
Indexing in a Hypertext Database+

Chris Clifton’ and Hector Garcia-Molina

Department of Computer Science, Princeton University, Princeton, NJ 08544 USA

Abstract
Database indexing is a well studied problem. However,
the advent of Hypertext databases opens new questions in
indexing. Searches are often demarcated by pointers
between text items. Thus the scope of the search may
change dynamically, whereas traditional indexes cover a
statically defined region such as a relation. We present
techniques for indexing in hypertext databases and com-
pare their performance.

1. Introduction
Hypertext and Hypermedia databases have recently
developed along with the technology to store and present
more complex information than traditional database
records[Chri86, Meyr86]. These systems have also created
new ways of accessing data. Traditional databases operate
on a query-retrieval basis, where the user provides a query
specifying what data is desired. Hypertext systems use a
concept of browsing and active objects, in which the user
chooses new data while looking at existing data items.
The first generation of these systems often lack means
other than browsing for searching the database. In these
systems a “query” is no more than a selection of a refer-
ence to another item. In a large database this is not
sufficient. Searches may require many repeated user
interactions with the system. In addition, the person query-
ing the database may not find the desired information
because they do not know where to look. The next genera-
tion of hypermedia systems must allow queries based on
what is being looked for. The need for such search tech-
niques has been discussed[Chri85]. However, these tech-
niques should remain tied to the browsing type of searches
currently supported by hypertext systems.

Permission to copy without fee all or part of this material is
granted provided that the copies arc not made or distributed for
direct commercial advantage. the VLDB copyright notice and
the title of the publication and its date appear. and notice i> gi\cn
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise. or to republish. quit-ch ;I l'ec

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

We propose to extend browsing techniques with queries of
the form:

In range Find property.

The range consists of two parts: the start point of the
query, and the link type to follow. Property is a boolean
test on an object, for example checking for the presence of
a specific keyword. The corresponding query is similar to
what a user would do while manually browsing through
hypertext; look at an object (the start point), and follow
links searching for objects with the desired property. This
allows queries of the form:

Give me all documents on sailing which are refer-
enced by my paper, referenced by papers which I
reference, etc.

Here the start point is “my paper”, the link type is “refer-
ences”, and the property is that the object is a document
on sailing. As another example, a programmer using a
software database may want to find all of the uses of a par-
ticular variable x in all of the subroutines that make up the
programming module currently being examined (here the
current module is the start point, and we recursively
traverse “contains subroutine” links to determine ah the
modules of interest.) Another query may be to find x in all
subroutines of all modules in the system. A third query is
to look at all subroutines that are called (directly or
indirectly) by a particular subroutine.
What’ sets these searches apart from traditional database
queries is that the scope of the query is determined by the
data item the user is currently accessing. A hypermedia
database can be thought of as a directed multigraph, with
the data items as nodes and the links as edges. The scope
of a query is the transitive closure formed by following
edges of the appropriate type from the start point. Rela-
tional database queries, on the other hand, operate on a
static scope such as a relation or a set of relations. The
scope of a query can be determined from the database

’ This research was supported by the Defense Advanced Research Projects
Agency of the Department of Defense and by the Office of Naval
Research under Contracts Nos. NOOO14-85-C-0456 and NOC014-85-K-
0465, and by the NationaI Science Foundation under Cooperative Agree-
ment No. DCR-8420948. The views and conclusions contained in this
document arc those of the authors andstiould not be interpreted as neces-
sarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.
* Work of this author supported in part by an IBM Graduate Fellowship.

36

schema. The queries mentioned above would have to
examine all of the subroutines in, say, the subroutines rela-
tion; looking for those that make up the particular module
or that may be called when t@,given routine is run. Such
information as the calling sequence or nesting structure of
the program is difficult to express in a relational query. In
contrast, the scope of the hypertext queries is determined
by the database content and not the schema. Only the sub-
routines that are reachable (in the desired way) from the
point of interest need be examined.
Queries in such a database can be expensive. Some
queries on graph-structured data have been shown to be
NP-hard[Mend89]. Indexes are used in traditional data-
bases to speed queries by precomputing the results of
queries on certain key attributes (such as
keywords[Baye72, Wagn73, Seli791.) These systems
assume that a particular type of search key will be com-
monly used to access database records. However, in a
hypermedia database we also need to know if these data
items can be reached by following the appropriate links
(such as references). This reachability attribute requires
special handling, and results in new index structures. In
this paper we present methods for indexing in such an
environment. These indexes may be thought of as a spe-
cial type of multiple attribute indexing. One of the attri-
butes, such as a keyword, is similar to traditional index
keys. The other is specified in terms of a link type, and
reflects the “reachability” of objects from the starting
point of the query.
Some work has been done on indexing in text
databases[Lync88], but this has concentrated on other
problems such as keyword extraction and inexact match-
ing. These techniques are useful, and in fact complement
the ideas presented here. However, they do not address the
problem of indexes whose scope may change dynamically.
Work in network databases, such as CODASYL, has also
addressed indexing which must respect links in the
database[DBTG74]. However, the sources and destina-
tions of links in CODASYL must belong to sets which are
determined by the database schema. In hypertext systems
the use of links is more flexible. The scope of a query can-
not always be determined from the database schema; links
are part of the data items and may go anywhere and be
changed at any time. Another way of looking at this
difference is given by the title of Charles Bachman’s Tur-
ing Award Lecture, The Programmer as
Navigator[Bach73], in which he discusses network data-
bases and the use of secondary indexes. With hypertext, it
is now the user who is the navigator. In network data-
bases, the user provides new keys for preprogrammed
queries. With hypertext, the user is free to move around
the database at will.
A Database Manipulation Language and prototype data-
base manager for such queries has been developed[Clif881.
Objects in the database consist of named attributes (e.g.
key: cat) and typed links (reference: Object D). Some

attributes (such as keywords) are short, these are typically
used for searches. Other attributes (such as text or pic-
tures) are intended for display only when the desired object
(or small set of objects) has been found. Queries in this
language include parts which restrict the search based on
attribute values (properties), and parts which expand the
scope of the search by following links (the range of the
query.) Such a database allows the user to dynamically
develop “private libraries” of objects of interest. Queries
can then be performed on these libraries exclusive of
objects elsewhere in the database (which may match the
property portion of the query, but not be of interest for
other reasons.) The user can return to browsing (and look
at information such as pictures) once the “private library”
has been restricted to a manageable size. In this paper we
will also present results of indexing experiments run on
this prototype.

Outline of Paper
The next section discusses the basic algorithms needed to
index the type of queries we have outlined above. Section
3 expands this to indexes at multiple points in the database.
Section 4 presents an alternative implementation based on
a single multi-attribute index. Section 5 gives an analysis
of these methods in terms of the time and space tradeoffs
of each. This analysis is performed on a regl~larly struc-
tured database we believe to be representative of actual
data. We present experimental results on databases with
more varied structure in Section 6.
For the bulk of this paper we will assume a tree-structured
database. This simplifies many of the algorithms and
examples. In Section 7 we will show how these techniques
can be expanded to handle databases which are Directed
Acyclic Graphs as well as arbitrary Directed Graphs.

2. Single Index
Our indexing technique starts with the simple idea of
attaching an index to an object in the database. The index
allows lookup of items based on a particular attribute type
(the property of the query), and covers objects which could
be reached from that node following a particular type of
link in a “browsing” interface (the range of the query.)

What is indexed
The choice of a key for indexing can be quite varied; just
about any type of data will serve. This is no different from
indexing in a traditional database. However, specifying
the scope of the index is different. Rather than specifying
a relation or set which is to be indexed, we must specify a
portion of the graph: a place from which queries will start,
and a type of link to follow. Creating an index will thus
require specifying three parameters: The anchor point
(node) which the index is to be connected to, the search
key for the index, and the link type which determines the
scope of the index.

37

Figure 1 is a sample database consisting of two types of
links (solid and dashed) and a single attribute (noted as
key.) An index has been created at node roar on the attri-
bute key and the link type solid. A few interesting points
to note about the index are:

a Item D is not in the index, even though it has a key of
interest. This is because the index is for items reach-
able through solid links, and D is reached by a dashed
link.

l Item I is pointed to by a solid link. However, since it is
not reachable from roof via solid links, it is not in the
index.

l Item G is in the index, even though its parent (C) does
not appear in the index. Node C is in the scope of the
index, but does not appear since it has no key attribute.

The index of Figure 1 will speed up searches whose scope
is the solid-link tree rooted at roof. The Database
Administrator is the one that determines that such an index
is useful, based on the expected queries. The DBA has
much the same responsibility in a relational system.

Structure of the index

The index itself will be structured in a similar manner to a
traditional database index. B-trees, hashing, and other
such techniques are all applicable. However, certain spe-
cial information is required. In addition to pointers from
the index to relevant objects, objects will be required to
have back pointers to indexes which potentially include
them. This is necessary in order to properly maintain the
index. For example, in Figure 1, C will have a back-
pointer to ensure that updates that add keys to it will be
reflected in the index. Items D, H, and I do not need back
pointers, as changes to these objects will not result in their
being reachable, and thus they will not be in the index. If
the dashed links are changed to solid, the presence of
pointers to the index in the parents of the links will point to

l-z-l Index: key, solid
bird:E

index: ’ B cat: A, B
dog: A, F

key: cat, dog key: cat

the need for index updates.

In a relational database, information about what indexes
may potentially reference a given record can be deter-
mined easily fram the definition of the index, due to the
static nature of the scope of the index. In a hypertext sys-
tem, determining what indexes a data item is in may be as
difficult as building the index (in terms of number of items
referenced.) The use of back-pointers is necessary to
maintain the indexes at a reasonable cost when data items
are modified. In addition, when a data item is added to the
database the indexes which refer to it can be determined
from the index links of the parent of the item. We also
need back pointers from all nodes in the scope of the index
(even if they are not in the index, such as C in Figure 1) to
support deletion. Deletion of a node or link may require
changes in the index to deal with nodes below that point.

Following are pseudo-code algorithms for the various
operations relevant to indexes. These will work only on
tree-structured databases; the extensions necessary to
operate on arbitrary databases will be discussed later.

Create-index (node, key, link)
Create an empty index data structure.
Add a pointer to node noting the presence

of the index.
add-index (index-structure, node, key, link)

Add-index (index, node, key, link)
Add all appropriate key items of node to index.
V children of node via link

add-index (index, child, key, link)

Find (node, key-type, key-item, link)
if node has a pointer to an index on

key-type and link then
indexjnd key-item

else
if key-item present ar node then

Result := node
V children of node via link

Result := Result u Find (child, . . .

Add-link (parent, new-node, link)
Add link to the database in the normal manner.
‘v’ index back-pointers in parent

if index.link = link then
add-index (

index, new-node, index.key, link)

Figure 1: Index of a tree-structured database.

38

Delete-link (parent, child, link)
Delete lit&from the database

in the normal manner.
V index back-pointers in child

if index.link = link then
delete-index (

index, child, index.key, link)

Delete-index is analogous to add-index

Searches from a node which is not indexed can still make
use of indexes. The simple case is making use of an index
which is associated with a node which is reached at some
point in the search. This is already done in the above algo-
rithms. However, in some cases it may be worthwhile to
use an index located above the start point of the search. If
the start point is in the scope of the index; the index will
cover a superset of the desired search. Such an index can
be found because the starting node of the search will have
a back pointer to the index. All of the items returned by
the index must be checked to see if they are in the proper
subtree.

these nodes, but this leads to space problems due to repli-
cation of information. Figure 2 provides an example of
this situation. Some users may wish to query the entire
database, using index root; others may only be interested
in the subset contained in the tree rooted at A. In order to
allow the efficiency provided by indexing to both sets of
users, we can construct indexes anchored at both nodes
(the indexes pointed to by solid lines.) All of the functions
described at the end of the previous section will work here
as well. Note that each object which is below A must have
back-pointers to both indexes.

Eliminating Replication

For example, in Figure 1, a search from node A could use
the root index, and then check all of the objects found by
backtracking from the object until either A or root is
reached. This assumes that the database provides back-
pointers for all links. In many cases this may be done for
reasons independent of indexing.

This is an appropriate approach when few items are found
in a search of the index, and the subtree rooted at the
search node is a large fraction of the subtree rooted at the
indexed node. The given example would be slower than a
direct search for the keys cat and dog, but would be com-
parable given a search on bird.

This naive approach has one problem. All of the items in
index A are also indexed by root. This leads to replication
in the indexes. In a large database with many indexes, the
size of the indexes could in fact grow at a faster rate than
the size of the database itself. Given that the index grows
linearly in the number of items indexed, a complete set of
indexes on an R node tree of depth k would take space
O(n.k). A more space-efficient index structure would help,
but the indexes would still end up requiring more space
than the data itself. In addition updates to the database
may take a long time because they must modify many
indexes.

Determining when to use an index located above the
search point is a difficult problem. Some simple heuristics
which suggest the use of such an index are:

l The index returns a relatively small number of items
compared to the size of the subtree to be searched.

l The desired subtree is a large fraction of the total size
of the indexed subtree.

This replication can be eliminated by requiring indexes to
refer to “lower” indexes, rather than directly indexing the
entire subtree. This is illustrated by the indexes pointed to
by dotted lines in Figure 2 (just the ones on the left side of
the Figure.) A search for all items in the database (starting
at root) which have attribute dog would first find B from
the root index. Next the search would proceed along the
Next Index pointer to the index anchored at A, where it
would find D. Note that this increases the time required to
find an item. In the worst case, putting an index at every
node, we end up with a linear search and have lost the

l The subtrees are relatively broad; back searches will
require tracing a small number of pointers relative to
the size of the subtree.

Even if we do not use an index above the start point of the
search to actually find the desired objects, it may be of
some use. If an index lookup returns no items for the
desired key, we know that the search would also return an
empty result (since the index covers a superset of the por-
tion of the database being searched.) If searches often
come up empty, this will result in a net savings.

ca,; A
Ann. n I I key: cat 1

1 key: bird 1 (k”y: dogI 1 key: fish 1

3. Multiple Indexes
In a real system, there may be many nodes from which we
often make queries. We could build an index at each of

Figure 2: Tree-structured database with two indexes.

39

benefits of indexing. However, we expect the typical cost
will be much smaller. This will be discussed in Section 5.

Update in such a system is slightly more complex,
although the time required is less (due to updating only a
single index.) This complexity results from the need to
remove links between indexes when links between objects
are changed, in much the same manner as objects must be
removed from the index in the basic scenario.

In some cases partial redundancy can be allowed. For
example, if a new index is created beneath an existing one,
the redundant items need not be immediately removed
from the old index. This speeds the creation of the new
index. The old index need be modified only when objects
it indexes are changed. These data items will already have
pointers to the old index. These pointers must be changed
to reflect that updates to these data items should cause
them to be removed from the old index. However, chang-
ing the pointers can be done as part of the creation of the
new index. This adds only a constant factor to the time
required to build the new index. This is one example of
the numerous time/space tradeoffs which can be made with
this indexing.

Eliminating replication may help when using indexes
located above the start point of the query. For example, in
Figure 2 a search from B could use the index at root. A
clever implementation could note that the non-replicated
index at roof (pointed to by a dotted line) indexes root + the
tree rooted at B - the tree rooted at A. This is very close to an
index on B. A search from B could just use this index, and
remove root from the result set.

4. Single Multiple-Attribute Index
An alternative to the previous structure is to use a single
database-wide index for each type of key. In a sense this is
a multiple attribute index[Lum70]. However, the second
attribute in our system is “reachability” rather than an
attribute in the normal sense. As such, previous techniques
do not apply.

Our method is to use a single primary index on the search
key that returns a secondary index. The secondary index
maps the “anchor points” (nodes in the database which
have indexes) to the objects that can be found from those
anchor points. The structure of the primary and secondary
indexes could be any of a number of things, including B-
trees, hash tables, sorted lists, etc. A naive implementation
of the secondary indexes, in which each anchor point
hashes to a list of all of the objects reachable from that
anchor point, could require CQ*) space per secondary
index (where IZ is the size of the database). However, all of
the objects at many anchor points are reachable from other
anchors (e.g. in Figure 2 all objects reachable from A are
also reachable from root.) This fact was used to eliminate
replication in the previous section. In the secondary index
we can associate with a given anchor point only those
objects for which it is the “closest” anchor point, cutting

the space considerably (worst case O(n).)

For example, Figure 3 is a sample index containing entries
for a few keywords based on the database of Figure 2 (with
anchor points at root and A.) Note that the secondary
index for “dog” only associates B with the anchor root,
even though a query on “dog” from root would also find
D. Node D is associated with the anchor point A. The
reachability graph on the anchor points is used to deter-
mine which anchors can be reached from the desired
“start” anchor point. The result set of data items is then
the union of all of the nodes found from all of these
anchors (in the chosen secondary index.) To illustrate a
search, say that we wish to find all of the objects reachable
from root which contain the keyword “dog”. We use the
primary index to find the secondary index associated with
“dog”. We also need all of the anchor points reachable
from root (done using the reachability graph, these are root
and A.) Next we find all of the objects reachable from
these anchor points using the secondary index. The objects
B and D are the result of our search. More formally, the
Find algorithm is:

Find (node, key-type, key-item, link)
S =fmd_secondury-ind (key-item, link)
let T = transitive closure of node in the

reachability graph for link

Note that the previous steps can occur in parallel.

v anchors A in T
Result := Result u S(A)

(S(A) is Objects in A in secondary index T.)

As written this assumes that the current node has an index.

Primary index

bird cat dog 8

I A: A
I I

root: B

A: D
I I I

Reachability Graph

Figure 3: Single Multiple-Attribute Index.

40

Extending it to the general case is straightforward, and can
be seen from looking at the Find operation of Section 2.

Lookup time for the reachability graph (finding transitive
closure) is worst-case linear. .in the number of anchor
points. Improving this time requires precomputing the
transitive closures, which would take quadratic space (and
is also expensive to compute[Ullm90].) However, for a
tree-structured graph (or tree-structured parts of the graph)
reachability can be expressed as a range of integers. To do
this, we name the anchor points by preordering the tree.
With each anchor point, we store its number and the
number of its right sibling. From a node i with right
sibling j, the reachable anchor points are those numbered i
to j-l. This cuts the “transitive closure” operation on the
reachability graph to constant time with space linear in the
number of anchor points.

Up to this point we have ignored different link types.
Using the methods of the previous sections we have had to
construct a new index for each type of link. However, in
this case we may reuse the primary index. Each key value
will have a different secondary index for each link type,
and there will be a separate reachability graph for each
type of link. Also note that an index on a different key
attribute can reuse existing reachability maps.

Updates to the database which change the key attribute of a
data item will require that it be moved to a new secondary
index. This requires no extra links; Finds in the primary
index can be used to return the old and new secondary
indexes. The node is then removed from the appropriate
anchor point list in the old index, and added to the list for
the same anchor point in the new index. Deletions and
additions are similar. Changes to links are somewhat more
difficult. For this we still need the back pointers from
nodes to anchor points (as in Sections 2 and 3) and from
anchor points to the secondary indexes. Deleting or adding
a link will require modifying some of the secondary
indexes, and in some cases may require rebuilding part of
the primary index (for example, if a new value for the key
attribute appears.) In addition, the reachability graph may
have to be changed.

5. Cost Comparison
The methods of indexing we have introduced (single
indexes, indexes with replication, indexes without replica-
tion, and multiple-attribute indexes) each have advantages
and disadvantages. A simple estimate of the time and
space costs for each technique on a regularly-structured
database is given in this section. This provides for a rea-
sonable basis of comparison of the indexing methods.

First we will set out the assumptions and terms used in
these calculations. Although the techniques work for an
arbitrary directed-graph structured database, we continue
to assume that the data is tree-structured. The structure of
data in a hypermedia database is likely to be oriented
towards a tree ,more than, for example, a randomly-created

directed graph. We feel that worst-case costs derived for
tree-structured data will reflect practical costs better than
an analysis on arbitrary graph-structured data. Another
assumption is that searches will only use indexes at or
below the start node. The analysis for using indexes
located above the start node is too complex to present in
detail here.

For the purposes of this discussion we will assume that the
data and pointers to be indexed form a complete tree with
constant branching factor (each parent has the same
number of children.) This restriction significantly
simplifies the analysis, and we feel the analysis on this
structure will reflect performance on more varied data.
The Tektronix HyperModel Benchmark[Ande89] uses
such an arrangement as one of its three “hierarchies”. In
the next section we present experiments on less regularly
structured data, and compare the results with the results of
the analysis.

We will use indexes placed at the root and at all nodes
halfway down the tree. This provides a uniform placement
of indexes (each index has an equal number of nodes
located “directly” beneath it.) Such an arrangement is an
intuitively reasonable example. We will also look at a sin-
gle index placed at root, as described in Section 2. AIlow-
ing a more varied placement of indexes results in an
analysis too complex to be included in this paper. We
need to define the parameters that we will use:

T(n)

E(n)

cs

CP

C,

t,

K
P

Time required to do an index find operation on an index
containing n elements. This will typically be logarithmic,
and is determined by the choice of index (B+ trees, tries,
etc.)
Time required to search through n nodes without using an
index. This will basically be linear, although the function
could be complex if the data items are stored on disk.
Space required to store a search key in an index. Some
index structures, such as tries or C,, trees[Orla88] do not
require linear space for the keys. Such structures would
complicate this analysis considerably, but would be of
most benefit to the single multiple-attribute indexes.
Space required to store a pointer in an index.
Space required for each item in the reachability graph of
the single multiple-attribute index described in Section 4.
Time required to lookup an item in memory, such as in
the reachability graph or in a linear search of the secon-
dary index.
Total number of possible search keys.
Probability that a given key attribute value appears in a
given data item. KP gives the expected number of key
attributes per data item.
Branching factor. This is the number of children of any
given data item (except for leaf nodes.)
Depth of the second (non-root) layer of indexes. The to-
tal depth of the tree is 2 j. We will consider root to he at
level 0, and the leaves to he at level 2 j- 1.
Number of indexable items in the database. This is equal
toB*‘-1.

Note that there are BJ second level indexes. Each of these

41

indexes has Bi - 1 data items located beneath it. We have
not put in a separate space cost for back-pointers from data
items to the index. There will be one such pointer for
e&y pointer from an index to a data item, so this is
included in cP.

We will use three queries in this analysis, each reflecting a
different start point. From these three, we can predict
results for queries from any start point. The queries are:

Fl Find time for searches starting at the root node (which
contains an index.)

F2 Searches starting at a child of the root node. These will
progress through half the depth of the tree before they
are able to use second level indexes (if any.)

F3 Finds starting at level j. These will be able to make use
of a second level index directly (if one exists.)

Note that searches starting from below level j (below F3)
wilI take the same time for all of the methods, as no index
wi:l be used. Searches from between level 2 and j will take
between F2 and F3 time, but will vary at the same rate for
each of the three indexing techniques. We will use F, to
denote the time required for search Fi (where i is 1,2, or 3)
using index type t (where t is s for a single index at root, r
for fully replicated indices, u for unreplicated (linked)
indexes, and m for the single multiple-attribute index.)

As a quick example, for a single index located at root we
have F Is =T(k), where k is the number of keys in the index;
plus the retrieval time E(r) for the r items found by the
index. Given K total possible keys, P probability that a
given node will contain a given key, and N nodes, we can
see that the expected number of keys in the index (k) is:

k = K(l-(l-P)N)

keys. The expected number of items to be retrieved r is
PN. Therefore the expected retrieval time for a search
from root is:

F,, = T(K(l-(l-PjN))+E(PN)

Searches from below the root require searching the entire
subtree from the start point (which includes the object
retrieval time):

Fzs = E(BZi-’ - 1)
F3s = E(B’-1)

As to the space requirement, note that an index will require
c, k +c,d storage space, where k is the number of keys in
the index (as determined above), and d is the number of
items indexed. Also, a given database item will have
pointers to it in the index KP times, so we have an
expected value for d of nKP. This gives us a storage space
requirement for an index of size n of

S(n) = c,K(l-(1-P)“)+c,nKP

Therefore the space requirement for a single index at roof
is

S,(N) = c,K(l-(I-P)N)+c,NKP

Using multiple indexes without eliminating replication
gives the fastest lookup time of any of the three indexing
methods described. Starting at the root we get:

F,, = F,, = T(K(l-(l-P)N))+E(PN)

If we start at level 1 things are somewhat worse. We have
to first search all of the nodes between the start point and
the relevant second level indexes (Bj-’ - 1 nodes), and then
use each of the indexes beneath this point.

F,, = E(B’-l-l)+B’-‘T(K(l-(l-f’)B’-‘))+
E(P(Bj- 1))

Finally, at level j we need search only a single index on
Bj - 1 items:

F,, = T(K(l-(1 -f’)B’-‘))+E(P(Bj- 1))

This method requires the most space. To the space
requirements for the single index we must add Bj smaller
indexes at level j. Thus the total space requirement for the
replicated multiple index technique is:

S, = S(N)+B’S(Bj-1)
= c,K(~-(~-P)~)+c~NKP+

B~K(c,(l-(l-P)~‘-‘)+cpP(Bj-l))

Eliminating replication saves space at some expense in
time for searches from root. For a search from root we
now have to search the top index, and then each of the
lower indexes:

F,, = T(K(l-(l-P)B’-‘))+
BjT(K(1 -(1 - P)B’-‘))+E(PN)

= (Bj+l)T(K(l-(l-P)B’-‘))+E(PN)

Searches F, and F, are the same as in the replicated case.

The space required for each of the indexes at level j is the
same, but the unreplicated top level index requires only
space S(Bj- 1).

S,. = (Bj+l)S(Bj-1)
= (Bi+l)K(c,(l-(l-P)B’-l)+~pP(B~-l))

The Find operation for the single multiple-attribute index
of Section 4 is a multi-step algorithm. The first step,
finding the secondary index, is T(K(l-(1 -P)N)) time
regardless of where we are in the database. The transitive
closure of the reachability graph is inherently linear; for a
search from root it will require time O(Bj) from root, and
constant time for the other searches.* Finding the appropri-

’ We have described a technique where a tree-structured reachability graph
can be replaced by ranges in a preorder numbering of the database. This
would give constant, as opposed to linear, time and space requirements.
Since this only applies to tree-structured data, we are not using this optim-
ization for this analysis.

42

ate objects in the secondary index can be done in two
ways. If we are looking for objects reached from a large
number of anchor points, a simple linear search may be
desirable. If only looking for a few anchor points, we can
use a typical index and perfort% a number of searches each
of time T(n), where n is the number of anchor points in the
secondary index. Note that an anchor point will occur in a
secondary index with probability (1 - (1 - P)d), where d is
the number of objects directly beneath that anchor point.
In our example, d =Bj - 1 for all the indexed locations, so
n=(Bj+l)(l-(l-P)B’-l). Adding these up gives a find
time of:

F Im = z-(K(i-(i-P)N))ft,Bj+
t,(B’+1)(1-(l-Py’-l)+E(PN)

This is assuming that we make a linear search of the secon-
dary index, otherwise the third term would change:

F Irn = T(K(l-(l-fy))+trBj+

BjT((Bj+l)(l-(l-p)B’-‘))+E(fN)

Searches from children of root require the same time as the
previous methods to get to the indexed locations, but
beyond this we can make some optimizations. We only
need to do the search in the primary index once. We will
need to look at the reachability graph and perform a lookup
in the secondary index once for each of the indexed nodes
we reach. This gives a time of:

F 2m = E(Bj-l -i)+~(~(i-(i--P)~))+
BJ-‘(r,+T((B~+1)(1-(1-P)B’-‘)))+E(P(B2j-’-1)

Searches from the bottom indexed locations also require
the primary lookup, as well as a single check of the reacha-
bility graph and secondary index.

F 3m = z-(K(l-(l-P)N))+t,+

T((Bj+i)(i-(i-~)B’-*))+~(P(Bj-i))

The space requirement here is a bit more complex. The
reachability graph requires space proportional to the
number of anchor points: c,(Bj + 1). The primary index
takes space for each search key, as well as a pointer to
each secondary index: (c,+cp)K(l-(l-P)N). Each
secondary index will take space determined by how many
anchor points are found in the index and how many data
items have the corresponding search key. The expected
number of anchor points in an index is
(B’+l)(l-(l-P)f+1), and the expected number of data
items is N P. The space required for each item will be cP,
the cost of a pointer to a data item or anchor point. There
will be one secondary index for each entry in the primary
index. This gives a total space figure of:

s, = c,(Bj+l)+(c,+c,)K(l-(l-fyJ)+

K(l-(l-P)N)(c,NP+c,(B’+l)(l-(l-k’)B’-’))

= c,(B’+l)+K(l-(1-P)N).

(~,+c~(l+NP+(Bj+l)(l-(l-P)B’-‘)))

To understand the tradeoffs between the various indexing
techniques it is helpful to graph the performance results on
a particular scenario. There are many possible scenarios,
corresponding to the values of the parameters on page 6.
Given our space limitation, we will look at one representa-
tive scenario (a different scenario is presented in the exper-
iments of the following section.) Therefore these graphs
should be interpreted as illustrative only.
The graphs in the rest of this section are based on complete
trees with a branching factor of five. We did try varying
the branching factor; the results varied by an equivalent
factor for all of the indexing methods. The values of K and
P are given above each graph. T(n), the time for a lookup
in an index, is logarithmic. E(n), the time to search
through n nodes in the database, is linear. We assume a
main-memory database; with increasing memory sizes it is
reasonable to cache “short” information, such as links and
keywords, for each node in the database. Thus E(n), the
time to search through n nodes in the database, takes time
t, .n. T(n), the time to lookup a key in an index of size n, is
logarithmic: t,log,(n). The factor t, corresponds to
memory lookup time, for these graphs we simply assume
unit time.
Figure 4 shows the find time for each of the indexing
methods, for a find over the entire database (F 1). We use
K = 1000 and P= .OOl, this provides an expected value of 10
search keys per node.
Figure 5 shows the expected time for queries from just
below the root of the database (F,, encompassing one fifth
of the database.) Otherwise this figure corresponds exactly
to Figure 4. The gains provided by indexing are substan-
tial.

- Single Multi-Attribute index
looooO- “.’ Fully replicated indices

---- Unreplicated indices
/

- - Unindexed

7 I I I I I
10 100 1000 10000 100000 le+O6

Number of items in Database (log scale)
K = 1000, t= = .OOl

Figure 4: Find Time vs. Database ske, search from root.

43

10000

Time
(log

scale)

- Single Multi-Attribute index - Single Multi-Attribute index
.‘.’ Fully replicated indices .‘.’ Fully replicated indices
---- Unreplicated indices/
- - Unindexed

I
I I I I I

100 1000 10000 1OOOW le+06
Number of items in Database (log scale)

K= 1000, P = .OOl

Figure 5: Find Time vs. Database Size, just below root.

- Single Multi-Attribute index

i

.‘.’ Fully Replicated indices
10000 - - Unreplicated indices / - - - - --

/

I I I I I
10 100 1000 10000 IO0000 le+O6

Number of Possible Keys (K) (log scale)
N = lo’, P = IO/K

Figure 6: Find Time vs. Number of Keys, just below root.

Figure 6 compares the effect of the number of distinct keys
on the time required for a find. This is for the F, find,
starting just below the root node. It does not include the
actual object retrieval time, as this is the same for all of the
indexes. The expected number of keys per node is con-
stant (10); the more total keys, the fewer items will be
returned for a given key. Note how the single multiple-
attribute case performs better than the other methods with
a large number of keys. Let us first explore what is hap-
pening with the fully replicated and unreplicated indexes.
As the number of distinct keys grows, the size of each
index grows. This increases the time required to search the
indexes. This is also true with the multiple-attribute index,
if we simply look at the search time for the ~T%TZUQJ index.

However, the cost for the multiple-attribute method also
includes a search based on the secondary index, and as the
number of keys increases the size of each secondary index
decreases. The cost of searching the secondary indexes
decreases faster than the cost of searching the primary
index increases. When the number of distinct keys
approaches the size of the database, the cost of searching
the secondary indexes becomes insignificant. At this point
the cost of a single search in the (large) primary index of
the single multiple-attribute technique becomes less than
the cost of searching many lower-level indexes with the
replicated and unreplicated methods.
The remaining figures show space requirements for the
various methods. Figure 7 is space versus number of items
in the database. We have assumed that c, = c, = cP = 1
word. For example, for a single index at root on a database
of 5000 nodes takes 50,000 words, or about 10 words per
object in the database. The database itself would take at
least 75000 words, as each object would require a
minimum of 15 words (10 keys and 5 links.) In practice a
node will have much more information (such as text, other
types of links, etc.), so the relative space cost of the index
will be small.
Figure 8 corresponds to Figure 6, and shows space relative
to the number of possible keys. This shows an interesting
behavior; although the indexes grow as the number of dis-
tinct keys increases, the pattern of this growth is not obvi-
ous. If we look at the single index at root, we see that the
space is relatively constant until the number of keys is
comparable to the database size. Before this point, the size
of the index is dominated by the storage of pointers to data
items. Beyond this point, the cost of storing the keys dom-
inates (as there are few data items per key.) With the

25oooo -_I - Single Multi-Attribute index
‘*‘* Fully replicated indices :
---- Unreplicated indices

.’ :
2ooooO-

:
- - Unindexed _’ : : _’ :

15oooo- :

Space
locKIoo-

5oooo-

o-

0 5ooo
Number of itqms in Database

K=lO&I, f=.Ol

Figure 7: Index Space vs. Database Size.

44

- Single Multi-Attribute index
.“* Fully replicated indices _’

3e+o8 _ ---- Unreplicated indices‘.
- - Index at root only ..‘.’

: :
2Se+08 - : :

1.5e+O8 -

I I I I I I
100 1000 100001000001e+06 le+07

Number of Possible Keys (K) (log scale)
N = 107, P = 10/K

Figure 8: Index Space vs. Number of Keys.

unreplicated indices, the keys begin to dominate earlier, as
each index covers a smaller area. Note that the curve for
the fully replicated index is roughly the sum of the curves
for the unreplicated indices and the single index at root.
With the single multiple-attribute index, the space for the
secondary indexes grows as well, resulting in the diver-
gence between this method and the unreplicated indices.
From these graphs we can make a few interesting generali-
zations as to which index structure is best. The decision as
to which index structure to use depends on the expected
types of queries and how much storage space is available.
The number and distribution of keys also has an effect on
which method should be used. A single index uses the
least space, but is only useful for F 1 type queries (unless
searches use indexes above the start point, which was not
considered by our analysis.) Replicated indexes provide
the best or close to the best search times in most cases, at
an expense in storage costs (about three times the space for
a single index in our scenario.) The non-replicated indexes
would be most useful when the majority of the searches
start from low in the tree and space is at a premium. A
multiple-attribute index strikes a balance between repli-
cated and non-replicated indexes: It performs adequately
on searches starting at root (F i), but is slower for low start-
ing queries (F3). The space requirement is close to that of
the non-replicated indexes.

Update Costs

Up to this point we have only discussed the cost of search-
ing an index. Building and maintaining the index are very
real costs, and cannot be ignored. The motivation for our
work has come from databases which are dominated by
reads, so we have concentrated on the search times. How-
ever we do feel it is important to say something about the

costs of building and updating indexes.
Building an index requires accessing every node reachable
from the anchor point of that index. This is the same as the
number of nodes accessed by a query using the index. If
the cost of inserting an item into an index is not too large
(logarithmic in the size of the index is a reasonable value),
building an index will result in a net savings after running
only a few queries.
Maintaining these indexes can be expensive. In some
cases the cost of keeping an index coherent with a database
update is as expensive as building the index. This depends
on the type of update. The following paragraphs give time
estimates, assuming that back pointers from data items to
the index already exist (this cost was included in the space
analysis above.) The costs are in terms of “number of
index updates”. The time for a single index update varies
with the type of indexing method, many of the methods in
the literature may be used.
Adding or deleting a key from an item:
Replicated indices

This could require many updates: Every index
which might reference the item must be modified,
and an item is in the scope of every index on the
path from root to that item.

Unreplicated indices
In this case, only one index points to any given data
item, thus requiring only a single update.

Single multiple-attribute index
Here the object must be removed from or added to a
secondary index, at a cost of a secondary index
insert or delete, and a primary index find or insert
(for insertion only.)

Adding or deleting a link:
Replicated indices

This could be expensive, as all indexes located
above the changed node must be modified. If the
change is small (such as adding or deleting a leaf),
only an index insert or delete would be required.
However, if a major portion of the graph is changed,
the change could be as expensive as rebuilding each
index from scratch.

Unreplicated indices
Here only a single index need be changed, but again
the cost of that change varies.

Single multiple-attribute index
This requires modifying the reachability graph (a
quick operation), and possibly modifying a number
of secondary indexes. The number of secondary
indexes to be modified would be the sum of all of the
data items below the changed link, but above anchor
points, plus all of the anchor points which are “first
in line” beneath the changed link.

45

One factor to consider when judging the time “cost” of
building and maintaining an index is the human factor. If
an index is only used once, the cost to build it will
outweigh the savings in terms of computer time; however
the human cost of a delay in an interactive query may be
substantial. Spending considerable off-hour batch time
building indexes may be worthwhile even if the indexes
are rarely used. Keeping an index coherent with updates
can also be done off-peak, an index can simply be invali-
dated when an update occurs that might affect it.

Index Placement
So far in our cost analysis and experiments we have
assumed a fixed .index placement, with indexes at the root
and halfway through the database. We tried experiments
with randomly placed indexes, but performance was (not
surprisingly) poor, as index “coverage” often overlapped
and portions of the database were left unindexed. In a real
database indexes would be placed at frequent search
points, as determined by the user or Database Administra-
tor. These points may not correspond to the index loca-
tions used in this analysis. Much of this analysis would
still be relevant, but it is worthwhile to note one pitfall.
With the non-replicated and multiple-attribute techniques,
performance can suffer if too many indexes are used. In
the non-replicated index case, this is because we have to
search many small indexes. With the multiple-attribute
method, the cost is in searching the reachability graph and
secondary index. In practice this may not be a problem, as
most searches may start from a few locations. Whoever
(or whatever)[Fink88] is responsible for placement of the
indexes must understand this in order to maximize the per-
formance of the system.

6. Experimental Results
The previous discussion of costs assumes a very regular
database. Practical databases will have a more varied
structure. We believe that the cost functions of the previ-
ous section will be reasonably close to costs on practical
databases. We have performed some experiments using a
prototype query processor/main memory database on less
regularly structured databases to verify this. We include
graphs in this section which plot the experimental results
alongside predicted results from the analysis of the previ-
ous section.

The prototype query processor is written in an object-
oriented language (Eiffel) and runs on a DEC 5410.

The experiments presented here serve two purposes:

e To verify our analysis.
l Perhaps more interesting, to explore how well we can

predict indexing performance on data which does not
hold to the strict structure of the analysis (complete
trees with a fixed branching factor.)

In order to perform these experiments we must first cali-
brate the model, that is, determine the values for the time

constants listed on page 6 that correspond to our prototype.
We assumed that the-time to search through the database
(without an index) was linear in the size of the database;
based on this we determined that E(n) = n-3ms. The index
used for our experiments is a balanced binary search tree.
We determined that the time to lookup an item in an index
of sizen isT(n) = log2(n).l.5m.

In order to see how well our analysis predicts performance
on databases without a regular structure, we performed
experiments on randomly constructed databases. Note that
the databases used in the experiments are not entirely ran-
dom collections of nodes and links. We expect large
hypertext databases to have a structure which resembles a
tree more than, for example, a completely connected
graph. Therefore our experiments are based on data with a
somewhat regular structure. We constructed two types of
databases, trees and Directed Acyclic Graphs. The data-
bases were built within the bounds of the following param-
eters:

l Each node contains a single key, randomly selected
from a space of 700 distinct keys.

l The number of outgoing branches from each node
varies randomly from 1 to 7.

l Each path from the root to a leaf node is at least of
length four.

l For the tests on indexed databases, each database has
an index at root, and indexes at each node “halfway”
between the root and the leaves (using the fully repli-
cated index method described in Section 3.)

The following graphs contains data points for identical sets
of queries run with and without indexing. Each data point
corresponds to a different database, and represents an aver-
age time of forty queries on that database. Note that each

- Unindexed

100
(+ experimental) ++ + Fully replicated indices
(* experimental)

/
+

10
Time
(set)
(log l

scale)

0.1

*

.*.‘.
*:’

I I I
100 . . 1000 10000

Number of items in Database (log scale)

Figure 9: Queries from root, tree database.

46

point represents an average of queries on a single database
rather than an average over several databases of the same
size; we are interested in seeing the deviation in a particu-
lar database from the prediction of the analysis. The lines
represent the theoretical results from the analysis of the
previous section, with a branching factor B =4 (the parame-
ters on key placement are K = 700 and P= l/K, which
correspond exactly to the experimental databases.)
Figure 9 gives results of F, queries (searches from root)
performed on a tree-structured database built to the above
constraints. Figure 10 is for F, queries (searches from a
node below the root) on the same data. The results for
queries using indexes on small datatases seem surprisingly
low. Our best guess is that this is also partially a result of
the machine architecture; we probably have a significant
increase in the cache miss rate once the database exceeds a
certain size.
We also tried queries on databases which were not tree-
structured. To the databases used for Figures 9 and 10 we
added links which form a directed acyclic graph rather
than a tree. Specifically, from each node N in the database
we added a number of links to children of the siblings of N.
Note that this corresponds to the PartOfrelationship of the
Tektronix HyperModel benchmark[Ande89]. The number
of outgoing links from each node was selected randomly
from 1 to 7. We assigned a different link type to these
new links; the experiments on these databases used only
links of the new type.
Figures 11 and 12 show the results of queries run over
these databases. The variation between the predicted and
actual values is larger here than with the tree-structured
database, however the predictions do appear to be in the
ballpark, particularly with the larger databases.

1ot-l
i

. . . .

10
Time I
(sed
(1% l

scale) i
0.1 -j

Unindexed
(+ experimental) +
Fully replicated indices + +

100 1000 10000
Number of items in Database (log scale)

Figure 10: Queries from just below root, tree database.

- uuiudexed

100 - (+ experimental) + Fully replicated indices
(* experimental)

lo-
Time

*

._: ..:
. ..’ ..‘. * *

()Ol- ,*..*...*..**.-i”$’ * *

l&lo
Number of items in Database (log scale)

Figure II: Queries from root, DAG database.

- uIliIldexed
(+ experimental) + Fully replicated indices

10
Time

(* experimental)
+

/
(sed 1
0%

scale) I
0.1

0.01
1

100 1000 10000
Number of items in Database (log scale)

Figure 12: Queries from just below root, DAG database.

The trends in the experiments coincide relatively well with
the predictions from the analysis. The model we
developed in Section 5 cannot be used to predict the exact
performanee of indexes on a particular database. How-
ever, the model can be used to study tradeoffs and general
trends.

7. Graph Structured Databases
The previous algorithms have been presented in the con-
text of a tree-structured database. Directed Acyclic
Graphs and arbitrary Directed Graphs present new prob-
lems. Figure 13 contains an example of the extensions we
are talking about. Using only the solid lines gives us the
familiar tree structure. Adding the dashed links gives a
DAG, and adding the dotted links gives a DG. Index ’

47

Figure 13: Arbitrary directed graph database.

creation is relatively easy, as we need only mark items as
being in the index when they are first inserted. Updates to
the primary attribute are unchanged. However, link dele-
tion becomes more difficult. This is not a serious problem,
as it is related to Garbage Collection, which has been
addressed extensively[CoheSl]. We will briefly summar-
ize some possible solutions.

Directed Acyclic Graphs

In this case, we can attach a reference count to the back-
pointer from an object to an index noting how many ways
it is directly reached from that index. By directly, we
mean that the reference count of an object is the number of
parents it has which are in the index, regardless of the
reference counts of the parents. When an item is told by
its parent that the parent is no longer in the index (or the
link between the parent and child is broken), it decrements
its reference count. Only when the count is 0 is the delete
performed.

Directed Graphs

The problem here is with cycles. A simple solution to
deletion in this case is to re-create the index any time a link
is deleted. This is only necessary when the deleted link
may have been part of a cycle. In other cases, the refer-
ence count mentioned for the DAG case is sufficient.
Cycles, and the deletion of links therein, are probably
infrequent enough that this will be adequate in practice.

8. Conclusions and Further Work
Technology is providing us with the capability to greatly
increase the amount and kind of data we store electroni-
cally. However, the speed of accessing this storage is not
keeping pace with its size. For example, the IBM 3380
Model AD4, a high performance magnetic disk, can store
2.5 Gigabytes and provide this to the user at up to 3
MB/second[IBM86]. The Kodak 6800 Optical Disk Sys-
tem stores 6.8 Gigabytes[Kod87a]. Combining this with
the 6800 automatic disk library, an optical disk jukebox,

provides 6.8 Terrabytes in similar floorspace to the IBM
3380. However, the access rate is considerably slower, the
basic access rate is 1 MB/secend, and “seek” times (if a
new disk must be loaded from the jukebox) are on the
order of 2 seconds[Kod87b]. As a result indexing is
becoming increasingly necessary; searching through even a
small percentage of the database is unreasonable.

With such storage capacity available, people will want to
save data which does not mate well with traditional data-
base systems. Hypermedia systems provide a nice para-
digm for much of this information. We have presented
some techniques for indexing which work with the type of
searching done in hypermedia browsing systems.

Alternative Methods

Alternatives to the indexing methods presented here have
been explored. They have all turned out to have significant
drawbacks. Some alternatives that were considered were:

An index on a key would return an ordered list of items
containing that key. Stored with the anchor point for
the index would be an ordered list of objects reachable
from that index. These lists would be merged to obtain
the intersection, thus giving the reachable objects con-
taining the desired key. We developed a compact
representation for this list of reachable objects, giving a
space slightly better than the single multiple-attribute
scheme we have presented. However, in many cases a
query may cover a substantial portion of the database.
Thus the list of reachable objects would be long, and
the merge would take time on the order of the length of
this list. The result is that the index find is considerably
slower than the single multiple-attribute case.
One fix for the above method is to associate a hash
table with each anchor point, rather than an ordered list.
This would allow the find to proceed in time propor-
tional to the total number of items in the database
which matched the key, which is likely to be a rela-
tively small number. The problem with this is space:
The size of each hash table would be proportional to the
size of the graph reachable from that anchor point.
This is comparable to using fully replicated indices;
however fully replicated indices are considerably faster.

Other Applications

There may be uses for this style of indexing in applications
other than hypertext. Similar queries may arise in object-
oriented databases. These systems have been proposed as
a likely base for hypertext databases[Woel86]. The index-
ing methods presented here can be applied in any system
where pointers between data items are important to (and
possibly implicit in) queries.

Federated databases[Heim85] may also provide an applica-
tion for these indexes. Although indexing at the local level
is the responsibility of the individual databases, global
indexing could make use of some the techniques of

48

“hierarchies of indexes” discussed in Section 3. Distri-
buted databases may pose similar problems.

This type of indexing may apply to nested
relations[Dada86,Fisc85] as. well. This depends on how
flexible the nesting is; with enough constraints traditional
indexing techniques could be used.

There is still considerable work to be done in this area.
We have discussed how to index, but left open the question
of what should be included in the index. With increasingly
unstructured data, such as text, being included in data-
bases, some automatic indexing methods are needed.
Work has been done in this area[Salt88], automating such
tasks as “back of the book” indexes. These techniques
should be incorporated in the construction of large-scale
databases.

Acknowledgements
Some of the ideas behind the database and query language which
motivated this work were initiallv develooed at Xerox P.A.R.C.
in discussions with Robert Ha&-, jack Kent, and Derek
Oppen. We would like to acknowledge their contribution.

References
[Ande89] T. Lougenia Anderson, Ame J. Berre, Moira Mallison,
Harry Porter, and Bruce Schneider, “The Tektronix HyperModel
Benchmark Specification,” Technical Report No. 89-05, Tek-
tronix Computer Research Laboratory, Beaverton, OR (August
3, 1989).

[Bach731 Charles W. Bachman, “The Programmer as Naviga-
tor,” Communications 16(11) pp. 653-658 ACM, (November
1973).

[Baye72] R. Bayer and C. McCreight, “Organization and Mainte-
nance of Large Ordered Indexes,” Acta Informatica 1(3)(1972).

[Chri85] S. Christodoulakis, “Multimedia Data Base Manage-
ment: Applications and Problems. A Position Paper,” pp.
304-305 in Proceedings of SIGMOD ‘85, ACM (May 1985).

[Chri86] S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa,
and A. Pathria. “Multimedia Document Presentation. Informa-
tion Extraction; and Document Formation in MINOS:’ A Model
and System,” Transactions on Of@e Information Systems
4(4) pp. 345-383 ACM, (October 1986).

[Clif88] Chris Clifton, Hector Garcia-Molina, and Robert Hag-
mann, “The Design of a Document Database,” pp. 125-134 in
Proceedings of the Conference on Document Processing Sys-
tems, ACM, Santa Fe, New Mexico (December 5-9, 1988).

[Cohe81] Jacques Cohen, “Garbage Collection of Linked Data
Structures,” Computing Surveys 13(3) pp. 341-367 ACM, (Sep-
tember 198 1).
[Dada861 P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R.
Erbe, J. Guenauer, V. Lum, P. Pistor, and G. Walch, “A DBMS
Prototype to Support Extended Nl? Relations: An Integrated
View on Flat Tables an Hierarchies,” pp. 356-364 in Proceed-
ings of the SIGMOD International Conference on Management
of Data, ACM, Washington, DC (May 28-30,1986).
[DBTG74] Data Base Task Group, “CODASYL Data Descrip-
tion Language,” NBS Handbook 113, National Bureau of Stan-
dards, US Department of Commerce, Washington, DC (January
1974).

[Fink881 S. Finkelstein, M. Schkolnick, and P. Tiberio, “Physical
Database Design for Relational Databases,” Transactions on

Database Systems 13(l) pp. 91-128 ACM, (March 1988).
[Fisc85] Patrick C. Fischer and Dirk Van Gucht, “Determining
When a Structure is a Nested Relation,” in Proceedings of the
Eleventh International Conference on Very Large Data Bases,
VLDB, Stockholm, Sweden (August 21-23,1985).

[Heim85] Dennis Heimbigner and Dennis McLeod, “A Federated
Architecture for Information Management,” Transactions on
Office Information Systems 3(3) pp. 253-278 ACM, (July 1985).

[IBM861 IBM 3380 Direct Access Storage General Information,
International Business Machines Corporation(March 1986).
Publication #GC 26-4193-2.
[Kod87a] Performance Specifications for the Kodak 14 inch Opti-
cal Disk Recorder, Eastman Kodak Company(January 1987).
Publication No. PS-XXXX, preliminary.

[Kod87b] Performance Specijications for the Kodak Optical Disk
&stem 6800 Automated Disk Librarv Models A and B, Eastman
I(odak Company(ApriJ 1987). Publkation No. PS-07i4-1, prel-
iminary.

[Lum70] V. Y. Lum, “Multiple-Attribute Retrieval with Com-
bined Indexes,” Communications 13(11) pp. 660-665 ACM,
(November 1970).

[Lync88] Clifford A. Lynch and Michael Stonebraker, “Extended
User-Defined Indexing with Application to Textual Databases,”
in Proceedings of the 14th Conference on Very Large Data
Bases, VLDB, Los Angeles, CA (Aug. 29 to Sep. 1, 1988). ’
[Mend891 Albert0 0. Mendelzon and Peter T. Wood, “Finding
Regular Simple Paths in Graph Databases,” pp. 185-193 in
Proceedings of the Fifteenth International Conference on Very
Large Data Bases, VLDB, Amsterdam (Aug. 22-25, 1989).
[Meyr86] Norman Meyrowitz, “Intermedia: The Architecture
and Construction of an Obiect-Oriented Hvoermedia Svstem and
Applications Framework,” pp. 186-201 in’ bbject Or&ted Pro-
gramming Systems, Langauges, and Applications Conference
Proceedings, ACM, Portland, OR (September 9 - October 2,
1986). AIso S&plan notices 21(1 l), November 1986.

[Orla88] Ratko Orlandic and John L. Pfaltz, “Compact O-
Complete Trees,” in Proceedings of the 14th Conference on
Very Large Data Bases, VLDB, Los Angeles, CA (Aug. 29 to
Sep. 1, 1988).

[Salt881 Gerard Salton, “Automatic Text Indexing Using Com-
‘plex Identifiers,” pp. i35-144 in Proceedings of t%e Coiference
on Document Processirw Svstems. ACM. Santa Fe. New Mexico
(Decdmber.%9, 1988). ” ’ ’ ’

[Seli79] Patricia G. Selinger, Morton M. Astrahan, Donald D.
Chamberlin, Raymond L. Lorie, and T. G. Price, “Access Path
Selection in a Relational Database Management System,” pp.
23-24 in Proceedings of the SIGMOD International Conference
on Management of Data, ACM (1979).

[Ullm90] Jeffrey D. Ullman and Mihalis Yannakakis, “The
Input/Output Complexity of Transitive Closure,” in Proceedings
of the I990 SIGMOD International Conference on the Manage-
ment of Data, ed. Hector Garcia-Molina and H. V.
Jagadish,ACM, Atlantic City, NJ (May 23-25, 1990).
magn73] R. G. Wagner, “Indexing Design Considerations,”
IBM Systems Journal 12(4)(1973).

woe1861 D. Woelk, W. Kim, and W. Luther, “An Object-
oriented approach to Multimedia Databases,” pp. 31 l-325 in
Proceedings of SIGMOD ‘86, ACM (May 1986).

49

