for Main Memory Database Sys-
tems,” Pm. SIGMOD 84, Boston, June
1984, pp. 1-8.
Dewitt, D. J., and Gerber, R., “Multipro-
cessor Hashed-Based Join Algorithms,”
Proc. VLDB 85, Stockholm, Aug. 1985, pp.
151-164.
Enslow, P. H. Jr., “Multiprocessor Organi-
zation - A Survey,” ACM Computing Sw-
veys, Vol. 9, No. 1, March 1977, pp. 103-
129.
Goodman, J. R., “An Investigation of Mul-
tiprocessor Structures and Algorithms for
Database Management,” University of Cal-
ifornia at Berkeley, Technical Report
UCBIERL. M81/33, May 1981.
Kitsuregawa, M., Tanaka, H., and Moto-
oka, T., “Application of Hash to Data Base
Machine and its Architecture,” New Genera-
ban Computing, Vol. 1, NO. 1, 1983, pp.
63-74.
Lakshmi, M. S. and Yu, P. S., “Effect of
Skew on Join Performance in Parallel
Architectures,“. Proc. Intl. Symp. on data-
base in Parallel and Distributed Systems,
1988, pp. 107-120.
Larger, A. M., and Shum, A.W., “The Dis-
tribution of Granule Accesses made by
Database Transactions,” Comm. ACM, Vol.
25, No. 11, Nov. 1982, pp. 831-832.

[LOWSO]

[Lu85)

[Lu90]

[Men0861

[Qada88]

[Rich871

[Schn89]

W-VW

[Tera83]

[Vald84]

[Yao77]

Low, c. c., D’Souza, A. J., and
Montgomery, A. Y., “The influence of
Skew Distributions on Query Optimiza-
tion,” Proc. australia Research Database,
Con& April 1990.
Lu, H., and Carey, M. J., “Some Experi-
mental Results on Distributed Join Algo-
rithms in a Local Network,” Pm. VLDB 85,
Stockholm, Aug. 1985, pp. 292-304.
Lu, H., Tan, K-L, and Shan, M-C, “A Per-
formance Study of Hash-Based Join Algo-
n’thms in Tightly-Coupled Muiti@cessor
Systems,” National University of Singa-
pore, Department of information Systems
and Computer Science Technical Report,
TRA6/90, June 1990.
Menon, J., “Sorting and Join Algorithms for
Multiprocessor Database Machines,”
NATO ASI Series, Vol. F 24, Database
Machines, Springer-Verlag, 1986.
Qadah, G. Z., and Irani, K. B., “The Join
Algorithms on a Shared-Memory Multipro-
cessor Database Machine,” IEEE Trans.
Sojlware Eng . , vol. 14, no. 11, Nov. 1988,
pp. 1668-l 683.
Richardson, J. P., Lu, H., and Mikkilineni,
K., “Design and Evaluation of Parallel
Pipelined Join Algorithms,” Proc. SIGMOD
87, San Francisco, May 1987, pp.399-409.
Schneider, D. A. and DeWii, D. J., “A Per-
formance Evaluation of Four Parallel Join
Algorithms in a Shared-Nothing Mukipro-
cessor Environment,” Proc. SIGMOD 89,
Portland, Oregon, June 1989, pp. 1 lo-
121.
Shapiro, L. D., “Join Processing in Data-
base Systems with Large Main Memories,”
ACM Tram. Database Syst.. VOI. 11, NO. 3,
Sept. 1986, pp. 239-264.
Teradata Corporation, DBC/1012 Data-
base Computer Concepts and Facilities,
Inglewood, CA, April 1983.
Valduriez, P., and Gardarin, G., “Join and
Semijoin Algorithms for a Multiprocessor
Database Machine,” ACM Trans. Database
Sysr., vol. 9, no. 1, March 1984, pp. 133-
161.
Yao, S. B., “Approximating Block
Accesses in Database Oroanizations.”
Comm. ACM, Vol. 20, No. 4, Gril 1977, pp.
260-261.

209

