The Performance and Utility of
the Cactis Implementation Algorithms
Pamela Drew* and Roger King**
Department of Computer Science, University of Colorado, Boulder, Colorado 80309

Scott Hudson
Department of Computer Science, University of Arizona, Tucson, Arizona 85721

Abstract

The database system Cactis is an experiment in
managing computed data in an efficient fashion. Using
an incremental update approach and self-adaptive
optimizations, the system attempts to minimize the
amount of I/O required to update derived data values.
Performance tests have been run against a wide variety
of databases and transaction streams. The general
conclusion is that Cactis fperfouns well, in most cases
resulting in a reduction of I/O in the range of 50 to 90
percent. We attempt to isolate various database factors
(such as the complexity of the schema and of the derived
data) and determine how they affect the performance of
the Cactis implementation algorithms, as well as test the
major optimization aspects of Cactis in isolation.
Finally, we draw conclusions concerning the general
usefulness of the Cactis algorithms in database systems,
and try to suggest where further research should be
performed.

1. Introduction

The Cactis project [HuK86, HuK87, HuK88a, HuK89]
began in 1985. The driving goal was to address one
specific research issue relating to the support of complex
database applications such as CAD/CAM, software
engineering, VLSI design, and PCB design: the
maintenance of computed data. Design engineers often
report that standard hierarchical, network, and relational
databases do not provide sufficient support for complex
forms of engineering data. For example, in a software
environment, there are dependencies relating source
modules, object modules, configurations, documentation,
bug reports, milestones, etc. PCB and VLSI design
require that the intricate constraints involving board
wirings be represented.

Doing this with a traditional database system presents
two problems. First, the system does not provide any

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage. the VLDB copyright notice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwisc. or to republish. requires a fee
and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

135

substantive modeling capabilities for explicitly
representing computed data, and so the application
software must construct computed data structures on its
own. This requires the application software to perform a
major data transformation, whereby complex data
objects are translated essentially into simple records.
Second, as a result, it is highly unlikely that the database
system will update and retrieve this data in an efficient
fashion.

Cactis presents a data model and a set of implementation
algorithms for maintaining computed data. The data
model is essentially that of an attributed graph [ACR88].
The model is in keeping with the spirit of the nmumerous
object-oriented database research projects, in that Cactis
encapsulates a computational capability within data
objects. These computations are derived attributes.

The implementation relies on two general techniques.
First of all, the system is incremental, in that computed
data is updated in a fashion that attempts to recompute as
little as possible when an update is made. Second, the
algorithms are self-adaptive, in that they learn from
previous usage statistics in determining how to schedule
computations. Cactis attempts to be efficient both with
respect to the number of data objects needed for a
computation and the management of the buffer pool. In
this way, Cactis achieves its goal of limiting the amount
of 1/0 needed to maintain derived (or computed) data.

Although numerous isolated performance tests have been
performed, and preliminary results have been reported
[HuK89], an integrated, extensive battery of tests had
never been performed on Cactis. Feeling that many
database research projects never properly validate their
implementation algorithms, we felt that this was
necessary to do.

We had two primary goals in running these tests. The
first was to determine the limits of the Cactis techniques.
In particular, as Cactis is intended to minimize the cost
of computing derived data, we wanted to see precisely
what kind of derived data makes the system work best.
Before performing the tests, we predicted that the system
would not work well when the complexity of computed
data was small, and that it would operate most
effectively when the database consisted of a tight graph
of highly-interdependent computed data. Below, we will
see that these predictions were not always right.

*This her was supported by a fellowship from U S West
Advanced Technologics. **This rescarcher was supported in part by
ONR under contract number N0O0014-88-K-0559, and in part by a con-
tract from AT&T. ‘

In order to properiy test the effectiveness of Cactis, we
also had to isolate the two major mechanisms within
Cactis: the process for scheduling updates and the data

clustering faahty As the second mechanism is the most
easy to adapt to- other database systems, and as we
predicted that it would have the biggest impact of
performance, we were particularly concerned with

taatine tha cannerd e nnkhned oo Sonlats e

COULEE UK DVWULKU LHIRALLALLLDESL i 1SO141001I.

Our second goal was to determme what other research

v on el aoann Prgspp e NP I |

must be pcuuuueu in order to comstruct umy useful
mechanisms for mamtaxmng derived data. We found
that there were a few major limitations in our attempt to
validate Cactis as a system whose internal algorithms
might be useful in other database systems. Further work
is needed to construct metrics for categorizing derived
data; as it is, we are not able to make very precise
statements about what kinds of databases are best served

by Cacs.

Another problem is that we have not vet tested the Cactis

algonthms on databases which possess not only
computed data, but information that is processed with
standard, set-oriented querics. Finally, while we
constructed a fairly sophisticated system for

. a1A: \ 9 wrn A Lres ese
am{\’mnﬁnn“y b-“‘t'cng test Aneal ases, we do not oW

how real-life databases stand up against our test
databases; it is necessary to gather metrics conceming
the makeup of databases which naturally embody
derived data. The performance tests reported in this
paper seem o suggest that Cactis works well within a
very broad spectrum; the fact that we did not find any
substantial factor that limits the usefulness of the system
makes us afraid that our automatically genemted
databases perhaps do not truly match a natural spectrum
of derived data.

In the second section, we provide an overview of the
Cactis model and implementation algorithms. Then we
report on a set of performance tests. Since there is no

% % Clants £.
standard with which to compare Cactis, we focus on

validating the performance of our algorithms over a wide
spectrum of databases. We also provide an analysis of
the algorithm complexity of the Cactis implementation,
and in the conclusion discuss how this compares with the
actual performance resulis. We have conciuded that
Cactis provides a very effective way of maintaining
complex rnmprted data. We have also digcovered that

for certain forms of computed data, Cactis does not
perform particularly well.

2. The Cactis Data Model

A Cactis database consists of a set of typed objects.
Each object in the database consists of a number of
aiiribuies, each of which is assigned a value ihat may be
of any type expressible in the C programming language.
The tvne and number of attributes associated with an

1 T

object is determined by the type of the object.
External structure can be created by establishing

relationships between objects. In conventional object-
oriented gystems such as Smalltalk [GoR83], the external
interface to an object consists of a set of messages that
the object can respond to. However, in the Cactis data

mnﬂnl tha eﬁmnl |ntn.rfnm w an cbulnt wnmcf‘s cfa oo t

136

of (typed) data values that fiow into and out of the object
across (typed) relationships.

Atiributes may be assigned vaiues by user operations or
they may be computed, and all such values are visible

only within individual objects unless they are passed

through relationships to other objects. Non-computed
attributes support a form of structural encapsulation.
Values transmitted into an object may be used to derive
computed attribute values. This suppons a form of

hahavineml ancranonlatinn whaeahe an ahiast mae
UNLAMA Y AV Gl W AL CAREVRL, W I&.IGUJ all UUJGV! a8 (I,

respond to changes elsewhere in the database by
redefining its own derived attribute values. Values
which flow out of an object may be either derived or
non-denved. In tbe Cacus model the internal

lmplcmemauon of derived aiiribuies is expressed
declaratively in the form of attribute evaluation rules.

[TR . W S P

The Caciis daia model provmes direci suppon for rich
semantic relationships. Consequently, the Cactis data
model can be seen as a semantic data model [HuK87].
As in other semantic models, relationships in the Cactis
model are typed and directed. The type and direction of
a relationship is used to represent a semantic concept.
However, relationships in a Cactis database are

cionificantly diffarant than thnoa fannd in athar camantic
bl“u “’ WEAAWAWILS WML HAVGW AVEALARS A VIASWA OWARiIAALAY

models such as the Entity-Relationship Model [Che76],
the Semantic Data Model [HaM81], or the Functional
Data Model [KeP76,Shi81]. In these models,
relauonshnps are deﬁned with types. An object type
uniquely defines the relati that objects of that
type may participate in — including the range types of
those relationships.

The Cactis model, on the other hand, separates object
types from relationship types. A relationship type is
determined solely by the type, direction, and number of
values that flow across the relationship. Consequently,
any object which exports and imports the proper set of
values may participate in a relationship of that type.

Bxpressed in different terms this means that the range
a—asrsvmwu WEAALWAWLLES SAVARIEL SEALLD AAR lwbv

type of a relationship does not depend on 0 the domain
type. In this way, relationships may be moved around to
connect up objects of various types. All that matters is
that a relauomtnp deliver attribute valu&s of {the correct

P] ae oomantad o as slo
ad>

typc and oumber, ted by the object at the

"range" end of the relationship.

o wmondl s £ ¥ at ol L e e s P, L e

This notion of Ciaudnsmps nas umponant ilupuuuuua
In particular, it allows much greater extensibility of the
database since an object may — in fact must — remain
completely ignorant of the type of any object it is related
to. An object only knows what types of values flow
across a relationship, not how the values are produced or
consumed. This allows objects to be transparently

replaced bv more comnlex eauivalents in 2 manner that

avr-m Vg ARVAV Wvaipava WAV GRAR/AAWS AAS 8 AAAGeAsAmeA BAAde

is completely transparent to any objects they are related
to.

ol L

3. Incremental Update
The Cactis data model provides a powerful mechanism
for supporting derived data. However, it also presents a

significant chaiienge for efficient impiementation; this is
due to the fact that such a general-purpose fac:hty for

specifving derived data conld potentially canse vast areas

Sl Y s WRAAVERD L88 VUSSPV sLl

of the database to be read or written every time a change
is made. This section describes the basic update
algorithm used in the Cactis system, while the next
section considers the self-adaptive optimizations
developed to improve performance in a disk-based
environment. Please note that Cactis is tuned only
toward minimizing the I/O cost of calculating derived
values; it does not support any conventional access
structures (like btrees) for doing set-oriented retrievals.
We also do not consider concurrency control or recovery
in this paper; all our tests were run on a single user
version of Cactis.

The update algorithm used by the Cactis system is
incremental. When a change is made to an attribute in
the database, the update algorithm at worst has to do
work proportional to the set of derived attributes that are
(transitively) dependent on the attribute changed. The
update algorithm does not do work proportional to the
whole database or the set of all objects of certain types.
More importantly, if a change to attribute A causes
attributes B and C to be transitively affected, and if B
and C both transitively cause attribute D to be updated,
then D is only updated once. With a mechanism like
data driven triggers [BuC79] this is not guaranteed. This
can cause exponential behavior in the worst case (see for
example [Rep84] for an analysis of data driven updates
of this form). The Cactis algorithm in comparison is
strictly linear in its behavior.

While an update is being propagated to all dependent
attributes, access to attributes which are not transitively
related to a changed value can be accessed directly
without additional overhead. In addition, the update
algorithm is lazy. The system ensures that when values
are examined, they are correct with respect to their
defining equations. However, attributes are not
recomputed unless and until they are actually examined.
In this way, work is avoided for attributes which would
have received a series of new values, but for which those
new values are never actually needed by the user. This
allows values of only infrequent interest to be derived at
little cost.

The incremental update algorithm is best understood as a
series of graph traversals on the attribute dependency
graph. Nodes in this graph represent attributes, while
edges in this graph represent (direct) dependencies
(caused by derivation rules) between attributes. After
each database update, the algorithm works on this graph
in two phases. The first phase identifies potential work
to be done — transitively dependent attributes that may
need to be recomputed as a result of the update. The
second phase performs the actual recomputation of
attributes. Whenever an access requests one or more
values, the system determines which attributes need to be
recomputed and invokes the second phase of the update
algorithm to recompute those values as needed.
Normally, attributes are only recomputed on demand,
however, the schema designer has the option of declaring
that certain attributes are important. Important attributes
are brought up to date even if their values are not used.

The first phase of the algorithm is the mark out-of-date
phase. It starts at the point(s) of change and marks all

137

attributes which might be affected by the change as out-
of-date. This marking process is simply a traversal of the
attribute dependency graph. Whenever an attribute value
is requested, the system first checks to see if it has been
marked out-of-date. Ifithas,itsvalueisrecompmedby
invoking its attribute evaluation function. This is the
second phase of the algorithm. The function recursively
requests the values of other attributes, which may invoke
the second phase of the algorithm for these attributes. In
this way, the algorithm obtains a final value which is
correct with to all transitive ndencies. Once
a value has been reevaluated, its out-of-date mark is reset
so that further accesses will not cause extra
mpume:;ﬁ.s Both plmesf of the algorithm are thus
trav — one following the dependency ed,
forward and the other backward. This ncywmgg
important to the optimizations described in the next
section.
A proof of comrectness and complete analysis of the
attribute evaluation algorithm used by Cactis can be
found in [Hud89). To summarize this analysis: for an
update, the algorithm performs total work which is, in
the worst case, proportional to the set of attributes
transitively dependent on the attribute(s) which were
changed. Note that when an update is made, Cactis will
potentially examine all dependent attributes twice (once
for each phase of the update algorithm), while a trigger-
like mechanism could evaluate a given attribute an
exponential number of times. In order to achieve linear
behavior within Cactis, attribute evaluation functions
must be purely gplicaﬁve (i.e., they must have no
observable side-effects and must compute their result
strictly on the basis of their parameter values). This
limitation is not present with conventional trigger
mechanisms,
Unfortunately, the Cactis algorithm is not optimal since
it could conceivably do work directly proportional to the
smaller set of attributes which either actually change
value after an or are directly related to an
attribute which changes [Rep82]. In other words, the
algorithm updates the optimal set of attributes after a
change, but may perform a non-optimal amount of extra
overhead work in order to do this (but never more than
linear in the size of the transitive dependency set of
attributes).
While an asymptotic analysis can sometimes be
deceptive becanse large constants are hidden,

performance tests on an in-memory version of the
algorithm indicate that this is not a problem in this case.

‘The basic algorithm is very simple and the constants of

proportionality are very small in practice. Consequently,
this analysis is in fact of practical as well as theoretical
interest.

4. Self-Adaptive Optimizations

Computation of derived data on disk is typically
expensive since following transitive dependency chains
can potentially involve reading many different blocks
from disk to access relatively few attribute values. This
means that while the Cactis algorithm is asymptotically
very good and in practice performs very well in an in-

memory setting, it many not actually perform well in a
disk-based setting. This section describes a set of self-
adaptive optimization techniques which are designed to
ensure that it does. These techniques are the focus of the
performance tests described in the next three sections.

Two complementary techniques are used to reduce the
amount of disk I/O performed by the system. (Note that
Cactis is not tuned toward minimizing CPU time; as a
result our performance tests are almost exclusively
concerned with I/O time.) The first of these techniques
involves taking advantage of alternative orderings in the
computation of derived data. In particular, scheduling
parts of the graph traversals used for updates in a way
designed to reduce total disk I/O. The second technique
involves periodically reclustering the database to
improve the locality of reference that occurs during
retrieval and update of derived data. Both these
techniques use statistics collected at the object level to
guide optimizations. These statistics, in the form of a
decaying average, track changes in access patterns and
allow the algorithms to adapt to the fine-grained usage
patterns that actually occur over time.

The Cactis incremental update algorithm consists of two
graph traversals, one to mark attributes out-of-date, and
one to compute derived attributes. The first scheduling
optimization used by the system takes advantage of the
flexibility in ordering that is allowed in these traversals.
The mark out-of-date traversal can clearly proceed in
any order which marks all reachable attributes. In
particular, at each step in the traversal, the system is free
to choose the next node to visit based on what it
heuristically predicts will reduce total disk I/O.

The second traversal of the algorithm also has flexibility
in the order in which it proceeds. Because attribute
evaluation functions in the Cactis data model must be
purely applicative, an attribute evaluation function may
request its parameters in any order and will still compute
the same result. This means that the second traversal
may also proceed in any order so long as a given

attribute is computed after all of the attributes it directly

depends on are computed.

In order to optimize the order in which each of the
traversals , the system maintains statistics about
traversals. For each edge of the dependency graph that
crosses between objects, the system keeps a decaying
average of the total number of objects visited along that
path. In particular, each time a traversal is completed
across an edge the new reference count is averaged with
the old count in an exponentially decaying fashion. For
a given edge, this statistic gives an estimate
of how many objects must be examined in order to
update the value flowing across that edge.

Given this statistic, the system uses the following
heuristic to schedule updates. First, if the next step of a
computation can be performed using data already

buffered in memory (i.e., the next step in the traversal’

will visit an object buffered in memory) that computation
is given priority for scheduling.
computations that require 1/O, priority is given to the one
which is predicted to require the least I/O. This is
evaluated by examining the statistics. These beuristics

Second, for

138

represent a shortest job first approach. The idea is to
attempt to finish small computations quickly so that
buffer space can be freed up to support computations
which require more space.

The locality of reference of a database can be decreased
if objects which are often used together are placed in the
same physical disk block. The second optimization
performed by the system is to periodically recluster the
database (off-line) on the basis of usage statistics in
order to increase this locality of reference. For this
optimization, statistics are kept which count how many
times each relationship is traversed. Relationships which
are frequently traversed generally connect objects that
are referenced together during the traversal process.
These objects are hence candidates to be clustered in the
same disk block.

Off-line reclustering of the database is done using a
greedy heuristic. Clustering starts by placing the most
frequently referenced object in the database in an empty
block. The system then considers all relationships that
go from an object inside the block to an object outside
the block (which has yet to be placed in a block of its
own). The object at the end of the most frequently
traversed relationship is placed in the block. This
process is repeated until the block is full. The system
then repeats this process for new blocks until all objects
have been assigned blocks.

Note that the two optimization techniques work hand-
in-hand. The first tries to minimize page thrashing by
choosing an update that will result in little I/O. The
second attempts to maximize the utility of the pages
which are fetched.

5. A Test Framework

This section describes the test framework used to explore
the effectiveness of the Cactis implementation
techniques. The goal of this test framework was not to
determine the absolute performance of the system (e.g.,
transactions per second) since the system is far from
optimized and there are cumently few object-oriented
systems which it can be directly compared with in a
meaningful way. Also, the system was not designed to
serve as a general-pi DBMS; rather our intention
was to build a DBMS tailored specifically toward
efficient maintenance of derived data. In particular, the
system does not support any set-oriented queries.
Therefore, the goal of the tests was to determine the
effectiveness of the implementation technigues used, to
explore how this effectiveness changes under different
situations, and to determine the limits of these
techniques.

Also, the tests Performed did not make use of a sample
application or "real life" benchmark transaction stream,
due to the fact that as yet, no clear characteristics of a
typical application using extensive derived data have
emerged. Instead test data sets and query streams were
generated in a random but carefully parameterized
fashion. This allowed specific characteristics to be
varied in isolation to study their effects on system
performance.

While the test results in the next section provide specific
percent improvement numbers for each of the
optimization techniques used by the system, these
numbers are difficult to apply to specific appE-ations. It
would be even more unreasonable to attempt to apply
them to database systems which use techniques similar
to, but different from, Cactis. A more important result is
the overall effectiveness of the specific Cactis
optimization algorithms, and how this varies across
important dimensions of database structure. In sum, the
tests were designed to determine performance trends; the
specific numbers have to be considered only within a
DArrow context.

In order to explore a wide range of situations, a program
which generates random databases and query streams
was constructed. This generator accepts a series of
parameters (described below) and creates a Cactis
schema, a database of test objects, and a one or more test
query streams to run against the database. The
parameters supplied to the database generator control the
characteristics of the generated schemas, objects, and
query streams. These characteristics are designed
primarily to vary in the following three important
categories:

e structure and complexity of connections between objects

In this category, the structure of the generated databases is
varied at three levels. At the highest level, we are concerned
with the total connectedness of the data. That is, given an
object, how many other objects is it related to, either directly or
through transitive relationships. This concems relationship
connections, not specifically derived attribute dependencies. At
the object level, we are interested in the locality of reference of
related objects; if a series of relationship connections is
followed, what is the probability of retuming to an object
alrcady on the relationship path. Finally, at the level of
individual attributes, we are interested in the structure of
derived attribute dependencies. Specifically, we vary the
length of a chain starting from a non-derived object to the last
derived object which, due to an attribute derivation, transitively
depends on the non-derived object. For example, for a derived
attribute, does it tend to have long chains of attribute
dependencies, or only short chains. Similardy, do the attribute
dependencies tend to fan out widely or do they tend to confine
themselves to a small number of relatively linear chains.

o query characteristics
In this category, we are interested primarily in the locality of
reference of the queries — do they tend to access variables in a

local neighborhood of the database or spread their accesses
across unrelated sections.

sbuffering characteristics

Finally, in this category, we are interested in the size of in-
memory buffer space. In particular, we are interested in how
much of the database can be buffered in memory at one time,
since this characteristic can have a dramatic effect on overall
performance.

In order to generate test data sets with specific properties
out of the range of possibilities given above, the database
generator accepts a series of parameter values. These
parameters control generation of a random database
which at an informal level proceeds as follows: First, all

139

Procedure Connect(objs : set of object; cycla_bias : float);
Var

obj1, obj2: object;

connected : set of object;

unconnected : set of object;

Begin

— initially no connections made

connected := emply; unconnected := objs;

- start with one object in connected set

obj1 := remove_random(unconnected);

Repeat

~ choose one end of a new relationship for within
~— connected set
obj1 := choose_random(connected);
— decide if this will introduce a cycle
If randomy() > cycle_bias Then
obj2 := remove_random(unconnected);
connected = connected + obj2;
Else
obj2 := choose_random(connected);

End If;
— make the relationship
Relate(obj1,0bj2);

Uatil unconnected = empty; — all objects connected

End;
Figure 1. Relationship Creation Within Partitions

the objects in the test database are created. The number
of objects is controlled by the total size parameter.
These objects are then partitioned into .groups that will
eventually form connected components within the
database (by this we mean connected via relationships,
not necessarily attribute dependencies). The size of each
partition is controlled by the connected_size parameter.
This parameter controls the overall connectedness of the
database — in other words how closely coupled or
isolated objects are. Larger values of connected_size
imply more relationships between objects while smaller
values imply more isolation.

Once partitions have been formed, each partition is
processed independently to produce a connected
component of the database. This step involves creating
relationships between objects. At this level, the property
varied is locality of reference -— the likelihood that,
when following relationships, one is likely to retum to
the same neighborhood or instead to visit new objects.
While it is difficult to exactly control this probability in a
randomly generated database, it can be approximated.
We do this by manipulating the properties of the
undirected graph formed by objects and relationships.
At one extreme, if this graph is a tree, then the locality of
reference is minimized since no path ever retumns to the
same object twice. On the other hand, as cycles are
introduced into the graph the probability of returning to
the same object increases. The parameter cycle_bias is
used to control the introduction of cycles into the
relationship structure and hence the locality of reference
at the object level.

The algorithm used to generate relationships for each
partition is shown in Figure 1. It works by selecting one
object to start the connected component then repeatedly

creating a relationship until all objects in the partition are
connected. At each stage the probability of introducing a
relationship which closes an (undirected) cycle is
cycle bias while the probability of creating a non cycle
edge 15 1 - cycle_bias.

Once a relationship structure has been established for
each partition, an attribute dependency structure for
derived attributes must be established. The dependency
structure can be seen as a directed graph embedded
within the undirected graph formed by objects and
relationships. Each node in this directed graph
corresponds to an attribute, while each edge corresponds
to a dependency between attributes.

In order to apply fine control to the structure of the
dependency graph(s) constructed, a series of templates
are used. These templates give a set of dependency
graphs in isolation from the outer object-relationship
graph. The database generator acts by randomly
choosing a template graph, then instantiating attributes
and dependencies matching a copy of that graph within
the outer object-relationships graph. Layout starts at a
randomly selected object and proceeds by placing
dependencies across randomly selected relationships.
Attributes are declared, and simple attribute evaluation
functions are generated to induce the proper attribute
dependencies (all attributes are simple integer values and
all evaluation functions are simple additions). By
varying the set of template graphs used, the average path
length and average fan-out can be controlled directly.

Once the database generator has constructed a test
database, it proceeds to construct one or more random
query streams. These query streams are a mixtures of
reads and writes at a ratio determined by the
read write ratio parameter. To reduce the total
number of tests to be performed, all experiments
reported here use a ratio of 2:1.

In addition to the ratio of reads to writes, the nature of
the query stream is also controlled by the
transaction_type parameter. This parameter is set to
either randem or localized. At the random setting, the
attributes accessed at each stage of the query are chosen
at random from anywhere in the database. This
represents the least locality of reference within the query
and the most difficult case for performance
optimizations. On the other hand, if transaction_type is
set to localized, transactions are generated which start at
a randomly selected aitribute, but which always proceed
to access attributes of related objects. This represents a
high degree of locality of reference and hence the best
case for optimizations. In addition, when a transaction
type of localized is selected, the query stream consists of
three repeated sequences — again, the best case for the
optimizations — whereas random query streams contain
no repeated sequences — again, the worst case.

Once a test database and test query stream have been
selected, actual test runs were performed using the
procedure shown in Figure 2. For each test run statistics
were gathered which measured the total number of disk
accesses. The disk accesses with a simple first come first
serve (FCFS) scheduler (ie., no optimization) were
compared against those for the optimized (priority-

based) scheduler to obtain a percent improvement due to
the priority scheduler. In addition, statistics were kept for
the first 1/3 of the query stream (run without clustering)
and compared with the final 1/3 of the query stream (run
after clustering twice) to obtain an improvement due to
the clustering algorithm, Clustering improvement
numbers are not inflated by a poor initial clustering since
the initial clustering of the database insures that all
objects on the same disk block are directly related to
some other object in that block (except in rare boundary
cases). This is already a reasonably good clustering and
is significantly better than the worst case.

6. Test Results

Using a range of parameter settings on the database
generator, we created 264 different databases. Each
database used a different randomly generated query
stream with a 2:1 ratio of reads to writes. To keep the
time required to perform the tests manageable, databases
of 100 objects were used for all tests. (Creating
databases with larger numbers of objects would have
cansed the database generator to run for very long
periods of time.) However, to compensate for these
relatively small databases, a correspondingly small in-
memory buffer area was used. Because exact object size
could pot be controlled (since the process of randomly
laying out attributes causes objects to be of varying size)
a fixed number of objects (4) were placed in each disk
block. In cases where the buffer size was held constant
(i.e., results shown in Figures 4 through 9), 3 blocks
were allowed for in-memory buffer space resulting in 12
object being buffered at one time.

Each graph presented in this section shows the average
behavior of the system over a particular range of
parameter settings. In addition each data point is
depicted with a range indicating the highest and lowest
results obtained at that parameter setting. As will be
seen below, variances at given settings were fairly low.

Procedure run_test(DB: database;
query: query_stream; buf_size: int)
Var
sched : scheduler_type;
Begin
For sched e {FCFS, Priority} Do Begin
— clear all clustering and scheduling optimization statistics
resat_opt(DB);
— run first third of query stream
Cactis(DB, query.part1, sched, buf_size);
- recluster the database
cluster(DB);
— repeat twice more
Cactis(DB, query.part2, sched, buf_size);
cluster(DB);
Cactis(DB, query.part3, sched, buf_size);
cluster(DB);

End;
Figure 2. Testing Procedure

The final major parameter associated with creating a
random database is the template used to determine the
fine-grained attribute dependencies. All templates used
for these tests were in the form of a tree like the one
shown in Figure 3. This template is in the form of a
modified full binary tree with an extra node inserted
across each edge. The template trees themselves were
parameterized in two ways. First the depth of the tree —
the distance from the root to each leaf — was varied.
The depth of the template shown in Figure 3 is 8.
Second, the branching factor — the number of children
of each node that has more than one child — of the tree
was changed. The branching factor of the template
shown in Figure 3 ig 2. In cases where the template was
held constant (i.e., the results shown in Figures 4 though
12) a depth of 10 and branching factor of 2 was used.
The graphs can be analyzed in three groups. Figures 4
through 9 measure the effects of changes in course
grained structure (i.e., the connected_size parameter) on
the algorithms while bholding the in-memory buffer size
and fine-grained structure (i.e., the attribute dependency
template) fixed. This corresponds to varying the major
structural aspects of the schema (ie., the relationship
assignments) while holding other factors steady. The
second set of tests shown in Figures 10, 11, and 12
measure the effects of varying in-memory buffer size
while keeping other factors fixed. Finally, the third set
of tests (shown in Figures 13 through 18) indicate how
the system performs under variations in the structure of
fine-grained attribute dependencies. This corresponds to
varying the computational dependencies between derived
attributes, but holding the major structural and buffering
aspects of the database steady.

All tests in this section depict the results for a
cycle_bias of 30% which is a mid range value. Tests
were also performed for biases of 10% and 50%. These
test (not shown) produce very similar results — both the
average value and variances are close to those for 30%.
Furthermore, the cycle_bias parameter does not seem to
directly determine performance since the system

Figure 3. Sample Attribute Dependency Template

141

performed best for low cycles in some cases and best for
high or medium cycles in others. In all cases each choice
of a bias resulted in comparable results (although the
variance between different biases is typically somewhat
greater than that for the runs under a single bias). Since
cyde_bias failed to be a predicting factor, test results for
high and low cycles are omitted and only medium (30%)
cycles are shown.

Figures 4 and 5 indicate the improvement from the
priority scheduling optimization in isolation from
clustering. These figures measure percent improvement
of prioritized scheduling over non-optimized first come
first served (FCFS) scheduling as connected component
size (connected_size) is varied. Figure 4 shows the
results for random transactions while Figure 5 shows the
results for localized transactions. Both transaction types
performed comparably with localized transactions
resulting in slightly greater improvements. The general
trend in both cases is for the optimization to perform best
in a mid range of comnectivities and poorest when
connectivity is either very high or very low.

Figures 6 and 7 indicate improvement from clustering in
isolation from priority scheduling (i.e., clustering with
non-optimized FCFS scheduling). Figure 6 shows
random transactions while Figure 7 shows localized.
Again, there is not a large difference between localized
and random, but as we would expect, localized tends to
perform slightly better overall. Here we also see that the
clustering optimization provides considerably better
overall improvements than the priority scheduling
optimization, and that the clustering optimization is more
robust — it does not loose effectiveness at higher levels
of connectivity, but instead remains relatively steady
near its best performance.

Although the clustering and scheduling optimizations are
largely complementary, their effects are not strictly
additive. Figures 8 and 9 indicate the percent
improvement of clustering done in the presence of
priority scheduling.

While Figures 4 through 9 provide results for a fixed in-
memory buffer size of 3 blocks (12 objects), Figures 10,
11, and 12 provide an indication of how ormance
changes as the amount of buffer space changes. For these
tests, connected_size was fixed at 20, all transactions
were of the localized variety, and the same attribute
dependency template as Figures 4 through 9 was used
(i.e., depth of 10 and branching factor of 2). Figure 10
shows improvement due to scheduling over a range of
buffer sizes; Figure 11 shows the improvement due to
clustering without scheduling; and Figure 12 shows the
improvement due to both clustering when scheduling
was performed. Again, as a general trend, clustering
provides considerably more optimization than
scheduling. In both cases, mid range buffer sizes
performed best. Very small buffer sizes seem to be
intrinsically prone to at least some thrashing, while large
sizes allowed most or all of a connected component to
remain memory resident so that the naive, unoptimized
approaches still worked well.

The final group of tests depicted in Figures 13 through
18 show how varying the fine-grained structure of

attribute dependencies affects each of the optimizations.
The same basic attribute dependency structure (i.e., a
tree with the same shape as the one shown in Figure 3)
was used for these tests. However, in this case, the depth
and branching factor of the tree was varied. Other

3 fivad writh o b ffoe oloa 02 L1 Lo
parameters remained fixed with a buffer size of 3 blocks,

a connected_size of 20, and all localized transactions.

Figures 13, 14, and 15 show the effects of varying the
depth of the tree (i.e. length of dependency chain from
the root to each leaf) while keeping the branching factor
fixed at 2. Figures 16, 17, and 18 show the effects of
using a shallow dependency tree template (depth 2) and
varying the branching factor. Each of these cases seems
to exhibit a relatively high variance across the range of
structures. In general, these results do not seem indicate
a strong correlation between optimization performance
and either the depth or branching factor of the attribute
dependency template.

As a final test, Figure 19 shows the results of profiling
the database code itself to determine the ratio of work
done within the scheduling algorithm versus that done
for I/O operations. For simplicity this graph measures the
ratio of total function calls made as the course-grained
complexity (connectivity) of the database is varied. As
can be seen, the proportion of work done for scheduling
only increases very slightly as the database complexity
increases.

7. Implications and Analysis

At the highest level, the test results presented in the last
section show that the self-adaptive optimizations used in
the Cactis system do indeed act to reduce I/O costs. It
can also be seen that the clustering optimization
represents the "big win". It provides the biggest
improvement in performance and, as it is done off-line
and involves a greedy algorithm, is the simplest
optimization. This optimization also has the advantage
of being the least dependent on the particulars of the
Cactis data model — a variation of this optimization
could be applied to a variety of different object-oriented
data models. Finally, clustering also appears very
robust, working reasonably well (In [FIL88] the authors
discuss a database system which is making use of the
Cactis algorithm for clustering data.)

There are two potential drawbacks to the clustering
optimization. First, it is likely to be incompatible with
the kinds of clustering used for set-oriented queries.
This is due to the fact that Cactis clusters data in a
fashion that disregards the type structure. For set-
oriented queries, it is important to be able to isolate all
the objects of a given that meet certain properties.
At a minimum, the Cactis clustering algorithm assumes
that most data manipulations involve the retrieval of
computed attributes, not set-oriented retrievals. Second,
this optimization is currently performed off-line and
hence requires an interruption in the availability of the
database. However, we are exploring techniques to
allow this optimization to be performed in an on-line
incremental fashion.

The very impressive results gathered in testing the Cactis
clustering algorithm cause us to feel that database

142

clustering is a research direction worth pursuing. On-
line, interruptable algorithms for clustering data under a
wide variety of situations are needed. The effects of
mixing derived data with set-processed data is just one of
the parameters that should be examined. Cactis assumes
that all databases objects are large and of the same size.
Databases with a wide variety of object sizes must be
tested, and special algoritims to handle this will be
needed. Also, Cactis uses a simple, greedy algorithm
which is highly sub-optimal. TUnder certain
circumstances, it will be worth the overhead of a more
complex algorithm to get even better performance.

While somewhat overshadowed by clustering, the
scheduling optimization also provides clear
improvements. However, the scheduling optimization
seems less robust — working well for most connectivity
patterns but not for the entire range of databases. It is
also much less compatible with other current object-
oriented database implementations.

A major trend of the results is that none of the
optimizations work well for databases which have only
very small connectivity. This indicates that the
techniques perform the job they were intended to
perform — optimization for complex derived data — but
do not help much in cases where data is isolated. This is
a clear indication of where the Cactis optimization
techniques do not work. This shows for example, that
the optimizations probably would not be helpful for
conventional applications where most access is
performed by means of associative search. An
interesting experiment would be to see how Cactis would
perform with a mix of query types. It might be that
derived attribute computations are difficult to optimize in
the presence of other queries. Similarly, it would be
interesting to measure Cactis’ performance when a major
shift in the locus of a query stream occurs. It may also be
that the optimization techniques would be slow to
respond to radical changes in usage patterns despite the
exponential decay of the usage statistics.

The test results presented in the previous section also
provided a few surprises. It was imtially thought that the
depth and branching factor of the attribute dependency
template trees and the number of cycles in the
relationship graph would have a strong correlation with
overall performance. However, instead the only strongly
correlated factor tumned out to be the global
connectedness of the data. We believe the reason for
this is that for the parameters controlling the finer-
grained structure of the database induce much more
complicated behavior patterns that cannot be correlated
with a simple linear scale of variations. More extensive
tests, however, might allow more precise conclusions on
the effects of various parameter settings.

Finally, one of the most significant conclusions is that
the business of generating databases is a tough one.
Although initially, we thought that the parameter
arrangements supported by our generator would allow
fine-grained control over the creation of databases and
transactions streams, it tuned out that we were not
always able to do exactly what we needed. For example,
it was difficult to control the average size and variation

Improvement (%)

Connectivity

Figure 4. Improvement Due to Priority Scheduling
(Random Transactions)

in size of objects. It was also hard to precisely control
the layout of attributes in objects. The template system,
while simple to use, only gave us very coarse control.
This may have something to do with the arent
conclusion that attribute layout did not affect
performance. And, our generator also made it difficuit to
experiment with databases containing many objects.

In sum, we don’t feel that our generator is by any means
a way of exhaustively searching the space of all possible
derived data databases. In general, our generator does
not satisfactorily simulate real-life databases designed to
serve users with complex tasks. A more sophisticated

tool is needed for experimenting with new algorithms for

maintaining complex data in such applications as
engineering design. To address this, we are currently
working on a system called A La Carte [DKB89], which
provides a test bed for selecting various database
facilities (such as a powerful data model, a novel
concurrency control technique, and a transaction
mechanism oriented toward long, interactive design
transactions) and then plugging in new database
implementation algorithms. Only with a much more
sophisticated test bed, can algorithms for supporting
complex databases be properly designed and tested,
without having to rebuild a large chunk of a new
database each time.

8. The Future of Cactis

We are currently designing and constructing a distributed
version of Cactis, called Cacti [HuK88b]. The system is
targeted for a local network of Sun workstations. Our
central motivation in pursuing this effort is that we
envision derived data to be important in many
engineering design efforts, and design engineers often
work in distributed, interactive environments. The
implementation of the system is being greatly facilitated
by the fact that the graph algorithm in Cactis is naturally

143

parallel, thus making it easy to adapt it to a distributed
environment. In keeping with the self-adaptive nature of
Cactis, the new System uses usage statistics to replicate,
migrate, and recluster data around the network. We also
plan to develop a better data manipulation language for
Cacti, one that allows set-oriented queries and derived
attribute computations to be integrated.

100+
90
804
:
R
< 704
]
= 604
§ 55 56
S 504 sof 1
&, i
=
= 40+ 38 o]
7
30+ % 29 2
5 24 !
204 21
10+
0 T]

Connectivity

Figure 5. Improvement Due to Priority Scheduling
(Localized Transactions)

704

Improvement (%)

Connectivity

Figure 6. Improvement Due to Clustering Alone
(Random Transactions)

100+

100~
90 - 904
80 804
704 ~ 70
® £
= 60 - 60
= ™ =
g g
§ 50 5 50
z)
o = 40—
g g
= 304 = 30
204 20
10+ 10+
0 Y T T T T T T = 0 0 ; 15) g 26 22 3b ; 4‘0
0 5 10 15 20 25 30 35 40
Connectivity Connectivity
Figure 7. Improvement Due to Clustering Alone Figure 8. Improvement Due to Clustering
(Localized Transactions) With Scheduling (Random Transactions)
100 -
100 —
90
904
80
80-
~ 704
704
g § 60-4
g g
§ 504 g 50-
a 2
5 40 2. 404
g E
304 304
20+ 204
10 10
0 0
0 0 4 8 12 16 20
Connectivity Number of Objects In Memory

Figure 9. Improvement Due to Clustering Figure 10. Improvement Due to Scheduling
With Scheduling (Localized Transactions) Under Varied Buffer Sizes

144

Improvement (%)
g

0
0 4 8 12 16

Number of Objects In Memory

20

Figure 11. Improvement Due to Clustering Alone

Under Varied Buffer Sizes

Improvement (%)
g

40+

304

204

104

T f 3+ b & .
Template Depth (Nodes)

Figure 13. Improvement Due to Scheduling
Under Varied Template Depth

145

Improvement (%)

30+
20—

104

o T
4 8 12 16 20

Number of Objects in Memory

Figure 12. Improvement Due to Clustering
With Scheduling Under Varied Buffer Sizes

Improvement (%)

40
30+
20

10

0 T T T T .
0 6] 10 12 14 16

Template Depth (Nodes)

- Figure 14. Improvement Due to Clustering Alone

Under Varied Template Depth

100-]
90 90
80 80~
70.] -
g 0 g 70. I P
- 604 - 604
=] =3
5 Q
g 50 g 50
9 4
o Q
=2 404 =8 40
=] E
- 304 = 30-
20 20
10+ 10+
0 0
o 6 8 10 12 14 16 0 2 2 2 32 2 52
Template Depth (Nodes) Template Width (Nodes)
Figure 15. Improvement Due to Clustering Figure 16. Improvement Due to Scheduling
With Scheduling Under Varied Template Depth Under Varied Template Branching
100 le
90 90
84
80 80
74
704 70
s % ~ 704 s 68
<~ E 63 & 67
E -t = 60 5758 3 58
Q QO 58 57
5 504 A £ 504 54 53 53
2 8 4
;___ 40 S 40-
= 30 n = 30
204 20+
10 104
0 T T 7 T" T 1 0 T T Y T T !
0 2 12 2 32 42 52 0 2 12 2 32 42 52
Template Width (Nodes) Template Width (Nodes)

Figure 17. Improvement Due to Clustering Alone
Under Varied Template Branching

146

Figure 18. Improvement Due to Clustering
With Scheduling Under Varied Template Branching

304

20+

10+

Ratio of Scheduling Function to Disk Access (%)

(=]

o

Connectivity

Figure 19. Ratio of Procedure Calls for Scheduling vs.

Procedure Calls for 1/O

References

[ACR88]

BuC79}]

[Che76)

{DKB89]

[FIL83]

[GoR83]

B. Alpem, A. Carle, B. Rosen, P. Sweeney and K.
Zadeck, Attribution as a Specification
Paradigm’’, Proceedings of the Symposium on
Practical Software Development Enviromments,
Boston, November 1988, 121-129.

O. P. Buneman and E. K. Clemons, “Efficiently
Monitoring Relational Databases’”, Trans.
Database Systems 4 (September 1979), 368-382.

P. P. Chen, ‘“The Entity-Relationship Model--
Towards 3 Unified View of Data’’, ACM Trans. on
Database Systems 1, 1 (1976), 9-36.

P. Drew, R. King and J. Bein, ‘A La Carte: A
Workbench Environment for Rapid DBMS
Construction and Experimentation **, Working
Paper, 1989.
S. Ford, J. Joseph, D. E. Langworthy, D. F. Lively,
G. Pathak, E. R. Perez, R. W. Peterson, D. M.
Sparacin, S. M. Thatte, D. L. Weils and S.
ZEITGEIST: Database Support for
Object-Oriented Programming, Springer-Verag ,
September, 1988.
A. Goldberg and D. Robeon, Smalltalk-80: The
Language and its Implementation, Addison-
Wesley, Reading, Mass., 1983.

147

[HaM81]

[HuK38a]

[HuK38b]

[Hud89]

[HuK39]

(HuK387)

[KeP76]

[Rep82]

[Rep84]

[Shi81]

M. Hammer and D. Mcleod, ‘‘Database
Description with SDM: A Semantic Database
Model”’, ACM Trans. on Database Systems 6, 3
(1981), 351-386.

S. E. Hudson and R. King, *‘CACTIS: A Database
System for Specifying Functionally-Defined
Data’, Proceedings of the Workshop on Object-
Oriented Databases, Pacific Grove, California,
September 23-26, 1986, 26-37.
S. E. Hudson and R. King, *
database for software environments’’,
Proc. of ACM SIGMOD Ind. Conf. on
Management of Data, San Prancisco, California,
May, 1987, 491-503.

S. E. Hudson and R. King, ‘“The Cactis Project:
Database Support for Software Environments’’,
IEEE Transactions on Software Engineering 14, 6
(June 1988), 709-719.

S. E. Hudson and R. King, *“An Adaptive Derived
Data Manager for Distributed Databases”,
Proceedings of the Second International Workshop
on Object-Oriented Database Systems, Bad
Munster am Stein-Ebenburg, FRG, September
1988, 193-203 .

S. E. Hudson, ‘‘Incremental Attribute Evaluation:
A PFlexible Algorithm for Lazy Update”,
University of Arizoma Technical Report, 1989.
Tech. Rep. 89-12. .

S. E. Hudson and R. King, “Cacti: A Self-
Adsptive, Concurrent Implementation of an
Object-Oriented Database Management System'’,
ACM Transactions on Database Systems,
December, 1989.

R. Hull and R King, “Semantic Database
Modeling: Survey, Applications, and Research
Issues’’, ACM Computing Surveys, September
1987, 201-260.

L. Kerschberg and J. E. S. Pacheco, *“A Punctional
Data Base Model”, Technical Report, Pontificia
Universidade Catolica do Rio de Janeiro, Rio de
Janeiro, Brazil, February, 1976.

T. Reps, *“‘Optimal-time Incremental Semantic
Analysis for Syntax-directed Editors’*, Conference
Record of the 9th Annual ACM Symposium on
Principles of Programming Languages, Jan. 1982,
169-176.

T. W. Reps, Generating Language-Based
Environments, MIT Press, Cambridge, Mass,,
1984.

D. Shipman, ‘“The Functional Data Model and the

Data Language DAPLEX™, ACM Trans. on
Database Systems 6, 1 (1981), 140-173.

