
Support for Temporal Data by Complex Objects

W. Ufer, N. Ritter, Ii. !Scbthing

University Kaiserslautem, Department of Computer Science,
P.O. Box 3049, D-6750 Kaiserslautem. West Germany

email: kaefer@informatik.uni-kl.de

Abstract

Support for temporal data continues to be a requirement posed by many
applications. We show that a complex object data model is an appmpriate

means for handling temporal data. Firstly, we describe the main features
of tempoml databases in terms of time sequences. valid time. etc. We

then explain the mapping of time sequences onto recursively structured
complex objects. Operations on temporal data ate easily transformed into
complex object operations. To cope with the huge stooge requirements
arising from temporal databases, we integrate the concept of storing log-

icaldiH erences into our approach. Here, we exploit the extensibility of

the underlying complex object’s database system PRIMA. Finally, we
briefly sketch a further improvement to guarantee fast access to the
present data by storing them apart from the historical data without loos-

ing the connection bet- both.

1. Introduction

All human activities are embedded in time, but conventional
database systems do not possess the capability to record and
process the dynamic aspects of the changing world. The need
to support the time dimension in database systems is obvious
in applications like banking, sales, etc. Even most of the
well-known employee database models neglect the fact that
the history of an employee (at least the episode in which he
or she was with the enterprise) is urgently needed for man-
agement tasks.

There is plenty of literature related to the concept of time,
particularly in the area of the relational model [Bo82, CW83,
Ga88, SK84 Sn86, Ta861. Temporal databases (as defined
by [ASSS, AS86al) capture the history of retroactive and
prospective changes and allow for the derivation of facts
from the database because of their temporal interdepen-

Permission to cop! withoul kc ;iIl or part 01‘ thi\ mdtcl-i;ll i\

granted provided that the topic\ arc not m;~dc or di~trihutctl I’OI

direct commercial adkantagc. lhc VLI)R cop)ripht nolicc and

the title of the publication and its tlatc appear. and nc)~~cc is gi\cn

that copying ia bq pcrmi\sion of the VU> I.;II~c I)~I;I Ba\c

Endowment. To cop othcrHi\c. OI- to rcpuhli\h. rquirc\ ;I I’cc

and/or special permi\5ion from the IlndoumcnI.

Proceedings of the 16th VLDB C’onl&-cncc
Brisbane, Australia 1900

dence. Most of the prototype implementations of temporal
databases rely on the relational model (such as [Sn87] based
on Quel and [Ar86] based on SQL). However, the modeling
of temporal data with the relational model has some serious
drawbacks. The existence of flat relations means that the his-
tory of a single entity has to be smashed into many pieces:
each tuple represents a snapshot of an entity at a certain time.
There are many snapshots of the same entity, requiring that
the primary key has to be expanded by the time of the snap-
shot. There is no notion to capture the complete history of an
entity as a whole. Therefore, some queries become more
complicated, because they have to consider the distribution
of one entity over many tuplcs.

We want to overcome these problems by the use of a data
model which supports complex objects. The history of an cn-
thy can be modeled as one complex object. Thus, we can
treat the complete history of an entity as one unit. Further-
more, we can use the powerful query language of the com-
plex object data model to perform the selection of histories
or parts of them. As an example, to determine the salary of
the employee Mary at a single point in time, we have to per-
form a query, which

l selects the complex object (representing the history of the
employee) and

l selects the salary \;alid at the appropriate time.

Using a complex object database system as the basis for the
mapping process from temporal data and temporal queries to
complex objects and queries on them provides us with many
advantages:

l The implementation of the temporal database system
should be easy, using an enhanced database system.

l Since complex object queries are executed efficiently, the
corresponding temporal data should be handled efficiently
as well.

l Creating and removing access path structures on the tem-
poral data is very flexible because of the underlying en-
hanced database system.

l Handling of temporal and non-temporal data can be done
in a uniform way.

Figure 1 .l illustrates our approach.

24

Figure 1.1: The mapping of the temporal data model to the
complex object data model

The rest of the paper is structured as follows: Section 2 intro-
duces the major features of our temporal data model. Based
on these features, we briefly discuss some advantages of
mapping this temporal data model onto a complex object
data model. We then identify the MAD model [h4i88, Mi89]
as a well-suited candidate for a target data model. Section 3
describes the features of the MAD model which we will use
in our approach, and the mapping of temporal objects to
complex objects. The transformation of temporal queries to
MAD operations is explained in section 4. Furthermore, we
employ the concept of reverse differences to reduce the stor-
age space for temporal objects. To improve the access time
to the latest data (which are expected to be accessed most fre-
quently), we separate them from historical data. Section 5
contains a conclusion and an outlook as to further work.

2. The Temporal Data Model

In this section, we sketch some basic features of our temporal
data model which are necessary to understand the mapping
process to the complex object data model. Due to space lim-
itations, we cannot, however, demonstrate the whole func-
tionality of our model. An in-depth discussion of the tempo-
ral data model is found in [KNO]. Its functionality is similar
to that of other temporal database systems, such as described
in [Ar86, Sn87, SK863. The temporal data model we will dis-
cuss in the following is also based on, but not limited by the
relational model.

Conventional relational databases represent the state of an
application such as the staff management of an enterprise at
a single moment in time. Roughly speaking, each tuple in the
database represents a snapshot of a real world entity, e.g. of
the employee Mary in March 1980. Each change in Mary’s
data is represented by a change of the corresponding tuple,
updating the snapshot and overwriting the previous values.
Thus, an earlier state of Mary’s history camrot be retrieved
from the database. In the temporal data model, we preserve
all these snapshots (tuples) in a time-ordered sequence, the
so-called Time Sequmce (TS) [SK86]. A TS represents the
history of an entity of the real world and can be seen as an
extension of a tuple in the temporal dimension, i.e., each TS
l belongs to exactly one TS relation (like a tuple belongs to

one relation),
l has a unique key (surrogate) and
l semes as a unit for retrieval and manipulation operations.

Figure 2.1 shows the TS representing an episode of Mary’s
life. She joined the enterprise at 1980/02/01. At this time she
lived in Fmnkfurt and was associated with department DO3
(ruple I). After one year she joined department D 12 and was
earning a salary of $2000 (ruple 2). After several changes of
her residence, deparunent and her salary (tuple 3 through fu-
pie 6), she is now assigned to department D25, lives in Kai-
serslautem and earns a salary of !$4OOO (ncple 7). In March
1991 an increase of salary is proposed leading to a tuple (nc-
ple 8) which belongs to the future.

In our example, the history of Mary is stepwise constant, i.e.
each value of an attribute is valid until it is changed. There-
fore, we can determine the value of an attribute at each time
(within the lifetime of the entity) by looking at the tuple in
the TS with the latest time which is less or equal to the re-
quested time. Besides this kind of history, TS are able to rep-
resent event-oriented and continuous history iKl81, SK861.
In event-oriented histories (e.g. debit/credit actions on an ac-
count) the tuples in the TS are only valid at single points in
time. In the case of continuous histories, such as a fever

time

tuple 8

tuple 7

tuple 6

tuple 5

tuple 4

tuple 3

tuple 2

tuple 1

Figure 2.1

I valid 1 emp-no 1 name 1 residence 1 department 1 salpry I timestamp 1

1 1991103/01 1 123 1 Mary 1 Kaiserslautem 1 D25
Fgjjpg

.;3l 1989x)6101 I

19t39~1,Ql 1
:i.:.:.:.:.::~~.::.:.:.:.::::::::.:::::::::::i:i::‘:

123 ~~~~~1 a 1 19@3/12/20 1

123

1986/06/01

1985102101

123 Mary Kaisedautem D12

123 Mary Kaiserslautem D12
$g@$$
.:.:+ ,.....,...,.: .,., :j:::: 1988104~1

I :.:.:.:.: ...,.,.,_...i,.,,,

1982x)1/01 123
:::::::::::i:i:::::::::i:i:i:::i:i:)i:ii:

Mary 3j~~~~~

19801M101 123 Maxy Frankfuxt DO3 1000 198O~l/tIl

: History of employee Mary

‘F::;::.:.:
.::::::: j:::
.:.:.:.:.>:. changes;

“timestamp” rcprescnts
the time, when the database
has been mod&xl.

25

transactia~ time

1980/01/01 T-CREATE TS (cmp~~~ = 123. valid = 198O/ouo1. name = ‘Mary’,
residence = ‘Frankfurt’. depamncnt = ‘DO3’. salary = 1000) __+ tupk 1

1981/U2/13 T-UPDATE TS (emp_no = 123, valid = 1981EOU01,dcpartment = ‘DW, salary = 2OOO)tuple2

retroeettve cbubge: the tuple is in-
seed into the pal; the present
state remains undlanged.

1982/01/01 T-UPDATE TS (emp-no = 123, valid = 1982101101, residence = ‘Kaiseaslautem’)~

1986/M/01 T-UPDATE ‘IS (cmp-no = 123. valid = 1986/06x)1, salary = 4000) -

1988/W/01 T-UPDATE ‘IS (emp-no = 123. valid = 1988103101. department = ‘D2200’)
error correction: an existing tuple
is replaced by the corrected one.

prospective change: the tuple is

inserted into the future; the present

state remains unchanged.

Figure 2.2: Sequence of operations to construct Mary’s history (see figure 2.1)

curve of a patient, the degree of the fever changes continu-
ously over time. Therefore the tuples in the TS can only cap-
ture some characteristic values at single moments. Based on
these characteristic values, the history has to be reconstruct-
ed by a function, e.g. linear interpolation

T-CORRECT TS (valid time, data):
The tuple with the specified valid time is replaced by the new

one (error correction) t

.In order to support audit requirements and to keep track of
corrections, we have to differentiate between the time when
a value is valid in the real world (valid time) and the time
when the associated transaction runs on the database (fruns-
action time). Since the transaction time is often only used for
bookkeeping purposes, we order the tuples in a TS by their
valid time (as shown in fig. 2.1). Consequently, we have to
admit tuples with valid times belonging to the future.

T-DELETE TS (valid time):
A “gravestone” for the TS is generated, i.e.. no further up-
dates are allowed on the TS (except retroactive corrections).

T-REMOVE TS:

Besides the notion of TS, we need corresponding operations
to reflect the evolution of the TS. Figure 2.2 shows a se-
quence of such operations to construct Mary’s history. As
mentioned in the introduction, we have to consider retroac-
tive (ruple 4) and prospective (tlrple 8) changes, i.e. changes
corresponding to valid times belonging to the past or to the
future. Furthermore, we must be able to handle corrections
(tuple 6). The following operations are supported to perform
changes on TSt:

All data of the TS are discarded (this operation serves only
for administrative purposes).

All these operations demand the specification of the TS rela-
tion(s) (T-FROM clause) and the specification of the TS it-
self (T-WHERE clause). Qur language is similar to the
well-known SQL skeleton. We will discuss this in more de-
tail for the case of the T-SELECT operation:

T-SELECT projection clause
(time projection clause)

T-FROM TS relation(s)
T-WHERE restriction clause

(time restriction clame);

T-CREATE TS (valid time, data):
Similar to the well-known APPEND or INSERT operations
in relational database systems, T-CREATE TS generates a
TS with one tuple. valid rime is the birth date of the TS.

T-UPDATE TS (valid time, data):
As in the case of relational systems, T-UPDATE describes
the changes which happen to the entity, but contrary to these
systems we do not overwrite the previous data. Depending
on the valid time, a new tuple is generated and appended at
the end of a TS (the “usual” case) or inserted into the TS. Of
course, a tuple with the same valid time must not be present
in the TS.

The T-FROM clause enumerates the TS relations which are
relevant for the statement. The expressions in the
T-WHERE clause restrict the TS belonging to the result of
the query. Thus, the result of evaluating the T-FROM and
the T-WHERE clause is a set of TS belonging to one TS re-
lation. In addition to ,the restriction clause known from SQL,
we offer the following basic predicates to describe the time
relation of the restriction clause.

2.1: juncture query

(bool) AT (1):
if the boolean expression bool can be evaluated to TRUE at
time t, the corresponding TS belongs to the result.

t In order to distinguish the temporal operations from the other opera- t The old tuple is not deleted, but is used to keep P history of correction

tions, we precede their names with T-. on the TS.

26

Example: “Retrieve all Employees who worked for depart-
ment D12 at June 1st. 1981.”

T-SELECT ALL
T-FROM Employee
T-WHERE (department = ‘D12’) AT 1981/06/01;

2.2: existential interval query

(bml) SOMETIMES DURING 112. r2 I:
A TS qualifies, if the boolean expression boo1 is evaluated to
be TRUE at least at one moment in time within the interval
from 11 to t2.

&le: “Retrieve all employees who worked for depart-
ment DO3 in 1980.”

T-SELECT ALL
T-FROM Employee
T-WHERE (department = ‘D03’) SOMETIMES

DURING [1980/01/01,1980/12/31];

23: universal interval query

@cd) ALWAYS DURING [tZ, t2 1:
A TS qualifies, if the boolean expression boo1 is evaluated to
be TRUE within the whole interval.
Example: “Retrieve all employees who worked for DO3 dur-

ing the whole year 1980.”

T-SELECT ALL
T-FROM Employee
T-WHERE (department = ‘DO,‘) ALWAYS

DURING [1980/01/01,1980/12/31];

2.4: existential coincidence query

(booll) SOMETIMES DURING WI-IIJX (boon):
A TS qualifies, if boofl holds at least at one moment in time
when boo12 has been TRUE.

Example: “Retrieve all Employees who earned more than
$3000 in department D12.”

T-SELECT ALL
T-FROM Employee
T-WHERE (department = ‘D12’) SOMETIMES

DURING WHILE (salary > 3000);

2.5: universal coincidence query

(booll) ALWAYS DURING WHILE (boo@:
A TS qualifies, if boo11 holds whenever boo12 has been
TRUE.

Example: “Retrieve all Employees who were assigned to de-
partment D12 whenever they eamed more than
$3ooo.”

T-SELECT ALL
T-FROM Employee
T-WHERE (department = ‘D12’) ALWAYS

DURING WHILE (salary > 3000);

The employee Mary of our example qualifies with respect to
queries 2.1,2.2, and 2.4. As mentioned above, the result of
each of these queries is a set of TS belonging to one TS rela-
tion (i.e. in the case of Mary the TS consists of the whole in-
formation as illustrated in Fig. 2.1). We extend the projection
clause in an analogous fashion to the extensions of the re-
striction clause’s facilities with respect to the temporal di-
mension. We allow for a projection of a set of slices of an en-
tity’s history. In examples above, we would get the complete
history (the whole TS) of the employees due to the keyword
ALL. In order to be more specific, we must be able to restrict
the tuples of the TS contained in the result set according to
certain criteria. For example, adding the ONLY keyword to
the T-SELECT clause of query 2.1 would reduce the result
set to the tuple valid at June lst, 1981 of the qualifying TS
(i.e. ncple 2).

Besides the ONLY clause, there are three other clauses used
to restrict the TS of the result to interesting tuples. AT and
DURING work analogously to the predicates in the
T-WHERE clause. ALLTIME does not perform any selec-
tion on the query’s result and serves as default.

timejvojection : :=
ALLTIME/ : selects the whole TS.
ONLY/ : selects only the tuples qualified by

the restriction clause.
AT(t)/ : selects the tuple valid at t.
DURING [tZ,t2] : selects all tuples valid in the inter-

val from tl to r2.
The combination of the introduced predicates leads to a pow-
erful query language. Due to space liiitations, we omit fur-
ther examples and an in-depth discussion of our temporal
query language.

A TS as described above consists of several tuples. In a step-
wise constant history, each of these tuples represents an in-
terval in the history of the corresponding entity, during
which the represented values did not change. Obviously, not
only the values of the tuples are carrying information, but
also their succession. For example, to decide how long the
values contained in one tuple have been valid, one has to
look at the successor tuple. This gives a hint to the difficul-
ties of mapping one TS to more than one object of a data
model, for example, to map a TS to a set of tuples in the re-
lational model. Whereas simple operations can be trans-
formed to operations of the data model (using constructs like
GROW-BY to formulate the coherence of the tuples of one
TS). this is much more diiticult for operations which per-
form computations using the temporal order existing on the

27

tuples. Therefore, we decided to investigate the mapping of
the temporal data model to a complex object model, which
allows us to model one TS as one complex object, thereby
preserving the coherency of the tuples. The complex object
model has to fulfil the following requirements to be well-
suited for this purpose:

It must be possible to have an arbitrary number of tuples
for a TS.
It must be possible to express the temporal order inherent
in a TS. This order is defined on the valid attribute of a TS.
It must be possible to relate the values contained in subse-
quent time tuples to one another.
The mapping process is simpler, if a temporal da; type
with corresponding operations is supported.
The result of queries on TS should reflect the order of the
tuples, i.e. should not consist of an unstructured set of un-
related values.

Regarding the NE2 data model [SS86] as a prominent exam-
ple, we can model a TS as a tuple in a relation which has a
sub-relation ‘TS-tuples” containing the tuples representing
the TS. In the pure NF2 model, however, there is no way to
arrange the tuples in a certain order, since relations are moor-
dered by definition. The extended NF2 model IDa sup-
ports lists of tuples which can be used for this purpose. A
temporal data type is contained in neither of these NE2 mod-
els.
The MAD model m88, h4i89] used in this paper to illus-
trate the mapping process offers another way to express the
coherency relation among tuples. Since it supports recursive-
ly structured complex objects, one can model a TS as an ar-
bitrary length chain of temporal tuples. Succeeding levels of
recursion (corresponding to succeed@ positions in a list)
represent succeedmg tuples. Furthermore, MAD also has a
specific temporal data type. Thus, it seems to be a well-suit-
ed data model for our investigations. Nevertheless, we do not
claim that it is the only one.

3. Mapping Time Sequences To Molecules of the MAD-
Model

Atoms are the basic building blocks of the MAD model.
They can be compared to relational tuples in the relational
model in that they consist of attributes of various types and
belong to exactly one atom type (comparable to a relation).

Besides the data types known from many implementations of
the relational model, some additional data types may be cho-
sen as ranges for attributes:
l The data type TIME can be used to represent time with

varying precisions. A value of this type is represented in
the form year/month/day/hour/minute/second/milliseC-

and, where the components can be left out from right to
left. For example, 1989/02@1 is a correctly formed vale
of data type TIME, representing February lst, 1989. It is
saidtobeofgranuleDAY.Thegran~ofaTIMEat-
tribute is defined in the database schema.

l For this data type, the usual comparison operators are de-
fmed. Furthermore, there is a timeoriented arithmetic,
which can be illustrated by the difference between the no-
tation one month (O/l) and 30 days (O/o/30):
1989104/Q1+010/30 = 1989105101 1989Kl4/Ql+ O/l = 1989/05/01
1989/02Eol+ OKV30 = 1989EMIM 1989Kt2KU + O/l = 1989/03A)l

l ThedatatypeIDENTIFIE R represents a system defined
surrogate which uniquely identifies an atom. Each atom
type must contain exactly one attribute of this type.

l The data type REFERENCE is needed to link atoms to-
gether: A value of type REFERENCE is a duplicate-free
list of IDENTIFIER values, all pointing to atoms of the
same type (cf. Figure 3.1).

TS relation definitions can be mapped onto MAD atom ty-pe
definitions in a quite straight-forward way. Figure 3.1 shows
a schema definition of the employee TS relation and its cor-
responding definition as an atom type with recursive self-ref-
erences in the MAD model. Besides the attributes defined in
the employee TS relation, some system defined attributes are
added in the MAD atom type, which are of course not visible
to the user of the temporal data model. The attribute alive
represents the gravestone: if alive is FALSE then valid con-
tains the death date of the TS. The attribute timestamp con-
tains the transaction time, i.e., the time when the transaction
modified the tuple. The attributes future and past are used
to establish a link type which chains together all atoms be-
longing to the same TS. Notice that valid is not a systemde-
fined attribute, since it is visible to the user of the temporal
data model. Furthermore, the granule of valid must be spec-
ified by the user.

Some characteristics of the MAD model should be stressed
regarding this example (cf. Figure 3.1): for each
REFERENCE attribute, there is a corresponding “counter
reference” attribute pointing to the opposite direction (here:
past, future).

The concept of REFERENCE attributes allows for the direct
mapping of attribute-free bii reIationships, even in the
m:n case. There may be cardinality restrictions indicating the
permissible number of IDENTIFIER values for a REFER-
ENCE attribute. Thus, the [0, 11 cardinality restriction of the
example indicates that there may be at most one successor
and predecessor in the temporal dimension.

The REFERENCE attributes may be used to dynamically de-
tine complex object structures, called molecules. For exam-
ple, the molecule type definition

El(Employee-tuple).past-E2(Employee_tuple)

28

ls dqinition cowmponding MAD atom type &f&ion
I

T-CREATE TS Employee

(valid : TIME (DAY);
ewe0 : INTEGER;
name : sTRINe;
residence : !TRING,
depamnent : STRING;

salary : INTEGER);

system defined attrii

CREATE ATOM-TYPE Employee-tuple

(M * ID-;
valid ; TIME (DAY):
emP-“O : INTtiER; .-
name : STRING;
residence : STRING;
department : !XRINO;

salary : INTEGER;
future - RBFEXENCE (I%pkyecJuple.past) tO,lf:

put I REFERENCE @nployee_tuple.fut~) [O, 11;
diVf2 : BOOLEAN;
time-p : TlME(MlLLlsEc)):

Figure 3.1: Mapping of TS definition to MAD definition

constructs molecules which cluster pairs of Employee-tu-
ples together which are adjacent in time. When an atom type
is included in a molecule type definition more than once,
each of its occurrences (called a role) must be named differ-
ently (El, E2 in the example above).

Based on the molecule type definition facility, queries can be
formulated using the molecule query language (MQL) of the
MAD-Model, which is based on a SELECI-FROM-
WHERB skeleton similar to SQL:

3.1: SELECT projection clause
PROM molecule type definition(s)
WHERE restriction clause;

For example, the following query selects all salary changes
of Employees (at any time):

3.2: SELECT ALL
FROM E 1 (Employee~tuple).future

-E2(EmployeeJuple)
WHERE El .salary o E2.salary;

Notice, that the atom type structure does not imply the direc-
tion imposed by the molecule type definition. In the above
query, we do one step into the future from the El to find its
successor in time, while in the query before, we went one
step into the past finding the predecessor of El.

The resulting molecules of a query may be tailored to the
needs of an application, by specifying attributes and atom
types to be projected in the projection clause (instead of
ALL in the above example). Furthermore, a qualified (i.e.
value-dependent) projection is allowed as illustrated in the
following query. Suppose you want to retrieve the old salary
of the employees in the above example, but retrieve the new
one only if it is less than $1500. In this case you can ask the
following query:

3.3: SELECT El.salary. (SELECT EZsalary
PROM RESULT
WHERE EZsalary < 1500)

FROM El(Employee~tuple).future

-E2(EmployeeJuple)
WHERE El .salary o EZsalary;

The keyword RESULT indicates that the SELECT query
refers to parts of the result obtained by the surrounding que-
ry. As already mentioned, TS will be modeled as recursively
structured complex objects (molecules). MAD offers the
keyword REC-PATH for the construction of recursive
complex objects. The keyword UNTIL can be used to cut the
construction of the transitive closure when a certain condi-
tion is fulfilled. For example, the following query delivers
the history of all D22 employees since they joined the de-
partment:

3.4:SELECT ALL
FROM Employee_tuple REC-PATH

EmployeeJuplepast-EmployeeJuple
UNTIL
Bmployee~tuple.department o ‘D22’

WHERE Employee~tuple(FIRST).department
= ‘D22’;

The algorithm for computing the corresponding molecule
consists of starting with an Employee fulfilling the condition
Employee~tuple(FlRST).department = ‘022’. Employ-
ee-hqle(FlRST) is the name of the first Employee atom in
the molecule (i.e., the root of the molecule). Then, the Em-
ployee-tuple referenced by the past attribute of the root is
included into the molecule. Its past attribute is used to fmd
the next level of recursion, and so on, until the UNTIL
clause is evaluated to be TRUE or the past attribute is emp-
tyt. Thus, recursion terminates in our example, whenever a
department other than 022 is considered.

The keywords PREVIOUS and NEXT allow for pathde-
pendent recursion termination. Thus, the following query de-
livers a set of histories for Mary, one history molecule for
each department she has worked for:

+Ln OUT application, the atom network established by the past-future ref-
erences of Employee-tuple is cycle-free. In the case of cyclic data. IV-

cursion terminates whenever a cycle would appear in the. molecule.

29

3.5: SELECT
FROM

WHERE

Employee-tuple REC-PATH
l3@cwx-~~~~~oyee-Npk
UNTIL
Employee~tuple(PREVIOUS).department
o Employee~tuple(NEXT).depamnent
Employee~Nple(FIRST).name = ‘Mary’ ;

A more general description of the MAD model can be found
in m88]. a detailed discussion of recursion in the MAD
model is given in [SchU89].

Join is not a frequently used operation in MAD, because in
most cases references (i.e. user defined relationships) will be
used to combine atom types (where in the relational model
joins based on primary keys and foreign keys would be
used). Nevertheless, molecule join is possible in MAD in
analogy to SQL by enumeration of the corresponding mole-
cule types in the FROM clause. To facilitate the use of fre-
quently needed molecule type definitions, molecule types
can be defined in a similar way to macro definitions with pa-

rameters?. The following example defmes a molecule type
for the representation of the employee time sequences. The
predicate Employee~tuple(FlRST).fimre = EMPTY forces
the molecules to start at the beginning of the time sequence.
The UNTIL clause cuts the molecules at a certain point in
time, i.e. NpleS representing older events are excluded from
the molecule. In this case, the last Nple of this molecule
keeps the information valid at %DATB (which is a parame-
ter of the macro definition). The molecule definition also
covers molecules of employees, which were not alive at
%DATB. In this case, molecule construction is terminated
by an empty past reference.

3.6: DEFINE MOLECULE-TYPE
Employee-TS(%DATE): ALL

FROM Employee-tuple
REC-PATH
Employee-tuple.past-Employee-Nple
UNTIL Employee-Nple(PREVIOUS).valid

<= ZDATE
WHERE Employee-tuple(FIRST).fNure = EMPIY;

MAD queries deliver a set of molecules, i.e. a structured rep-
resentation of the atoms involved. For the case of our TS
modeling, the MAD queries deliver chaiis of Employee-tu-
ple atoms. often, however, a structured view of the result is
not required. In these cases, the built-in function MOLAGG
may be used to collect a set of attribute values within a mol-
ecule, into a list. For example, the following query delivers a
list of all dates where changes have occurred in Mary’s his-
tory since January lst, 1985 (given by the values of the valid
attribute) by aggregating them over all recursion levels (as
indicated by ALL-REC):

+ We will precede all parameters of macro deftitions by P “40” sign.

3.7: SELECT MOLAGG
@@oyee-tuple(*~.MW

- ~ycm~985~~bo~~
WEIEltE Er@o~-Nple(FI~,~e= ‘&try’;

Analogously, the built-in function V&GE converts a set of
simple? molecules into a list of values. Hence, it may be used
to apply aggregating functions (whiuh are defmed only on
lists) to a query’s result. For example, the following query
retrieves all employee Nples which contain a salary value of
more than the average of the salary values of all employee N-

ples:

3.8: SELECT
FROM
WHERE

Employee-Nple
salary > AVG (VALUE (SELECT salary

FROM Employee-Nple));

4. Handling Temporal Queries

So far, we have introduced a temporal query language which
allows for the selection and manipulation of temporal data
organized as time sequences. By the means of a small set of
temporal predicates (AT, DURING, WHILE), we can se-
lect temporal information in a natural way similar to the
well-known SQL constructs for non-temporal data. We have
shown a direct and straight-forward mapping of the basic
units of temporal data (the time sequences) to complex ob-
jects provided by the MAD model. However, selecting tem-
poral information by running MQL queries against these
complex objects is much more difficult than using the tem-
poral query language. Therefore, in the following chapter we
describe the mechanism used to transform temporal queries
on TS relations to MQL queries applicable to complex ob-
jects.

Transforming Temporal Queries to MQL Queries

The transformation of temporal queries essentially relies on
the capabilities of the MAD model for the molecule type def-
inition and the handling of recursion. We will use the query
below as an example. It expresses that we are interested in
the salaries of employees, who were working in department
D12 on June 1st. 1981. Remember, the keyword ONLY
projects data which is valid at the time specified in the re-
striction clause.

4.1: T-SELECT salary ONLY
T-FROM Employee
T-WHERE (department = ‘D12’) AT 1981/06/01;

Furthermore, we will use the history of Mary (see figure 2.1
in section 2) as a running example. The MAD model repre-
sentation of the TS in figure 2.1 is constructed by the connec-

t Molecules consisting of only one atom with only one attribute.

30

tion of the tuples through their reference attributes future
and past. For example, the hrture reference of the youngest
tuple (ncple 8) is empty and its past reference points to nqpfe
7. This tuple references ncple 8 by its future attribute
(counter reference) and fuple 6 by its past attribute. In this
way the eight tuples are constituting one TS molecule.

To give a reply to a temporal query like the one above, it is
necessary to find the tuple which keeps the information valid
at a given date. Looking at the temporal query and the TS of
our example, we have to use the molecule type definition
Employee~TS(l98llO6lOl) as described in statement 3.6.
The corresponding molecule begins with ncple 8 and ends
with fuple 2. Thus, the MQL statement 4.2 is the result of the
transformation of the temporal query.

4.2: SELECT Employee-tuple(LAST) (salary)
FROM Bmployee_TS(198 1/06/O 1)
WHERE Employee-tuple(LAST).valid <= 1981/06/01

AND
Employee-tuple(LAST).department = ‘D12’;

A TS molecule, or alternatively the related Employee-TS
molecule, qualifies if it meets the following requirements ex-
pressed in the WHERE clause of MQL statement 4.2:
- The object under consideration was already alive at the

specified time: We have to exclude those TSJtnployee
molecules for which the value of valid of the last tuple is
greater than the given date (see discussion of the mole-
cule type definition 3.6).

- The object fulfills the qualification condition of the tem-
poral query at the given date. Thus, the attribute depart-
ment of the last tuple of the Employee-TS molecule con-
tains the value ‘D12’.

ln our example, the evaluation of the statement delivers the
salary value (2000) of the last tuple (fyple 2) of the accord-
ing Employee-TS molecule.

The mechanism of condition transformation is obvious in
our example: the AT construct in the T-WHERE clause is
translated to a correspondmg parameter choice for the Em-
ployee_TS definition, together with the condition on the val-
id atuibutet yielding a molecule where the last tuple reflects
the interesting data. The condition of the temporal query is
applied to this tuple. The other constructs allowed for quali-
fications of temporal queries can be transformed in similar
ways. The DURING constructs are expanded to conditions
on the valid attribute’s value. The condition “(department =
‘D03’) SOMETIMES DURING [1980/1/l, 1980/12/3 11” is
transformed to the restriction clause

t The conditicln on the valid attribute could be included into the defini-
ticm of Employee-‘lS. thexeby changing the semantics of this mole-
cute type definition.

WHERE EXISTS Employee-TS(ALL-REC):
(department = ‘DO3’) AND (valid <= 1980/12/31),

whereas “(department = ‘W3’) ALWAYS DURING [19801
l/l, 1980/12/31]” becomes
WHERE FOR-ALL Employee_TS(ALL-REC):

(department = ‘DO3’) OR (valid > 1980/12/31).

Both restriction clauses deal only with the ending point of
the interval, because the starting point is already captured by
the until clause of the molecule definition used in the FROM
clause. The transformation of DURING WHILE is illustrat-
ed by the following example: the T-WHERE clause “(de-
partment =‘D12’) SOMETIMES DURING WHILE (sala-
ry>3000)" (cf. 2.4) is transformed to a MQL query comain-
ing the Employee~TS(OlOlO) molecule type and the following
restriction clause:
WHERE EXISTS EmployeeJ’S(ALL-REC):

(department = ‘D12’ AND salary > 3000).

The various keywords allowed in the T-SELECT can be
transformed in a similar way: A projection clause “attribute
AT (t2)” is transformed to a qualified projection of the fol-
lowing shapet :

SELECT attribute
FROM RESULT
WHERE valid = MAX (

SELECT valid
FROM RESULT
WHERE valid G t2)

DURING [tl,t2] is mapped analogously by adding “AND
valid <= tl” to the WHERE clause. The transformation of
ONLY depends on the construct used in the WHERE clause.
Query 4.1 shows an example for the combination ONLY /
AT, where the relevant data is contained in the last tuple, and
hence the last tuple is projected.

Up to this point, we have only discussed the transformation
of temporal retrieval statements to MQL statements. Manip
ulation statements, however, do not create any problem,
since their stmcture is very regular and simple. They can be
directly mapped to corresponding MQL operations.

The transformation of a temporal query to an MQL query
discussed so far is straight forward, because every tuple of
the TS molecule contains all information valid at a given
time. On the other hand it is likely that only few of the at-
tribute values of two adjacent tuples differ. This leads to high
storage redundancy and requires a huge amount of storage
space, which is unacceptable even with the presence of opti-
cal disks and other devices providing large storage capacity
at low costs.

t Hm, we assume that t2 > date. Otherwise. the query becomes slight-
ly more complex.

31

Reducing Amount of Storage

We can reduce the amount of storage space needed by stor-
ingonlythediff- between two adjacent tuples instead
of the complete information. In [DLW84] differences on the
basis of EXOR operations are used to cut storage costs. ln-
stead of storing the full data only the result of an EXOR op
eration between the current tuple and the predecessor tuple
(recursively continued) is stored. We refer to these differenc-
es as reverse &#erences, because the youngest tuple is com-
pletely stored whereas all older tuples are represented only
by differences. The EXOR operation is only applicable at the
byte level, so that the differences have to be built at the lower
levels of the database management system. This has three
major drawbacks. Firstly. this mechanism has to be integrat-
ed into the database management system itself. Secondly, in
order to evaluate a boolean expression on one attribute, the
whole tuple has to be reconstructed by traversing a chain of
differences starting with the current tuple. Thirdly, the dif-
ferences are “unstructur~ tuples for the higher levels of the
database management system. Thus, conventional access
path structures cannot be used on history data. Hence, we
want to evolve the method as described in lDLW84] by us-
ing logical rather than physical differences, i.e. we assign
null-values to those attributes which are not altered in com-
parison to their tempral predecessors. This has three advan-
tages. Firstly, we can operate on the tuples with the data ma-
nipulation operations of the database system. Secondly, us-
ing conventional access path structures on the history data
will lead us only to tuples in which the requested value is
stored, but not to a huge bulk of history tuples preserving this
value. Thirdly. in PRIMA, the PRototype Implementation of
the MAD model m88], null-values do not need any storage
space.

+ This implies that attributes of TS ~&tions do not contain null values.
We GUI extend our appzoach to allow for null attributes of Ts I&-
tions. hut this exaeds the scope of this paper.

As a consequence of using reverse diierences, the tuple cor-
responding to the validity time specified does not necessarily
contain the values of all attributes beii included in the pro-
jection list or the qualification condition oftbe temporal que-
xy. For that reason, we have to extend our mapping algorithm
in order to find the attribute values which belong to a certain
validity time but are not stored in the according tuple.

Figure 4.1 shows the TS of our example on the basis of re-
verse differences. The empty fields represent the null values.
The arrows indicate to which tuples a stored value also be-
longs. To evaluate the qualification condition on the last tu-
ple of the Employee-TS molecule in our temporal query (TU-
pie 2), we have to find the value of the attribute department,
which was current while fuple 2 was valid. We find the in-
formation in tuple 5. The concept of reverse differences forc-
es the complete storage of the information in the youngest
time tuple with alive = TRUEt. This guarantees that a de-
fined value is found when traversing the chain of tuples us-
ing the fbture references. In order to facilitate the search for
the attribute value, we define a new molecule type
seurchgufh (MQL statement 4.3). which starts with a time
tuple and examines all tuples along the future references un-
til the first one with a defined value in the specified attribute
is found. The name of this attribute is the parameter of the
molecule type definition. To detect the first defined value we
use the MAD operator IS-NULL. It delivers TRUE if the
given attribute has a null value, FALSE otherwise. Thus, we
can find the relevant value of the attribute department in the
last tuple of the molecule seurchpzth(depurtment), if we
choose a proper starting point. ln the same way we define the
molecule seurchguth(suZury) to look for the value of the
projection attribute. Examples of seurchgath molecules are
illustrated in figure 4.1.

t A “gmvestone” cahns only one defined attribute value: alive =
FALSE

tuple8 11991103/011 123 D25 I

tuple 7

tuple 6

tuple 5

tuple 4

tuple 3

tuple 2

tuple 1

valid emp-no name nxidena deputma =W

null values belongs to

Figure 4.1:TS. Employee-TS and searchpath molecules in the case of reverse differences

32

4.3: DEFINE MOLECULE-TYPE
searchpath(%ATIRIBUTE) : ALL

FROM Employee-tuple REC-PATH
Employee~tuple.foyee~tuple
UNTIL NOT IS-NULL

We find the proper starting points of the searchgath mole-
cules by connecting them to the Employee-TS molecules US-
ing a molecule join. The first part of the restriction clause of
MQL statement 4.4 represents the join condition, ensuring
that the last tuple of the Employee-TS molecule and the first
tuples of the seurchgafh molecules have to be identical. To
be able to address both seurchgarh molecule types in the
projection clause or the restriction clause of the MQL state-
ment, we assign the role names D and S to them.

4.4: SELECT MOLAGG
(S(Employee-tuple(LAsT)(salary)))

FROM Employee~TS(1981/06/01),
D&arch-path(department)),
S(s~h_pathWaryN

WHERE (Bmployee~TS.EmployeeJmle(LAST).lD
=DBmplo yee-tuple(FIRST) ID)

AND (Bmployee_TS.Bmployee_tuple(LAST).lD
= S.Bmployee_tuple(FIRST).lD)

AND (Bmployee~TSEmployee~tuple(LAST).valid
<= 1981/Ofi,‘Ol)

AND @.Bmployee~tuple(LAST).department
= ‘D12’) ;

To qualify, the joined molecule has to meet the following re-
quirements:
- The corresponding object must have been alive at 1981/

06/01. This is true, if valid of the last tuple is equal or less
than this date.

- The qualification condition on department must be eval-
uated to be TRUE with respect to the value found in the
last tuple of the searchgath(department) molecule.

lf these conditions are fulfilled, the value of the attribute saI-
ary in the last tuple of the sewchgarh(sulwy) molecule can
be delivered, as $2000 in the example.

MQL statement 4.4 is rather complex and poses high re-
quirements on the query optimizer in order to generate an ef-
ficient query plan. Fortunately, PRIMA has been designed
with respect to extensibility, i.e. it is possible and quite easy
to integrate new operators into the query language [SS90].
Here, we use this facility to defme a new operator in order to
facilitate the formulation and the computation of these types
of queries.

Using the Advantages of Extensible Database Systems

MQL statement 4.4 shows that the use of reverse differences
could force very complex computations. For every attribute
in the projection list and the qualification condition, a
searchgath molecule has to be created in order to fmd the
according value. The correct combination and the efficient
evaluation of complex conditions containing several at-
tributes will pose strong demands on a query optimizer. The
specification of the attribute computation by specific mole-
cule types for each attribute leads to a waste of join condi-
tions. The desired operation, however, is not a join, but a
simple back-traversing of the molecule which is already
known. Furthermore, this back-traversal is not necessary for
each attribute separately, but could be done for all attributes
in one traversal. The complex query formulation is only en-
forced by the lack of a reverse difference operator in the que-
ry language. Hence, we employ the extensibility of PRIMA
to define and integrate a new operator into the query lan-
guage [SS901.
For the purpose of reverse difference computation the new
operator, called REV-DIFF should work in a similar way to
the MOLAGG operator. However, instead of collecting all
attribute values into a list, REV-DIFF is designed to deliver
a list of the values of the specified attribute in the deepest re-
cursion level where they are defined. It will always be called
in combination with the keyword ALL-REC to indicate that
it works on the whole recursive molecule. This is obviously
only a slight modification of the MOLAGG operator. ln our
application, REV-DIFF will always deliver a list with ex-
actly one element. MQL statement 45 is an improved ver-
sion of MQL statement 4.4 using the REV-DIFF operator.

FROM Fmp1oyee~TS(1981/06/01)
WHERE (Employee_nyple(LAST).valid

<= 1981/06/01)
AND (REV-DIFF
(Emploree_tupe(ALL_REc).department) = ‘D12’);

Now, we are able to omit the complex molecule joins and the
seurchpurh molecules. Thus, a lot of difficult problems
arising for query optimization from statement 4.4 vanish
when executing statement 4.5. Further advantages are the
simpler handling of information stored with reverse differ-
ences and the easier transformation of temporal queries to
MQL statements.

So far, we have shown the transformation of temporal que-
ries to MQL queries on complex objects, even in the case of
using reverse differences. Besides the saving of storage
amount, we want to optimize the access time to the present
data.

33

Reducing Access Time

There is a common belief in the literature {ASSab, AS88,
DLW84, SK861, that there is a corrt$uion of the access fre-
quency and the age of data. Furthermore, it is postulated that
the performance of temporal database management systems
processing the present data must be almost as good as that of
conventional database management systems. In order to
achieve this goal we have to separate the current data from
the bulk of history data ILu84, RS871. This leads to the mod-
eling of a temporal relation by two different atom types (see
Appendix). In this approach each TS tnolecufe is composed
of one occurrence of an -anchor atom type (in general rep-
resenting present data) and an arbitrary number of occur-
rences of a -t@e atom type. To connect the -anchor atom
with the first -fuple atom we additionally need the reference
attribute hist (-anchor atom type) and the counter reference
attribute present (-tuple atom type).

As a consequence of modeling temporal data by the use of
two different atom types we expand a temporal query to two
different MQL statements. The first one processes the actual
data and touches only the -anchor atom type (MQL state-
ment 4.6). The second one processes only those TS tnofe-
cules which keep the relevant information in the history tu-
ples and have not been investigated during the evaluation of
the fast statement (Appendix, MQL statement A.2).

4.7: SELECT Employee_anchor(salaryalary)
FROM Employee-anchor
WHERE (Employee-anchor.valid <= 1981/06/01)

AND (Employee-anchor.department = ‘D 12’)
AND (Employee-anchoralive = TRUE);

Statement 4.6 is a very simple MQL statement. It works on
the atom type Employee_anchor and does not care about
complex TS molecules. To check the temporal relevance of
an Employee-anchor atom we have to check two conditions.
Firstly, the given date belongs to the validity duration of the
anchor atom (valid <= 1981/06/01). Secondly, the anchor
Nple is not a gravestone (alive = TRUE), i.e. the object is
still alive.

5. Conclusions and Outlook

In the first part of the paper, we have introduced a temporal
data model which serves as a framework for the following
considerations. It can be viewed as an extension of the rela-
tional model in the temporal dimension. Relations are ex-
tended to time sequence relations by extending each tuple to
an ordered list of NpkS, called time sequence. A change to
an attribute value is reflected by the insertion of a new tuple
into the time sequence. Thus, a time sequence represents the
evolution of an entity during its lifetime. We have defined
several operations to manipulate time sequences. For the re-

uieval in our tempoml data model, we offer juncture queries.
range queries and coincidence queries.

In the recent years, many efforts have been made to model
temporal data by means of the relational model. Neverthe-
less, all these approaches suffer from the incapacity of the re-
lational model to cope with complex structured information,
e.g. ordered lists of tuples. This is the main reason why tem-
poral coincidences mot be directly expressed by corre-
sponding relational queries. In contrast to that, complex ob-
ject data models offer more powerful facilities for this pur-
pose. The MAD model chosen in our approach allows for
modeling a time sequence by a complex object, thereby pre-
serving the coherency of the tuples of this time sequence. We
have detailed that the operations of our temporal data model
can be easily transformed to MAD model operations, taking
advantage from the MAD model’s facility to handle a com-
plex object as a unit, even in the case of a recursively struc-
tured object.

The MAD model’s properties can be used to solve a further
problem imposed by the management of temporal data:
Since all updated data are explicitly preserved, a huge
amount of storage space is required. The mechanism of “re-
verse diierences” has been developed to store only the
changing data. We can easily integrate a variant of this
mechanism into our MAD model approach. The introduced
MAD operations can be extended to handle reverse differ-
ences within the corresponding database management sys-
tem PRIMA. Since the null values used by the difference
mechanism do not require any storage space in PRIMA, the
volume of data to be stored can be reduced considerably. Ac-
cess time to frequently used parts of the temporal data can be
optimized by separating them from the rest of the temporal
data. We have discussed an extension of our approach to in-
tegrate this improvement, too. It furthermore allows us to de-
fine access paths and clustering separately for both parts of
the data.

Due to the mapping of the temporal data model to a complex
object data model, the processing of temporal data can bc
supported by the access paths offered by the complex object
data model. In the case of our approach, a B *-tree defined on
the data stored with the reverse difference mechanism would
lead us to all Nples where the values uf the corresponding at-
tribute had changed. Our future workincludes a detailed in-
vestigation of this issue: When are conventional access paths
structures helpful in our approach? Which kind of queries
can be supported by them? Are dedicated complex object ac-
cess paths useful in our framework?

We have presented a method to establish a temporal “rela-
tional” database system on top of a complex object database
system. The principles depicted in our paper camrot only be
applied to the MAD model, but also to other complex object

34

data models. Some of the extensions like the partitioning of
data according to the access characteristics and the usage of
reverse differences, however, are not supported by all other
complex object data models and the corresponding database
management systems.

Finally, the question arises whether a temporal extension of
a complex object data model can be modeled using a com-
plex object data model again. Particularly in the case where
the complex objects may share components, there is a new
quality of the problem. In contrast to the temporal extension
of the relational model, we need not only cope with the evo-
lution of relations (i.e., of their attribute values), but also
with the evolution of relationships. This introduces a lot of
interesting new problems, which we will investigate in the
future.

6. References

Ar86:

AS85:

AS86a:

AS86b:

As88:

Bo82:

CW83:

Da86

Ariav. G.: A Tempotally Oriented Data Model, ACM TODS,
Vol. 11. No. 4.1986. pp. 499-527.
Ahn. I., Sncdgrass. R.: A Taxonomy of Time in Databases,
Proc. ACM SIGMOD Int. Conf. on Management of Data. Aus-
tin, 1985, pp. 236-246.
Ahn. I.. Snodgrass. R.: Temporal Databases, IEEE COMPUT-
ER, Vol. 19. No. 9,1986,pp. 35-42.
Ahn. I., Snodgmss. R.: Performance Evahtaticm of a Tempoml
Database Management Systan, Pmt. ACM SIGMOD Int.
Cad. on Management of Data. Washington, 1986, pp. 96-107.
Ahn. I., Snodgrass. R.: Partitioned Storage for Temporal Data-
bases, Information Systems, VoL 13, No. 4,1988. pp. 369-391.
Bolour, A., Anderson, T.-L., Dekeyser. L-J.. Wang. H.-K.-T.:
The Role of Time in Information Processing: A Survey. ACM
SIGMOD RECORD, Vol. 12, No. 3.1982. pp. 27-50.
Clifford, J.. Wanen. D.S.: Farmal Semantics for Time in Da-
tabases, ACM TODS. Vol. 8, No. 2,1983. pp. 214-254.
Dadam, P.. et al.: A DBMS Prototype to Suppott Bxtcnded NF2
Relations: An Integmted View on Flat tables and Hiexamhies,
Pmt. ACM SIGMOD Int. Conf. on Management of Data,
Washington, 1986. pp. 356-367.

DLW84: Dadam. P.. kun. V.. Werner, H.-D.: Integraticn of Time Ver-

Ga88:

Hi88

Ki90:

Kl81:

LuM:

Miss

Mi89

sims irho a Relational Database System.-kc. 10th Int. Conf.
on VLDB, Singapore, 1984. pp. 509-522.
Gadia. S.-K.: A Homogeneous Relational Model and Query
Language for Temporal Databases. ACM TODS. Vol. 13. No.
4, Dec. 1988. pp. 418-448.
Hiirder, T.: Ovesview of the PRIMA pmject, in: Hirder, T. (
cd.): The PRIMA Pmject - Design and Implementation of a
Non-Standard Database System, Research Report No. 26/88.
University Kaisemlautem. 1988. pp. l-12.
K&r, W.: The Temporal Query Language TMQL. Intexnal Re-
post. University Kaiserslautem, 1990.
KlopPmgge, M.-R.: TERM An Approach to Include the Time
Dimension in the Entity-Relationship Model, Pmt. 2nd Int.
Cod. on Entity-Relationship Appmach. 1981. pp. 477-512.
Lum. V.. Dadam. P.. &be, R., Guenauer. J.. Pistor, P.. Walch.
G., Werner, H.. Woodfill. J.: Designing DBMS Suppon for the
Temporal Dimension. Pmt. ACM SIGMOD Int. Conf. on
Management of Data, Boston, 1984, pp. 115-130.
Mitschana. B.: Towards a Unifkd View of Design Data and
Knowledge Representation, Proc. 2nd Int. Conf. on Enpert Da-
tabase Swtems. Tysons Comer. 1988. UP. 33-50.
Mitschang. B.:~B&utiig the Relationi Algebra to Capture
Canplex Objects, Proc. 15th Int. Conf. on VLDB. Amsterdam,
1989. pp. 297-305.

RS87: Rotan,D.,Sescv.k:Phy~crlOrgmiutiondTem~~~.
PIOC. Int. calf. 011 Data l3@euhg. IEEE computer society,
LQa Angel- 1987. pp. 547553.

Scb689: Sch6nina. H.: Integrating Ccmtkx Obikcts and Recutsion.

SK%

Sn86:

Sn87:

SS86:

ss90:

Ta86:

Pmt. orthe la IncCaZ on tiuctive~and Object-Oriented
Dabaae Syakms. Kyoto. Japan, 1989. pp. 535554.
!hahmi, A.. Kawagoe. K.: Temporal Data Management, Proc.
12th Int. Cud. m VLDB. Kyoto. Japan, 1986. pp. 79-88.
Snodgms. R.: Research Concerning Time in Databases:
Pmjcu Sumnudes. ACM SIGMOD RECORD. VoL 15. No. 4.
1986. pp. 19-39.
Snodgrass. R.: The Taqxal Query Language TQuel, ACM
TODS. Vol. 12. No. 2.1987.~~. 247-298.
Sdwk. K-J.. Scholl, M.-H.: The Relatiatal Model with Rela-
ticm Valued Attsibutea. Infonnatiat Systems, VoL 11, No. 4.
1986. pp. 137-148.

Sch6ning. IL. Sikeler, A.: Extending and Cot&ping the PRI-
MA Da&m Managanent System-kunel (&de-dabs&act),
in: Proc. PARBASE-90. Miami Beach Florida. 1990.
Tansel. k-U.: Adding Tie Dimension to Relational Model
and Fktending Relational Algebra, lnfcsmatiat Systems, Vol.
11, No. 4.1986. pp. 343-355.

7. Apped~

In order to optimize the access time to the current dates data, we have to
split the TS molecules into two patta (cf. section 4). llte first part am-
tains the newest tuple of a TS. i.e. the tuple with future = EMPTY. In

g~.thiswillbethe~t’sdPte&~t,mdwillbe~~inmatom
typewiththesuffix_Mchw.Thenstofthe&~isca~intheatom
type -t&e as demibad above. llte -anchor atom type will contain only
a small paH of the ovemll data. This splitting of the data mquims two ad-
ditional reference attributes in the conwpdhg MAD schema in order
to link the two atom types. The -tuplc atom with an empty future mfer-
ence attribute will be linked to the comxpcding -anchor atom by mfer-
ence attribute preeent.

‘Ihe definition of the TS molecule (A.l) based on such a schema is anal-
ogous to statement 3.6. Since we know that the anchor atom is the latest
tuple. we can omit the condition “future = EMPLT’ here. saving an ex-
haustive seat& for tuples with an empy refemnce attribute in oxde-r to
fmd the pmper molecule mot.

A. 1: DEFINE MOLECULE_TYPE Employee-TS(date): ALL
FROM Employee-~~~~st-Employee_tuplc

REC-PATH Employee-tuplepast-Fmployec-tuple
UNTIL Fhnployee~tuple(PREVIOUS).valid

<= %date;

Statement A.2 is the complementasy statement to statement 4.6. Hem, we
have to consider only those TS molecules for which the -an&x atans
do not cauain the data we am looking for. The shaded put of statement
A.2 maths the onmpnding past of the WHERE clause In the case of
a search for curtent date’s data we will only touch a small percentage of
all TS molecules...

A.2: SELECT MOLAGG
(REV-DIFF (Employee-tuple(ALL-REC).salaty))

FROM &np1oyec~TS(1981/06~1)
WHERE @nployee~tuple(LAST).valid <= 1981106101)

AND NOT @nployee~anchor.valid <= 1981106101)
AND (REV-DIFF
@nployec~tuple(ALL_REC).dcpattment = ‘D12’) ;

t The -anchor atom type may also contain tentative data (belonging to
the future), in which case the current date’s data is stomd in the his-
tory chain. Gravestones am also stored in the -anchor atom type.

35

