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Abstract 
Database indexing is a well studied problem. However, 
the advent of Hypertext databases opens new questions in 
indexing. Searches are often demarcated by pointers 
between text items. Thus the scope of the search may 
change dynamically, whereas traditional indexes cover a 
statically defined region such as a relation. We present 
techniques for indexing in hypertext databases and com- 
pare their performance. 

1. Introduction 
Hypertext and Hypermedia databases have recently 
developed along with the technology to store and present 
more complex information than traditional database 
records[Chri86, Meyr86]. These systems have also created 
new ways of accessing data. Traditional databases operate 
on a query-retrieval basis, where the user provides a query 
specifying what data is desired. Hypertext systems use a 
concept of browsing and active objects, in which the user 
chooses new data while looking at existing data items. 
The first generation of these systems often lack means 
other than browsing for searching the database. In these 
systems a “query” is no more than a selection of a refer- 
ence to another item. In a large database this is not 
sufficient. Searches may require many repeated user 
interactions with the system. In addition, the person query- 
ing the database may not find the desired information 
because they do not know where to look. The next genera- 
tion of hypermedia systems must allow queries based on 
what is being looked for. The need for such search tech- 
niques has been discussed[Chri85]. However, these tech- 
niques should remain tied to the browsing type of searches 
currently supported by hypertext systems. 
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We propose to extend browsing techniques with queries of 
the form: 

In range Find property. 

The range consists of two parts: the start point of the 
query, and the link type to follow. Property is a boolean 
test on an object, for example checking for the presence of 
a specific keyword. The corresponding query is similar to 
what a user would do while manually browsing through 
hypertext; look at an object (the start point), and follow 
links searching for objects with the desired property. This 
allows queries of the form: 

Give me all documents on sailing which are refer- 
enced by my paper, referenced by papers which I 
reference, etc. 

Here the start point is “my paper”, the link type is “refer- 
ences”, and the property is that the object is a document 
on sailing. As another example, a programmer using a 
software database may want to find all of the uses of a par- 
ticular variable x in all of the subroutines that make up the 
programming module currently being examined (here the 
current module is the start point, and we recursively 
traverse “contains subroutine” links to determine ah the 
modules of interest.) Another query may be to find x in all 
subroutines of all modules in the system. A third query is 
to look at all subroutines that are called (directly or 
indirectly) by a particular subroutine. 
What’ sets these searches apart from traditional database 
queries is that the scope of the query is determined by the 
data item the user is currently accessing. A hypermedia 
database can be thought of as a directed multigraph, with 
the data items as nodes and the links as edges. The scope 
of a query is the transitive closure formed by following 
edges of the appropriate type from the start point. Rela- 
tional database queries, on the other hand, operate on a 
static scope such as a relation or a set of relations. The 
scope of a query can be determined from the database 
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schema. The queries mentioned above would have to 
examine all of the subroutines in, say, the subroutines rela- 
tion; looking for those that make up the particular module 
or that may be called when t@,given routine is run. Such 
information as the calling sequence or nesting structure of 
the program is difficult to express in a relational query. In 
contrast, the scope of the hypertext queries is determined 
by the database content and not the schema. Only the sub- 
routines that are reachable (in the desired way) from the 
point of interest need be examined. 
Queries in such a database can be expensive. Some 
queries on graph-structured data have been shown to be 
NP-hard[Mend89]. Indexes are used in traditional data- 
bases to speed queries by precomputing the results of 
queries on certain key attributes (such as 
keywords[Baye72, Wagn73, Seli791.) These systems 
assume that a particular type of search key will be com- 
monly used to access database records. However, in a 
hypermedia database we also need to know if these data 
items can be reached by following the appropriate links 
(such as references). This reachability attribute requires 
special handling, and results in new index structures. In 
this paper we present methods for indexing in such an 
environment. These indexes may be thought of as a spe- 
cial type of multiple attribute indexing. One of the attri- 
butes, such as a keyword, is similar to traditional index 
keys. The other is specified in terms of a link type, and 
reflects the “reachability” of objects from the starting 
point of the query. 
Some work has been done on indexing in text 
databases[Lync88], but this has concentrated on other 
problems such as keyword extraction and inexact match- 
ing. These techniques are useful, and in fact complement 
the ideas presented here. However, they do not address the 
problem of indexes whose scope may change dynamically. 
Work in network databases, such as CODASYL, has also 
addressed indexing which must respect links in the 
database[DBTG74]. However, the sources and destina- 
tions of links in CODASYL must belong to sets which are 
determined by the database schema. In hypertext systems 
the use of links is more flexible. The scope of a query can- 
not always be determined from the database schema; links 
are part of the data items and may go anywhere and be 
changed at any time. Another way of looking at this 
difference is given by the title of Charles Bachman’s Tur- 
ing Award Lecture, The Programmer as 
Navigator[Bach73], in which he discusses network data- 
bases and the use of secondary indexes. With hypertext, it 
is now the user who is the navigator. In network data- 
bases, the user provides new keys for preprogrammed 
queries. With hypertext, the user is free to move around 
the database at will. 
A Database Manipulation Language and prototype data- 
base manager for such queries has been developed[Clif881. 
Objects in the database consist of named attributes (e.g. 
key: cat) and typed links (reference: Object D). Some 

attributes (such as keywords) are short, these are typically 
used for searches. Other attributes (such as text or pic- 
tures) are intended for display only when the desired object 
(or small set of objects) has been found. Queries in this 
language include parts which restrict the search based on 
attribute values (properties), and parts which expand the 
scope of the search by following links (the range of the 
query.) Such a database allows the user to dynamically 
develop “private libraries” of objects of interest. Queries 
can then be performed on these libraries exclusive of 
objects elsewhere in the database (which may match the 
property portion of the query, but not be of interest for 
other reasons.) The user can return to browsing (and look 
at information such as pictures) once the “private library” 
has been restricted to a manageable size. In this paper we 
will also present results of indexing experiments run on 
this prototype. 

Outline of Paper 
The next section discusses the basic algorithms needed to 
index the type of queries we have outlined above. Section 
3 expands this to indexes at multiple points in the database. 
Section 4 presents an alternative implementation based on 
a single multi-attribute index. Section 5 gives an analysis 
of these methods in terms of the time and space tradeoffs 
of each. This analysis is performed on a regl~larly struc- 
tured database we believe to be representative of actual 
data. We present experimental results on databases with 
more varied structure in Section 6. 
For the bulk of this paper we will assume a tree-structured 
database. This simplifies many of the algorithms and 
examples. In Section 7 we will show how these techniques 
can be expanded to handle databases which are Directed 
Acyclic Graphs as well as arbitrary Directed Graphs. 

2. Single Index 
Our indexing technique starts with the simple idea of 
attaching an index to an object in the database. The index 
allows lookup of items based on a particular attribute type 
(the property of the query), and covers objects which could 
be reached from that node following a particular type of 
link in a “browsing” interface (the range of the query.) 

What is indexed 
The choice of a key for indexing can be quite varied; just 
about any type of data will serve. This is no different from 
indexing in a traditional database. However, specifying 
the scope of the index is different. Rather than specifying 
a relation or set which is to be indexed, we must specify a 
portion of the graph: a place from which queries will start, 
and a type of link to follow. Creating an index will thus 
require specifying three parameters: The anchor point 
(node) which the index is to be connected to, the search 
key for the index, and the link type which determines the 
scope of the index. 

37 



Figure 1 is a sample database consisting of two types of 
links (solid and dashed) and a single attribute (noted as 
key.) An index has been created at node roar on the attri- 
bute key and the link type solid. A few interesting points 
to note about the index are: 

a Item D is not in the index, even though it has a key of 
interest. This is because the index is for items reach- 
able through solid links, and D is reached by a dashed 
link. 

l Item I is pointed to by a solid link. However, since it is 
not reachable from roof via solid links, it is not in the 
index. 

l Item G is in the index, even though its parent (C) does 
not appear in the index. Node C is in the scope of the 
index, but does not appear since it has no key attribute. 

The index of Figure 1 will speed up searches whose scope 
is the solid-link tree rooted at roof. The Database 
Administrator is the one that determines that such an index 
is useful, based on the expected queries. The DBA has 
much the same responsibility in a relational system. 

Structure of the index 

The index itself will be structured in a similar manner to a 
traditional database index. B-trees, hashing, and other 
such techniques are all applicable. However, certain spe- 
cial information is required. In addition to pointers from 
the index to relevant objects, objects will be required to 
have back pointers to indexes which potentially include 
them. This is necessary in order to properly maintain the 
index. For example, in Figure 1, C will have a back- 
pointer to ensure that updates that add keys to it will be 
reflected in the index. Items D, H, and I do not need back 
pointers, as changes to these objects will not result in their 
being reachable, and thus they will not be in the index. If 
the dashed links are changed to solid, the presence of 
pointers to the index in the parents of the links will point to 

l-z-l Index: key, solid 
bird:E 

index: ’ B cat: A, B 
dog: A, F 

key: cat, dog key: cat 

the need for index updates. 

In a relational database, information about what indexes 
may potentially reference a given record can be deter- 
mined easily fram the definition of the index, due to the 
static nature of the scope of the index. In a hypertext sys- 
tem, determining what indexes a data item is in may be as 
difficult as building the index (in terms of number of items 
referenced.) The use of back-pointers is necessary to 
maintain the indexes at a reasonable cost when data items 
are modified. In addition, when a data item is added to the 
database the indexes which refer to it can be determined 
from the index links of the parent of the item. We also 
need back pointers from all nodes in the scope of the index 
(even if they are not in the index, such as C in Figure 1) to 
support deletion. Deletion of a node or link may require 
changes in the index to deal with nodes below that point. 

Following are pseudo-code algorithms for the various 
operations relevant to indexes. These will work only on 
tree-structured databases; the extensions necessary to 
operate on arbitrary databases will be discussed later. 

Create-index ( node, key, link ) 
Create an empty index data structure. 
Add a pointer to node noting the presence 

of the index. 
add-index ( index-structure, node, key, link ) 

Add-index ( index, node, key, link ) 
Add all appropriate key items of node to index. 
V children of node via link 

add-index ( index, child, key, link ) 

Find ( node, key-type, key-item, link ) 
if node has a pointer to an index on 

key-type and link then 
indexjnd key-item 

else 
if key-item present ar node then 

Result := node 
V children of node via link 

Result := Result u Find ( child, . . . 

Add-link ( parent, new-node, link ) 
Add link to the database in the normal manner. 
‘v’ index back-pointers in parent 

if index.link = link then 
add-index ( 

index, new-node, index.key, link ) 

Figure 1: Index of a tree-structured database. 
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Delete-link ( parent, child, link ) 
Delete lit&from the database 

in the normal manner. 
V index back-pointers in child 

if index.link = link then 
delete-index ( 

index, child, index.key, link ) 

Delete-index is analogous to add-index 

Searches from a node which is not indexed can still make 
use of indexes. The simple case is making use of an index 
which is associated with a node which is reached at some 
point in the search. This is already done in the above algo- 
rithms. However, in some cases it may be worthwhile to 
use an index located above the start point of the search. If 
the start point is in the scope of the index; the index will 
cover a superset of the desired search. Such an index can 
be found because the starting node of the search will have 
a back pointer to the index. All of the items returned by 
the index must be checked to see if they are in the proper 
subtree. 

these nodes, but this leads to space problems due to repli- 
cation of information. Figure 2 provides an example of 
this situation. Some users may wish to query the entire 
database, using index root; others may only be interested 
in the subset contained in the tree rooted at A. In order to 
allow the efficiency provided by indexing to both sets of 
users, we can construct indexes anchored at both nodes 
(the indexes pointed to by solid lines.) All of the functions 
described at the end of the previous section will work here 
as well. Note that each object which is below A must have 
back-pointers to both indexes. 

Eliminating Replication 

For example, in Figure 1, a search from node A could use 
the root index, and then check all of the objects found by 
backtracking from the object until either A or root is 
reached. This assumes that the database provides back- 
pointers for all links. In many cases this may be done for 
reasons independent of indexing. 

This is an appropriate approach when few items are found 
in a search of the index, and the subtree rooted at the 
search node is a large fraction of the subtree rooted at the 
indexed node. The given example would be slower than a 
direct search for the keys cat and dog, but would be com- 
parable given a search on bird. 

This naive approach has one problem. All of the items in 
index A are also indexed by root. This leads to replication 
in the indexes. In a large database with many indexes, the 
size of the indexes could in fact grow at a faster rate than 
the size of the database itself. Given that the index grows 
linearly in the number of items indexed, a complete set of 
indexes on an R node tree of depth k would take space 
O(n.k). A more space-efficient index structure would help, 
but the indexes would still end up requiring more space 
than the data itself. In addition updates to the database 
may take a long time because they must modify many 
indexes. 

Determining when to use an index located above the 
search point is a difficult problem. Some simple heuristics 
which suggest the use of such an index are: 

l The index returns a relatively small number of items 
compared to the size of the subtree to be searched. 

l The desired subtree is a large fraction of the total size 
of the indexed subtree. 

This replication can be eliminated by requiring indexes to 
refer to “lower” indexes, rather than directly indexing the 
entire subtree. This is illustrated by the indexes pointed to 
by dotted lines in Figure 2 (just the ones on the left side of 
the Figure.) A search for all items in the database (starting 
at root) which have attribute dog would first find B from 
the root index. Next the search would proceed along the 
Next Index pointer to the index anchored at A, where it 
would find D. Note that this increases the time required to 
find an item. In the worst case, putting an index at every 
node, we end up with a linear search and have lost the 

l The subtrees are relatively broad; back searches will 
require tracing a small number of pointers relative to 
the size of the subtree. 

Even if we do not use an index above the start point of the 
search to actually find the desired objects, it may be of 
some use. If an index lookup returns no items for the 
desired key, we know that the search would also return an 
empty result (since the index covers a superset of the por- 
tion of the database being searched.) If searches often 
come up empty, this will result in a net savings. 

ca,; A 
Ann. n I I key: cat 1 

1 key: bird 1 ( k”y: dogI 1 key: fish 1 

3. Multiple Indexes 
In a real system, there may be many nodes from which we 
often make queries. We could build an index at each of 

Figure 2: Tree-structured database with two indexes. 
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benefits of indexing. However, we expect the typical cost 
will be much smaller. This will be discussed in Section 5. 

Update in such a system is slightly more complex, 
although the time required is less (due to updating only a 
single index.) This complexity results from the need to 
remove links between indexes when links between objects 
are changed, in much the same manner as objects must be 
removed from the index in the basic scenario. 

In some cases partial redundancy can be allowed. For 
example, if a new index is created beneath an existing one, 
the redundant items need not be immediately removed 
from the old index. This speeds the creation of the new 
index. The old index need be modified only when objects 
it indexes are changed. These data items will already have 
pointers to the old index. These pointers must be changed 
to reflect that updates to these data items should cause 
them to be removed from the old index. However, chang- 
ing the pointers can be done as part of the creation of the 
new index. This adds only a constant factor to the time 
required to build the new index. This is one example of 
the numerous time/space tradeoffs which can be made with 
this indexing. 

Eliminating replication may help when using indexes 
located above the start point of the query. For example, in 
Figure 2 a search from B could use the index at root. A 
clever implementation could note that the non-replicated 
index at roof (pointed to by a dotted line) indexes root + the 
tree rooted at B - the tree rooted at A. This is very close to an 
index on B. A search from B could just use this index, and 
remove root from the result set. 

4. Single Multiple-Attribute Index 
An alternative to the previous structure is to use a single 
database-wide index for each type of key. In a sense this is 
a multiple attribute index[Lum70]. However, the second 
attribute in our system is “reachability” rather than an 
attribute in the normal sense. As such, previous techniques 
do not apply. 

Our method is to use a single primary index on the search 
key that returns a secondary index. The secondary index 
maps the “anchor points” (nodes in the database which 
have indexes) to the objects that can be found from those 
anchor points. The structure of the primary and secondary 
indexes could be any of a number of things, including B- 
trees, hash tables, sorted lists, etc. A naive implementation 
of the secondary indexes, in which each anchor point 
hashes to a list of all of the objects reachable from that 
anchor point, could require CQ* ) space per secondary 
index (where IZ is the size of the database). However, all of 
the objects at many anchor points are reachable from other 
anchors (e.g. in Figure 2 all objects reachable from A are 
also reachable from root.) This fact was used to eliminate 
replication in the previous section. In the secondary index 
we can associate with a given anchor point only those 
objects for which it is the “closest” anchor point, cutting 

the space considerably (worst case O(n).) 

For example, Figure 3 is a sample index containing entries 
for a few keywords based on the database of Figure 2 (with 
anchor points at root and A.) Note that the secondary 
index for “dog” only associates B with the anchor root, 
even though a query on “dog” from root would also find 
D. Node D is associated with the anchor point A. The 
reachability graph on the anchor points is used to deter- 
mine which anchors can be reached from the desired 
“start” anchor point. The result set of data items is then 
the union of all of the nodes found from all of these 
anchors (in the chosen secondary index.) To illustrate a 
search, say that we wish to find all of the objects reachable 
from root which contain the keyword “dog”. We use the 
primary index to find the secondary index associated with 
“dog”. We also need all of the anchor points reachable 
from root (done using the reachability graph, these are root 
and A.) Next we find all of the objects reachable from 
these anchor points using the secondary index. The objects 
B and D are the result of our search. More formally, the 
Find algorithm is: 

Find ( node, key-type, key-item, link ) 
S =fmd_secondury-ind ( key-item, link ) 
let T = transitive closure of node in the 

reachability graph for link 

Note that the previous steps can occur in parallel. 

v anchors A in T 
Result := Result u S(A) 

(S(A) is Objects in A in secondary index T.) 

As written this assumes that the current node has an index. 

Primary index 

bird cat dog 8 

I A: A 
I I 

root: B 

A: D 
I I I 

Reachability Graph 

Figure 3: Single Multiple-Attribute Index. 
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Extending it to the general case is straightforward, and can 
be seen from looking at the Find operation of Section 2. 

Lookup time for the reachability graph (finding transitive 
closure) is worst-case linear. .in the number of anchor 
points. Improving this time requires precomputing the 
transitive closures, which would take quadratic space (and 
is also expensive to compute[Ullm90].) However, for a 
tree-structured graph (or tree-structured parts of the graph) 
reachability can be expressed as a range of integers. To do 
this, we name the anchor points by preordering the tree. 
With each anchor point, we store its number and the 
number of its right sibling. From a node i with right 
sibling j, the reachable anchor points are those numbered i 
to j-l. This cuts the “transitive closure” operation on the 
reachability graph to constant time with space linear in the 
number of anchor points. 

Up to this point we have ignored different link types. 
Using the methods of the previous sections we have had to 
construct a new index for each type of link. However, in 
this case we may reuse the primary index. Each key value 
will have a different secondary index for each link type, 
and there will be a separate reachability graph for each 
type of link. Also note that an index on a different key 
attribute can reuse existing reachability maps. 

Updates to the database which change the key attribute of a 
data item will require that it be moved to a new secondary 
index. This requires no extra links; Finds in the primary 
index can be used to return the old and new secondary 
indexes. The node is then removed from the appropriate 
anchor point list in the old index, and added to the list for 
the same anchor point in the new index. Deletions and 
additions are similar. Changes to links are somewhat more 
difficult. For this we still need the back pointers from 
nodes to anchor points (as in Sections 2 and 3) and from 
anchor points to the secondary indexes. Deleting or adding 
a link will require modifying some of the secondary 
indexes, and in some cases may require rebuilding part of 
the primary index (for example, if a new value for the key 
attribute appears.) In addition, the reachability graph may 
have to be changed. 

5. Cost Comparison 
The methods of indexing we have introduced (single 
indexes, indexes with replication, indexes without replica- 
tion, and multiple-attribute indexes) each have advantages 
and disadvantages. A simple estimate of the time and 
space costs for each technique on a regularly-structured 
database is given in this section. This provides for a rea- 
sonable basis of comparison of the indexing methods. 

First we will set out the assumptions and terms used in 
these calculations. Although the techniques work for an 
arbitrary directed-graph structured database, we continue 
to assume that the data is tree-structured. The structure of 
data in a hypermedia database is likely to be oriented 
towards a tree ,more than, for example, a randomly-created 

directed graph. We feel that worst-case costs derived for 
tree-structured data will reflect practical costs better than 
an analysis on arbitrary graph-structured data. Another 
assumption is that searches will only use indexes at or 
below the start node. The analysis for using indexes 
located above the start node is too complex to present in 
detail here. 

For the purposes of this discussion we will assume that the 
data and pointers to be indexed form a complete tree with 
constant branching factor (each parent has the same 
number of children.) This restriction significantly 
simplifies the analysis, and we feel the analysis on this 
structure will reflect performance on more varied data. 
The Tektronix HyperModel Benchmark[Ande89] uses 
such an arrangement as one of its three “hierarchies”. In 
the next section we present experiments on less regularly 
structured data, and compare the results with the results of 
the analysis. 

We will use indexes placed at the root and at all nodes 
halfway down the tree. This provides a uniform placement 
of indexes (each index has an equal number of nodes 
located “directly” beneath it.) Such an arrangement is an 
intuitively reasonable example. We will also look at a sin- 
gle index placed at root, as described in Section 2. AIlow- 
ing a more varied placement of indexes results in an 
analysis too complex to be included in this paper. We 
need to define the parameters that we will use: 

T(n) 

E(n) 

cs 

CP 

C, 

t, 

K 
P 

Time required to do an index find operation on an index 
containing n elements. This will typically be logarithmic, 
and is determined by the choice of index (B+ trees, tries, 
etc.) 
Time required to search through n nodes without using an 
index. This will basically be linear, although the function 
could be complex if the data items are stored on disk. 
Space required to store a search key in an index. Some 
index structures, such as tries or C,, trees[Orla88] do not 
require linear space for the keys. Such structures would 
complicate this analysis considerably, but would be of 
most benefit to the single multiple-attribute indexes. 
Space required to store a pointer in an index. 
Space required for each item in the reachability graph of 
the single multiple-attribute index described in Section 4. 
Time required to lookup an item in memory, such as in 
the reachability graph or in a linear search of the secon- 
dary index. 
Total number of possible search keys. 
Probability that a given key attribute value appears in a 
given data item. KP gives the expected number of key 
attributes per data item. 
Branching factor. This is the number of children of any 
given data item (except for leaf nodes.) 
Depth of the second (non-root) layer of indexes. The to- 
tal depth of the tree is 2 j. We will consider root to he at 
level 0, and the leaves to he at level 2 j- 1. 
Number of indexable items in the database. This is equal 
toB*‘-1. 

Note that there are BJ second level indexes. Each of these 
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indexes has Bi - 1 data items located beneath it. We have 
not put in a separate space cost for back-pointers from data 
items to the index. There will be one such pointer for 
e&y pointer from an index to a data item, so this is 
included in cP. 

We will use three queries in this analysis, each reflecting a 
different start point. From these three, we can predict 
results for queries from any start point. The queries are: 

Fl Find time for searches starting at the root node (which 
contains an index.) 

F2 Searches starting at a child of the root node. These will 
progress through half the depth of the tree before they 
are able to use second level indexes (if any.) 

F3 Finds starting at level j. These will be able to make use 
of a second level index directly (if one exists.) 

Note that searches starting from below level j (below F3) 
wilI take the same time for all of the methods, as no index 
wi:l be used. Searches from between level 2 and j will take 
between F2 and F3 time, but will vary at the same rate for 
each of the three indexing techniques. We will use F, to 
denote the time required for search Fi (where i is 1,2, or 3) 
using index type t (where t is s for a single index at root, r 
for fully replicated indices, u for unreplicated (linked) 
indexes, and m for the single multiple-attribute index.) 

As a quick example, for a single index located at root we 
have F Is =T(k), where k is the number of keys in the index; 
plus the retrieval time E(r) for the r items found by the 
index. Given K total possible keys, P probability that a 
given node will contain a given key, and N nodes, we can 
see that the expected number of keys in the index (k) is: 

k = K(l-(l-P)N) 

keys. The expected number of items to be retrieved r is 
PN. Therefore the expected retrieval time for a search 
from root is: 

F,, = T(K(l-(l-PjN))+E(PN) 

Searches from below the root require searching the entire 
subtree from the start point (which includes the object 
retrieval time): 

Fzs = E(BZi-’ - 1) 
F3s = E(B’-1) 

As to the space requirement, note that an index will require 
c, k +c,d storage space, where k is the number of keys in 
the index (as determined above), and d is the number of 
items indexed. Also, a given database item will have 
pointers to it in the index KP times, so we have an 
expected value for d of nKP. This gives us a storage space 
requirement for an index of size n of 

S(n) = c,K(l-(1-P)“)+c,nKP 

Therefore the space requirement for a single index at roof 
is 

S,(N) = c,K(l-(I-P)N)+c,NKP 

Using multiple indexes without eliminating replication 
gives the fastest lookup time of any of the three indexing 
methods described. Starting at the root we get: 

F,, = F,, = T(K(l-(l-P)N))+E(PN) 

If we start at level 1 things are somewhat worse. We have 
to first search all of the nodes between the start point and 
the relevant second level indexes (Bj-’ - 1 nodes), and then 
use each of the indexes beneath this point. 

F,, = E(B’-l-l)+B’-‘T(K(l-(l-f’)B’-‘))+ 
E(P(Bj- 1)) 

Finally, at level j we need search only a single index on 
Bj - 1 items: 

F,, = T(K(l-( 1 -f’)B’-‘))+E(P(Bj- 1)) 

This method requires the most space. To the space 
requirements for the single index we must add Bj smaller 
indexes at level j. Thus the total space requirement for the 
replicated multiple index technique is: 

S, = S(N)+B’S(Bj-1) 
= c,K(~-(~-P)~)+c~NKP+ 

B~K(c,(l-(l-P)~‘-‘)+cpP(Bj-l)) 

Eliminating replication saves space at some expense in 
time for searches from root. For a search from root we 
now have to search the top index, and then each of the 
lower indexes: 

F,, = T(K(l-(l-P)B’-‘))+ 
BjT(K( 1 -( 1 - P)B’-‘))+E(PN) 

= (Bj+l)T(K(l-(l-P)B’-‘))+E(PN) 

Searches F, and F, are the same as in the replicated case. 

The space required for each of the indexes at level j is the 
same, but the unreplicated top level index requires only 
space S(Bj- 1). 

S,. = (Bj+l)S(Bj-1) 
= (Bi+l)K(c,(l-(l-P)B’-l)+~pP(B~-l)) 

The Find operation for the single multiple-attribute index 
of Section 4 is a multi-step algorithm. The first step, 
finding the secondary index, is T(K(l-( 1 -P)N)) time 
regardless of where we are in the database. The transitive 
closure of the reachability graph is inherently linear; for a 
search from root it will require time O(Bj) from root, and 
constant time for the other searches.* Finding the appropri- 

’ We have described a technique where a tree-structured reachability graph 
can be replaced by ranges in a preorder numbering of the database. This 
would give constant, as opposed to linear, time and space requirements. 
Since this only applies to tree-structured data, we are not using this optim- 
ization for this analysis. 
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ate objects in the secondary index can be done in two 
ways. If we are looking for objects reached from a large 
number of anchor points, a simple linear search may be 
desirable. If only looking for a few anchor points, we can 
use a typical index and perfort% a number of searches each 
of time T(n), where n is the number of anchor points in the 
secondary index. Note that an anchor point will occur in a 
secondary index with probability (1 - (1 - P)d), where d is 
the number of objects directly beneath that anchor point. 
In our example, d =Bj - 1 for all the indexed locations, so 
n=(Bj+l)(l-(l-P)B’-l). Adding these up gives a find 
time of: 

F Im = z-(K(i-(i-P)N))ft,Bj+ 
t,(B’+1)(1-(l-Py’-l)+E(PN) 

This is assuming that we make a linear search of the secon- 
dary index, otherwise the third term would change: 

F Irn = T(K(l-(l-fy))+trBj+ 

BjT((Bj+l)(l-(l-p)B’-‘))+E(fN) 

Searches from children of root require the same time as the 
previous methods to get to the indexed locations, but 
beyond this we can make some optimizations. We only 
need to do the search in the primary index once. We will 
need to look at the reachability graph and perform a lookup 
in the secondary index once for each of the indexed nodes 
we reach. This gives a time of: 

F 2m = E(Bj-l -i)+~(~(i-(i--P)~))+ 
BJ-‘(r,+T((B~+1)(1-(1-P)B’-‘)))+E(P(B2j-’-1) 

Searches from the bottom indexed locations also require 
the primary lookup, as well as a single check of the reacha- 
bility graph and secondary index. 

F 3m = z-(K(l-(l-P)N))+t,+ 

T((Bj+i)(i-(i-~)B’-*))+~(P(Bj-i)) 

The space requirement here is a bit more complex. The 
reachability graph requires space proportional to the 
number of anchor points: c,(Bj + 1). The primary index 
takes space for each search key, as well as a pointer to 
each secondary index: (c,+cp)K(l-(l-P)N). Each 
secondary index will take space determined by how many 
anchor points are found in the index and how many data 
items have the corresponding search key. The expected 
number of anchor points in an index is 
(B’+l)(l-(l-P)f+1 ), and the expected number of data 
items is N P. The space required for each item will be cP, 
the cost of a pointer to a data item or anchor point. There 
will be one secondary index for each entry in the primary 
index. This gives a total space figure of: 

s, = c,(Bj+l)+(c,+c,)K(l-(l-fyJ)+ 

K(l-(l-P)N)(c,NP+c,(B’+l)(l-(l-k’)B’-’)) 

= c,(B’+l)+K(l-(1-P)N). 

(~,+c~(l+NP+(Bj+l)(l-(l-P)B’-‘))) 

To understand the tradeoffs between the various indexing 
techniques it is helpful to graph the performance results on 
a particular scenario. There are many possible scenarios, 
corresponding to the values of the parameters on page 6. 
Given our space limitation, we will look at one representa- 
tive scenario (a different scenario is presented in the exper- 
iments of the following section.) Therefore these graphs 
should be interpreted as illustrative only. 
The graphs in the rest of this section are based on complete 
trees with a branching factor of five. We did try varying 
the branching factor; the results varied by an equivalent 
factor for all of the indexing methods. The values of K and 
P are given above each graph. T(n), the time for a lookup 
in an index, is logarithmic. E(n), the time to search 
through n nodes in the database, is linear. We assume a 
main-memory database; with increasing memory sizes it is 
reasonable to cache “short” information, such as links and 
keywords, for each node in the database. Thus E(n), the 
time to search through n nodes in the database, takes time 
t, .n. T(n), the time to lookup a key in an index of size n, is 
logarithmic: t,log,(n). The factor t, corresponds to 
memory lookup time, for these graphs we simply assume 
unit time. 
Figure 4 shows the find time for each of the indexing 
methods, for a find over the entire database (F 1). We use 
K = 1000 and P= .OOl, this provides an expected value of 10 
search keys per node. 
Figure 5 shows the expected time for queries from just 
below the root of the database (F,, encompassing one fifth 
of the database.) Otherwise this figure corresponds exactly 
to Figure 4. The gains provided by indexing are substan- 
tial. 
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Figure 4: Find Time vs. Database ske, search from root. 
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Figure 6: Find Time vs. Number of Keys, just below root. 

Figure 6 compares the effect of the number of distinct keys 
on the time required for a find. This is for the F, find, 
starting just below the root node. It does not include the 
actual object retrieval time, as this is the same for all of the 
indexes. The expected number of keys per node is con- 
stant (10); the more total keys, the fewer items will be 
returned for a given key. Note how the single multiple- 
attribute case performs better than the other methods with 
a large number of keys. Let us first explore what is hap- 
pening with the fully replicated and unreplicated indexes. 
As the number of distinct keys grows, the size of each 
index grows. This increases the time required to search the 
indexes. This is also true with the multiple-attribute index, 
if we simply look at the search time for the ~T%TZUQJ index. 

However, the cost for the multiple-attribute method also 
includes a search based on the secondary index, and as the 
number of keys increases the size of each secondary index 
decreases. The cost of searching the secondary indexes 
decreases faster than the cost of searching the primary 
index increases. When the number of distinct keys 
approaches the size of the database, the cost of searching 
the secondary indexes becomes insignificant. At this point 
the cost of a single search in the (large) primary index of 
the single multiple-attribute technique becomes less than 
the cost of searching many lower-level indexes with the 
replicated and unreplicated methods. 
The remaining figures show space requirements for the 
various methods. Figure 7 is space versus number of items 
in the database. We have assumed that c, = c, = cP = 1 
word. For example, for a single index at root on a database 
of 5000 nodes takes 50,000 words, or about 10 words per 
object in the database. The database itself would take at 
least 75000 words, as each object would require a 
minimum of 15 words (10 keys and 5 links.) In practice a 
node will have much more information (such as text, other 
types of links, etc.), so the relative space cost of the index 
will be small. 
Figure 8 corresponds to Figure 6, and shows space relative 
to the number of possible keys. This shows an interesting 
behavior; although the indexes grow as the number of dis- 
tinct keys increases, the pattern of this growth is not obvi- 
ous. If we look at the single index at root, we see that the 
space is relatively constant until the number of keys is 
comparable to the database size. Before this point, the size 
of the index is dominated by the storage of pointers to data 
items. Beyond this point, the cost of storing the keys dom- 
inates (as there are few data items per key.) With the 
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unreplicated indices, the keys begin to dominate earlier, as 
each index covers a smaller area. Note that the curve for 
the fully replicated index is roughly the sum of the curves 
for the unreplicated indices and the single index at root. 
With the single multiple-attribute index, the space for the 
secondary indexes grows as well, resulting in the diver- 
gence between this method and the unreplicated indices. 
From these graphs we can make a few interesting generali- 
zations as to which index structure is best. The decision as 
to which index structure to use depends on the expected 
types of queries and how much storage space is available. 
The number and distribution of keys also has an effect on 
which method should be used. A single index uses the 
least space, but is only useful for F 1 type queries (unless 
searches use indexes above the start point, which was not 
considered by our analysis.) Replicated indexes provide 
the best or close to the best search times in most cases, at 
an expense in storage costs (about three times the space for 
a single index in our scenario.) The non-replicated indexes 
would be most useful when the majority of the searches 
start from low in the tree and space is at a premium. A 
multiple-attribute index strikes a balance between repli- 
cated and non-replicated indexes: It performs adequately 
on searches starting at root (F i), but is slower for low start- 
ing queries (F3). The space requirement is close to that of 
the non-replicated indexes. 

Update Costs 

Up to this point we have only discussed the cost of search- 
ing an index. Building and maintaining the index are very 
real costs, and cannot be ignored. The motivation for our 
work has come from databases which are dominated by 
reads, so we have concentrated on the search times. How- 
ever we do feel it is important to say something about the 

costs of building and updating indexes. 
Building an index requires accessing every node reachable 
from the anchor point of that index. This is the same as the 
number of nodes accessed by a query using the index. If 
the cost of inserting an item into an index is not too large 
(logarithmic in the size of the index is a reasonable value), 
building an index will result in a net savings after running 
only a few queries. 
Maintaining these indexes can be expensive. In some 
cases the cost of keeping an index coherent with a database 
update is as expensive as building the index. This depends 
on the type of update. The following paragraphs give time 
estimates, assuming that back pointers from data items to 
the index already exist (this cost was included in the space 
analysis above.) The costs are in terms of “number of 
index updates”. The time for a single index update varies 
with the type of indexing method, many of the methods in 
the literature may be used. 
Adding or deleting a key from an item: 
Replicated indices 

This could require many updates: Every index 
which might reference the item must be modified, 
and an item is in the scope of every index on the 
path from root to that item. 

Unreplicated indices 
In this case, only one index points to any given data 
item, thus requiring only a single update. 

Single multiple-attribute index 
Here the object must be removed from or added to a 
secondary index, at a cost of a secondary index 
insert or delete, and a primary index find or insert 
(for insertion only.) 

Adding or deleting a link: 
Replicated indices 

This could be expensive, as all indexes located 
above the changed node must be modified. If the 
change is small (such as adding or deleting a leaf), 
only an index insert or delete would be required. 
However, if a major portion of the graph is changed, 
the change could be as expensive as rebuilding each 
index from scratch. 

Unreplicated indices 
Here only a single index need be changed, but again 
the cost of that change varies. 

Single multiple-attribute index 
This requires modifying the reachability graph (a 
quick operation), and possibly modifying a number 
of secondary indexes. The number of secondary 
indexes to be modified would be the sum of all of the 
data items below the changed link, but above anchor 
points, plus all of the anchor points which are “first 
in line” beneath the changed link. 
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One factor to consider when judging the time “cost” of 
building and maintaining an index is the human factor. If 
an index is only used once, the cost to build it will 
outweigh the savings in terms of computer time; however 
the human cost of a delay in an interactive query may be 
substantial. Spending considerable off-hour batch time 
building indexes may be worthwhile even if the indexes 
are rarely used. Keeping an index coherent with updates 
can also be done off-peak, an index can simply be invali- 
dated when an update occurs that might affect it. 

Index Placement 
So far in our cost analysis and experiments we have 
assumed a fixed .index placement, with indexes at the root 
and halfway through the database. We tried experiments 
with randomly placed indexes, but performance was (not 
surprisingly) poor, as index “coverage” often overlapped 
and portions of the database were left unindexed. In a real 
database indexes would be placed at frequent search 
points, as determined by the user or Database Administra- 
tor. These points may not correspond to the index loca- 
tions used in this analysis. Much of this analysis would 
still be relevant, but it is worthwhile to note one pitfall. 
With the non-replicated and multiple-attribute techniques, 
performance can suffer if too many indexes are used. In 
the non-replicated index case, this is because we have to 
search many small indexes. With the multiple-attribute 
method, the cost is in searching the reachability graph and 
secondary index. In practice this may not be a problem, as 
most searches may start from a few locations. Whoever 
(or whatever)[Fink88] is responsible for placement of the 
indexes must understand this in order to maximize the per- 
formance of the system. 

6. Experimental Results 
The previous discussion of costs assumes a very regular 
database. Practical databases will have a more varied 
structure. We believe that the cost functions of the previ- 
ous section will be reasonably close to costs on practical 
databases. We have performed some experiments using a 
prototype query processor/main memory database on less 
regularly structured databases to verify this. We include 
graphs in this section which plot the experimental results 
alongside predicted results from the analysis of the previ- 
ous section. 

The prototype query processor is written in an object- 
oriented language (Eiffel) and runs on a DEC 5410. 

The experiments presented here serve two purposes: 

e To verify our analysis. 
l Perhaps more interesting, to explore how well we can 

predict indexing performance on data which does not 
hold to the strict structure of the analysis (complete 
trees with a fixed branching factor.) 

In order to perform these experiments we must first cali- 
brate the model, that is, determine the values for the time 

constants listed on page 6 that correspond to our prototype. 
We assumed that the-time to search through the database 
(without an index) was linear in the size of the database; 
based on this we determined that E(n) = n-3ms. The index 
used for our experiments is a balanced binary search tree. 
We determined that the time to lookup an item in an index 
of sizen isT(n) = log2(n).l.5m. 

In order to see how well our analysis predicts performance 
on databases without a regular structure, we performed 
experiments on randomly constructed databases. Note that 
the databases used in the experiments are not entirely ran- 
dom collections of nodes and links. We expect large 
hypertext databases to have a structure which resembles a 
tree more than, for example, a completely connected 
graph. Therefore our experiments are based on data with a 
somewhat regular structure. We constructed two types of 
databases, trees and Directed Acyclic Graphs. The data- 
bases were built within the bounds of the following param- 
eters: 

l Each node contains a single key, randomly selected 
from a space of 700 distinct keys. 

l The number of outgoing branches from each node 
varies randomly from 1 to 7. 

l Each path from the root to a leaf node is at least of 
length four. 

l For the tests on indexed databases, each database has 
an index at root, and indexes at each node “halfway” 
between the root and the leaves (using the fully repli- 
cated index method described in Section 3.) 

The following graphs contains data points for identical sets 
of queries run with and without indexing. Each data point 
corresponds to a different database, and represents an aver- 
age time of forty queries on that database. Note that each 
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Figure 9: Queries from root, tree database. 
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point represents an average of queries on a single database 
rather than an average over several databases of the same 
size; we are interested in seeing the deviation in a particu- 
lar database from the prediction of the analysis. The lines 
represent the theoretical results from the analysis of the 
previous section, with a branching factor B =4 (the parame- 
ters on key placement are K = 700 and P= l/K, which 
correspond exactly to the experimental databases.) 
Figure 9 gives results of F, queries (searches from root) 
performed on a tree-structured database built to the above 
constraints. Figure 10 is for F, queries (searches from a 
node below the root) on the same data. The results for 
queries using indexes on small datatases seem surprisingly 
low. Our best guess is that this is also partially a result of 
the machine architecture; we probably have a significant 
increase in the cache miss rate once the database exceeds a 
certain size. 
We also tried queries on databases which were not tree- 
structured. To the databases used for Figures 9 and 10 we 
added links which form a directed acyclic graph rather 
than a tree. Specifically, from each node N in the database 
we added a number of links to children of the siblings of N. 
Note that this corresponds to the PartOfrelationship of the 
Tektronix HyperModel benchmark[Ande89]. The number 
of outgoing links from each node was selected randomly 
from 1 to 7. We assigned a different link type to these 
new links; the experiments on these databases used only 
links of the new type. 
Figures 11 and 12 show the results of queries run over 
these databases. The variation between the predicted and 
actual values is larger here than with the tree-structured 
database, however the predictions do appear to be in the 
ballpark, particularly with the larger databases. 
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Figure 10: Queries from just below root, tree database. 
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Figure 12: Queries from just below root, DAG database. 

The trends in the experiments coincide relatively well with 
the predictions from the analysis. The model we 
developed in Section 5 cannot be used to predict the exact 
performanee of indexes on a particular database. How- 
ever, the model can be used to study tradeoffs and general 
trends. 

7. Graph Structured Databases 
The previous algorithms have been presented in the con- 
text of a tree-structured database. Directed Acyclic 
Graphs and arbitrary Directed Graphs present new prob- 
lems. Figure 13 contains an example of the extensions we 
are talking about. Using only the solid lines gives us the 
familiar tree structure. Adding the dashed links gives a 
DAG, and adding the dotted links gives a DG. Index ’ 
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Figure 13: Arbitrary directed graph database. 

creation is relatively easy, as we need only mark items as 
being in the index when they are first inserted. Updates to 
the primary attribute are unchanged. However, link dele- 
tion becomes more difficult. This is not a serious problem, 
as it is related to Garbage Collection, which has been 
addressed extensively[CoheSl]. We will briefly summar- 
ize some possible solutions. 

Directed Acyclic Graphs 

In this case, we can attach a reference count to the back- 
pointer from an object to an index noting how many ways 
it is directly reached from that index. By directly, we 
mean that the reference count of an object is the number of 
parents it has which are in the index, regardless of the 
reference counts of the parents. When an item is told by 
its parent that the parent is no longer in the index (or the 
link between the parent and child is broken), it decrements 
its reference count. Only when the count is 0 is the delete 
performed. 

Directed Graphs 

The problem here is with cycles. A simple solution to 
deletion in this case is to re-create the index any time a link 
is deleted. This is only necessary when the deleted link 
may have been part of a cycle. In other cases, the refer- 
ence count mentioned for the DAG case is sufficient. 
Cycles, and the deletion of links therein, are probably 
infrequent enough that this will be adequate in practice. 

8. Conclusions and Further Work 
Technology is providing us with the capability to greatly 
increase the amount and kind of data we store electroni- 
cally. However, the speed of accessing this storage is not 
keeping pace with its size. For example, the IBM 3380 
Model AD4, a high performance magnetic disk, can store 
2.5 Gigabytes and provide this to the user at up to 3 
MB/second[IBM86]. The Kodak 6800 Optical Disk Sys- 
tem stores 6.8 Gigabytes[Kod87a]. Combining this with 
the 6800 automatic disk library, an optical disk jukebox, 

provides 6.8 Terrabytes in similar floorspace to the IBM 
3380. However, the access rate is considerably slower, the 
basic access rate is 1 MB/secend, and “seek” times (if a 
new disk must be loaded from the jukebox) are on the 
order of 2 seconds[Kod87b]. As a result indexing is 
becoming increasingly necessary; searching through even a 
small percentage of the database is unreasonable. 

With such storage capacity available, people will want to 
save data which does not mate well with traditional data- 
base systems. Hypermedia systems provide a nice para- 
digm for much of this information. We have presented 
some techniques for indexing which work with the type of 
searching done in hypermedia browsing systems. 

Alternative Methods 

Alternatives to the indexing methods presented here have 
been explored. They have all turned out to have significant 
drawbacks. Some alternatives that were considered were: 

An index on a key would return an ordered list of items 
containing that key. Stored with the anchor point for 
the index would be an ordered list of objects reachable 
from that index. These lists would be merged to obtain 
the intersection, thus giving the reachable objects con- 
taining the desired key. We developed a compact 
representation for this list of reachable objects, giving a 
space slightly better than the single multiple-attribute 
scheme we have presented. However, in many cases a 
query may cover a substantial portion of the database. 
Thus the list of reachable objects would be long, and 
the merge would take time on the order of the length of 
this list. The result is that the index find is considerably 
slower than the single multiple-attribute case. 
One fix for the above method is to associate a hash 
table with each anchor point, rather than an ordered list. 
This would allow the find to proceed in time propor- 
tional to the total number of items in the database 
which matched the key, which is likely to be a rela- 
tively small number. The problem with this is space: 
The size of each hash table would be proportional to the 
size of the graph reachable from that anchor point. 
This is comparable to using fully replicated indices; 
however fully replicated indices are considerably faster. 

Other Applications 

There may be uses for this style of indexing in applications 
other than hypertext. Similar queries may arise in object- 
oriented databases. These systems have been proposed as 
a likely base for hypertext databases[Woel86]. The index- 
ing methods presented here can be applied in any system 
where pointers between data items are important to (and 
possibly implicit in) queries. 

Federated databases[Heim85] may also provide an applica- 
tion for these indexes. Although indexing at the local level 
is the responsibility of the individual databases, global 
indexing could make use of some the techniques of 
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“hierarchies of indexes” discussed in Section 3. Distri- 
buted databases may pose similar problems. 

This type of indexing may apply to nested 
relations[Dada86,Fisc85] as. well. This depends on how 
flexible the nesting is; with enough constraints traditional 
indexing techniques could be used. 

There is still considerable work to be done in this area. 
We have discussed how to index, but left open the question 
of what should be included in the index. With increasingly 
unstructured data, such as text, being included in data- 
bases, some automatic indexing methods are needed. 
Work has been done in this area[Salt88], automating such 
tasks as “back of the book” indexes. These techniques 
should be incorporated in the construction of large-scale 
databases. 
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