
Query Processing Method for Multi-Attribute Clustered Relations

Lilian HARADA, Mipki NAKANO, Masaru KITSUREGAWA, Mikio TAKAGl

Institute of Industrial Science
The University of Tokyo

22-1, Roppongi 7, Minato-ku, Tokyo, Japan

Abstract
In this paper we introduce a new query processing

method for multi-attribute clustered relations. Many pro-
posals on multi-attribute clustered relations have been
done so far. However, an efficient query processing
method for these relations has not been proposed and
analyzed yet. The multi-attribute clustered relations treat
all attributes symmetrically, at the cost of losing the
sequential data order between some specific pages,
Thus, if the naive query processing methods used for
single-attribute clustered relations, which rely on the
sequential order of the clustered attribute, are straightly
used for the multi-attribute clustered relations, it results
in a high I/O cost.

Here, aiming at reducing this high ID cost caused
by the problem of no total order presented by the multi-
attribute data, we introduce a query processing method
which emphasizes the page loading strategy. In this
query processing method we introduce a new concept
called wave. Wave is a set of pages which represents
the unit of loading from the secondary storage to the
main memory. Our query processing method uses the
information of the multi-attribute clustering index to
group pages, whose data are not ordered, into waves,
which are ordered and must fit in the memory size as
much as possible. Thus the execution of the relational
operation for the tuples in the waves results in the execu-
tion of the whole multi-attribute clustered relation with
the minimum I/O cost. We evaluate the proposed model
using the KD-tree and the Grid-file, which are represen-
tative multi-attribute clustering methods. Simulation
results show that this query processing method is

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

efficient and the queries for multi-attribute clustered tela-
tions can be executed with almost one relation scan,
which is the lowest I/O bound.

1. Introduction
In this paper we introduce a new model of rela-

tional query processing for multi-attribute clustered mla-
tions. The multi-attribute clustering method provides a
file structure that treats all attributes symmetrically, that
is, avoids the distinction between primary and secondary
keys. The base space of the relation is considered as the
Cartesian product of the attribute domains and is parti-
tioned along the axis of multiple attributes by the multi-
attribute clustering methods. The multi-attribute cluster-
ing methods can be classified into two broad categories :
the adaptable method which partitions the base space
according to the data distribution [1,2,3,6,8,11,18,211,
and the fixed method which partitions the base space at
fixed places [5,12,16,17,19,20]. Now that there are so
many proposals of data structures for multi-attribute clus-
tering, it is time to study the relational query processing
for these data structures.

Concerning the query processing for multi-attribute
clustered relations, the above-mentioned papers inten-
sively discuss the cost of the retrieval (selection) opera-
tion, without examining the other relational operations
such as join, aggregate by group and projection with
duplicate elimination. The difficulty presented by multi-
attribute clustered relations for query processing is that
natural total orders of multi-attribute data do not exist.
When the relational queries are applied to the key attri-
bute for which the relations are ordered, the query execu-
tion, which requires comparison of tuples with the same
key attribute value, can be done with only one scan of
the ordered relations. For example, when relations have
B-trees which provide clustering on a single key attri-
bute, their join on this key attribute can be done with
one scan of each relation using the sort-merge algorithm.
On the other hand, multi-attribute clustered relations are
partitioned in pages according to the tuple’s values for
multiple attributes, which results in pages without
sequential data order. Thus, the simple processing
methods used for single-attribute clustered relations, such

59

as the ones using B-trees that has pages in sequential
order of the clustering attribute, can not be applied to the
multi-attribute clustered relations with a reduced I/O
cost.

A query processing model which efficiently utilizes
the information of the multi-attribute clustering index has
not been proposed and evaluated yet In this paper we
aim at reducing the high I/O cost of relational processing
caused by the problem of no total order presented by
multi-attribute data. We introduce a query processing
model for the multi-attribute clustered relations, which
emphasizes the page loading strategy. The new concept
of wave is the key point of the query processing model.
Because the whole relation does not fit in the memory at
once, the base space of the relation is divided into sub-
spaces which are used as processing units. Wave is a set
of pages which actually holds the tuples within these
subspaces, and represents the unit of loading from the
secondary storage to the main memory. In our query
processing model pages, whose data are not ordered, are
grouped into waves, which are ordered according to the
processing attribute, that is, the attribute referred to by
the relational operation, and must fit in the memory size
as much as possible. Thus, the execution of the rela-
tional operation for the tuples in the waves results in the
execution of the whole multi-attribute clustered relation
in a sequential order for the processing attribute, with the
minimum I/O cost. The waves are determined from the
information of the multi-attribute clustering index, which
means that this query processing model is flexible in
terms of the multi-attribute clustering data structure and
does not request any specific data structure.

In this paper, using the concept of wave, we
describe in detail this query processing model which
aims at reducing the I/O cost. Then, in order to validate
the efficiency of the query processing model we concen-
trate on the join operation. which is the relational opera-
tion of highest I/O cost. Based on the proposed model,
we present join algorithms which determine the waves
from information contained in the multi-attribute cluster-
ing in&x by using the KD-tree (adaptable method) and
Grid-file (fixed method). We verify the efficiency of
these algorithms by simulations which show that with the
best proposed algorithms, the wave tuples to be pro-
cessed are always on memory and thus the query pro-
cessing for non-resident relations can be performed with
only one scan of the relations, which is the lowest I/O
bound. We conclude that the presented query processing
model provides an efficient framework for multi-attribute
clustered relations.

Section 2 briefly describes the multi-attribute clus-
tering method. Section 3 introduces the concepts of

wave, processing range and cluster which are the base of
the query processing model. Based on this query pro-
cessing model, sections 4 and 5 describe and evaluate the
join algorithms for the adaptable and fixed multi-attribute
clustered relations, using the KD-tree and Grid-tile,
respectively. Finally, section 6 presents our conclusions.

2. Multi-Attribute Clustering Method
In this section we first introduce some notation and

then we present the multi-attribute clustering of the
adaptable and fixed methods.

Let R be a relation having K attributes
Al, AZ, Ak composed of tuples t = (at. u2, ac). D
is the base space of relation R and denotes the Cartesian
product of the domains of attributes referred to by the
relation, i.e.,

D = fi dom(Ai) = fi [MINi, MAXi).

R is a set c?physical tupl;‘and is a subset of D.
The relation is partitioned in pages, which are its

unit of access and consists of disjoint sets of actual
tuples. Let relation R be partitioned in IRI pages Pi, j =
1 , RI. The spacf Pj of each page Pi is given by

Pj = n [%j, Pij)

(qj < pij, l;$ Pij E [MINi, MAXi) for all i).
While relation R is the actual set of data, composed of
tuples grouped in pages, the corresponding base space D
of relatiy; ,R contains ys,page spaces. Thus, we have

thatR=xPjandD>xPj.
j-1 j=l

The determination of the pages spaces, i.e., the
values of Qii and Pij, differs for the adaptable and fixed

multi-attribute clustering methods. As stated in the
introduction, the adaptable method partitions the base
space according to the data distribution, and the fixed
method does it at fixed places.

Fig.l(a) shows an example of relation partitioning
for the adaptable method. In this example the base
space of the relation is two-dimensional and each page
can contain a maximum of 3 tuples. Initially there is
only one page a containing tuples #1,#2#3. The inser-
tion of tuple #4 causes page a to overflow and, thus the
base space to be split with a boundary line at value ui of
the tuple that evenly divides the whole set of tuples. In
this example the value is determined as ~1, that is the
value a 1 of tuple #2. Then tuple #5 is inserted without
overflow. The insertion of tuple #6 causes the split of
page b with a boundary line at vz, which is the value uz
of tuple #3, generating a new page 6’. Thus the respec-
tive page spaces for u , b and 6’ are given by :

60

B = [cIIJfAX ,) x [MfN2y2) and
B’ = [~df~d x [v2&~2l.

Tuples #7,#8 are inserted with no page overflow. Thus,
the insertion of more tuples in the relation causes recur-
sive partitioning of its base space until the number of
tuples contained in each page is less than or equal to 3
tuples (i.e., the page size).

Fig. 1 Multi-Attribute Clustering Methods
(a) Adaptable (b) Fixed

For the fixed method, the boundary lines partition
the base space of the relation at fixed values of each
attribute domain and cut the entire base space as shown
in Fig.l(b). A single page u of tuples #1,#2,#3 is ini-
tially assigned to the base space and overflows when
tuple #4 is inserted, which causes the splitting with
boundary line at the fixed value 6,. generating a new
page b. Then tuples #5,#6 are inserted with no page
overllow. The insertion of tuples #7,#8, however, causes
the overflow of pages a and b which are split with
boundary line at value &, generating pages a’ and b’ ,
respectively. Thus the respective page spaces for
a, a’, b and b’ are given by :

Comparing the fixed and adaptable methods, we
see that they basically differ in two points : first, for the
fixed method the value of the boundary lines is pre-
determined, while for the adaptable method it depends
on the data distribution; furthermore, the boundary lines
cut the entire base space of the relation for the fixed
method, while they become progressively shorter for the
adaptable method. As can be easily observed from

Fig. l(a) and (b), these differences imply that the load-
factor for the fixed method is lower than that for the
adaptable method.

3. Model of Query Processing for Multi-Attribute
Clustered Relations

In this section we present a query processing
model for multi-attribute clustered relations which
emphasizes the page loading strategy. We consider rela-
tions clustered on k attributes A I, A2, At, and I&-
tional operations referring only one of the R attributes,
i.e., referring attribute Ai, for i I R. From now Ai is
called processing attribute.

When the memory size is small and the relation
scarcely fits in it, the index information can be very use-
ful for efficiently accessing the relation. However, the
multi-attribute clustered relations are characterized by
treating all attributes symmetrically at the cost of losing
the sequential data order between some specific pages.
Thus, for example, the search for a partial range of a sin-
gle attribute in a multi-attribute clustered relation
requires much more page accesses than in a relation
clustered on this single attribute [19]. In Fig. 2 we illus-
trate an example of a relation symmetrically clustered on
attributes A1 and AZ, with pages whose multi-attribute
data are out of order. In this case the relation is com-
posed of 4 pages Q , (I’, b and b’ . We can see that
between pages u’ (composed of tuples (1,4) and (3,7))
and b (composed of tuples (6,3) and (9,2)), for example,
there is a sequential order of the values of attribute Al.
However, between pages c1 (composed of tuples (2.3)
and (4,1)) and a’ (composed of tuples (1,4) and (3,7)), a
sequential order of attribute A I values is not maintained.

tuplc t =(a, ,aJ

Fig. 2 Page Spaces for a Multi-Attribute Clustered Relation

Thus, the processing methods used for single-attribute
clustered relations, which rely on the total order of the
processing attribute value among pages and require only
one scan of the relations, can not be efficiently applied
for the multi-attribute clustering case.

In our query processing model, because the mla-
tion is larger than the memory, we use information of the

61

multi-attribute clustering in&x to divide the base space
of the relation into subspaces which are used as process-
ing units. These units are determined so that a sequen-
tial order of the processing attribute between them is
maintained. In this query processing model, the determi-
,nation of these processing units is fundamental and is
based on new concepts which we introduce here : the
processing range, cluster and wave. The domain of the
processing attribute Ai is divided in disjoint parts, each
of which is called processing range. Cluster is the log-
ical subspace of the relation which may contain the
tuples whose attribute value Ui is within the processing
range. Wave is the set of physical pages of the relation
which contains the cluster, that is, that actually holds the
tuples whose attribute value ai is within the processing
range. Cluster is a subspace of the relation which is log-
ically determined, and is independent of the physical
pages of the relation, while the waves are the actual set
of physical pages that are accessed from the secondary
storage. In this query processing model, in order to
minimize the number of page accesses from the secon-
dary storage, the processing range is determined so that
each wave fits in the memory and each cluster overlaps
with the space of the pages in the correspondent wave as
much as possible. For each processing range, the
correspondent wave is loaded in the memory and its
cluster is computed; the operation is repeated for all dis-
joint processing ranges and computation of the whole
relation is done with a reduced number of page accesses.

In the next subsection 3.1.. we briefly present the
notations of cluster and wave. Then, in subsection 3.2.,
we discuss the processing flow of the model, showing
how the processing ranges, the clusters and the waves
may be determined to reduce the number of page
accesses.

3.1. Cluster and Wave

Consider a processing range [xi, Si), where
k 16i and a, & E IMINi, MAXi). We &fine
cluster of [G, $) (Cfxi, 5,)) as the space given by :

C[q.+) = [M~Nld~d X * * * X 1%. $1
x . . . X [Mlnr, flmk).

Thus the cluster of a processing range [xi, $) for an
attribute Ai represents the subspace of the relation whose
tuples have the attribute value Ui in this range. Fig. 3(a)
shows an example for a 2-attribute clustered relation
where dom(A i) = [OJO) and dom (AZ) = [0,8), illustrat-
ing a cluster of [4,6) for attribute A 1.

Now we &fine wave of 1%) 6i) (Wh,., 5,)) as the
set of pages which contains the cluster Clxi, ai) i.e.,

Wfxi,ai) = {Pj I pj n C[,,., 5) f $. for j = L.1~1.

Thus the wave of a processing range [xi, Si) for an attri-
bute Ai represents the set of pages which can actually
contain tuples with the value of attribute Ai in this range.
Fig. 3(b) shows the example of wave of [4,6) for atui-
bute A,.

04 6 10 A, 04 6

,rtiz range
10 A,

pluczrange

(a) (b)

Fig. 3 (a) Cluster (b) Wave

3.2. Query Processing for Multi-Attribute Clustered
Relations

For the base space of a relation, it is easy to parti-
tion it in clusters which maintain a mutual sequential
order of the processing attribute and can be varied in
size and number. When considering the clusters, we are
only considering a logical space of tuples. We am not
considering the actual tuples which are ‘contained in this
logical space and are physically housed in pages. In
order to reduce the number of page accesses for the
query processing, however, it becomes important to take
into account the pages and their space, which are
registered in the multi-attribute clustering index of the
relation. In the following, we illustrate the query pro-
cessing model flow and show how the processing ranges,
clusters and waves are determined with an example for
the join operation.

Fig. 4 shows an example of the join operation for
relations R and S clustered on attributes A 1 and AZ. and
joined on attribute A *. In this example, both relations R
and S are composed of 4 pages and the available
memory space is 3 pages. From the multi-attribute clus-
tering index of relation R, the processing range of the
first step is determined as [0,4) as shown in Fig. 4(a).
First, the wave WLo,+ of relation R, which is composed
of 2 pages, is loaded in the memory. The wave Wp4) of
relation S, also composed of 2 pages, is loaded in the
remaining single memory page, one by one, as shown in
Fig. 4(b). The join of the tuples of clusters Cl,-,,+ of
relations R and S on memory can be processed using any
of the conventional join algorithms, such as nested-loop,
sort-merge or hash-based. In this example, the whole
cluster C,, of relation R is loaded in the memory at
once. On the other hand, the cluster Ct,,, of relation S
is loaded in the memory in two stages, since only one

62

Relation R

0 4 6 10 -
proccsing range

Relation S

step I

0 4 2 10 0 4 620

processing range processing mge

0 5 810 0 5 810

step 2 step 3

(a>

space reserved for relation R

space reserved for relation S

Fig. 4 Query Processing Model Flow for the Join Operation
(a) Processing Flow (b) Wave Loading

memory page is available for the loading of the two
pages of the wave Wlotr) of relation S. Now, ,let analyze
how would the pages be accessed in the case of other
processing ranges. First, let consider the case of process-
ing range [0,3). The waves W10,3) of relations R and S
would be the same as Wio,4j. Thus, the tuples of cluster
C,,dJ of relations R and S would be loaded in the
memory but not processed, which would increase the
number of page accesses of relation S since these pages
would be re-accessed for the computing of the processing
range of the next step. Now, let consider the case of the
processing range [0,6). The waves W,, of relations R
and S would be composed of 3 pages. Thus, neither of
them could be entirely loaded in the memory, resulting
in their being read from the secondary storage in a
nested-loop way with too many page accesses. Thus, in
the example shown in Fig. 1, the determination of the
processing range of the first step as [OP), so tbat the
wave WLo,4j of relation R could be loaded in the memory
at once, and the cluster CtO,d, was the largest cluster
entirely contained in wave WI,, of relation R, was
efficient to reduce the number of page accesses.

Now, let consider the processing of the second
step. Once the computing over the processing range
[0,4) is finished, the page of relation R whose space was

entirely contained on cluster Cl,, (i.e., has had all its
tuples processed), is unloaded. Then, determining the
processing range as [4,6) and by loading a new page of
relation R into the memory, the wave “propagates” to
Wi4,6j for the second step. Again, the wave size of rela-
tion R is 2 pages and only 1 memory page is reserved to
load the 3 pages of the wave W14,61 of relation S. After
the processing of clusters C,,Q of relations R and S, the
page of relation R whose space is entirely contained in
the clusters of the processing ranges [0,4) and [4,6) (i.e.,
has had all its tuples processed) is unloaded from the
memory. In the last step, the processing range is deter-
mined as [6.10) and the last page of relation R is loaded
in the memory. The computing of the clusters Clklo) of
relations R and S is executed in the same way as the
previous steps. This procedure is repeated until comput-
ing over the entire domain of A i is finished.

In the proposed query processing model, by over-
lapping as much as possible the physical pages of the
wave to be loaded in memory with the logical space of
the cluster to be processed, processing goes on in the
attribute sequential order, with a low number of page
accesses. Using this query processing model, relation R,
from whose multi-attribute clustering index the process-
ing ranges are determined, is accessed only once and the
number of page accesses of relation S can be minimized.

Because the join operation is the most I/O costly
and the most intensively studied among the relational
operations, in the next two sections we &tail join algo-
rithms for adaptable and fixed multi-attribute clustered
relations focusing on the join operation, in order to vali-
date the efficiency of this query processing model which
emphasizes the page loading strategy.

4. Join Processing for Adaptable Multi-Attribute
Clustered Relations

The KD-tree indexing is one of the most known
multi-attribute clustering mechanisms based on the adapt-
able method [1,2]. Using the concepts of cluster, wave
and processing range (for the join operation, join range)
introduced in the previous section, we present join algo-
rithms for non-resident relations indexed by totally bal-
anced KD-trees. We call them KD-join algorithms. In
[15] we have evaluated the KD-join algorithms in detail
and thus, we only present some representative results
here. In the following we present some notations and
assumptions of KD-trees, and then introduce two basic
and two extended KD-join algorithms with their respec-
tive simulation results..

4.1. KD-Tree
For the KDtree indexing, at each partitioning step,

63

the base space of the relation is partitioned with boun-
dary lines determined so as to evenly divide the set of
tuples. Let us consider a KD-tree indexed on R attri-
butes. The partitioning step is recursively applied with
boundary lines at values of attributes changed in cyclic
order as Al ,..., At, A, ,.... For each partitioning step, a
node of the KD-tree is constructed. When the total
number of partitioning steps is d, we say that the depth
of the KD-tree is d. For simplicity, here we consider
totally balanced KD-trees. This means that when the
depth of the KD-tree is d, the relation is partitioned into
IRI = Zd pages. Thus, there arr,IlU pages Pi (j = l,... JRl)

with space pi such that D = C pi.
j=l

Consider a value yi E [MliVi, MAXi). From the
definition of wave presented in the previous section,
Wg,aJ is the minimum wave size that is possible and

equals 2
(+

(d-1)
pages. From now we denote it mws =

2 pages.
Now let us introduce the definition of wave real

and wave f rant . Consider a wave of range [ri , Si)
(W,i~i$. For this wave, we define wave rear W, and
wave front W, as :

wave rear W, = u aij for Pj E W[yj,yj) ; and
wave front wf = TV Pij for Pj E Wiq,ai, ,

Fig. 5 illustrates an example for the wave Wlrl,+ In this
case, W, = (0,4} and W, = (6,lO).

A2t Wave

front

0 4 6 lo A,

Fig. 5 Wave Rear and Wave Front

4.2. Basic KD-Join Algorithms
Let us consider the join of two relations R and S

with IRI and ISI pages, respectively, so that IRl (= 2d
pages) 5 IS, relation R and S indexed by a KD-tree of
dimension R , and the memory size is IM pages OM GC
IFU).

4.2.1. Description of Basic KD-Join Algorithms
In the basic KD-join algorithms, the join ranges

are determined from the KD-tree index of the smaller
relation R. Considering a wave W of relation R, its

wave rear (W,), and wave front (W,), at a certain step
t, the join range to process at this step t is given by :

[mw(Qj E W’,)t), miNfhj E Cw~)t)). SO that
mm(%j E (W,),) = min@ij E <W~>(&h
Fig. 6 illustrates it with an example. For each step, the
join range is determined as the largest “inner” range of
the wave of relation R. Successive join ranges are con-
tiguous in the domain of attribute A 1.

wave, AZ+ Wavc2 A,t wavc3

Fig. 6 Join Ranges for KD-tree Indexed Relations

We define two basic KD-join algorithms : algo-

join

rithm KD-N. (Narrow) and algorithm KD-W (Wide),
Algorithm KD-N is the one that uses a narrow

wave, that is, the wave of relation R has the minimum

wave size which is given by mws = 2
(df)

pages. The
idea of algorithm KD-N is to load the smallest wave of
relation R in memory, and to reserve all the remaining
memory space to load the wave of relation S.

Algorithm KD-W is the one that uses the wide
wave, that is, the wave of relation R has the maximum
size that can be loaded in the memory, which means,
IM-1 pages. The idea of algorithm KD-W is to load the
largest wave of relation R in memory, and to reserve
only one memory page to load the wave of relation S.

In the query processing model, in each step, the
wave of relation R has priority to be loaded in the
memory. Thus, the pages of relation R are loaded in the
memory only once, while some pages of relation S are
reloaded, depending on the available memory space.
Following, we illustrate the determination of the join
ranges, the waves and the clusters of relation R for algo-
rithms KD-N and KD-W with the examples in Fig. 7 and
8, respectively. In the examples, the relations R and S,
which are composed of 16 pages and indexed by 2-
dimensional KD-trees, are joined on attrieute A 1. Let us
suppose that memory size IM = 7 pages.

Algorithm KD-N :
In this example the narrow wave of relation R has

mws = 4 pages. As shown in Fig. 7, the join of relations

64

R and S is processed in six steps. In the first step, the
join range is determined as [0,3) and wave Wt,-,s) of rela-
tion R composed of four pages is loaded in the memory.
The wave WIo,3j of relation S is loaded in the remaining
three pages of the memory, and the join of the clusters
C,, of relations R and S on memory is processed using
any of the conventional join algorithms. Once the pro-
cessing of the first step is finished, the two pages of rela-
tion R of which all the tuples have been processed are
unloaded. For the second step, the join range is deter-
mined as [3,5). Thus, two new pages of the wave WB5)
of relation R are loaded. The wave W13,51 of relation S
is loaded in the remaining memory and the processing of
clusters Cts,s) is done. As shown in the figure, this pro-
cedure is repeated for join ranges [5,7), [7,11), [11,14),
[14,16) when R and S are joined in the entire domain
[0,16) of the join attribute Al.

step I

step 4
.,

::.<:::::s:
*zr-
:::::::::::l:

LITa

in
.>
:.:.:
;:$
:+

7-11

step 3

step 6 ’

14-16

Fig. 7 Basic KD-Join Algorithm KD-N

Algorithm KD-W :

In this example the wide wave of relation R has
M-1 = 6 pages. As shown in Fig. 8, the join is pro-
cessed in four steps. The processing is analogous to
algorithm KD-N, the difference being in the join ranges
determined as [OS), [5,7), [7,14) and [14,16). After
loading a wave of 6 pages of relation R, the conespon-
dent wave of relation S is loaded in the remaining one
memory page.

step 2
,.,.,. :.:.

.:.:

m

:.:::..,
i::. ..’ .:., . .

5-7

StCD 3 >.. .-., ..:. .,:;$>;:f.; :‘:: ..,.; . . : : :.. . . : m :. . . 1.. 7 -14

step 4 /, ..:y :j i..::.. . . q ::.:..~;.i::>& ,..
Fig. 8 Basic KD-Join Algorithm KD-W

14-16

4.2.2. Performance Evaluation of Basic KD-Join
Algorithms

Because the most expensive operation in the join
processing of non-resident relations is the I/O operation,
we evaluate the basic KD-join algorithms by the number
of page accesses. Following, we present the simulation
results for relations R and S with 64 Ktuples, indexed by
2dimensional KD-trees and with uniform data distribu-
tion as the one exemplified in Fig. 9. The page size is
16 tuples.

Relation R Relation S

Fig. 9 An Example of Uniform Data Distribution

+KD-N
+KD-W

-1
04 .,.,.,.,.,~,~,~,. I

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.6 1.9 2.0

memory rlze (mm)

Fig.10 Simulation Results of Basic KD-Join Algorithms

In Fig. 10, the vertical axis is the total number of
page accesses and the horizontal axis is the memory size.
The memory size is varied from l.lmws to 2mws, where
mws = 64 pages. The simulation results show that when
the memory size increases, the number of page accesses
decreases. We can observe that algorithm KD-W which
uses the wide wave presents the best performance.
Therefore, we conclude that, due to insufficient memory
space to hold all the necessary pages in each step, the
fewer the number of steps, the better the performance.
On the other hand, we also verify that the join can be
performed with one scan of each relation as the wave is
narrow and the available memory space is sufficient to

65

hold at least the pages of relation S to be used again in
the next step. Thus algorithm KD-N achieves the ideal
number of page accesses for the range of memory size
variation.

43. Extended KD-Join Algorithms

43.1. Description of Extended KD-Join Algorithms

Based on the analysis and performance results of
the basic KD-join algorithms, we introduce some
modifications in these algorithms with efforts to utilize
the memory space more efficiently in order to :
(a) enlarge the available memory space in each step to
hold mote data of relation S, for algorithm KD-N, and
(b) enlarge the wave size to decrease the number of steps
for algorithm KD-W.

In order to load and unload data in page units, the
basic KD-join algorithms maintain tuples which have
already been processed and are not necessary any more
in the memory. Here we introduce a garbage collection
mechanism which dynamically discards the tuples that
are no longer necessary after the processing of each step,
increasing the effective space of the memory for each
step and allowing the loading of mom pages in this free
space. Here we call these new algorithms extended
KD-N and extended KD-W.

Relation R

joi

jo n range 2
r

Relation S

Fig.11 Garbage Collection Mechanism on
Extended KD-Join Algorithms

As exemplified in Fig.11 for the case of algorithm
extended KD-N, utilization of this dynamic garbage col-
lection mechanism, after processing of the join range in
the lirst step, allows the effective memory space for the
second step to be enlarged if the dotted portion is dis-
carded as garbage and only the dashed portion is main-
tained in the memory.

43.2. Performance Evaluation of Extended KD-Join
Algorithms

Fig. 12 shows the number of page accesses of the
extended KD-join algorithms for a uniform data distribu-
tion.

i algorithm I

+ extended KD-N
+ enended KD-W

0 :
2
i x 8 L
“E

. each relation

2 4036-

o-l.,.a .,.,.,.,.,.,.I
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.3 2.0

memory rlra (nlWrr)

Fig.12 Simulation Results of Extended KD-Join Algorithms

As expected, all the extended algorithms reduce the
number of page accesses in comparison with the basic
KD-join algorithms. Algorithm extended KD-N presents
the best performance and reduces the l/O cost to one
scan for each relation in most of the memory size varia-
tion range. As opposed to the best basic algorithm
@CD-W), the best extended algorithm (extended KD-N)
is the one with nartow wave size, i.e., the one with the
largest number of steps. With this algorithm extended
KD-N, the effective memory size is almost enough to
hold the narrow clusters of both relations to be processed
in each step and thus the join can be performed with
almost one scan of each relation, which is the lowest I/O
bound. Here we evaluate the algorithms with the
number of page accesses only. However, we have
implemented these algorithms and have already reported
in [9] that the overhead implied by the garbage collec-
tion mechanism was negligible in comparison with the
disk read time, and the cost of the join operation was
completely I/O bound. Therefore, the extended KD-join
algorithm showed to be very efficient since it reduces the
total execution time to one scan I/O cost.

5. Join Processing for Fixed Multi-Attribute
Clustered Relations

In order to detail the join processing for multi-
attribute clustered relations of the fixed method, we
choose the Grid-file, which is the most representative
fixed method [19]. In the following we present some
notations of Grid-files and then two basic and two

66

extended join algorithms. We call them Grid-join algo-
rithms.

5.1. The Grid-File
In the Grid-file, the insertion of tuples causes parti-

tioning of the base space at prefixed values, generating
grid subspaces. The assignment of grid subspaces to the
data pages is the task of the grid directory. A grid
directory consists of two parts : lirst, a dynamic k-
dimensional array called grid array ; its elements
(pointers to data pages) are in one-to-one correspondence
with the grid subspaces of the partition; and second, k
one-dimensional arrays called lineor scales ; each scale
defines a partition of a domain of the relation. For the
sake of notational simplicity we present the case k = 2.
A grid directory G for a two-dimensional space is
characterized by two integers nx > 0, ny > 0 which
gives the extent of the directory. The grid directory con-
sists of the grid array, which is a two-dimensional array
G(O...,nx-l,O...,ny-1) and two linear scales which are
one-dimensional arrays X (O...,n.x), Y (0 ny).

4

A1

d 2’ 4 d ~4
linear scale

ofA

Fig. 13 Grid Directory

Efficiency dictates that only a subset of all possible
assignments of grid subspaces should be allowed to
pages. All tuples in one grid subspace must be stored in
the same page. However, if each grid subspace has its
own data page, page occupancy becomes low. Hence in
the Grid-file several grid subspaces share a page. Fig. 13
shows a typical assignment of grid subspaces to pages.

5.2. Basic Grid- Join Algorithms

Based on the query processing model introduced in
section 3, here we present the join algorithms for Grid-
files, considering Grid-files R and S with IRI and ISl
pages, respectively, such that IRI 5 ISl. The available
memory size is I M pages such that IM << IRl .

52.1. Description of Basic Grid- Join Algorithms

In the Grid-join algorithms, the join ranges are
determined from the grid directory of the smaller relation
R. We define two basic Grid-join algorithms : algorithm
G-N (Narrow) and algorithm G-W (Wide).

Algorithm G-N is the one that uses a narrow join
range. The narrow join range is determined by consecu-
tive elements of the linear scale of the attribute Ai being
joined. Thus, for example, if the linear scale of Ai is
given by X(O,l,...,ux), the narrow join range of step r is
given by :

[X(t-l),, X(r),), such that X(t-l), = X(t-1)(,-r,,
for t=l,...~rx.
Thus, there are nz narrow join ranges which are deter-
mined as :

[X(O), X(l)), W(l), X(2)), a*., LX@-1). X(m)).
The idea of algorithm G-N is to load the smallest wave
of relation R in memory, and to reserve all the remaining
memory space to load the correspondent wave of relation
S.

Algorithm G-W is the one that uses the wide join
range. The wide join range is determined by elements of
the linear scale of the attribute Ai, such that the respec-
tive wave is the largest one that can fit in memory.
Thus, for example, if the linear scale of Ai is given by
X (O,~,...JIX), the wide join range of step r is given by :

[X(i),, XUh), such that sizdWp(;),,x~),)) s
IM-1 and sizeOf(W~x(i),,x(j+l),)) > IM-1; and X(i), =

x o’)(r-1).

Following, we illustrate the determination of the
join ranges, the waves and the clusters of relation R for
algorithm G-N and G-W with the examples in Fig. 14
and 15, respectively. In the examples, the Grid-files R
and S are clustered on two attributes A 1 and AZ. and R
and S are joined on attribute A 1. Let us suppose that
memory size IM = 7 pages.

Algorithm G-N :
In the example shown in Fig. 14, the linear scale

of attribute A.l for relation R is given by
(0,2,4,8,10,12,14,16). Thus, in the first step, the narrow
join range is [0,2) and the waves Wpp of relations R
and S are loaded in the memory and the clusters C102)
are processed. After this processing, the two pages of
relation R, all of whose tuples have been processed, are
unloaded and then the waves of both relations on the
second join range, that is, [2,4) are loaded and processed.
This procedure is repeated for the join ranges [4,8),
[8,10), [10,12), [12,14) and [14,16), when R and S are
joined in the entire domain [0,16) of the join attribute
AI.

67

step 1 step 2

Fig. 14 Basic Grid-Join Algorithm G-N

Algorithm G-W :
In this example the wave of relation R can be

sized at maximum M-1 = 6 pages. As shown in Fig.
15, the first join range is [0,4) and the 6 pages of the
wave Wlop) of relation R are loaded in the memory. The
correspondent wave WIon of relation S is loaded in the
remaining 1 memory page, and the clusters CIo,s) are
joined. In the same way, the join ranges [4,8), [8,10),
[10,12), [12,16), whose correspondent wave sizes for
relation R are 4.4, 5 and 6 pages, respectively, are pro-
cessed in the next 4 steps.

joiag*
6

joinge jOii;;np

s1cp 4 step 5

d24 I I=21416 0 2 4 “‘6
join rmnge pmige

Fig. 15 Bask Grid-Join Algorithm G-W

53.2. Performance Evaluation of Basic Grid-Join
Algorithms

The simulation results are for Grid-files R and S
which are clustered on 2 attributes, have 64 Ktuples and
random data distribution as the one exemplified in Fig.
16. The page size is 16 tuples.

Relation R Relation S

Fig. 16 An Example of Uniform Data Dlstributioa

algorithm

9 G-N
+ G-W

4096-

4

04
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

memory size (mws)

Fig. 17 Simulation Results of Basic Grid-Join Algorithms

In Fig. 17, the vertical axis is the total number of
page accesses and the horizontal axis is the memory size.
The memory size is varied from mws to 2mws, where
mws = 64 pages and means the minimum wave size
mws when considering the relation R indexed by a KD-
tree. From Fig. 17 we see that the curves of algorithms
G-N and G-W almost coincide. For memory size larger
than 1Jmws , the number of page accesses is reduced to
one scan of each relation, because the waves of both
relations fit in the memory. When the memory size is
smaller than lSmw.r, the curves show a linear increase
with decreasing memory size. This is because, in each
step, the wave of relation R fits in the memory, and thus
the number of page accesses is inversely proportional to
the memory space reserved to relation S. When the
memory size is reduced to ~8 pages, the curves indi-
cate an abrupt increase because the memory size is not
enough to maintain the waves of both relations, which
are read from the secondary storage and processed in a
nested-loop way.

68

5.3. Extended Grid-Join Algorithms 20480

algorithm

53.1. Description of Extended Grid-Join Algorithms

As in the case of the’KD-join algorithms, we intro-
duce a garbage collection mechanism which discards the
unnecessary tuples as soon as possible in order to
increase the effective memory space. In algorithm
extended G-N, the garbage collection mechanism
increases the effective memory space used for the larger
relation. On the other hand, in algorithm extended G-W,
it increases the effective memory space used for the
smaller relation and thus, enlarges the wide join range.

Relation R

Relation

joiklr&ge I -
join range 2

s

Fig. 18 Garbage Collection Mechanism on
Extended Grid-Join Algorithms

As exemplified in Fig.18 for the case of algorithm
extended G-N, with this dynamic garbage collection
mechanism, after processing the join range in the first
step, the effective memory space for the second join step
is enlarged if the dotted portion is discarded as garbage
and only the dashed portion is maintained in the
memory.

53.2. Performance Evaluation of Extended Grid- Join
Algorithms

Fig. 19 shows the number of page accesses from
simulation results for the extended Grid-join algorithms
using relations R and S with uniform data distribution.
As shown by the figure, the introduction of the garbage
collection mechanism increases the effective memory
space so that the number of page accesses is reduced to
one scan of each relation, which is the lowest I/O bound,
in almost all the memory size variation. Comparing the
result of Fig. 19 for the Grid-file with the result of Fig.
12 for the KD-tree indexed relation, we can see that
although both of them minimize the number of page
accesses to ‘one scan of each relation, the KD-tree

* emrlded GN
+ ratended Q-W

one ecan for
eech reletlon

OI
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.6 1.9 2.0

m*mory size (mm)’

Fig. 19 Simulation Results of Extended Grid-Join Algorithms

requires more available memory space than the Grid-file
to achieve this ideal I/O cost. We can also observe that
the resultant minimum number of page accesses for the
KD-tree is lower than that for the Grid-file. ‘Ihis is
because, as a characteristic of the Grid-file, it presents
lower load-factor and thus, more pages than the KD-tree
indexed relation.

6. Conclusion
In this paper we introduced a query processing

model which aims at reducing the high I/O cost of query
processing for multi-attribute clustered relations caused
by the problem of no total orders presented by the
multi-attribute data. In this query processing model we
introduced the concept of wave, which is a set of pages
determined from the multi-attribute clustering index, and
is used as the unit of loading from the secondary storage
to the memory. The wave is determined according to a
page loading strategy, so that the wave “propagates” over
the base space of the relation in sequential order along
the processing attribute axis with a reduced number of
page accesses.

For the evaluation of the proposed model, we con-
centrated on the .join operation which is the most costly
relational operation and proposed join algorithms for
multi-attribute clustered relations of the adaptable and
fixed methods. These join algorithms were evaluated
with simulations for the KD-tree and Grid-file, respec-
tively. In the join processing of relations without a clus-
tering index, the hash-based algorithms such as
GRACE-hash [13,14] and Hybrid-hash [4,7]. which have
proved to be the best, requires an I/O cost of one write
and two read scans of the relations. The simulation
results of our best proposed algorithms has shown that an
efficient utilization of the multi-attribute clustering index

69

can reduce the I/O cost of the join of very large relations
to the minimum one read scan of the relations. Here we
have only presented the performance evaluation for the
join queries, showing results for relations with uniform
data distribution and clustered on two attributes. How-
ever, this query processing model is also valid and
sufficient for the efficient processing of the other rela-
tional unary queries like aggregate by group and projec-
tion with duplicate elimination, for relations with any
data distribution and clustered on higher number of attri-
butes [lo].

Each multi-attribute clustering method has its
strengths and weaknesses, as well as suitable environ-
ment. The selection of a multi-attribute clustering
method by the user is application-dependent and also a
database design problem. However, the concept of wave
and the model introduced in this paper are general, so as
to allow efficient processing of relational queries for all
the multiple attributes, whichever clustering method is
chosen.

[References]

HI JLBentley, “Multidimensional Binary Search
Trees Used for Associative Searching”, Commun-
ication of the ACM, pp.509-517, 18, 9, Sep-
tember, 1975
J.L.Bentley, “Multidimensional Binary Search
Trees in Database Applications”, IEEE Trans.
Software Eng., pp.333-340,5,4, 1979
J.M.Chang and K.S.Fu, “A Dynamical Clustering
Technique for Physical Database Design”, Proc.
of the 1980 SIGMOD Conf., pp.188-199, 1980
DJDeWitt et al.,“Implementation Techniques for
Main Memory Database Systems,” Proc. of the
1984 SIGMOD Conf., June, 1984

M.Freeston, “The BANG File : A New Kind of
Grid File”, Proc. of the 1987 SIGMOD Conf.,
pp.260~269,1987
SFushimi, M.Kitsuregawa, M.Nakayama,
H.Tanaka and T.Moto-oka, “Algorithm and Per-
formance Evaluation of Adaptive Multidimen-
sional Clustering Technique”, Proc. of the 1985
SIGMOD Conf.. pp.308-318, 1985
R.Gerber, “Dataflow Query Processing using Mul-
tiprocessor Hash-Partitioned Algorithms,” PhD.
Thesis, University of Wisconsin-Madison, 1986
A.Guttman, “R-Trees : A Dynamic Index Struc-
ture for Spatial Searching”, Proc. of the 1984
SIGMOD Conf., pp.47-57, 1984

PI

[31

[41

PI

WI

[71

@I

[91

[lOI

1111

WI

u31

1141

WI

w5l

u71

W-41

LHarada, M.Kitsuregawa, M.Takagi, “Design and
Implementation of Join Algorithms for KD-Tree
Indexed Relations”, to appear in Proc. of the Int.
Conf. on Information Technology of IPSJ,
October, 1990
L.I-IalX&, “Query Processing on Multi-
Dimensionally Clustered Relations”, PhD. Thesis,
University of Tokyo, December, 1989
A.Henrich, H.W.Six, P.Widmayer, “The LSD-
tree: spatial access to multidimensional point and
non point objects”, Proc. of the 15th. Int. VLDB
Conf., pp.45-53, 1989
A.Huttlesz, H.W.Six, P.Widmayer, “Twin Grid
Files : Space Optimizing Access Schemes”, Proc.
of the 1988 SIGMOD Conf., pp.183-190, 1988
MKitsuregawa, H.Tanaka, T.Moto-oka, “Applica-
tion of Hash to Database Machine and Its Archi-
tecture”, New Generation Computing, l,l, pp.64-
74, 1983
MKitsuregawa, M.Nakayama, M.Takagi, “The
Effect of Bucket Size Tuning in the Dynamic
Hybrid GRACE Hash Join Method”, Proc. of the
15th. Int. Conf. on VLDB, 1989.
MKitsmegawa, LHarada, M.Takagi, “Join Stra-
tegies on KD-Tree Indexed Relations”, Proc. of
the 5th. Int. Conf. on Data Engineering, pp.85-93,
1989
H.P.Kriegel and B.Seeger, “PLOP-Hashing : A
Grid File without Directory”, Proc. of the 4th. Int.
Conf. on Data Engineering, ~~369-376, 1988

RXrishnamurthy, K.Y.Whang, “Multilevel Grid
Files”, IBM Research Report, Yorktown Heights,
1985
D.B.Lomet, BSalzberg, “A Robust Multi-
Attribute Search Structure”, Proc. of the 5th. Int.
Conf. on Data Engineering, pp.2%-304,1989
J.Nievergelt, HHinterberger and K.C.Seveik,
“The Grid-File : An Adaptable, Symmetric Multi-
key File Structure”, ACM Trans. Database Syst.,
9, 1, pp.38-71, March, 1984
E.A.Ozkarahan, H.Bozsahin, “Dynamic Order
Preserving Data Partitioning for Database
Machines”, Proc. of the 11th. Int VLDB Conf.,
pp.358-368, 1985
J.T.Robinson, “The KDB-Tree : A Search Struc-
ture for Large Multidimensional Dynamic
Indexes”, Proc. of the 1981 SIGMOD Conf.,
pp.lO-18, 1981

70

