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Abstract 
The database system Cactis is an experiment in 
managing computed data in an efficient fashion. Using 
au incremental update approach and self-adaptive 
optimizations, the system attempts to minimize the 
amount of I/O required to update derived data values. 
Performauce tests have been run against a wide variety 
of databases and transaction streams. The general 
conclusion is that Cactis i-forms well, in most cases 
resultiug in a reduction 0 p” UO in the range of 50 to 90 
percent. We attempt to isolate various database factors 
(such as the complexity of the schema aud of the derived 
data) and determine how they affect the performance of 
the Cactis implementation algorithms, as well as test the 
major optimization aspects of Caclis in isolation. 
Ftiy, we draw conclusions concerning the general 
usefulness of the Cactis algorithms in database systems, 
aud try to suggest where further research should be 
performed 

1. Introduction 

The Cactis project muK86, HuK87, HuK88a, HuR891 
began in 1985. The driving goal was to ad- one 
speciik research issue relating to the support of complex 
database applications such as CAD/CAM, software 
engineering, VLSI design, and PCB design: the 
maintenance of computed data. Design engineers often 
report that standam hierarchical, network, and relational 
databases do not provide sufficient support for complex 
forms of engineering da& For example, in a software 
environment, there are dependencies relating source 
modules, object modules, con@uratio~~~, documentation, 
bug reports, milestones, etc. PCB and VLSI design 
require that the intricate consrrahlts involving board 
wirings be represented 
Doing this with a traditional database system presents 
two problems. First, the system does not provide any 
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substantive modeling capabilities for explicitly 
representing computed data, and so the application 
software must construct computed data structures on its 
own. This requires the application software to perform a 
major data transformation, whereby complex data 
objects am translated essentially into simple records. 
Second, as a result, it is highly unlikely that the database 
system will update and retrieve this data in an efficient 
fashion. 
Cactis presents a data model and a set of implementation 
algorithms for maintaining computed data. The data 
model is essentially that of au attributed graph [ACR88]. 
The model is in keeping with the spirit of the numerous 
object-oriented database research projects, in that Cactis 
encapsulates a computational capability witbin data 
objects. These computations am derived attributes, 
The implementation relies on two general techniques. 
First of all, the system is iucmmental, in that computed 
data is updated in a fashion that attempts to recompute as 
little as possible when an update is made. !kcond, the 
algorithms are self-adaptive, in that they learn from 
previous usage statistics in determining how to schedule 
computations. Cactis attempts to be efficient both with 
respect to the number of data objects needed for a 
computation and the management of the buffer pool. In 
this way, Cactis achieves its goal of limiting the amount 
of I/O needed to maintain derived (or computed) data. 
Although numerous isolated performance tests have been 
performed, and preliminary results have been reported 
muK89], an integrated, extensive battery of tests had 
never been performed on Cactis. Peeling that many 
database research projects never properly validate their 
implementation algorithms, we felt that this was 
necessary to do. 
We had two primary goals in mnning these tests. The 
first was to determine the limits of the Cactis techniques. 
In particular, as Cactis is intended to minimize the cost 
of computing derived data, we wanted to see precisely 
what kind of derived data makes the system work best. 
Before performing the tests, we predicted that the system 
would not work well when the complexity of computed 
data was small, and that it would operate most 
effectively when the database consisted of a tight graph 
of highly-interdependent computed data. Below, we will 
see that these pxediction8 were not always right. 

‘This rcscarcbcr wss tmpportcd by a fellow&ii from U S West 
Advanced Technologies. l cLhi ~carcha WYL supporid in put by 
ONR under contract number NOCOW88-K-0559. and in part by a con- 
tract from AT&T. 



In order to properly test the effectiveness of Cactis, we 
also had to isolate the two major mechanisms within 
Cactis: the process for scheduling updates and the data 
clustering facility. As the second mechanism is the most 
easy to adapt to. other database systems, and as we 
predicted that it would have the biggest impact of 
performance, we were particularly concerned with 
testing the second mechanism in isolation. 
Our second goal was to determine what other research 
must be performed in order to construct truly useful 
mechanisms for maintaining derived data. We found 
that them were a few major limitations in our attempt to 
validate Cactis as a system whose internal algorithms 
might be useful in other database systems. Hut&r work 
is needed to construct metrics for categorizing derived 
data; as it is, we are not able to make very precise 
statements about what hinds of databases are best served 
by Cactis. 
Another problem is that we have not yet tested the Cactis 
algorithms on databases which possess not only 
computed data, but information that is processed with 
standard, set-oriented queries. HinaRy, while we 
conshuUed a fairly sophisticated system for 
automatically building test databases, we do not know 
how real-life databases stand up against our test 
databases; it is necessary to gather metrics concerning 
the makenp of databases which natumlly embody 
derived d8ta The performance tests reported in this 
paperseemtosuggestthatCactisworkswellwithina 
very broad spectrum; the fact that we did not find any 
substantkl factor that limits the usefulness of the system 
makes us afraid that our automatically generated 
dat&m~a,e do not truly match a natural spectrum 

In the secofxi section, we provide an overview of the 
Cactis model and implementation algorithms. Then we 
report 00 a set of performance tests. Since there is no 
standard with whid~ to compare Cactis, we focus on 
validat@ the perfcmnance of our algorithms over a wide 
specttum of databases. We also 
the algolithm complexity of the iEs 

$kananalysisof 
implementation, 

andintbecon&siondiscusshowthiscompateswiththe 
actual performance results. We have concluded that 
CiWis pvi&s a very effective way of maimaimng 
compkx computed data, We have also discovered that 
for certain forms of computed data, Cactis does not 
perfolm particularly WelL 

2. The Cadis Data Model 
A Cactis dambase cons&s of a set of typed objects. 
E!achobjectinthedatabaseconsistsofanumberof 
ortribum, each of which is assigned a value that may be 
of any type expressibk in the C programming language. 
‘l’k type and number of attributes associated with an 
objeuis&terminedbythetypeoftheobject. 
Extend struuure can be created by establishing 
relationships between objects. In conventional object- 
oriented systems such as Smalltalk [GoR83], the external 
ir.mf8a2 to 8n object consist3 of a set of messages that 
tk objea can respod to. However, in the C&s data 
model the external interface to an object consists of a set 

of (typed) data values that flow into and out of the object 
across (typed) relationships. 
Attributes may be assigned values by user operations or 
they may be computed, and all such values are visible 
only within individual objects unkss they are passed 
through relationships to other objects. No@computed 
attributes support a form of structural encapsulation. 
Values transmitted into an object may be used to derive 
computed attribute values. This supports a form of 
behavioral encapsulation, whereby an object may 
respond to changes elsewhere in the database by 
defining its own derived attribute values. Values 
which flow out of an object may be either derived or 
non-derived. In the Cactis model the intemal 
impkmentation of derived attributes is expressed 
declaratively in the form of attribute evaluation rules. 
The Cactis data model provides direct support for rich 
semantic relationships. &nsequently, the Cactis data 
model can be seen as a semantic data model H-IuK87]. 
As in other semantic models, relationships in the Cactis 
modelaretypedanddirected. Thetypeanddimctionof 
a relationship is used to represent a semantic concept. 
However, relationships in a Cactis database are 
significantly different than those found in other semantic 
models such as the Entity-Relationship Model [che76], 
the Semantic Data Model [HaM81], or the Hmctional 
Data Model [KeF76,Shi81]. In these models, 
relationships are defined with types. An object type 
uniquely defines the relationships that, objects of that 
type may participate in 
those rehuionships. 

-includingtherangetypesof 

TheCactismodel,ontheotherhand,separatesobject 
types firm relati~ types. A relationship type is 
determined solely by the type, direction, and number of 
value8 that flow across th rehtionship. Consequently, 
any object which exports and imports the proper set of 
value8 may patticipate in a rektionship of that type. 
Expressed in different terms this means that the range 
type of a relationship does not depend on the domain 
type. In this way, relationships may be moved around to 
connectupobjectsofvatioustypes. Allthatmattersis 
that a relationship deliver attribute values of the correct 
type and number, as expecmd by the object at the 
“range” end of the relationship. 
This notion of relationships has important implications. 
In particular, it allows much greater extensibility of the 
databasesinceanobjectmay-infactmust-remain 
compktely ignorant of the type of any object it is related 
to. An object only knows what types of values flow 
across a relationship, not how the values are produced or 
consumed. nlis allows objects to be transparently 
replaced by more complex equivalents in a manner that 
is completely transparent to any objects they are related 
to. 

3. Incremental Update 
TheCac4isdatamodelprovidesapowerfulmechanism 
for supporting derived data However, it also presents a 
signi6cant challenge for e&ient implementatioa; this is 
due to the fact that such a general-purpose facility for 
specifying derived data could potentially cause vast areas 
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of the database to be mad or written every time a change 
is made. This section describes the basic update 
algorithm used in the Cactis system, while the next 
sectioll c4msiders the self-adaptive opnmizations 
developed to improve performance iu a disk-based 
environment. Please note that Cactis is tuned only 
towad m’ ’ lmmizing the I/o cost of calculating derived 
values; it does not su 

4p” 
lt any convelltional access 

structures (like btrees) or doing set-oriented retrievals. 
Wealsodonotconsider concurrency control or recovery 
inthispaper,allourtestswere~unonasingleuser 
version of cacti& 
The update algorithm used by the Cactis system is 
incremental. When a change is made to an attribute in 
the database, the update algorithm at worst has to do 
work proportional to the set of derived attributes that am 
(transitively) dependent on the attribute chauged. The 
update algorithm does not do work proportional to the 
whole database or the set of all objects of certain types. 
More importantly, if a change to attribute A causes 
attributes B and C to be transitively affected, and if B 
and C both transitively cause attribute D to be updated, 
then D is only updated once. With a mechanism like 
data driven triggers P&79] this is not guaranteed This 
can cause exponential behavior in the worst case (see for 
example mep84] for an analysis of data driven updates 
of this form). The Cactis algorithm in comparison is 
strictly linear iu its behavior. 
While an update is being propagated to all dependent 
attributes, access to attributes which are not trausitively 
related to a changed value can be accessed directly 
without additional overhead. In addition, the update 
algorithm is lazy. The system ensures that when values 
are examine4 they are cmrect with respect to their 
detining equations. However, attributes are not 
recomputed unless and until they am actually examined. 
In this way, work is avoided for attributes which would 
have received a series of new values, but for which those 
new values ate never actually Deeded by the user. This 
allows values of only infrequent interest to be derived at 
little cost. 
The incremental update algorithm is best understood as a 
series of graph traversals on the attribute dependency 
graph. Nodes io this graph represent attributes, while 
edges in this graph represent (direct) dependencies 
(caused by derivation rules) between attributes. After 
each database update, the algorithm works on tbis graph 
in two phases. The first phase identiges potential work 
to be done - transitively dependent attributes that may 
need to be recomputed as a result of the update. The 
second phase performs the actual recomputation of 
attributes. Whenever au access requests one or more 
values, the system detenniues which attributes need to be 
recomputed and invokes the second phase of the update 
algorithm to recompute those values as needed 
Normally, attributes am only recomputed on demand, 
however, the schema designer has the option of declaring 
that certain attributes are important. Important attributes 
am brought up to date even if their values are not used. 
The first phase of the algorithm is the mark out-of-date 
phase. It starts at the point(s) of change and marks all 

attributes which might be affected by the change as out- 
ofdate. This marking process is simply a traversal of the 
attributedependencygraph. W&neveranawribumvalue 
isrequeste4thesystemtirstcheckstoseeifithasbeen 
matkedout-ofdate. Ifithas,itsvalueisreunnputedby 
invoking its attribute evaluation function. llus is the 
second phase of the algorithm. The function recursively 
requests the values of other attributes, which may invoke 
the second phase of tlE algorithm for tLu%e attributes. In 
this way, the algorithm obtains a 8nal value which is 
correct with respect to all trauaitive ndmcien. elm 

“p” avaluehasbeenreevaluau&itsout-odatemarkisreset 
so that Guttier accesses will not cause extra 
recomputations. Both phases of tl~ algorithm ate thus 
graph traversals - one following tfie dependency edges 
forward and the other backward. This 

-s2m: important to the optimizadons descn 
section. 
Aproofofm aud complete analysis of the 
attribute evaluation algorithm used by Cactis cau be 
found in mud891. To summarize this analysis: for au 
update, the algorithm performs total work which is, in 
the worst case, proportional to t& set of attributes 
transitively dependent on the attribute(s) which were 
changed. Note that when an update is made, C&s will 
potentially examine au dependent attributes twice (ouce 
for each phase of th3 update algorithm), while a trigger- 
like mechanism could evaluate a given atttibute an 
exponential number of times. In order to achieve linear 
behavior within Cactis, attribute evaluation functions 
must be purely licative 
observable side-e iP 

(i.e., they’ must have no 
ects and must compute d&r result 

strictly on the basis of their parameter values). This 
limitation is not present with conventional trigger 
mechanisms, 
ullfoltunately, the cactis algolitllm is not o@imal since 
it could conceivably do work directly proportional to the 
smaller set of attributes which either actually change 
value after an update or are directly related to an 
attribute which changes mep82]. In other words, the 
algorithm updates the optimal set of attributes after a 
change, but may perform a non-optimal amount of extra 
overhead wok in order to do this (but never mom than 
~;u&,the size of the transitive dependency set of 

. 
While an asymptotic analysis can sometimes be 
deceptive because large constants are hidden, 
performance tests on an in-memory version of the 
algoritbmindicatethatthisismtaprobleminthiscase. 
The basic algorithm is very simple and the constants of 
proportionality are very small in practice. Consequently, 
this analysis is iu fact of practical as well as theoretical 
interest. 

A Self-Adaptive Optimizations 
Computation of derived data on disk is typically 
expensive since following transitive dependency chains 
cau potentially involve reading many different blocks 
from disk to access relatively few attribute values. This 
means that while the Cactis also&m is asymptotically 
very good and in practice performs very well in an iu- 
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memory setting, it many not actually perform well in a 
disk-based setting. ‘Ihis section describes a set of self- 
adaptive optimidon techniques which are designed to 
ensure that it does. These techniques axe the focus of the 
perfonmnce tests described in the next three sections. 
Two complementary techniques are used to reduce the 
amount of disk I/O performed by the system. (Note that 
CactisisnottunedtowardminimixingCPUtime;asa 
result our performance tests are almost exclusively 
conaned with I/o time.) The filst of these techniques 
involves taking advantage of alternative orderings in the 
computation of derived data. In particular, scheduling 
partsofthegraphtraversalsusedforupdatesinaway 
designed to reduce total disk I/O. lhe second technique 
involves periodically rechlstering the database to 
improve the locality of reference that occurs during 
retrievd and update of derived data. Both these 
techniques use statis& collected at the object level to 
guide optimkations. These statistics, in the form of a 
decaying average, track changes in access patterns and 
allow the algorithms to adapt to the fh3egrained usage 
patterns that -ally occur over time. 
l%e cactis incremental update algorithm coIlsists of two 
graph traversals, one to mark attributes out-of-date, and 
one to compute derived attributes. The first scheduling 
optimizationusedbythesystemtakesadvantageofthe 
flexibility in odering that is allowed in these traversals. 
The mark out-of- traversal can clearly proceed in 
any order which marks all reachable attributes. In 
panic&r, at each step in the traversal, the system is free 
to choose the next node to visit based on what it 
heuristically pfedius will reduce total disk uo. 
‘Ibe second traversal of the algorithm also has flexibility 
intheorderinwhichitpmceeds. Becauseattribute 
evaluation functions in the Cactis data model must be 
purely applicative, an attribute evaluation function may . 

2ZLL -Ibis means that the second traversal 
ammeters in any order and will still compute 

may al80 proceed in any order so long as a given 
att&uteisaxqmtedafberalloftheattributesitdirectly 
w&m=- 
In order to optimim the order in which each of the 
traversals pmceeds, the system maintains statistics about 
traversals. For each edge of the dependency graph that 
crossesbehveenobjects,thesystemkeepsadecaying 
average of the total number of objects visited along that 
path In panic&r, each time a traversal is completed 
acsom an edge tk rmv rekxence count is averaged with 
the old count in an exponentially decaying fashion. For 
a given @euJmcy edge, this statis& gives an estimate 
0fhowmanyobjectsmustbeexamimAinorderto 
updatethevalneflowingacrossthatedge. 
Given this tmistic, the system uses the following 
heuri&ctosched&updates.Fifft,ifthenextstepofa 
cunputationcanbeperformedusingdataalleady 
bnf6eredinmemory(i.e.,mC~slepinthetraversat’ 
wiIl visit an object buffered in memory) that computation 
is given priority for scheduling. Secoad, for 
computatials that requile I/o, priority is given to the one 
which is predicted to require the least I/O. This is 
evald by examinbg the statistics. These heulisticr 

represent a shortest job tirst approach. The i&a is to 
attempt to finish small computations quickly so that 
buffer space can be freed up to support computations 
which require more space. 
The locality of reference of a database can be decreased 
if objects which are often used together are placed in the 
same physical disk block. The second optimization 
performed by the system is to periodically rechrster the 
dalayti (off-line) on the basis of usage stat%6 in 

imease this locality of reference. For this 
optCz.ation, stat&tics am kept which count how many 
times each relationship is traversed. Relationships which 
are hpently traversed generally connect objects that 
are referenced together during the traversal process. 
These objects are hence candidates to be clustered in the 
samediskblock. 
Off-line recl~tering of the database is done using a 
greedy heuristic. Clustering starts by placing the most 
frequently referenced object in the database in an empty 
block. ‘Ihe system then considers all relationships that 
go from an object inside the block to an object outside 
the block (which has yet to be placed in a block of its 
own). The object at the end of the most frequently 
travened relationship is placed in the block. This 
processismpeateduntiltheblockisfull. Tbesystem 
then repeats this process for new blocks until all objects 
have been assigned blocks. 
Note that the two optimimtion techniques work hand- 
in-hand. l%e iifst tries to minimize page thrashing by 
choosing an update that will result Id little I/O. The 
second attempts to maximize the utility of the pages 
which are fetched 

5. A Test kamework 
This section describes the test fmmework used to explore 
the eft&tiveness of the Cactis implementation 
techniques. The goal of this test fi-dmework was not to 
determine the absohrte performance of the system (e.g., 
transadons per second) since the system is far from 
optimized and there are currently fiew object-oriented 
systems which it can be directly compared with in a 
meaningful way. Also, the system was not designed to 
serve as a general-purpose DBMS; rather our intention 
was to build a DBMS tailored speciiically toward 
efficient maintenance of derived data. In particular, the 
system does not support. any set-oriented queries. 
Therefore, the goal of the tests was to &termlne the 
effectiveness of the implementation techniques used, to 
explore how this effectiveness changes under different . situations, and to determm the limits of these 
techniques. 
Also, t$e tests prformed did not make use oiz”“p’” 
applicatton or real life” benchmark tmnsach 
duetotbefactthatasyet,noclearchamcM&csof~ 
typical application using extensive derived data have 
emerged. Instead test data sets and query streams were 
generated in a random but carefully parameter&d 
fashion. Ibis allowed speciftc characteristics to be 
varied in isolation to study their effects on system 
pelfO~tUBX. 
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while~test~SUltSintbenextSeCti~providespedliC 
percent improvement numbers for each of the 
optimizatiot~ techaiqm Ilsed by the system,-t&e 
numbers are d.iflhk to apply to spedfic applkukns. It 
would be evem more unreasonable to attempt to apply 
themtodatabasesystemswhichusetedmiquessimilar 
to,butdiffemntfrom,Cactis. Amomimportantresultis 
the overall effecliveness of the specifk Cactis 
optimizuion algorithms, a& how this varies across 
important dimtions of database structure. In sum, the 
tests were designed to detetmine performance trendsthe 
speci.ficnumbershavetobeconsideredonlywithina 
narrowcontext. 
In order to explore a wide range of sitnations, a program 
which generates random databases and query streams 
wascmnstructed. l%isgemXatoracceptsaseriesof 
parameters (described below) and creates a cactis 
sc~adatabrrseoftestobjects,andaoneormoretest 
query streams to run agak3t the database. The 
parameters supplied to the database generator control the 
characteristics of the generated schemas, objects, aud 
query streams. ‘I&se chamcteristics am designed 
primarily to vary in the following thme important 
categories: 
l struchnc aud compkxity of connections between objects 

In this categoly. the lumctum of the gaIelated databuns is 
varied at three kvelr. At the highe6t kvcl, we am concerned 
withthetotalconRec&&e6softhedata. Tbatir,giV~an 
object, how many atha ubjcct6 i6 it related to, either d&ctly or 
tllrough txalktive relation6hip6. llli6 cuncern6 relationship 
connections, not spccilically derived attriite dependencks. At 
the objazt kvel, we are intaerted ia the locality of refereMx of 
l&ted object6; if a 6eric.a of rektion6hip connecIion6 i6 
followed,whatirthepn4mbilitydrctumingtoanobject 
already on the lE4atial6hip p6th. Finally, at the level of 
illdiVidUd attfii6, = atC iIltUCl&d ill the 6tl’UCtUlC Of 
dCXiVCd attribnte dependencie6. &XCi&dy, WC VUf the 
length of a chain 6tarting l%om a nm-derived object to the last 
derived object which, due to 6n artriite duivation, hansitively 
depend6 on the non-derived object. For exampk. for a de&e4 
attriiute, does it tend to have long chains of attribute 
dependencies, or only 6hort chaina Similady. do the attriiute 
dependenci~ tend to fan out widely or do they tend to confine 
them6elver to a anall number of n4atively linear chains. 

0 query &afacteliStic6 

In this categay. we 6le intemad primarily in tlm locality of 
reference of the querks - do they tend to acccs6 variabks in a 
1OCd llCi@lbOIhOOd Of the databere OT IlpWd their aCCC6SeS 
across tandatd 6utions. 

dUfhiXlg Ch~eIi6tiC6 

Fmally, in thi6 cateiiyny. we are intexutcd in the size of in- 
memory buffer 6pacc. Jn pa&ular, we a~ interested in how 
much of the database can be but%xed in memory at one time, 
since this ch6mcte&ic can have a dramatic effect on overall 
pClfOmN4tlCC. 

In order to generate test data sets with specitic properties 
out of the range of possibilities given above, the database 
generator xcepts a series of parameter values. These 
parameters control generation of a random database 
which at au informal level proceeds as follows: First, all 

pruedure CoMeqotja : set of object; cyde_biat : noat); 
Vr 

obil,obp:cbjed; 
conneded :84dCbjBd; 
unculnected :utdd.ject; 

- Miolly no connectiou ma&? 
oollneded :=empty;-:=~; 
-etortwithoneobjectillcoMeckdset 
W :=removu~random(uncollnected)eded); 
w-t 

-ch0os.eoneendofouwreWmsh&jbr~ 
-COllUCtdsct 
objl:=choow_random(connected); 

-decide~lhi#willio~le 
Ifrandom()~cyde~biasTbm 

Ed; 

theobjeushlthetestdatabasearecreated lbenumber 
of objects is controhed by the total~size parameter. 
The!seobjectsarethenpartitionedinto.gtoupsthatwill 
eventually tlmn connected componeats within the 
databaw (by this we mean conneded viarelationships, 
not necessarily attribute dependencies). ‘Ibe sixe of each 
partition is controlled by the conneckd sixe parameter. 
Thispammetercomrolstheoverall~ofthe 
database - in other words how dottely coupled or 
isolated objects are. Larger values of amne&ed~slxe 
imply mom relationships between objects while smaller 
values imply mom isolation 
Once partitions have been formed, each partition is 
processed iudependently to produce a connected 
component of the database. This step involves creating 
relationships between objects. At this level, the property 
varied is locality of reference - the likelihood that, 
when following relationships, otmz is likely to mtum to 
the same neighborhood or instead to visit new objects. 
While it is difficult to exactly control this probability in a 
randomly generated database, it can be approximated. 
We do this by manipulating the properties of the 
undirected graph formed by objects and relationships. 
At OE extreme, if this graph is a tree, then the locality of 
reference is minimized since no path ever returns to the 
same object twice. On the other hat& as cycles are 
introduced into the graph the probability of retuming to 
the same object increases. The parameter cyde bias is 
used to control the introduction of cycles &to the 
relationship structme and hence the locality of reference 
at the object level. 
The algorithm used to generate relationships for each 
partition is shown in Figure 1. It works by selecting one 
object to start the connected component then repeatedly 
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creating a relationship until all objects in the partition are 
connected. At each stage the probability of introducing a 
&&nship which closes an (undirected) cycle is 
cycle bias while the probability of creakg a non cycle 
edge 5 1 - cyde-bias. 
Once a relaticmship structure has been established for 
each partition, an attribute dependency structure for 
derived attributes must be established The dependency 
shuchuecanbeseenasadinxtedgraphembedded 
within the undirected graph formed by objects and 
relationships. Each node in this directed graph 
corresponds to an attribute, while each edge conesponds 
to a dependency between attributes. 
InoNiertoapplytinecontroltothestlllctureofthe 
dependency graph(s) constructed, a series of templates 
ate used. l&se templates give a set of dependency 
graphs in isolation from the outer object-relationship 
graph. ‘lb database generator acts by randomly 
choosing a template graph, then instautiating attributes 
ml dependencies matching a copy of that graph within 
the outer object-relationships graph Layout starts at a 
randomly selected object and proceeds by placing 
dependencies across randomly selected relationships. 
Attributes are declared, and simple attribute evaluation 
functions are generated to induce the proper attribute 
dependeacia (all attributes are simple integer values and 
all evahmtion functions are simple additions). By 
varying the set of template graphs used, the average path 
length and average fan-out can be controlled directly. 
Oncetkdatabasegeneratorhasconstructedatest 
database, it proaxds to construct one or more random 
querystreams. Theaequerystreamsareamixturesof 
reads and writes at a ratio determined by the 
read write ratio parameter. To reduce the total 
mm&r of tests to be performed, all experiments 
reportedbereusearatioof2:1. 
Inadditkmtotheratioofreadstowrites,thenatureof 
the query stream is also cxarolled by the 
trammdh-type paraaaeter. This parameter is set to 
eithx random ot le. At the random setting, tbe 
at&ibuWaccuuzdateachstageofthequeryarechosen 
atrandomfromaaywhereintlledatabase.m 
repxema me kmt locality of reference within the query 
ad tfre moBt diScult case for performance 
~zationtbe*hanQiftransacti?n~typeis 

tramachons are generated whrch start at 
a ra&mly se&ted attribute, but which always proceed 
toaccessattributesofmlatedobjects. Thisrepresentsa 
highdegN!eofkWityofreferenceandhencetbebSt 
case for opGmiz&orar. In addi* when a tratksaction 
~fbca&tdiasclscotd.ulequerystreamcousists0f 

aequwWs-agagrun,thebestcaseforthe 
opt&id- - wkneas random query streams contain 
nolepeatedlJeq@m-ag*theworstcase. 
OnceaWt~andtestquerystreamhavebeen 
selected actual test runs were performed using the 
produrcsbowninKgure2. Foreachtestnmstatistics 
welegathemdwhichmeasuredthetotalnumberofdisk 
-Ibtdisk ac4xsse with a simple first come tirst 
sense (FCFS) schbduler (i.e., no upthmzation) were 
compared against those for the optimized (priority- 

based) sckxluler to obtain a percent improvement due to 
the priority scheduler. In additioo, statistics were kept for 
the iilst l/3 of the query stream (run without chlstering) 
andcomparedwiththetinat1/3ofthequerystream(run 
after cl- twice) to obtain an improvement due to 
the cl- algorithm. Clustering improvement 
numbers are not inWed by a poor initial clustering since 
the initial clustering of the database insures that all 
objectsonthesamediskblockaredirectlyrelatedto 
some other object in that block (except in rare boundary 
cases). This is already a reasonably good clustering and 
is sisnificantly better than the worst case. 

6. TestResults 
Using a range of parameter settings on the database 
generator, we created 264 different databases. Each 
database used a different randomly generated query 
sheamwitha2:1ratioofreadstowrites. Tokeepthe 
time mpired to perform the tests manageable, databases 
of 100 objects were used for all tests. (Creating 
databases with larger numbers of objects would have 
caused the database generator to run for very long 
periods of time.) However, to compensate for these 
relatively small databases, a conespondingly small in- 
memory buffer area was used. Because exact object size 
could not be controlled (since the process of randomly 
laying out attributes causes objects to be of varying size) 
afixedrunberofob~(4)wenplacedineachdislr 
block. In cases where the buffer sire was held constant 
(i.e., results shown in Figures 4 through 9), 3 blocks 
were allowed for in-memory buffer space resulting in 12 
object being buffered at one time. 
E!ach graph presented in this section shows the average 
behavior of the system over a particular range of 
parameter settings. In addition each data point is 
depicted with a range indicating the higkst and lowest 
resultsobtakdatthatparametersetting. Aswillbe 
seen below, variances at given settings were fairly low. 

proce&re runJest(DB: databasq 
quafy: quety~stream; bu_size: ire) 

VU 

achad : admdulu_type; 

~‘or a&ad e (FCFS. F’riority) DO Begin 
- clear 6all clwkring and dudnling opIimi& stoiklics 

-kWW; 
-mn#rstdlirdofquaystream 
Ca&ia(DB, query.partl , ached. buLsize); 
-r8c&sfarthe~e 
d-WW; 
-mpeutlwicemore 
Cactia(DB, query.part2, ache4 krf_she); 
duster(DB); 
Cactia(DB, qwy.part% ached. an_ilize); 
-WDB); 

Jw 
Jhd; 

Figm2TathgProcah1rr 
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lhefmalmajorparameterassociatedwithcmatinga 
dOIlldlitilb~iSthe~p~usedtOdt?~rmbethe 
6lmgrained attribute &pea&n&s. All templates used 
forthesetestsweteintheformofatreeliketheone 
showninKgum3. Thisteauplateisintheformofa 
modilkdfullbiitreewithanextranodeinserted 
across each edge. The template trees themselves wete 
parameterizedintwoways. Firstthedepthofthetree- 
thedktanceikomtheroottoeachleaf-wasvaried. 
The depth of the template shown in Figure 3 is 8. 
Secot&thebmnchmgtktor-thenumberofchildren 
ofeachnodethathssmotethanonechild-ofthetree 
waschanged. lhebranch@factorofthetemplate 
showninFigure3is2.l.ncaseswherethetemplatewss 
heldconstam(i.e..tbemsultsshowninFQutes4though 
12)adepthof10andbmn&ingfactorof2wasused. 
‘lbegraphscanbeanalyzedinthreegroups. Kguzes4 
through 9 measure the effects of changes in course 
graimxl strucme (i.e., the connected~size parameter) on 
the algorithms while holding the in-memory bufkr size 
and fkqpimd structure (i.e., the attribute deperxlency 
template) tixed. This corresponds to varying the major 
fstwxud aspects of the schema (i.e., the relationship 
assignments) while holding other factors steady. The 
second set of tests shown in F@.lms 10, 11, and 12 
measure the effects of varying in-memory buffer size 
while keeping other factors fixed. pinally, the third set 
of tests (shown in Kgures 13 through 18) indicate how 
thesystemperfomlsundervariationsinthestruchueof 
fil.le-grainedattributedependenci~. l%isLxnlespondsto 
varying the computational depemkdes between derived 
attributes, but hohiing the major structural and buffering 
aspects of the database steady. 
Alltestspresentedinthissectiondepicttheresultsfora 
cyd~bii of 30% which is a mid range value. Tests 
were also perfomed for hisses of 10% and 50%. These 
test(notshown)produ~verysimilarresults-botllthe 
average value and variances are close to those for 30%. 
Furthermore, the cyde-bias parame$er does not seem to 
directly determine performance since the system 

Figure 3. Sample Atnibute Dependency Template 

performed best for low cycles in some cases and best for 
highormediumcyclesinothers.lnallcaseseachchoice 
ofabiasresultedincomparablemsults(ahhoughtbe 
variaoce between di&rent biases is typica& somewhat 
greaterthanthatfortherunsunderasmgkbias). Since 
cyde-bias failed to be a predicting factor, test results for 
high and low cycles are omitted and only medium (30%) 
cydes are shown 
Fi~4and5indicatetheimprovementfromtbe 
priority sckduhq optimkation in isolation ti 
clustering. These figures measure percent improvement 
ofprioritizds&eduhngover~tirstcome 
6rstse~ed(FcFs)schedulingas-component 
size (coMecta~sine) is varied. Rgure 4 shows the 
results for random haaactions while Kgure 5 shows t&z 
results for localhd traasahm. Bothtmnsssiontypes 
perfolmed compaTably with local&d t.ramadions 
resulting in slightly gleater improvements. The general 
trendinbothcssesisfortheoptimkationtoperfonnbest 
in a mid range of connecttvities and poorest when 
connectivity is either very high or very low. 
Figures 6 ami 7 indicate improvement from duster@ in 
isolation from priority scheduling (i.e., dustering with 
non-optimized FCFS xheduhng). Kgure 6 shows 
random transactions while Rgure 7 shows local&d. 
Again, there is not a large Merence between localized 
and random, but as we would expect, locahzed tends to 
perform slightly better overall. Here we also see that the 
clustering opumization provides considerably better 
overall improvements than tk priority scheduhng 
optimktion, and that the dustering optimi&on is more 
robust - it does not loose effectiveness at higher levels 
of connectivity, but instead remains relatively steady 
neat its best performance. 
Although the clustering and scheduling optimMions are 
largely complementary, their effects are not strictly 
additive. F~~M?s 8 and 9 indicate the percent 
improvement of clustering dooe in the presence of 
priority scheduling. 
While Figures 4 through 9 provide results for a fixed in- 
memory buffer size of 3 blo& (12 objects), Kgures 10, 
11, snd 12 provide an itMJication of how performsnce 
changes as the smount of buffer space changes. For these 
teStS, COMd size WaS fixed at 20, & tnuroStiOllS 
were of the lo&lized variety, and the same attribute 
dependency template as FQures 4 through 9 WBS used 
(i.e., depth of ,lO and branching fac.m of 2). Rgute 10 
shows improvement due to sdxdulmg over a range of 
buffer sizes; Figure 11 shows the improvement due to 
clustering without scheduling; and Kgure 12 shows tl.~ 
improvement due to both clustering when scheduling 
was performed. Again, as a general trend, clustering 
provides considerably more optimization thao 
scheduling. ln both cases, mid range buffer sires 
perfotmed best. Very small buffer sizes seem to be 
intrinsically prone to at least some thmshing, while large 
sires allowed most or all of a connected component to 
remain memory resident so that the naive, unoptimized 
approaches still worked welL 
The find group of tests depicted in @ums 13 through 
18 show how varying the fine-grained structure of 
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attribute dependencies affects each of the optimizations. 
The same basic attribute dependency structure (i.e., a 
txeewiththesameshapeastheoneshowninKgm33) 
was used for these tests. However, in this case, the depth 
and lmnching factor of the tree was varied. Other 
parameters remained tixed with a buffer sire of 3 blocks, 
a conn&ed~sixe of 20, and all localized transactiom. 
Figures 13, 14, and 15 show the effects of varying the 
depth of the tree (i.e. length of dependency chain from 
the root to each leaf) while keeping the branching factor 
lixed at 2. Figures 16, 17, and 18 show the effects of 
using a shallow dependency tree template (depth 2) and 
varyingtbebmnchingfactor.Eachofthesecasesseems 
to exhibit a relatively high variance acxoss the range of 
strudms. In general, these results do not seem indicate 
a strong correlation between optimixation performance 
and either the depth or branching factor of the attribute 
dependency template. 
Asa5raltest,Kgum19showstheresuItsofpro5ing 
thedambaseccdeitselftodeterminetheratioofwork 
done within the scheduling algorithm versus that done 
for I/O operations. For simplicity this graph measures the 
ratiooftotalfunctioncallsmadeasthecourse-grained 
complexity (comuztivity) of the database is varied. As 
can be seen, the proportion of work done for scheduhng 
only mueases very slightly as the database complexity 
-. 

7.ImplicationsandAnalysis 
At the higbt level, the teat results presented in the last 
section show that the self-adaptive optimixations used in 
theCactissystemdoindeedacttoreduceI/Ocosts. It 
can also be seen that the clustering optimixation 
repmen& the “big win”. It provides the biggest 
improvement in performance and, as it is dooe off-line 
and involves a greedy algorithm, is the simplest 
optimixadon. This optimization also has the advantage 
of being the least dependent on the particulars of the 
Cads data model - a variation of this optimization 
could be applied to a variety of different object-oriented 
data mofkls. Knally, chutering also appears very 
robust, working masonably welI (In pJL88] the authors 
discussadat&asesystemwhichismakinguseofthe 
CactisaIgorithmforcI~ringdata.) 
‘here are two potential drawbacks to the clustering 
optimizaton. Krst, it is likely to be incompatible with 
the kinds of clustering used for set-oriented queries. 
ll& is due to the fact that Cactis clusters data in a 
fashion that disregards the type structure. For set- 
orientedqPeries,itisimpoaanttobeabletoisolateall 
the objects of a given type that meet certain properties. 
At a minimum, the GuXrs clustering algorithm assumes 
that most data man+laGons involve the retrieval of 
wmpnted attributes, not set-oriented retrievals. Second, 
this opthhion is currently performed off-IirE and 
hence m@res an interruption in the availability of the 
database. However, we are exploring techniques to 
a&m this optimization to be performed in an on-line 
incrementalfashion 
l%e very im@e results gathered in testing the Cactis 
clustering algorithm cause us to feel that database 

clustering is a research direction worth pursuing. On- 
line, intenuptable algorithms for clustering data under a 
wide variety of situations are oeeded. The effects of 
mixing derived data with set-processed data is just one of 
the parameters that should be examined. Cactis assumes 
that all databases objects are large and of the same size. 
Databases with a wide variety of object sixes must be 
tested, and special algorithms to handle this will be 
needed. Also, Cactis uses a simple, greedy algorithm 
Whkb is highly sub-optimal. Under certain 
circumstances, it will be worth the overhead of a more 
complex algorithm to get even better perfonmmce. 
While somewhat overshadowed by chrstering, the 
ScheduIing opumixation also provides Cl&U 

improvements. However, the scheduling optimization 
seems less robust - working well for most connectivity 
patterns but not for the entire range of databases. It is 
also much less compatible with other current object- 
oriented database implementations. 
A major trend of the results is that none of the 
opumixations work well for databases which have only 
very small connectivity. This indicates that the 
techniques perform the job they were intended to 
perform - optimization for complex derived data - but 
do not help much in cases where data is isolated. This is 
a clear indication of where the Cactis optimimtion 
techniques do not work. This shows for example, that 
the optbhtions probably would not be helpful for 
conventional applications where most access is 
performed by means of associative search An 
interesting experiment would be to see how Cactis would 
perform with a mix of query types. It might be that 
derived attribute computations are dimcult to optimize in 
the presence of other queries. Similarly, it would be 
interesting to measure Cactis’ performance when a major 
shittinthelocusofaquerystmamoccurs.Itmayalsobe 
that the optimization techniques would be slow to 
respond to radical changes in usage patterns despite the 
exponential decay of the usage statistics. 
The test dts presented in the previous section also 
provided a few surprises. It was imtially thought that the 
depth and branching fador of the attribute dependency 
template trees and the number of cycles in the 
Aationship graph would have a strong correlation with 
overall performance. However, instead the only strongly 
correlated factor turned out to be the global 
connededness of the data. We believe the reason for 
this is that for the parameters controlling the finer- 
grained structure of the database induce much more 
complicated behavior patterns that cannot be correlated 
with a simple linear scale of variations. More extensive 
tests, however, might allow more precise conclusions on 
the effects of various parameter settings. 
Knally, one of the most significant conchisions is that 
the business of generating databases is a tough one. 
Although initially, we thought that the parameter 
arrangements supported by our generator would allow 
he-graid control over the creation of databases and 
transadons streams, it turned out that we were not 
always able to do exactly what we needed For example, 
it was difficub to control the average size and variation 
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in size of objects. It was also hatd to precisely control 
the layout of attributes in objects. The template system, 
while simple to use, only gave us very coarse controL 
This may have something to do with the apparent 
conclusion tbat attribute layout did not affect 
performauce. And, our generator also made it difficult to 
experiment with databases containing many objects. 
In sum, we don’t feel that our generator is by any meaus 
a way of exhaustively searching the space of all possible 
derived data databases. In general, our generator does 
not satisfactorily simulate real-life databases designed to 
serve users with complex tasks. A more sophisticated 
tool is needed for experimenting with new algotitluns for 
maintaining complex data in such applications as 
engineering design. To address this, we are currently 
working on a system called A La Carte PKB89], which 
provides a test bed for selecting various database 
facilities (such as a powerful data model, a novel 
concurrency control technique, and a transaction 
mechanism oriented toward long, interactive design 
transadons) and then plugging in new database 
implementation algorithms. Only with a much more 
sophisticated test bed, can algorithms for supporting 
complex databases be properly designed and tested, 
without having to rebuild a large chunk of a new 
database each time. 

8. The Future of Cactis 
We are currently designing and constructing a distributed 
version of Cactis, called Cacti muK88b]. ‘Ihe system is 
targeted for a local network of Sun workstations. Our 
central motivation in pursuing this effort is that we 
envision derived data to be important in many 
engineering design efforts, and &sign engineers often 
work in distributed, interactive environments. The 
implementation of the system is being greatly facilitated 
by the fact that the graph algorithm in Cactis is naturally 
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p~~th~makingiteasytoadaptittoadistribu‘ted 
emromnent. In keeping with the self-adaptive nature of 
Cactiis, the new system uses usage statistics to replicate, 
m@ate,andmcluskrdataaroundthenetw&Wealso 

attribute computations to be integrated. 
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