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Abstract

Support for temporal data continues to be a requirement posed by many
applications. We show that a complex object data model is an appropriate
means for handling temporal data. Firstly, we describe the main features
of temporal databases in terms of time sequences, valid time, etc. We
then explain the mapping of time sequences onto recursively structured
complex objects. Operations on temporal data are easily transformed into
complex object operations. To cope with the huge storage requirements
arising from temporal databases, we integrate the concept of storing log-
ical differences into our approach. Here, we exploit the extensibility of
the underlying complex object’s database system PRIMA. Finally, we
briefly sketch a further improvement to guarantee fast access to the
present data by storing them apart from the historical data without loos-
ing the connection between both.

1. Introduction

All human activities are cmbedded in time, but conventional
database systems do not possess the capability to record and
process the dynamic aspects of the changing world. The need
to support the time dimension in database systems is obvious
in applications like banking, sales, etc. Even most of the
well-known employee database models neglect the fact that
the history of an employee (at least the episode in which he
or she was with the enterprise) is urgently needed for man-
agement tasks.

There is plenty of literature related to the concept of time,
particularly in the area of the relational model [Bo82, CW83,
Ga88, SK86, Sn86, Ta86]. Temporal databases (as defined
by [AS85, AS86a]) capture the history of retroactive and
prospective changes and allow for the derivation of facts
from the database because of their temporal interdepen-
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dence. Most of the prototype implementations of temporal
databases rely on the relational model {such as [Sn87] based
on Quel and [Ar86] based on SQL). However, the modeling
of temporal data with the relational model has some serious
drawbacks. The existence of flat relations means that the his-
tory of a single entity has to be smashed into many pieces:
each tuple represents a snapshot of an entity at a certain time.
There are many snapshots of the same entity, requiring that
the primary key has to be expanded by the time of the snap-
shot. There is no notion to capture the complete history of an
entity as a whole. Therefore, some queries become more
complicated, because they have to consider the distribution
of one entity over many tuples.

We want to overcome these problems by the use of a data
model which supports complex objects. The history of an en-
tity can be modeled as one complex object. Thus, we can
treat the complete history of an entity as one unit. Further-
more, we can use the powerful query language of the com-
plex object data model to perform the selection of histories
or parts of them. As an example, to determine the salary of
the employee Mary at a single point in time, we have to per-
form a query, which

« selects the complex object (representing the history of the

employee) and

« selects the salary valid at the appropriate time.

Using a complex object database system as the basis for the

mapping process from temporal data and temporal queries to

complex objects and queries on them provides us with many

advantages:

» The implementation of the temporal database system
should be easy, using an enhanced database system.

» Since complex object queries are executed efficiently, the
corresponding temporal data should be handled efficiently
as well.

+ Creating and removing access path structures on the tem-
poral data is very flexible because of the underlying en-
hanced database system.,

« Handling of temporal and non-temporal data can be done
in a uniform way.

Figure 1.1 illustrates our approach.
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Figure 1.1: The mapping of the temporal data model to the
complex object data model

The rest of the paper is structured as follows: Section 2 intro-
duces the major features of our temporal data model. Based
on these features, we briefly discuss some advantages of
mapping this temporal data model onto a complex object
data model. We then identify the MAD model [Mi88, Mi89]
as a well-suited candidate for a target data model. Section 3
describes the features of the MAD model which we will use
in our approach, and the mapping of temporal objects to
complex objects. The transformation of temporal queries to
MAD operations is explained in section 4, Furthermore, we
employ the concept of reverse differences to reduce the stor-
age space for temporal objects. To improve the access time
to the latest data (which are expected to be accessed most fre-
quently), we separate them from historical data. Section 5
contains a conclusion and an outlook as to further work.

2. The Temporal Data Model

In this section, we sketch some basic features of our temporal
data model which are necessary to understand the mapping
process to the complex object data model. Due to space lim-
itations, we cannot, however, demonstrate the whole func-
tionality of our model. An in-depth discussion of the tempo-
ral data model is found in [K490]. Its functionality is similar
to that of other temporal database systems, such as described
in [Ar86, Sn87, SK86]. The temporal data model we will dis-
cuss in the following is also based on, but not limited by the
relational model.

Conventional relational databases represent the state of an
application such as the staff management of an enterprise at
a single moment in time. Roughly speaking, each tuple in the
database represents a snapshot of a real world entity, e.g. of
the employee Mary in March 1980. Each change in Mary’s
data is represented by a change of the corresponding tuple,
updating the snapshot and overwriting the previous values.
Thus, an earlier state of Mary’s history cannot be retrieved
from the database. In the temporal data model, we preserve
all these snapshots (tuples) in a time-ordered sequence, the
so-called Time Sequence (TS) [SK86]. A TS represents the
history of an entity of the real world and can be seen as an
extension of a tuple in the temporal dimension, i.e., each TS

« belongs to exactly one TS relation (like a tuple belongs to
one relation),

* has a unique key (surrogate) and

* serves as a unit for retrieval and manipulation operations.

Figure 2.1 shows the TS representing an episode of Mary’s
life. She joined the enterprise at 1980/02/01. At this time she
lived in Frankfurt and was associated with department D03
(tuple 1). After one year she joined department D12 and was
eamning a salary of $2000 (fuple 2). After several changes of
her residence, department and her salary (fuple 3 through fu-
ple 6), she is now assigned to department D25, lives in Kai-
serslautern and eams a salary of $4000 (fuple 7). In March
1991 an increase of salary is proposed leading to a tuple (tu-
ple 8) which belongs to the future.

In our example, the history of Mary is stepwise constant, i.e.
each value of an attribute is valid until it is changed. There-
fore, we can determine the value of an attribute at each time
(within the lifetime of the entity) by looking at the tuple in
the TS with the latest time which is less or equal to the re-
quested time. Besides this kind of history, TS are able to rep-
resent event-oriented and continuous history [Ki81, SK86].
In event-oriented histories (e.g. debit/credit actions on an ac-
count) the tuples in the TS are only valid at single points in
time. In the case of continuous histories, such as a fever

time A valid emp_no | name residence department
tuple 8 19910301 123 Mary | Kaiserslautem D25 1989/06/01 changes;
"timestamp" represents
tuple 7 1989/01/01 123 Mary | Kaiserslautern 1988/12/20 the time, when the database
. has been modified.

tuple 6 1988/03/01 123 Mary | Kaiserslautem 1989/0101

tuple § 1986/06/01 123 Mary | Kaiserslautem 1986/06/01

tuple 4 1985/02/01 123 Mary | Kaiserslautem D12 1988/04/01

tuple 3 1982/01/01 123 1982/0101

tuple 2 1981002001 123 1981/02/13

tuple 1 1980/02/01 123 Mary | Frankfurt D03 1000 | 1980/01/01

Figure 2.1: History of employee Mary




transaction time -
1980/01/01 T_CREATE TS (emp_no = 123, valid = 1980/02/01, name = 'Mary’, .
residence = 'Frankfurt’, department = 'D03’, salary = 1000) ——> tuple 1 retroactive change: the tuple is in-

serted into the ; t
1981/02/13 T_UPDATE TS (emp_no = 123, valid = 1981/02/01, department = *D12, salary = 2000)tuple2 | sroio romatns mg.;';: © presen
1982/01/01 T_UPDATE TS (emp_no = 123, valid = 1982/01/01, residence = *Kaiserslautern’)—> tuple 3
1986/06/01 T UPDATE TS (emp_no = 123, valid = 1986/06/01, salary = 4000) ———> tuple 5

) error correction: an existing tuple
1988/03/01 T_UPDATE TS (emp_no = 123, valid = 1988/03/01, department = 'D2200') ———> tuple 6

is replaced by the corrected one.

1988/12/20 T_UPDATE TS (emp_no

=123, valid = 1989/01/01, department = 'D25') ——> tuple 7

prospective change: the wple is
, inserted into the future; the present

state remains unchanged.

Figure 2.2: Sequence of operations to construct Mary’s history (see figure 2.1)

curve of a patient, the degree of the fever changes continu- T_CORRECT TS (valid time, data):

ously over time. Therefore the tuples in the TS can only cap- The tuple with the specified valid time is replaced by the new
ture some characteristic values at single moments. Based on
these characteristic values, the history has to be reconstruct-
ed by a function, e.g. linear interpolation

one (error correction)1

T_DELETE TS (valid time):
A “gravestone” for the TS is generated, i.e., no further up-

In order to support audit requirements and to keep track of dates are allowed on the TS (except retroactive corrections).

corrections, we have to differentiate between the time when

a value is valid in the real world (valid time) and the time T_REMOVETS: _

when the associated transaction runs on the database (trans- All data of the TS are discarded (this operation serves only

action time). Since the transaction time is often only used for for administrative purposes).

bookkeeping purposes, we order the tuples in a TS by their All these operations demand the specification of the TS rela-

valid time (as shown in fig. 2.1). Consequently, we have to tion(s) (T_FROM clause) and the specification of the TS it-

admit tuples with valid times belonging to the future. self (T_WHERE clause). Our language is similar to the
. ] . . well-known SQL skeleton. We will discuss this in more de-

Besides the notion of TS, we need cor‘respondmg operations tail for the case of the T_SELECT operation:

to reflect the evolution of the TS. Figure 2.2 shows a se- -

quence of such operations to construct Mary’s history. As T_SELECT projection clause

mentioned in the introduction, we have to consider retroac- (time projection clause)

tive (fuple 4) and prospective (fuple 8) changes, i.e. changes T_FROM TS relation(s)

corresponding to valid times belonging to the past or to the T_WHERE restriction clause

future. Furthermore, we must be able to handle corrections (time restriction clause),

(tuple 6). The following operations are supported to perform The T_FROM clause enumerates the TS relations which are

changes on Tst. relevant for the statement. The expressions in the

T_WHERE clause restrict the TS belonging to the result of
the query. Thus, the result of evaluating the T_FROM and
the T_WHERE clause is a set of TS belonging to one TS re-
lation. In addition to the restriction clause known from SQL,
we offer the following basic predicates to describe the time

T_CREATE TS (valid time, data):

Similar to the well-known APPEND or INSERT operations
in relational database systems, T_CREATE TS generates a
TS with one tuple. valid time is the birth date of the TS.

T_UPDATE TS (valid time, data): relation of the restriction clause.
As in the case of relational systems, T_UPDATE describes
the changes which happen to the entity, but contrary to these 2.1: juncture query

systems we do not overwrite the previous data. Depending (bool) AT (1):
on the valid time, a new tuple is generated and appended at \9oo : ]
the end of a TS (the “usual” case) or inserted into the TS. Of if the boolean expression bool can be evaluated to TRUE at

course, a tuple with the same valid time must not be present time 1, the corresponding TS belongs to the result.

in the TS.
¥ Inorderto distinguish the temporal operations from the other opera- f The old tuple is not deleted, but is used to keep a history of correction
tions, we precede their names with T_. on the TS.
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Example: “Retrieve all Employees who worked for depart-
ment D12 at June 1st, 1981.”

T SELECT ALL
T_FROM Employee
T_WHERE (department = 'D12°) AT 1981/06/01;

2.2: existential interval query

(bool) SOMETIMES DURING [¢],12 ]:

A TS qualifies, if the boolean expression bool is evaluated to

be TRUE at least at one moment in time within the interval

from t1t0 2.

Example: “Retrieve all employees who worked for depart-
ment D03 in 1980.”

T_SELECT ALL

T_FROM Employee

T WHERE  (department = D03’) SOMETIMES
DURING (1980/01/01, 1980/12/31];

23: universal interval query

(bool) ALWAYS DURING [t],12 ]:

A TS qualifies, if the boolean expression bool is evaluated to

be TRUE within the whole interval.

Example: “Retrieve all employees who worked for D03 dur-
ing the whole year 1980.”

T_SELECT ALL

T_FROM Employee

T _WHERE  (department = 'D03’) ALWAYS
DURING [1980/01/01, 1980/12/31];

2.4: existential coincidence query

(booll) SOMETIMES DURING WHILE (bool2):
A TS qualifies, if bool1 holds at least at one moment in time
when bool2 has been TRUE.

Example: “Retrieve all Employees who eamed more than

$3000 in department D12.”
T_SELECT ALL
T_FROM Employee
T_WHERE - (department = 'D12’ ) SOMETIMES
DURING WHILE (salary > 3000);

2.5: universal coincidence query

(booll) ALWAYS DURING WHILE (bool2):

A TS qualifies, if booll holds whenever bool2 has been

TRUE.

Example: “Retrieve all Employees who were assigned to de-
partment D12 whenever they eammed more than
$3000.”
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T_SELECT ALL

T_FROM Employee

T _WHERE  (department = 'D12’ ) ALWAYS
DURING WHILE (salary > 3000);

The employee Mary of our example qualifies with respect to
queries 2.1, 2.2, and 2.4. As mentioned above, the result of
each of these queries is a set of TS belonging to one TS rela-
tion (i.e. in the case of Mary the TS consists of the whole in-
formation as illustrated in Fig. 2.1). We extend the projection
clause in an analogous fashion to the extensions of the re-
striction clause’s facilities with respect to the temporal di-
mension. We allow for a projection of a set of slices of an en-
tity’s history. In examples above, we would get the complete
history (the whole TS) of the employees due to the keyword
ALL. In order to be more specific, we must be able to restrict
the tuples of the TS contained in the result set according to
certain criteria. For example, adding the ONLY keyword to
the T_SELECT clause of query 2.1 would reduce the result
set to the tuple valid at June 1st, 1981 of the qualifying TS
(i.e. tuple 2).

Besides the ONLY clause, there are three other clauses used
to restrict the TS of the result to interesting tuples. AT and
DURING work analogously to the predicates in the
T_WHERE clause. ALLTIME does not perform any selec-
tion on the query’s result and serves as default.

time_projection ::=

ALLTIME/ : selects the whole TS.

ONLY/ : selects only the tuples qualified by
the restriction clause.

AT (t)/ : selects the tuple valid at 1.

DURING {t1,12] : selects all tuples valid in the inter-
val from ¢] to £2.

The combination of the introduced predicates leads to a pow-
erful query language. Due to space limitations, we omit fur-
ther examples and an in-depth discussion of our temporal
query language.

A TS as described above consists of several tuples. In a step-
wise constant history, each of these tuples represents an in-
terval in the history of the corresponding entity, during
which the represented values did not change. Obviously, not
only the values of the tuples are carrying information, but
also their succession. For example, to decide how long the
values contained in one tuple have been valid, one has to
look at the successor tuple. This gives a hint to the difficul-
ties of mapping one TS to more than one object of a data
model, for example, to map a TS to a set of tuples in the re-
lational model. Whereas simple operations can be trans-
formed to operations of the data model (using constructs like
GROUP_BY to formulate the coherence of the tuples of one
TS), this is much more difficult for operations which per-
form computations using the temporal order existing on the



tuples. Therefore, we decided to investigate the mapping of
the temporal data model to a complex object model, which
allows us to model one TS as one complex object, thereby
preserving the coherency of the tuples. The complex object
model has to fulfil the following requirements to be well-
suited for this purpose:

+ It must be possible to have an arbitrary number of tuples
foraTsS.

« It must be possible to express the temporal order inherent
ina TS. This order is defined on the valid attribute of a TS.

» It must be possible to relate the values contained in subse-
quent time tuples to one another. ,

 The mapping process is simpler, if a temporal data type
with corresponding operations is supported.

« The result of queries on TS should reflect the order of the

tuples, i.e. should not consist of an unstructured set of un-
related values.

Regarding the NF2 data model [SS86] as a prominent exam-
ple, we can model a TS as a tuple in a relation which has a
sub-relation "TS_tuples” containing the tuples representing
the TS. In the pure NF2 model, however, there is no way to
arrange the tuples in a certain order, since relations are unor-
dered by definition. The extended NF2 model [Da86] sup-
ports lists of tuples which can be used for this purpose. A
temporal data type is contained in neither of these NF2 mod-
els.

The MAD model {Mi88, Mi89] used in this paper to illus-
trate the mapping process offers another way to express the
coherency relation among tuples. Since it supports recursive-
ly structured complex objects, one can model a TS as an ar-
bitrary length chain of temporal tuples. Succeeding levels of
recursion (corresponding to succeeding positions in a list)
represent succeeding tuples. Furthermore, MAD also has a
specific temporal data type. Thus, it seems to be a well-suit-
ed data model for our investigations. Nevertheless, we do not
claim that it is the only one.

3. Mapping Time Sequences To Molecules of the MAD-
Model

Atoms are the basic building blocks of the MAD model.
They can be compared to relational tuples in the relational
model in that they consist of attributes of various types and
belong to exactly one atom type (comparable to a relation).

Besides the data types known from many implementations of

the relational model, some additional data types may be cho-

sen as ranges for attributes:

» The data type TIME can be used to represent time with
varying precisions. A value of this type is represented in
the form year/month/day/hour/minute/second/millisec-
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ond, where the components can be left out from right to
left. For example, 1989/02/01 is a correctly formed value
of data type TIME, representing February 1st, 1989. It is
said to be of granule DAY. The granule of a TIME at-
tribute is defined in the database schema.

* For this data type, the usual comparison operators are de-
fined. Furthermore, there is a time-oriented arithmetic,
which can be illustrated by the difference between the no-
tation one month (0/1) and 30 days (0/0/30):

1989/04/01 + 0/0/30 = 1989/05/01  1989/04/01 + 0/1 = 1989/05/01
1989/02/01 + 0/0/30 = 1989/03/03  1989/02/01 + 0/1 = 1989/03/01

» The data type IDENTIFIER represents a system defined
surrogate which uniquely identifies an atom. Each atom
type must contain exactly one attribute of this type.

* The data type REFERENCE is needed to link atoms to-
gether: A value of type REFERENCE is a duplicate-free
list of IDENTIFIER values, all pointing to atoms of the
same type (cf. Figure 3.1).

TS relation definitions can be mapped onto MAD atom type
definitions in a quite straight-forward way. Figure 3.1 shows
a schema definition of the employee TS relation and its cor-
responding definition as an atom type with recursive self-ref-
erences in the MAD model. Besides the attributes defined in
the employee TS relation, some system defined attributes are
added in the MAD atom type, which are of course not visible
to the user of the temporal data model. The attribute alive
represents the gravestone: if alive is FALSE then valid con-
tains the death date of the TS. The attribute timestamp con-
tains the transaction time, i.e., the time when the transaction
modified the tuple. The attributes future and past are used
to establish a link type which chains together all atoms be-
longing to the same TS. Notice that valid is not a system-de-
fined attribute, since it is visible to the user of the temporal
data model. Furthermore, the granule of valid must be spec-
ified by the user.

Some characteristics of the MAD model should be stressed
regarding this example (cf. Figure 3.1): for each
REFERENCE attribute, there is a corresponding “counter
reference” attribute pointing to the opposite direction (here:
past, future).

The concept of REFERENCE atiributes allows for the direct
mapping of attribute-free binary relationships, even in the
m:n case. There may be cardinality restrictions indicating the
permissible number of IDENTIFIER values for a REFER-
ENCE attribute. Thus, the [0,1] cardinality restriction of the
example indicates that there may be at most one successor
and predecessor in the temporal dimension.

The REFERENCE attributes may be used to dynamically de-
fine complex object structures, called molecules. For exam-
ple, the molecule type definition

E1(Employee_tuple).past—E2(Employee_tuple)



TS definition
T_CREATE TS Employee

corresponding MAD atom type definition

CREATE ATOM_TYPE Employes_tuple

Employee_tuple

( Id L H)ENTIFIER,.
(valid : TIME (DAY); valid : TIME (DAY);
emp_no : INTEGER; emp_no : INTEGER;
name : STRING; name : STRING;
residence : STRING; residence  : STRING;
department : STRING; department : STRING; future past
salary : INTEGERY), salary : INTEGER;
future + REFERENCE (anpioyee hiplé past) {011
past REFB(ENCE (Em oyee tnple.fmufe) [0 1];3
~ system defined attributes:: ::::mp ?&OE (MILUSEC));

Figure 3.1: Mapping of TS definition to MAD definition

constructs molecules which cluster pairs of Employee_tu-
ples together which are adjacent in time. When an atom type
is included in a molecule type definition more than once,
each of its occurrences (called a role) must be named differ-
ently (E1, E2 in the example above).

Based on the molecule type definition facility, queries can be
formulated using the molecule query language (MQL) of the
MAD-Model, which is based on a SELECT-FROM-
WHERE skeleton similar to SQL:

3.1:SELECT projection clause
FROM  molecule type definition(s)
WHERE restriction clause;

For example, the following query selects all salary changes
of Employees (at any time):

3.2:SELECT ALL
FROM El(Employee_tuple).future
—E2(Employee_tuple)
WHERE El. salary <> E2.salary;

Notice, that the atom type structure does not imply the direc-
tion imposed by the molecule type definition. In the above
query, we do one step into the future from the E1 to find its
successor in time, while in the query before, we went one
step into the past finding the predecessor of E1.

The resulting molecules of a query may be tailored to the
needs of an application, by specifying attributes and atom
types to be projected in the projection clause (instead of
ALL in the above example). Furthermore, a qualified (i.e.
value-dependent) projection is allowed as illustrated in the
following query. Suppose you want to retrieve the old salary
of the employees in the above example, but retrieve the new
one only if it is less than $1500. In this case you can ask the
following query:

3.3:SELECT El.salary, ( SELECT E2.salary
FROM RESULT
WHERE E2.salary < 1500)
FROM E1l(Employee_tuple).future
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—E2(Employee_tuple)
WHERE El.salary < E2 salary;

The keyword RESULT indicates that the SELECT query
refers to parts of the result obtained by the surrounding que-

1y. As already mentioned, TS will be modeled as recursively

structured complex objects (molecules). MAD offers the
keyword REC_PATH for the construction of recursive
complex objects. The keyword UNTIL can be used to cut the
construction of the transitive closure when a certain condi-
tion is fulfilled. For example, the following query delivers
the history of all D22 employees since they joined the de-
partment:
34:SELECT ALL
FROM Employee_tuple REC_PATH
Employee_tuple.past—Employee_tuple
UNTIL
Employee_tuple.department <> "D22’
WHERE Employee_tuple(FIRST).department
='D22’;

The algorithm for computing the corresponding molecule
consists of starting with an Employee fulfilling the condition
Employee_tuple(FIRST).department = 'D22°. Employ-
ee_tuple(FIRST) is the name of the first Employee atom in
the molecule (i.e., the root of the molecule). Then, the Em-
ployee_tuple referenced by the past attribute of the root is
included into the molecule. Its past attribute is used to find
the next level of recursion, and so on, until the UNTIL
clause is evaluated to be TRUE or the past attribute is emp-

tyT. Thus, recursion terminates in our example, whenever a
department other than D22 is considered.

The keywords PREVIQUS and NEXT allow for path-de-
pendent recursion termination. Thus, the following query de-
livers a set of histories for Mary, one history molecule for
each department she has worked for:

*In our application, the atorh network established by the past-future ref-
erences of Employee_tuple is cycle-free. In the case of cyclic data, re-
cursion terminates whenever a cycle would appear in the molecule.



3.5:SELECT ALL
FROM  Employee_tuple REC_PATH
Employee_nple.past—Employee_tuple
UNTIL
Employee_tuple(PREVIOUS).department
<> Employee_tuple(NEXT).department
WHERE Employee_tuple(FIRST).name = "Mary’ ;

A more general description of the MAD model can be found
in [Mi88], a detailed discussion of recursion in the MAD
model is given in [Sch689].

Join is not a frequently used operation in MAD, because in
most cases references (i.e. user defined relationships) will be
used to combine atom types (where in the relational model
joins based on primary keys and foreign keys would be
used). Nevertheless, molecule join is possible in MAD in
analogy to SQL by enumeration of the corresponding mole-
cule types in the FROM clause. To facilitate the use of fre-
quently needed molecule type definitions, molecule types
can be defined in a similar way to macro definitions with pa-

rameters’. The following example defines a molecule type
for the representation of the employee time sequences. The
predicate Employee_tuple(FIRST) future = EMPTY forces
the molecules to start at the beginning of the time sequence.
The UNTIL clause cuts the molecules at a certain point in
time, i.e. tuples representing older events are excluded from
the molecule. In this case, the last tuple of this molecule
keeps the information valid at %DATE (which is a parame-
ter of the macro definition). The molecule definition also
covers molecules of employees, which were not alive at
%DATE. In this case, molecule construction is terminated
by an empty past reference.

3.6:DEFINE MOLECULE_TYPE

Employee_TS(%DATE): ALL

Employee_tuple

REC_PATH

Employee_tuple.past—Employee_tuple

UNTIL Employee_tuple(PREVIOUS).valid
<= %DATE

WHERE Employee_tuple(FIRST).future = EMPTY;

MAD queries deliver a set of molecules, i.e. a structured rep-
resentation of the atoms involved. For the case of our TS
modeling, the MAD queries deliver chains of Employee_tu-
ple atoms. Often, however, a structured view of the result is
not required. In these cases, the built-in function MOLAGG
may be used to collect a set of attribute values within a mol-
ecule, into a list. For example, the following query delivers a
list of all dates where changes have occurred in Mary’s his-
tory since January 1st, 1985 (given by the values of the valid
attribute) by aggregating them over all recursion levels (as
indicated by ALL_REC):

FROM

T We will precede all parameters of macro definitions by a "%" sign.
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3.7:SELECT MOLAGG
(Employee_tuple(ALL_REC).valid)
FROM Employee_TS(1985/01/01)
WHERE Employee_tuple(FIRST).nate = "Mary’;
Analogously, the built-in function VALUE converts a set of

simple ' molecules into a list of values. Hence, it may be used
10 apply aggregating functions (which are defined only on
lists) to a query’s result. For example, the following query
retrieves all employee tuples which contain a salary value of
more than the average of the salary values of all employee tu-
ples:

3.8:SELECT ALL
FROM  Employee_tuple
WHERE salary > AVG ( VALUE (SELECT salary
FROM Employee_tuple));

4. Handling Temporal Queries

So far, we have introduced a temporal query language which
allows for the selection and manipulation of temporal data
organized as time sequences. By the means of a small set of
temporal predicates (AT, DURING, WHILE), we can se-
lect temporal information in a natural way similar to the
well-known SQL constructs for non-temporal data. We have
shown a direct and straight-forward mapping of the basic
units of temporal data (the time sequences) to complex ob-
jects provided by the MAD model. However, selecting tem-
poral information by running MQL queries against these
complex objects is much more difficult than using the tem-
poral query language. Therefore, in the following chapter we
describe the mechanism used to transform temporal queries
on TS relations to MQL queries applicable to complex ob-
jects.

Transforming Temporal Queries to MQL Queries

The transformation of temporal queries essentially relies on
the capabilities of the MAD model for the molecule type def-
inition and the handling of recursion. We will use the query
below as an example. It expresses that we are interested in
the salaries of employees, who were working in department
D12 on June 1st, 1981. Remember, the keyword ONLY
projects data which is valid at the time specified in the re-
striction clause.

4.1: T_SELECT salary ONLY

T_FROM Employee

T_WHERE (department = 'D12’) AT 1981/06/01;
Furthermore, we will use the history of Mary (see figure 2.1

in section 2) as a running example. The MAD model repre-
sentation of the TS in figure 2.1 is constructed by the connec-

T Molecules consisting of only one atom with only one attribute.



tion of the tuples through their reference attributes future
and past. For example, the future reference of the youngest
tuple (tuple 8) is empty and its past reference points to wple
7. This tuple references tuple 8 by its future attribute
(counter reference) and tuple 6 by its past attribute. In this
way the eight tuples are constituting one TS molecule.

To give a reply to a temporal query like the one above, it is
necessary to find the tuple which keeps the information valid
at a given date. Looking at the temporal query and the TS of
our example, we have to use the molecule type definition
Employee _TS(1981/06/01) as described in statement 3.6.
The corresponding molecule begins with fuple 8 and ends
with ruple 2. Thus, the MQL statement 4.2 is the result of the
transformation of the temporal query.

4.2: SELECT Employee_tuple(LAST) (salary)
FROM Employee_TS(1981/06/01)
WHERE Employee_tuple(LAST).valid <= 1981/06/01
AND
Employee_tuple(LAST).department = "D12’;

A TS molecule, or alternatively the related Employee TS
molecule, qualifies if it meets the following requirements ex-
pressed in the WHERE clause of MQL statement 4.2:

- The object under consideration was already alive at the
specified time: We have to exclude those TS_Employee
molecules for which the value of valid of the last tuple is
greater than the given date (see discussion of the mole-
cule type definition 3.6).

- The object fulfills the qualification condition of the tem-
poral query at the given date. Thus, the attribute depart-
ment of the last tuple of the Employee_TS molecule con-
tains the vatue 'D12’.

In our example, the evaluation of the statement delivers the
salary value (2000) of the last tuple (fuple 2) of the accord-
ing Employee_TS molecule.

The mechanism of condition transformation is obvious in
our example: the AT construct in the T_WHERE clause is
translated to a corresponding parameter choice for the Em-
ployee_TS definition, together with the condition on the val-

id attribute yielding a molecule where the last tuple reflects
the interesting data. The condition of the temporal query is
applied to this tuple. The other constructs allowed for quali-
fications of temporal queries can be transformed in similar
ways. The DURING constructs are expanded to conditions
on the valid attribute’s value. The condition "(department =
'D03”) SOMETIMES DURING [1980/1/1, 1980/12/31]" is
transformed to the restriction clause

t The condition on the valid attribute could be included into the defini-
tion of Employee_TS, thereby changing the semantics of this mole-
cule type definition.
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WHERE EXISTS Employee_TS(ALL_REC):
(department = 'D03’) AND (valid <= 1980/12/31),

whereas "(department = "'D03’) ALWAYS DURING [1980/

1/1, 1980/12/31]" becomes

WHERE FOR_ALL Employee_TS(ALL_REC):
(department = *D03") OR (valid > 1980/12/31).

Both restriction clauses deal only with the ending point of
the interval, because the starting point is already captured by
the until clause of the molecule definition used in the FROM
clause. The ransformation of DURING WHILE is illustrat-
ed by the following example: the T_WHERE clause "(de-
partment ="D12’) SOMETIMES DURING WHILE (sala-
ry>3000)" (cf. 2.4) is transformed to a MQL query contain-
ing the Employee_TS(0/0/0) molecule type and the following
restriction clause:

WHERE EXISTS Employee_TS(ALL_REC):

(department = 'D12’ AND salary > 3000).

The various keywords allowed in the T_SELECT can be
transformed in a similar way: A projection clause “attribute
AT (12)” is transformed to a qualified projection of the fol-

lowing shapeJr :
SELECT attribute
FROM RESULT
WHERE valid = MAX (
SELECT valid
FROM RESULT
WHERE valid <=12)

DURING [t1,12] is mapped analogously by adding “AND
valid <= t1” to the WHERE clause. The transformation of
ONLY depends on the construct used in the WHERE clause.
Query 4.1 shows an example for the combination ONLY /
AT, where the relevant data is contained in the last tuple, and
hence the last tuple is projected.

Up to this point, we have only discussed the transformation
of temporal retrieval statements to MQL statements. Manip-
ulation statements, however, do not create any problem,
since their structure is very regular and simple. They can be
directly mapped to corresponding MQL operations.

The transformation of a temporal query to an MQL query
discussed so far is straight forward, because every tuple of
the TS molecule contains all information valid at a given
time. On the other hand, it is likely that only few of the at-
tribute values of two adjacent tuples differ. This leads to high
storage redundancy and requires a huge amount of storage
space, which is unacceptable even with the presence of opti-
cal disks and other devices providing large storage capacity
at low costs. '

¥ Here, we assume that t2 > date. Otherwise, the query becomes slight-
ly more complex.



Reducing Amount of Storage

We can reduce the amount of storage space needed by stor-
ing only the differences between two adjacent tuples instead
of the complete information. In [DLW84] differences on the
basis of EXOR operations are used to cut storage costs. In-
stead of storing the full data only the result of an EXOR op-
eration between the current tuple and the predecessor tuple
(recursively continued) is stored. We refer to these differenc-
es as reverse differences, because the youngest tuple is com-
pletely stored whereas all older tuples are represented only
by differences. The EXOR operation is only applicable at the
byte level, so that the differences have to be built at the lower
levels of the database management system. This has three
major drawbacks. Firstly, this mechanism has to be integrat-
ed into the database management system itself. Secondly, in
order to evaluate a boolean expression on one attribute, the
whole tuple has to be reconstructed by traversing a chain of
differences starting with the current tuple. Thirdly, the dif-
ferences are “unstructured” tuples for the higher levels of the
database management system. Thus, conventional access
path structures cannot be used on history data. Hence, we
want to evolve the method as described in [DLW84] by us-
ing logical rather than physical differences, i.e. we assign
null-values to those attributes which are not altered in com-

parison to their temporal predecessorT. This has three advan-
tages. Firstly, we can operate on the tuples with the data ma-
nipulation operations of the database system. Secondly, us-
ing conventional access path structures on the history data
will lead us only to tuples in which the requested value is
stored, but not to a huge bulk of history tuples preserving this
value. Thirdly, in PRIMA, the PRototype Implementation of
the MAD model [H:88], null-values do not need any storage

space.

t This implies that attributes of TS relations do not contain null values.
We can extend our approach to allow for null attributes of TS rela-
tions, but this exceeds the scope of this paper.

As a consequence of using reverse differences, the tuple cor-
responding to the validity time specified does not necessarily
contain the values of all attributes being included in the pro-
jection list or the qualification condition of the temporal que-
ry. For that reason, we have to extend our mapping algorithm
in order to find the attribute values which belong to a certain
validity time but are not stored in the according tuple.

Figure 4.1 shows the TS of our example on the basis of re-
verse differences. The empty fields represent the null values.
The arrows indicate to which tuples a stored value also be-
longs. To evaluate the qualification condition on the last tu-
ple of the Employee_TS molecule in our temporal query (fu-
ple 2), we have to find the value of the attribute department,
which was current while tuple 2 was valid. We find the in-
formation in tuple 5. The concept of reverse differences forc-
es the complete storage of the information in the youngest

time tuple with alive = TRUEY. This guarantees that a de-
fined value is found when traversing the chain of tuples us-
ing the future references. In order to facilitate the search for
the attribute value, we define a new molecule type
search_path (MQL statement 4.3), which starts with a time
tuple and examines all tuples along the future references un-
til the first one with a defined value in the specified attribute
is found. The name of this attribute is the parameter of the
molecule type definition. To detect the first defined value we
use the MAD operator IS_NULL. It delivers TRUE if the
given attribute has a null value, FALSE otherwise. Thus, we
can find the relevant value of the attribute department in the
last tuple of the molecule search_path(department), if we
choose a proper starting point. In the same way we define the
molecule search_path(salary) to look for the value of the
projection attribute. Examples of search_path molecules are
illustrated in figure 4.1.

t A “gravestone” contains only one defined attribute value: alive =
FALSE

residence

TS
deparmen: | salary | Employee_TS(1981/06/01)

? valid emp_no| name
time .
tuple 8 11991/03/01] 123 | Mary | Kaiserslautem

tuple 7
tuple 6

5000 search_path(department)
— search_path(salary)

tuple 5
tuple 4

tuple 3

tuple 2

tuple 1

null values  belongs to

Figure 4.1: TS, Employee_TS and search_path molecules in the case of reverse differences




43:DEFINE MOLECULE_TYPE
search_path(%ATTRIBUTE) : ALL
Employee_tuple REC_PATH
Employee_tuple.future—Employee_tuple
UNTIL NOT IS_NULL
(Employee_tuple(PREVIOUS).%ATTRIBUTE);

We find the proper starting points of the search_path mole-
cules by connecting them to the Employee_TS molecules us-
ing a molecule join. The first part of the restriction clause of
MQL statement 4.4 represents the join condition, ensuring
that the last tuple of the Employee_TS molecule and the first
uples of the search_path molecules have to be identical. To
be able to address both search_path molecule types in the
projection clause or the restriction clause of the MQL state-
ment, we assign the role names D and S to them.

44:SELECT MOLAGG
(S(Employee_tuple(LAST)(salary)))
Employee_TS(1981/06/01),
D(search_path(department)),
S(search_path(salary))
WHERE (Employee_TS.Employee_tuple(LAST).ID
=D._Employee_tuple(FIRST).ID)
AND (Employee_TS.Employee_tuple(ILAST).ID
= S.Employee_tuple(FIRST).ID)
AND (Employee_TS.Employee_tuple(ILAST).valid
<= 1981/06/01)
AND (D.Employee_tuple(LAST).department
='D12");
To qualify, the joined molecule has to meet the following re-
quirements:

- The comresponding object must have been alive at 1981/
06/01. This is true, if valid of the last tuple is equal or less
than this date.

- The qualification condition on department must be eval-
uated to be TRUE with respect to the value found in the
last tuple of the search_path(department) molecule.

If these conditions are fulfilled, the value of the attribute sal-
ary in the last tuple of the search_path(salary) molecule can
be delivered, as $2000 in the example.

MQL statement 4.4 is rather complex and poses high re-
quirements on the query optimizer in order to generate an ef-
ficient query plan. Fortunately, PRIMA has been designed
with respect to extensibility, i.c. it is possible and quite easy
to integrate new operators into the query language [SS90].
Here, we use this facility to define a new operator in order to
facilitate the formulation and the computation of these types
of queries.

FROM

FROM
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Using the Advantages of Extensible Database Systems

MQL statement 4.4 shows that the use of reverse differences
could force very complex computations. For every attribute
in the projection list and the qualification condition, a
search_path molecule has to be created in order to find the
according value. The correct combination and the efficient
evaluation of complex conditions containing several at-
tributes will pose strong demands on a query optimizer. The
specification of the attribute computation by specific mole-
cule types for each attribute leads to a waste of join condi-
tions. The desired operation, however, is not a join, but a
simple back-traversing of the molecule which is already
known. Furthermore, this back-traversal is not necessary for
each attribute separately, but could be done for all attributes
in one traversal. The complex query formulation is only en-
forced by the lack of a reverse difference operator in the que-
ry language. Hence, we employ the extensibility of PRIMA
to define and integrate a new operator into the query lan-
guage [SS90].

For the purpose of reverse difference computation the new
operator, called REV_DIFF should work in a similar way to
the MOLAGG operator. However, instead of collecting all
attribute values into a list, REV_DIFF is designed to deliver
a list of the values of the specified attribute in the deepest re-
cursion level where they are defined. It will always be called
in combination with the keyword ALL._REC to indicate that
it works on the whole recursive molecule. This is obviously
only a slight modification of the MOLAGG operator. In our
application, REV_DIFF will always deliver a list with ex-
actly one element. MQL statement 4.5 is an improved ver-
sion of MQL statement 4.4 using the REV_DIFF operator.

45:SELECT MOLAGG (REV_DIFF

(Employee_tuple(ALL_REC).salary))
FROM Employee_TS(1981/06/01)
WHERE (Employee_tuple(LAST).valid

<= 1981/06/01)

L_REC).department) = "D12");

Now, we are able to omit the complex molecule joins and the
search_path molecules. Thus, a lot of difficult problems
arising for query optimization from statement 4.4 vanish
when executing statement 4.5. Further advantages are the
simpler handling of information stored with reverse differ-
ences and the easier transformation of temporal queries to
MQL statements.

So far, we have shown the transformation of temporal que-
ries to MQL queries on complex objects, even in the case of
using reverse differences. Besides the saving of storage
amount, we want to optimize the access time to the present
data.



Reducing Access Time

There is a common belief in the literature [AS86b, AS8S,
DLW84, SK86], that there is a correlation of the access fre-
quency and the age of data. Furthermore, it is postulated that
the performance of temporal database management systems
processing the present data must be almost as good as that of
conventional database management systems. In order to
achieve this goal we have to separate the current data from
the bulk of history data [Lu84, RS87]. This leads to the mod-
eling of a temporal relation by two different atom types (see
Appendix). In this approach each TS molecule is composed
of one occurrence of an _anchor atom type (in general rep-
resenting present data) and an arbitrary number of occur-
rences of a _tuple atom type. To connect the _anchor atom
with the first _tuple atom we additionally need the reference
attribute hist (_anchor atom type) and the counter reference
attribute present (_tuple atom type).

As a consequence of modeling temporal data by the use of
two different atom types we expand a temporal query to two
different MQL statements. The first one processes the actual
data and touches only the _anchor atom type (MQL state-
ment 4.6). The second one processes only those TS mole-
cules which keep the relevant information in the history tu-
ples and have not been investigated during the evaluation of
the first statement (Appendix, MQL statement A.2).

47:SELECT Employee_anchor(salary)
FROM  Employee_anchor
WHERE (Employee_anchor.valid <= 1981/06/01)
AND (Employee_anchor.department = *D12’)
AND (Employee_anchor.alive = TRUE);

Statement 4.6 is a very simple MQL statement. It works on
the atom type Employee_anchor and does not care about
complex TS molecules. To check the temporal relevance of
an Employee_anchor atom we have to check two conditions.
Firstly, the given date belongs to the validity duration of the
anchor atom (valid <= 1981/06/01). Secondly, the anchor
tuple is not a gravestone (alive = TRUE), i.e. the object is
still alive.

5. Conclusions and Outlook

In the first part of the paper, we have introduced a temporal
data model which serves as a framework for the following
considerations. It can be viewed as an extension of the rela-
tional model in the temporal dimension. Relations are ex-
tended to time sequence relations by extending each tuple to
an ordered list of tuples, called time sequence. A change to
an attribute value is reflected by the insertion of a new tuple
into the time sequence. Thus, a time sequence represents the
evolution of an entity during its lifetime. We have defined
several operations to manipulate time sequences. For the re-
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trieval in our temporal data model, we offer juncture queries,
range queries and coincidence queries.

In the recent years, many efforts have been made to model
temporal data by means of the relational model. Neverthe-
less, all these approaches suffer from the incapacity of the re-
lational model to cope with complex structured information,
e.g. ordered lists of tuples. This is the main reason why tem-
poral coincidences cannot be directly expressed by corre-
sponding relational queries. In contrast to that, complex ob-
ject data models offer more powerful facilities for this pur-
pose. The MAD model chosen in our approach allows for
modeling a time sequence by a complex object, thereby pre-
serving the coherency of the tuples of this time sequence. We
have detailed that the operations of our temporal data model
can be easily transformed 1o MAD model operations, taking
advantage from the MAD model’s facility to handle a com-
plex object as a unit, even in the case of a recursively struc-
tured object.

The MAD model’s properties can be used to solve a further
problem imposed by the management of temporal data:
Since all updated data are explicitly preserved, a huge
amount of storage space is required. The mechanism of “re-
verse differences” has been developed to store only the
changing data. We can easily integrate a variant of this
mechanism into our MAD mode! approach. The introduced
MAD operations can be extended to handle reverse differ-
ences within the corresponding database management sys-
tem PRIMA. Since the null values used by the difference
mechanism do not require any storage space in PRIMA, the
volume of data to be stored can be reduced considerably. Ac-
cess time to frequently used parts of the temporal data can be
optimized by separating them from the rest of the temporal
data. We have discussed an extension of our approach to in-
tegrate this improvement, t00. It furthermore allows us to de-
fine access paths and clustering separately for both parts of
the data.

Due to the mapping of the temporal data model to a complex
object data model, the processing of temporal data can be
supported by the access paths offered by the complex object
data model. In the case of our approach, a B*-tree defined on
the data stored with the reverse difference mechanism would
lead us to all tuples where the values of the corresponding at-
tribute had changed. Our future work.includes a detailed in-
vestigation of this issue: When are conventional access paths
structures helpful in our approach? Which kind of queries
can be supported by them? Are dedicated complex object ac-
cess paths useful in our framework?

We have presented a method to establish a temporal “rela-
tional” database system on top of a complex object database
system. The principles depicted in our paper cannot only be
applied to the MAD model, but also to other complex object



data models. Some of the extensions like the partitioning of
data according to the access characteristics, and the usage of

reverse

differences, however, are not supported by all other

complex object data models and the corresponding database
management systems.

Finally, the question arises whether a temporal extension of
a complex object data model can be modeled using a com-
plex object data model again. Particularly in the case where
the complex objects may share components, there is a new

quality

of the problem. In contrast to the temporal extension

of the relational model, we need not only cope with the evo-
lution of relations (i.e., of their attribute values), but also
with the evolution of relationships. This introduces a lot of
interesting new problems, which we will investigate in the

future.
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7. Appendix

In order to optimize the access time to the current dates data, we have to
split the TS molecules into two parts (cf. section 4). The first part con-
tains the newest tuple of & TS, i.c. the tuple with future = EMPTY. In

general, this will be the current’s date dauf. and will be stored in an atom
type with the suffix _anchor. The rest of the data is stored in the atom
type _tuple as described above. The _anchor atom type will contain only
a small part of the overall data. This splitting of the data requires two ad-
ditional reference attributes in the comresponding MAD schema in order
to link the two atom types. The _tuple atom with an empty future refer-
ence attribute will be linked to the corresponding _anchor atom by refer-
ence attribute present.

The definition of the TS molecule (A.1) based on such a schema is anal-
ogous to statement 3.6. Since we know that the anchor atom is the latest
tuple, we can omit the condition “future = EMPTY™ here, saving an ex-
haustive search for tuples with an empty reference attribute in order to
find the proper molecule root.

A.l: DEFINE MOLECULE_TYPE Employee_TS(date): ALL
FROM Employee_anchor.hist—Employee_tuple
REC_PATH Employee_tuple.past—Employee_tuple
UNTIL Employee_tuple(PREVIOUS).valid
<= %date;

Statement A.2 is the complementary statement to statement 4.6. Here, we
have to consider only those TS molecules for which the _anchor atoms
do not contain the data we are looking for. The shaded part of statement
A.2 marks the corresponding part of the WHERE clause. In the case of
a search for current date’s data we will only touch a small percentage of

" all TS molecules...

A.2: SELECT MOLAGG
(REV_DIFF (Employee_tuple(ALL_REC).salary))
FROM  Employee_TS(1981/06/01)
WHERE (Employee_tuple(L.AST).valid <= 1981/06/01)
AND NOT (Employee_anchor.valid <= 1981/06/01)
AND (REV_DIFF
(Employee_tuple(ALL_REC).department = 'D12");

¥ The _anchor atom type may also contain tentative data (belonging to
the future), in which case the current date’s data is stored in the his- .
tory chain. Gravestones are also stored in the _anchor atom type.



