
Query Processing Method for Multi-Attribute Clustered Relations 

Lilian HARADA, Mipki NAKANO, Masaru KITSUREGAWA, Mikio TAKAGl 

Institute of Industrial Science 
The University of Tokyo 

22-1, Roppongi 7, Minato-ku, Tokyo, Japan 

Abstract 
In this paper we introduce a new query processing 

method for multi-attribute clustered relations. Many pro- 
posals on multi-attribute clustered relations have been 
done so far. However, an efficient query processing 
method for these relations has not been proposed and 
analyzed yet. The multi-attribute clustered relations treat 
all attributes symmetrically, at the cost of losing the 
sequential data order between some specific pages, 
Thus, if the naive query processing methods used for 
single-attribute clustered relations, which rely on the 
sequential order of the clustered attribute, are straightly 
used for the multi-attribute clustered relations, it results 
in a high I/O cost. 

Here, aiming at reducing this high ID cost caused 
by the problem of no total order presented by the multi- 
attribute data, we introduce a query processing method 
which emphasizes the page loading strategy. In this 
query processing method we introduce a new concept 
called wave. Wave is a set of pages which represents 
the unit of loading from the secondary storage to the 
main memory. Our query processing method uses the 
information of the multi-attribute clustering index to 
group pages, whose data are not ordered, into waves, 
which are ordered and must fit in the memory size as 
much as possible. Thus the execution of the relational 
operation for the tuples in the waves results in the execu- 
tion of the whole multi-attribute clustered relation with 
the minimum I/O cost. We evaluate the proposed model 
using the KD-tree and the Grid-file, which are represen- 
tative multi-attribute clustering methods. Simulation 
results show that this query processing method is 
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efficient and the queries for multi-attribute clustered tela- 
tions can be executed with almost one relation scan, 
which is the lowest I/O bound. 

1. Introduction 
In this paper we introduce a new model of rela- 

tional query processing for multi-attribute clustered mla- 
tions. The multi-attribute clustering method provides a 
file structure that treats all attributes symmetrically, that 
is, avoids the distinction between primary and secondary 
keys. The base space of the relation is considered as the 
Cartesian product of the attribute domains and is parti- 
tioned along the axis of multiple attributes by the multi- 
attribute clustering methods. The multi-attribute cluster- 
ing methods can be classified into two broad categories : 
the adaptable method which partitions the base space 
according to the data distribution [1,2,3,6,8,11,18,211, 
and the fixed method which partitions the base space at 
fixed places [5,12,16,17,19,20]. Now that there are so 
many proposals of data structures for multi-attribute clus- 
tering, it is time to study the relational query processing 
for these data structures. 

Concerning the query processing for multi-attribute 
clustered relations, the above-mentioned papers inten- 
sively discuss the cost of the retrieval (selection) opera- 
tion, without examining the other relational operations 
such as join, aggregate by group and projection with 
duplicate elimination. The difficulty presented by multi- 
attribute clustered relations for query processing is that 
natural total orders of multi-attribute data do not exist. 
When the relational queries are applied to the key attri- 
bute for which the relations are ordered, the query execu- 
tion, which requires comparison of tuples with the same 
key attribute value, can be done with only one scan of 
the ordered relations. For example, when relations have 
B-trees which provide clustering on a single key attri- 
bute, their join on this key attribute can be done with 
one scan of each relation using the sort-merge algorithm. 
On the other hand, multi-attribute clustered relations are 
partitioned in pages according to the tuple’s values for 
multiple attributes, which results in pages without 
sequential data order. Thus, the simple processing 
methods used for single-attribute clustered relations, such 
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as the ones using B-trees that has pages in sequential 
order of the clustering attribute, can not be applied to the 
multi-attribute clustered relations with a reduced I/O 
cost. 

A query processing model which efficiently utilizes 
the information of the multi-attribute clustering index has 
not been proposed and evaluated yet In this paper we 
aim at reducing the high I/O cost of relational processing 
caused by the problem of no total order presented by 
multi-attribute data. We introduce a query processing 
model for the multi-attribute clustered relations, which 
emphasizes the page loading strategy. The new concept 
of wave is the key point of the query processing model. 
Because the whole relation does not fit in the memory at 
once, the base space of the relation is divided into sub- 
spaces which are used as processing units. Wave is a set 
of pages which actually holds the tuples within these 
subspaces, and represents the unit of loading from the 
secondary storage to the main memory. In our query 
processing model pages, whose data are not ordered, are 
grouped into waves, which are ordered according to the 
processing attribute, that is, the attribute referred to by 
the relational operation, and must fit in the memory size 
as much as possible. Thus, the execution of the rela- 
tional operation for the tuples in the waves results in the 
execution of the whole multi-attribute clustered relation 
in a sequential order for the processing attribute, with the 
minimum I/O cost. The waves are determined from the 
information of the multi-attribute clustering index, which 
means that this query processing model is flexible in 
terms of the multi-attribute clustering data structure and 
does not request any specific data structure. 

In this paper, using the concept of wave, we 
describe in detail this query processing model which 
aims at reducing the I/O cost. Then, in order to validate 
the efficiency of the query processing model we concen- 
trate on the join operation. which is the relational opera- 
tion of highest I/O cost. Based on the proposed model, 
we present join algorithms which determine the waves 
from information contained in the multi-attribute cluster- 
ing in&x by using the KD-tree (adaptable method) and 
Grid-file (fixed method). We verify the efficiency of 
these algorithms by simulations which show that with the 
best proposed algorithms, the wave tuples to be pro- 
cessed are always on memory and thus the query pro- 
cessing for non-resident relations can be performed with 
only one scan of the relations, which is the lowest I/O 
bound. We conclude that the presented query processing 
model provides an efficient framework for multi-attribute 
clustered relations. 

Section 2 briefly describes the multi-attribute clus- 
tering method. Section 3 introduces the concepts of 

wave, processing range and cluster which are the base of 
the query processing model. Based on this query pro- 
cessing model, sections 4 and 5 describe and evaluate the 
join algorithms for the adaptable and fixed multi-attribute 
clustered relations, using the KD-tree and Grid-tile, 
respectively. Finally, section 6 presents our conclusions. 

2. Multi-Attribute Clustering Method 
In this section we first introduce some notation and 

then we present the multi-attribute clustering of the 
adaptable and fixed methods. 

Let R be a relation having K attributes 
Al, AZ, . . . . Ak composed of tuples t = (at. u2, . . . . ac). D 
is the base space of relation R and denotes the Cartesian 
product of the domains of attributes referred to by the 
relation, i.e., 

D = fi dom(Ai) = fi [MINi, MAXi). 

R is a set c?physical tupl;‘and is a subset of D. 
The relation is partitioned in pages, which are its 

unit of access and consists of disjoint sets of actual 
tuples. Let relation R be partitioned in IRI pages Pi, j = 
1 , . . . . RI. The spacf Pj of each page Pi is given by 

Pj = n [%j, Pij) 

(qj < pij, l;$ Pij E [MINi, MAXi) for all i). 
While relation R is the actual set of data, composed of 
tuples grouped in pages, the corresponding base space D 
of relatiy; ,R contains ys,page spaces. Thus, we have 

thatR=xPjandD>xPj. 
j-1 j=l 

The determination of the pages spaces, i.e., the 
values of Qii and Pij, differs for the adaptable and fixed 

multi-attribute clustering methods. As stated in the 
introduction, the adaptable method partitions the base 
space according to the data distribution, and the fixed 
method does it at fixed places. 

Fig.l(a) shows an example of relation partitioning 
for the adaptable method. In this example the base 
space of the relation is two-dimensional and each page 
can contain a maximum of 3 tuples. Initially there is 
only one page a containing tuples #1,#2#3. The inser- 
tion of tuple #4 causes page a to overflow and, thus the 
base space to be split with a boundary line at value ui of 
the tuple that evenly divides the whole set of tuples. In 
this example the value is determined as ~1, that is the 
value a 1 of tuple #2. Then tuple #5 is inserted without 
overflow. The insertion of tuple #6 causes the split of 
page b with a boundary line at vz, which is the value uz 
of tuple #3, generating a new page 6’. Thus the respec- 
tive page spaces for u , b and 6’ are given by : 
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B = [cIIJfAX ,) x [MfN2y2) and 
B’ = [~df~d x [v2&~2l. 

Tuples #7,#8 are inserted with no page overflow. Thus, 
the insertion of more tuples in the relation causes recur- 
sive partitioning of its base space until the number of 
tuples contained in each page is less than or equal to 3 
tuples (i.e., the page size). 

Fig. 1 Multi-Attribute Clustering Methods 
(a) Adaptable (b) Fixed 

For the fixed method, the boundary lines partition 
the base space of the relation at fixed values of each 
attribute domain and cut the entire base space as shown 
in Fig.l(b). A single page u of tuples #1,#2,#3 is ini- 
tially assigned to the base space and overflows when 
tuple #4 is inserted, which causes the splitting with 
boundary line at the fixed value 6,. generating a new 
page b. Then tuples #5,#6 are inserted with no page 
overllow. The insertion of tuples #7,#8, however, causes 
the overflow of pages a and b which are split with 
boundary line at value &, generating pages a’ and b’ , 
respectively. Thus the respective page spaces for 
a, a’, b and b’ are given by : 

Comparing the fixed and adaptable methods, we 
see that they basically differ in two points : first, for the 
fixed method the value of the boundary lines is pre- 
determined, while for the adaptable method it depends 
on the data distribution; furthermore, the boundary lines 
cut the entire base space of the relation for the fixed 
method, while they become progressively shorter for the 
adaptable method. As can be easily observed from 

Fig. l(a) and (b), these differences imply that the load- 
factor for the fixed method is lower than that for the 
adaptable method. 

3. Model of Query Processing for Multi-Attribute 
Clustered Relations 

In this section we present a query processing 
model for multi-attribute clustered relations which 
emphasizes the page loading strategy. We consider rela- 
tions clustered on k attributes A I, A2, . . . . At, and I&- 
tional operations referring only one of the R attributes, 
i.e., referring attribute Ai, for i I R. From now Ai is 
called processing attribute. 

When the memory size is small and the relation 
scarcely fits in it, the index information can be very use- 
ful for efficiently accessing the relation. However, the 
multi-attribute clustered relations are characterized by 
treating all attributes symmetrically at the cost of losing 
the sequential data order between some specific pages. 
Thus, for example, the search for a partial range of a sin- 
gle attribute in a multi-attribute clustered relation 
requires much more page accesses than in a relation 
clustered on this single attribute [19]. In Fig. 2 we illus- 
trate an example of a relation symmetrically clustered on 
attributes A1 and AZ, with pages whose multi-attribute 
data are out of order. In this case the relation is com- 
posed of 4 pages Q , (I’, b and b’ . We can see that 
between pages u’ (composed of tuples (1,4) and (3,7)) 
and b (composed of tuples (6,3) and (9,2)), for example, 
there is a sequential order of the values of attribute Al. 
However, between pages c1 (composed of tuples (2.3) 
and (4,1)) and a’ (composed of tuples (1,4) and (3,7)), a 
sequential order of attribute A I values is not maintained. 

tuplc t =(a, ,aJ 

Fig. 2 Page Spaces for a Multi-Attribute Clustered Relation 

Thus, the processing methods used for single-attribute 
clustered relations, which rely on the total order of the 
processing attribute value among pages and require only 
one scan of the relations, can not be efficiently applied 
for the multi-attribute clustering case. 

In our query processing model, because the mla- 
tion is larger than the memory, we use information of the 
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multi-attribute clustering in&x to divide the base space 
of the relation into subspaces which are used as process- 
ing units. These units are determined so that a sequen- 
tial order of the processing attribute between them is 
maintained. In this query processing model, the determi- 
,nation of these processing units is fundamental and is 
based on new concepts which we introduce here : the 
processing range, cluster and wave. The domain of the 
processing attribute Ai is divided in disjoint parts, each 
of which is called processing range. Cluster is the log- 
ical subspace of the relation which may contain the 
tuples whose attribute value Ui is within the processing 
range. Wave is the set of physical pages of the relation 
which contains the cluster, that is, that actually holds the 
tuples whose attribute value ai is within the processing 
range. Cluster is a subspace of the relation which is log- 
ically determined, and is independent of the physical 
pages of the relation, while the waves are the actual set 
of physical pages that are accessed from the secondary 
storage. In this query processing model, in order to 
minimize the number of page accesses from the secon- 
dary storage, the processing range is determined so that 
each wave fits in the memory and each cluster overlaps 
with the space of the pages in the correspondent wave as 
much as possible. For each processing range, the 
correspondent wave is loaded in the memory and its 
cluster is computed; the operation is repeated for all dis- 
joint processing ranges and computation of the whole 
relation is done with a reduced number of page accesses. 

In the next subsection 3.1.. we briefly present the 
notations of cluster and wave. Then, in subsection 3.2., 
we discuss the processing flow of the model, showing 
how the processing ranges, the clusters and the waves 
may be determined to reduce the number of page 
accesses. 

3.1. Cluster and Wave 

Consider a processing range [xi, Si), where 
k 16i and a, & E IMINi, MAXi). We &fine 
cluster of [G, $) ( Cfxi, 5,) ) as the space given by : 

C[q.+) = [M~Nld~d X * * * X 1%. $1 
x . . . X [Mlnr, flmk ). 

Thus the cluster of a processing range [xi, $ ) for an 
attribute Ai represents the subspace of the relation whose 
tuples have the attribute value Ui in this range. Fig. 3(a) 
shows an example for a 2-attribute clustered relation 
where dom(A i) = [OJO) and dom (AZ) = [0,8), illustrat- 
ing a cluster of [4,6) for attribute A 1. 

Now we &fine wave of 1%) 6i) ( Wh,., 5,) ) as the 
set of pages which contains the cluster Clxi, ai) i.e., 

Wfxi,ai) = {Pj I pj n C[,,., 5) f $. for j = L.1~1. 

Thus the wave of a processing range [xi, Si ) for an attri- 
bute Ai represents the set of pages which can actually 
contain tuples with the value of attribute Ai in this range. 
Fig. 3(b) shows the example of wave of [4,6) for atui- 
bute A,. 

04 6 10 A, 04 6 

,rtiz range 
10 A, 

pluczrange 

(a) (b) 

Fig. 3 (a) Cluster (b) Wave 

3.2. Query Processing for Multi-Attribute Clustered 
Relations 

For the base space of a relation, it is easy to parti- 
tion it in clusters which maintain a mutual sequential 
order of the processing attribute and can be varied in 
size and number. When considering the clusters, we are 
only considering a logical space of tuples. We am not 
considering the actual tuples which are ‘contained in this 
logical space and are physically housed in pages. In 
order to reduce the number of page accesses for the 
query processing, however, it becomes important to take 
into account the pages and their space, which are 
registered in the multi-attribute clustering index of the 
relation. In the following, we illustrate the query pro- 
cessing model flow and show how the processing ranges, 
clusters and waves are determined with an example for 
the join operation. 

Fig. 4 shows an example of the join operation for 
relations R and S clustered on attributes A 1 and AZ. and 
joined on attribute A *. In this example, both relations R 
and S are composed of 4 pages and the available 
memory space is 3 pages. From the multi-attribute clus- 
tering index of relation R, the processing range of the 
first step is determined as [0,4) as shown in Fig. 4(a). 
First, the wave WLo,+ of relation R, which is composed 
of 2 pages, is loaded in the memory. The wave Wp4) of 
relation S, also composed of 2 pages, is loaded in the 
remaining single memory page, one by one, as shown in 
Fig. 4(b). The join of the tuples of clusters Cl,-,,+ of 
relations R and S on memory can be processed using any 
of the conventional join algorithms, such as nested-loop, 
sort-merge or hash-based. In this example, the whole 
cluster C,, of relation R is loaded in the memory at 
once. On the other hand, the cluster Ct,,, of relation S 
is loaded in the memory in two stages, since only one 
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Relation R 

0 4 6 10 - 
proccsing range 

Relation S 

step I 

0 4 2 10 0 4 620 

processing range processing mge 

0 5 810 0 5 810 

step 2 step 3 

(a> 

space reserved for relation R 

space reserved for relation S 

Fig. 4 Query Processing Model Flow for the Join Operation 
(a) Processing Flow (b) Wave Loading 

memory page is available for the loading of the two 
pages of the wave Wlotr) of relation S. Now, ,let analyze 
how would the pages be accessed in the case of other 
processing ranges. First, let consider the case of process- 
ing range [0,3). The waves W10,3) of relations R and S 
would be the same as Wio,4j. Thus, the tuples of cluster 
C,,dJ of relations R and S would be loaded in the 
memory but not processed, which would increase the 
number of page accesses of relation S since these pages 
would be re-accessed for the computing of the processing 
range of the next step. Now, let consider the case of the 
processing range [0,6). The waves W,, of relations R 
and S would be composed of 3 pages. Thus, neither of 
them could be entirely loaded in the memory, resulting 
in their being read from the secondary storage in a 
nested-loop way with too many page accesses. Thus, in 
the example shown in Fig. 1, the determination of the 
processing range of the first step as [OP), so tbat the 
wave WLo,4j of relation R could be loaded in the memory 
at once, and the cluster CtO,d, was the largest cluster 
entirely contained in wave WI,, of relation R, was 
efficient to reduce the number of page accesses. 

Now, let consider the processing of the second 
step. Once the computing over the processing range 
[0,4) is finished, the page of relation R whose space was 

entirely contained on cluster Cl,, (i.e., has had all its 
tuples processed), is unloaded. Then, determining the 
processing range as [4,6) and by loading a new page of 
relation R into the memory, the wave “propagates” to 
Wi4,6j for the second step. Again, the wave size of rela- 
tion R is 2 pages and only 1 memory page is reserved to 
load the 3 pages of the wave W14,61 of relation S. After 
the processing of clusters C,,Q of relations R and S, the 
page of relation R whose space is entirely contained in 
the clusters of the processing ranges [0,4) and [4,6) (i.e., 
has had all its tuples processed) is unloaded from the 
memory. In the last step, the processing range is deter- 
mined as [6.10) and the last page of relation R is loaded 
in the memory. The computing of the clusters Clklo) of 
relations R and S is executed in the same way as the 
previous steps. This procedure is repeated until comput- 
ing over the entire domain of A i is finished. 

In the proposed query processing model, by over- 
lapping as much as possible the physical pages of the 
wave to be loaded in memory with the logical space of 
the cluster to be processed, processing goes on in the 
attribute sequential order, with a low number of page 
accesses. Using this query processing model, relation R, 
from whose multi-attribute clustering index the process- 
ing ranges are determined, is accessed only once and the 
number of page accesses of relation S can be minimized. 

Because the join operation is the most I/O costly 
and the most intensively studied among the relational 
operations, in the next two sections we &tail join algo- 
rithms for adaptable and fixed multi-attribute clustered 
relations focusing on the join operation, in order to vali- 
date the efficiency of this query processing model which 
emphasizes the page loading strategy. 

4. Join Processing for Adaptable Multi-Attribute 
Clustered Relations 

The KD-tree indexing is one of the most known 
multi-attribute clustering mechanisms based on the adapt- 
able method [1,2]. Using the concepts of cluster, wave 
and processing range (for the join operation, join range) 
introduced in the previous section, we present join algo- 
rithms for non-resident relations indexed by totally bal- 
anced KD-trees. We call them KD-join algorithms. In 
[15] we have evaluated the KD-join algorithms in detail 
and thus, we only present some representative results 
here. In the following we present some notations and 
assumptions of KD-trees, and then introduce two basic 
and two extended KD-join algorithms with their respec- 
tive simulation results.. 

4.1. KD-Tree 
For the KDtree indexing, at each partitioning step, 
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the base space of the relation is partitioned with boun- 
dary lines determined so as to evenly divide the set of 
tuples. Let us consider a KD-tree indexed on R attri- 
butes. The partitioning step is recursively applied with 
boundary lines at values of attributes changed in cyclic 
order as Al ,..., At, A, ,.... For each partitioning step, a 
node of the KD-tree is constructed. When the total 
number of partitioning steps is d, we say that the depth 
of the KD-tree is d. For simplicity, here we consider 
totally balanced KD-trees. This means that when the 
depth of the KD-tree is d, the relation is partitioned into 
IRI = Zd pages. Thus, there arr,IlU pages Pi (j = l,... JRl) 

with space pi such that D = C pi. 
j=l 

Consider a value yi E [MliVi, MAXi). From the 
definition of wave presented in the previous section, 
Wg,aJ is the minimum wave size that is possible and 

equals 2 
(+ 

(d-1) 
pages. From now we denote it mws = 

2 pages. 
Now let us introduce the definition of wave real 

and wave f rant . Consider a wave of range [ri , Si ) 
(W,i~i$. For this wave, we define wave rear W, and 
wave front W, as : 

wave rear W, = u aij for Pj E W[yj,yj) ; and 
wave front wf = TV Pij for Pj E Wiq,ai, , 

Fig. 5 illustrates an example for the wave Wlrl,+ In this 
case, W, = (0,4} and W, = (6,lO). 

A2t Wave 

front 

0 4 6 lo A, 

Fig. 5 Wave Rear and Wave Front 

4.2. Basic KD-Join Algorithms 
Let us consider the join of two relations R and S 

with IRI and ISI pages, respectively, so that IRl ( = 2d 
pages) 5 IS, relation R and S indexed by a KD-tree of 
dimension R , and the memory size is IM pages OM GC 
IFU). 

4.2.1. Description of Basic KD-Join Algorithms 
In the basic KD-join algorithms, the join ranges 

are determined from the KD-tree index of the smaller 
relation R. Considering a wave W of relation R, its 

wave rear (W,), and wave front (W,), at a certain step 
t, the join range to process at this step t is given by : 

[mw(Qj E W’,)t), miNfhj E Cw~)t)). SO that 
mm(%j E (W,),) = min@ij E <W~>(&h 
Fig. 6 illustrates it with an example. For each step, the 
join range is determined as the largest “inner” range of 
the wave of relation R. Successive join ranges are con- 
tiguous in the domain of attribute A 1. 

wave, AZ+ Wavc2 A,t wavc3 

Fig. 6 Join Ranges for KD-tree Indexed Relations 

We define two basic KD-join algorithms : algo- 

join 

rithm KD-N. (Narrow) and algorithm KD-W (Wide), 
Algorithm KD-N is the one that uses a narrow 

wave, that is, the wave of relation R has the minimum 

wave size which is given by mws = 2 
(df) 

pages. The 
idea of algorithm KD-N is to load the smallest wave of 
relation R in memory, and to reserve all the remaining 
memory space to load the wave of relation S. 

Algorithm KD-W is the one that uses the wide 
wave, that is, the wave of relation R has the maximum 
size that can be loaded in the memory, which means, 
IM-1 pages. The idea of algorithm KD-W is to load the 
largest wave of relation R in memory, and to reserve 
only one memory page to load the wave of relation S. 

In the query processing model, in each step, the 
wave of relation R has priority to be loaded in the 
memory. Thus, the pages of relation R are loaded in the 
memory only once, while some pages of relation S are 
reloaded, depending on the available memory space. 
Following, we illustrate the determination of the join 
ranges, the waves and the clusters of relation R for algo- 
rithms KD-N and KD-W with the examples in Fig. 7 and 
8, respectively. In the examples, the relations R and S, 
which are composed of 16 pages and indexed by 2- 
dimensional KD-trees, are joined on attrieute A 1. Let us 
suppose that memory size IM = 7 pages. 

Algorithm KD-N : 
In this example the narrow wave of relation R has 

mws = 4 pages. As shown in Fig. 7, the join of relations 
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R and S is processed in six steps. In the first step, the 
join range is determined as [0,3) and wave Wt,-,s) of rela- 
tion R composed of four pages is loaded in the memory. 
The wave WIo,3j of relation S is loaded in the remaining 
three pages of the memory, and the join of the clusters 
C,, of relations R and S on memory is processed using 
any of the conventional join algorithms. Once the pro- 
cessing of the first step is finished, the two pages of rela- 
tion R of which all the tuples have been processed are 
unloaded. For the second step, the join range is deter- 
mined as [3,5). Thus, two new pages of the wave WB5) 
of relation R are loaded. The wave W13,51 of relation S 
is loaded in the remaining memory and the processing of 
clusters Cts,s) is done. As shown in the figure, this pro- 
cedure is repeated for join ranges [5,7), [7,11), [11,14), 
[14,16) when R and S are joined in the entire domain 
[0,16) of the join attribute Al. 

step I 

step 4 
. . . . . . . ., 

::.<:::::s: 
*zr- 
:::::::::::l: 

LITa 

in 
.> 
:.:.: 
;:$ 
:+ 

7-11 

step 3 

step 6 ’ 

14-16 

Fig. 7 Basic KD-Join Algorithm KD-N 

Algorithm KD-W : 

In this example the wide wave of relation R has 
M-1 = 6 pages. As shown in Fig. 8, the join is pro- 
cessed in four steps. The processing is analogous to 
algorithm KD-N, the difference being in the join ranges 
determined as [OS), [5,7), [7,14) and [14,16). After 
loading a wave of 6 pages of relation R, the conespon- 
dent wave of relation S is loaded in the remaining one 
memory page. 

step 2 
,.,.,. :.:. 

.:.: 

m 

:.:::.. . . . . . . ., 
i::. ..’ .:., . . 

5-7 

StCD 3 >.. .-., ..:. .,:;$>;:f.; :‘:: ..,.; . . : : :.. . . : m . . . . . :. . . 1.. 7 -14 

step 4 . . . . /, ..:y :j i..::.. . . q ::.:..~;.i::>& ,.. 
Fig. 8 Basic KD-Join Algorithm KD-W 

14-16 

4.2.2. Performance Evaluation of Basic KD-Join 
Algorithms 

Because the most expensive operation in the join 
processing of non-resident relations is the I/O operation, 
we evaluate the basic KD-join algorithms by the number 
of page accesses. Following, we present the simulation 
results for relations R and S with 64 Ktuples, indexed by 
2dimensional KD-trees and with uniform data distribu- 
tion as the one exemplified in Fig. 9. The page size is 
16 tuples. 

Relation R Relation S 

Fig. 9 An Example of Uniform Data Distribution 

+KD-N 
+KD-W 

-1 
04 .,.,.,.,.,~,~,~,. I 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.6 1.9 2.0 

memory rlze (mm) 

Fig.10 Simulation Results of Basic KD-Join Algorithms 

In Fig. 10, the vertical axis is the total number of 
page accesses and the horizontal axis is the memory size. 
The memory size is varied from l.lmws to 2mws, where 
mws = 64 pages. The simulation results show that when 
the memory size increases, the number of page accesses 
decreases. We can observe that algorithm KD-W which 
uses the wide wave presents the best performance. 
Therefore, we conclude that, due to insufficient memory 
space to hold all the necessary pages in each step, the 
fewer the number of steps, the better the performance. 
On the other hand, we also verify that the join can be 
performed with one scan of each relation as the wave is 
narrow and the available memory space is sufficient to 
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hold at least the pages of relation S to be used again in 
the next step. Thus algorithm KD-N achieves the ideal 
number of page accesses for the range of memory size 
variation. 

43. Extended KD-Join Algorithms 

43.1. Description of Extended KD-Join Algorithms 

Based on the analysis and performance results of 
the basic KD-join algorithms, we introduce some 
modifications in these algorithms with efforts to utilize 
the memory space more efficiently in order to : 
(a) enlarge the available memory space in each step to 
hold mote data of relation S, for algorithm KD-N, and 
(b) enlarge the wave size to decrease the number of steps 
for algorithm KD-W. 

In order to load and unload data in page units, the 
basic KD-join algorithms maintain tuples which have 
already been processed and are not necessary any more 
in the memory. Here we introduce a garbage collection 
mechanism which dynamically discards the tuples that 
are no longer necessary after the processing of each step, 
increasing the effective space of the memory for each 
step and allowing the loading of mom pages in this free 
space. Here we call these new algorithms extended 
KD-N and extended KD-W. 

Relation R 

joi 

jo n range 2 
r 

Relation S 

Fig.11 Garbage Collection Mechanism on 
Extended KD-Join Algorithms 

As exemplified in Fig.11 for the case of algorithm 
extended KD-N, utilization of this dynamic garbage col- 
lection mechanism, after processing of the join range in 
the lirst step, allows the effective memory space for the 
second step to be enlarged if the dotted portion is dis- 
carded as garbage and only the dashed portion is main- 
tained in the memory. 

43.2. Performance Evaluation of Extended KD-Join 
Algorithms 

Fig. 12 shows the number of page accesses of the 
extended KD-join algorithms for a uniform data distribu- 
tion. 
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Fig.12 Simulation Results of Extended KD-Join Algorithms 

As expected, all the extended algorithms reduce the 
number of page accesses in comparison with the basic 
KD-join algorithms. Algorithm extended KD-N presents 
the best performance and reduces the l/O cost to one 
scan for each relation in most of the memory size varia- 
tion range. As opposed to the best basic algorithm 
@CD-W), the best extended algorithm (extended KD-N) 
is the one with nartow wave size, i.e., the one with the 
largest number of steps. With this algorithm extended 
KD-N, the effective memory size is almost enough to 
hold the narrow clusters of both relations to be processed 
in each step and thus the join can be performed with 
almost one scan of each relation, which is the lowest I/O 
bound. Here we evaluate the algorithms with the 
number of page accesses only. However, we have 
implemented these algorithms and have already reported 
in [9] that the overhead implied by the garbage collec- 
tion mechanism was negligible in comparison with the 
disk read time, and the cost of the join operation was 
completely I/O bound. Therefore, the extended KD-join 
algorithm showed to be very efficient since it reduces the 
total execution time to one scan I/O cost. 

5. Join Processing for Fixed Multi-Attribute 
Clustered Relations 

In order to detail the join processing for multi- 
attribute clustered relations of the fixed method, we 
choose the Grid-file, which is the most representative 
fixed method [19]. In the following we present some 
notations of Grid-files and then two basic and two 
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extended join algorithms. We call them Grid-join algo- 
rithms. 

5.1. The Grid-File 
In the Grid-file, the insertion of tuples causes parti- 

tioning of the base space at prefixed values, generating 
grid subspaces. The assignment of grid subspaces to the 
data pages is the task of the grid directory. A grid 
directory consists of two parts : lirst, a dynamic k- 
dimensional array called grid array ; its elements 
(pointers to data pages) are in one-to-one correspondence 
with the grid subspaces of the partition; and second, k 
one-dimensional arrays called lineor scales ; each scale 
defines a partition of a domain of the relation. For the 
sake of notational simplicity we present the case k = 2. 
A grid directory G for a two-dimensional space is 
characterized by two integers nx > 0, ny > 0 which 
gives the extent of the directory. The grid directory con- 
sists of the grid array, which is a two-dimensional array 
G(O...,nx-l,O...,ny-1) and two linear scales which are 
one-dimensional arrays X (O...,n.x), Y (0 . . . . ny ). 

4 

A1 

d 2’ 4 d ~4 
linear scale 

ofA 

Fig. 13 Grid Directory 

Efficiency dictates that only a subset of all possible 
assignments of grid subspaces should be allowed to 
pages. All tuples in one grid subspace must be stored in 
the same page. However, if each grid subspace has its 
own data page, page occupancy becomes low. Hence in 
the Grid-file several grid subspaces share a page. Fig. 13 
shows a typical assignment of grid subspaces to pages. 

5.2. Basic Grid- Join Algorithms 

Based on the query processing model introduced in 
section 3, here we present the join algorithms for Grid- 
files, considering Grid-files R and S with IRI and ISl 
pages, respectively, such that IRI 5 ISl. The available 
memory size is I M pages such that IM << IRl . 

52.1. Description of Basic Grid- Join Algorithms 

In the Grid-join algorithms, the join ranges are 
determined from the grid directory of the smaller relation 
R. We define two basic Grid-join algorithms : algorithm 
G-N (Narrow) and algorithm G-W (Wide). 

Algorithm G-N is the one that uses a narrow join 
range. The narrow join range is determined by consecu- 
tive elements of the linear scale of the attribute Ai being 
joined. Thus, for example, if the linear scale of Ai is 
given by X(O,l,...,ux), the narrow join range of step r is 
given by : 

[X(t-l),, X(r),), such that X(t-l), = X(t-1)(,-r,, 
for t=l,...~rx. 
Thus, there are nz narrow join ranges which are deter- 
mined as : 

[X(O), X(l)), W(l), X(2)), a*., LX@-1). X(m)). 
The idea of algorithm G-N is to load the smallest wave 
of relation R in memory, and to reserve all the remaining 
memory space to load the correspondent wave of relation 
S. 

Algorithm G-W is the one that uses the wide join 
range. The wide join range is determined by elements of 
the linear scale of the attribute Ai, such that the respec- 
tive wave is the largest one that can fit in memory. 
Thus, for example, if the linear scale of Ai is given by 
X (O,~,...JIX), the wide join range of step r is given by : 

[X(i),, XUh), such that sizdWp(;),,x~),)) s 
IM-1 and sizeOf(W~x(i),,x(j+l),)) > IM-1; and X(i), = 

x o’)(r-1). 

Following, we illustrate the determination of the 
join ranges, the waves and the clusters of relation R for 
algorithm G-N and G-W with the examples in Fig. 14 
and 15, respectively. In the examples, the Grid-files R 
and S are clustered on two attributes A 1 and AZ. and R 
and S are joined on attribute A 1. Let us suppose that 
memory size IM = 7 pages. 

Algorithm G-N : 
In the example shown in Fig. 14, the linear scale 

of attribute A.l for relation R is given by 
(0,2,4,8,10,12,14,16). Thus, in the first step, the narrow 
join range is [0,2) and the waves Wpp of relations R 
and S are loaded in the memory and the clusters C102) 
are processed. After this processing, the two pages of 
relation R, all of whose tuples have been processed, are 
unloaded and then the waves of both relations on the 
second join range, that is, [2,4) are loaded and processed. 
This procedure is repeated for the join ranges [4,8), 
[8,10), [10,12), [12,14) and [14,16), when R and S are 
joined in the entire domain [0,16) of the join attribute 
AI. 
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step 1 step 2 

Fig. 14 Basic Grid-Join Algorithm G-N 

Algorithm G-W : 
In this example the wave of relation R can be 

sized at maximum M-1 = 6 pages. As shown in Fig. 
15, the first join range is [0,4) and the 6 pages of the 
wave Wlop) of relation R are loaded in the memory. The 
correspondent wave WIon of relation S is loaded in the 
remaining 1 memory page, and the clusters CIo,s) are 
joined. In the same way, the join ranges [4,8), [8,10), 
[10,12), [12,16), whose correspondent wave sizes for 
relation R are 4.4, 5 and 6 pages, respectively, are pro- 
cessed in the next 4 steps. 

joiag* 
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joinge jOii;;np 

s1cp 4 step 5 

d24 I I=21416 0 2 4 “‘6 
join rmnge pmige 

Fig. 15 Bask Grid-Join Algorithm G-W 

53.2. Performance Evaluation of Basic Grid-Join 
Algorithms 

The simulation results are for Grid-files R and S 
which are clustered on 2 attributes, have 64 Ktuples and 
random data distribution as the one exemplified in Fig. 
16. The page size is 16 tuples. 

Relation R Relation S 

Fig. 16 An Example of Uniform Data Dlstributioa 
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Fig. 17 Simulation Results of Basic Grid-Join Algorithms 

In Fig. 17, the vertical axis is the total number of 
page accesses and the horizontal axis is the memory size. 
The memory size is varied from mws to 2mws, where 
mws = 64 pages and means the minimum wave size 
mws when considering the relation R indexed by a KD- 
tree. From Fig. 17 we see that the curves of algorithms 
G-N and G-W almost coincide. For memory size larger 
than 1Jmws , the number of page accesses is reduced to 
one scan of each relation, because the waves of both 
relations fit in the memory. When the memory size is 
smaller than lSmw.r, the curves show a linear increase 
with decreasing memory size. This is because, in each 
step, the wave of relation R fits in the memory, and thus 
the number of page accesses is inversely proportional to 
the memory space reserved to relation S. When the 
memory size is reduced to ~8 pages, the curves indi- 
cate an abrupt increase because the memory size is not 
enough to maintain the waves of both relations, which 
are read from the secondary storage and processed in a 
nested-loop way. 
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5.3. Extended Grid-Join Algorithms 20480 

algorithm 

53.1. Description of Extended Grid-Join Algorithms 

As in the case of the’KD-join algorithms, we intro- 
duce a garbage collection mechanism which discards the 
unnecessary tuples as soon as possible in order to 
increase the effective memory space. In algorithm 
extended G-N, the garbage collection mechanism 
increases the effective memory space used for the larger 
relation. On the other hand, in algorithm extended G-W, 
it increases the effective memory space used for the 
smaller relation and thus, enlarges the wide join range. 

Relation R 

Relation 

joiklr&ge I - 
join range 2 

s 

Fig. 18 Garbage Collection Mechanism on 
Extended Grid-Join Algorithms 

As exemplified in Fig.18 for the case of algorithm 
extended G-N, with this dynamic garbage collection 
mechanism, after processing the join range in the first 
step, the effective memory space for the second join step 
is enlarged if the dotted portion is discarded as garbage 
and only the dashed portion is maintained in the 
memory. 

53.2. Performance Evaluation of Extended Grid- Join 
Algorithms 

Fig. 19 shows the number of page accesses from 
simulation results for the extended Grid-join algorithms 
using relations R and S with uniform data distribution. 
As shown by the figure, the introduction of the garbage 
collection mechanism increases the effective memory 
space so that the number of page accesses is reduced to 
one scan of each relation, which is the lowest I/O bound, 
in almost all the memory size variation. Comparing the 
result of Fig. 19 for the Grid-file with the result of Fig. 
12 for the KD-tree indexed relation, we can see that 
although both of them minimize the number of page 
accesses to ‘one scan of each relation, the KD-tree 
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Fig. 19 Simulation Results of Extended Grid-Join Algorithms 

requires more available memory space than the Grid-file 
to achieve this ideal I/O cost. We can also observe that 
the resultant minimum number of page accesses for the 
KD-tree is lower than that for the Grid-file. ‘Ihis is 
because, as a characteristic of the Grid-file, it presents 
lower load-factor and thus, more pages than the KD-tree 
indexed relation. 

6. Conclusion 
In this paper we introduced a query processing 

model which aims at reducing the high I/O cost of query 
processing for multi-attribute clustered relations caused 
by the problem of no total orders presented by the 
multi-attribute data. In this query processing model we 
introduced the concept of wave, which is a set of pages 
determined from the multi-attribute clustering index, and 
is used as the unit of loading from the secondary storage 
to the memory. The wave is determined according to a 
page loading strategy, so that the wave “propagates” over 
the base space of the relation in sequential order along 
the processing attribute axis with a reduced number of 
page accesses. 

For the evaluation of the proposed model, we con- 
centrated on the .join operation which is the most costly 
relational operation and proposed join algorithms for 
multi-attribute clustered relations of the adaptable and 
fixed methods. These join algorithms were evaluated 
with simulations for the KD-tree and Grid-file, respec- 
tively. In the join processing of relations without a clus- 
tering index, the hash-based algorithms such as 
GRACE-hash [13,14] and Hybrid-hash [4,7]. which have 
proved to be the best, requires an I/O cost of one write 
and two read scans of the relations. The simulation 
results of our best proposed algorithms has shown that an 
efficient utilization of the multi-attribute clustering index 
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can reduce the I/O cost of the join of very large relations 
to the minimum one read scan of the relations. Here we 
have only presented the performance evaluation for the 
join queries, showing results for relations with uniform 
data distribution and clustered on two attributes. How- 
ever, this query processing model is also valid and 
sufficient for the efficient processing of the other rela- 
tional unary queries like aggregate by group and projec- 
tion with duplicate elimination, for relations with any 
data distribution and clustered on higher number of attri- 
butes [lo]. 

Each multi-attribute clustering method has its 
strengths and weaknesses, as well as suitable environ- 
ment. The selection of a multi-attribute clustering 
method by the user is application-dependent and also a 
database design problem. However, the concept of wave 
and the model introduced in this paper are general, so as 
to allow efficient processing of relational queries for all 
the multiple attributes, whichever clustering method is 
chosen. 
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