
The 02 Database Programming Language

C. Lkluse and P. Richard

GIP Altair - Domaine de Voluceau, B. P. 105, 78153, Rocquencourt France

Abstract

In this paper, we describe the 02 database program-
ming language as it is currently implemented. We
first show how 02 provides the user with both ob-

The next choice concerned the programming lan-

jects and complex values. Then, we present the
guage of the system. Among the possible solutions

persistence management of 02. We describe how
(extending an e.xisting language, designing a new

objects are encapsulated and manipulated through
language, or being language independent), we have
chosen the last one mainly for marketing reasons

methods and how V&KS are directly accessible through (from a purely technical point of view the second

operators. We also present the subtyping and inher-
itance relationships in 02 together with the type-

was probably the best). The system is viewed by

checking mechanism. Finally, we mention some in-
the user as consisting of a data definition language

teresting features which deal with exceptions and we
(DDL) by which the user can manipulate a hierar-

make a comparison between 02 and several other
thy of classes. He/she can attach methods to classes

object-oriented database systems.
or to objects by writing these methods in various
languages. Our first target set of languages con-
sists of C and Basic. Rather than speaking of the

1 Introduction 02 database programming language, one can think
of the 02 database programming languages. Pro

The major objective of Altair is to prototype a complete gramming in 0s is donein two d&&steps. First,
the wonrammer defines classes using 02 commands. development environment for data intensive applica-

tions. The functionalities of such a system should
include those of a DBMS, those of a programming
language and those of a programming environment.
We decided to build an object-oriented database sys-
tem, named 02, and its programming environment.
Our motivations for this choice are the following:

l We do believe that one of the main bottlenecks
to the productivity of the application program-
mer is the impedance mismatch between the
programming language and the database. This
impedance mismatch cannot be solved by re.-
defining the database box (i.e. by changing the
frontier between the programming language and
the database system) but by mixing database
technology and progr amming language tech-
nology to build a complete system with the
functionalities of a DBMS and of a program-
ming language.

Then, l&he programs the code ofhis/her methods
using one of the 0s programming dialects. For the
time being, two progr amming languages are speci-
fied, the CO2 language which relies on C and the
Basic02 language which relies on Basic. In this pa-
per, we specifically report on the merge of progam-
ming language technology and database technology
[AtB 871 and we shall only describe COa, as it is
the first we have implemented. Furthermore, the
approach followed for Basic02 is similar to that of
COa. A full description of the 0s object manager
can be found in PBD 891.

l We do believe that, among the available tech-
nologies produced by programming language
people and among the possible approaches, the
object-oriented approach is the best one to mix
with database technology. This is due both
to the intrinsic characteristics of the approach
and to the appeal this paradigm has to pro
grammers.

This paper is organized as follows. Section 2 con-
tains an informal presentation of 5bjects and val-
ues in 02. Section 3 describes the data organization
in 02 through examples. Section 4 shows how pro-
gramming is done and illustrates it using CO,. Sec-
tion 5 explains how inheritance works in 02 and jus-
tifies its foundations through subtyping. Section 6 il-
lustrates the features of 0s which deal with sets and
exceptions. Section 7 briefly describes how methods
are type-checked in 02 and how method safety is
insured. Section 8 compares the 02 system with sev-
eral other object-oriented database systems (OODBS).
Finally, we present some conclusions.

2 Objects and Values in 02: an
Informal Presentation

Permission to copy without fee all o+ part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, DT to republish, requires a fee
and/or special pesmission from the Endowment.

O2 is object-oriented: this means that information is
organized as objects which have an identity and en-
capsulate data and behaviour. Manipulation of ob-

Proceedings of the Fifteenth International
Conference on Very Large Data Bases - 411- Amsterdam, 1989

jects is done through methods, which are procedures
attached to the objects. Object identity is useful
for supporting object sharing and updates manage-
ment. The theoretical foundations for object iden-
tity as a programming language primitive can be
found in [AK 891. In classical object-oriented lan-
guages such as Smalltalk [GR 831, the value encap-
sulated in an object is always an atom or a tuple
of other objects. In object-oriented database sys-
tems, this value is classically a tuple or a set of
objects [MOP 851, [I? an et al 871, [Kup 851, [LR 881
since databases must provide flexible management
of large sets of data. However, this value is always a
flat value, as it can only contain identifiers of other
objects, and not directly other complex values. This
limitation is exactly the same as the limitation of re-
lational systems which has motivated the introduc-
tion of nested relations and complex objects. In 02,
we provide the user with the possibility of defining,
not only objects, but also valves ’ as in standard
programming languages or in the so-called complex
objects2 languages [AB 871, [Kup 851, [BK 861. Of
course, complex (nested) structures can always be
modeled through the use of identifiers but we think
that this solution is awkward, just as the modeling
of nested relations with surrogates in relational sys-
tems. For example, we can consider the following
three objects (objects identifiers are written in ital-
ics):

eiffel-tower:
tuple(name: “Eiffel tower”,

address: eifiel-address,
description: “Paris famous monument”,
admission-fee: 25 FF)

eiffel-address:
tuple(city: pan’s,

street: “Champs de Mars”)

paris:
tuple(name: “Paris”,

country: “France”,
population: 2.6)

While both paris and eiflel-address where modeled as
objects in this example, we believe that they should
be treated differently: eiffel-address is nothing more
than a pair of strings which only appears in the value

lThe previous prototype of 02 only dealt with objects
[LRV 881

2which are not objects in the object-oriented terminology
but rather complex values

of eiffel-tower. On the other hand, cities evolve with
time (think of the population) and might be shared
by other monuments, therefore we wish to model
paris as an object. In our system, the object eif-
fel-tower should be modeled as follows, with address
appearing as a structunzd value and paris aa an ob-
ject:

eifiel-tower.
tuple(name: “Eiffel tower”,

address: tuple(city: pan’s,
street: “Champs de Mars”),

description: “Paris famous monument”,
admission-fee: 25)

An object-oriented data base system intends to
provide the application programmer with a powerful
applications development support using encapsula-
tion and inheritance. This important step forward
should not be canceled by an increased complexity in
structure manipulations and by losing data indepen-
dence due to the navigation through objects identi-
fiers. We claim that “pure” object-oriented database
systems have severe drawbacks. The user has to de-
fine a new class every time he/she needs a complex
value. This results in an undesirable growth of the
class hierarchy.

Thus, the class hierarchy should only contain classes
which correspond to data shared by distinct software
modules. It should not be polluted by classes which
are only used to describe non shared values.

Some authors already felt the need of dealing
with both objects and values: in [Ban et al 871, there
is a notion of exclusive relationship between an ob-
ject and some of its components. When an object is
exclusively owned, it can not be shared. The same
notion is introduced in [CDV 881 where the program-
mer can specify whether he deals with a reference to
a complex value or with the complex value itself, and
also if an object can be shared by several objects or
is exclusively owned by an object. This proposition
introduces the desired distinction, but values are still
implemented and manipulated as objects. In the new
version of FAD [DKV 871, one can manipulate ob-
jects and values. A value in FAD is either atomic or
structured. A structured value contains values. An
object in FAD has an identifier and a state. A state
is either an atomic value or a structure containing
objects and values. Objects may be updated while
values may not. Objects also allow for sharing. Exo-
dus [CDV 881 also provides the user with a mix of ob-
jects and values similar to us (see Section 8). In 02,
we follow a similar approach. The user may choose
between two kinds of organizations: classes whose in-

- 412 -

stances are objects and which encapsulate data and
behavior and types whose instances are values. Val-
ues are not encapsulated, that is, their structure is
known by users and they are manipulated by opera-
tors. To every class is associated a type, describing
the structure of its instances. Classes are created
explicitly using commands and are parts of the in-
heritance hierarchy. Types are not created explicitly
since they only appear as components of classes and
do not appear in the inheritance hierarchy. The un-
derlying model is presented in [LR 891 and analyzed
in [AK 891.

3 Types and Classes

In 02, the user has two ways of structuring data:
types and classes. Types are recursively constructed
using atomic types such as integers, floats, strings,
class names and the set, list and tuple constructors.
Instances of types are values. These types are similar
to classical types in programming languages. The
following expression is an 02 type:

tuple (name: string,
country: string,
population: float,
monuments: set(Monument))

This type describes cities. The monuments attribute
has a set structured value. Monument is a class
name. A value of this type can be:

tuple(name: “Paris”,
country: “France”,
population: 2.6,
monuments: set(eiffeltower, triumph-arch))

Recall that we use italics to denote objects. One
can see from the above example that values can be
arbitrarily complex. The elements of the set value of
the attribute “monuments” are objects as we shall
show in the next subsection. In 02, the user builds
types using atomic types such as string, float, inte-
ger, char and boolean and three type constructors:
tuple, set list. There is no restriction on the use of
these constructors. We have already used the set
and tuple constructors, an example of use of the list
constructor is given in the next subsection.

3.1 The Schema Definition Language

In 02, the schema is a set of classes related by inher-
itance links (see Section 5) and/or composition links.
A class describes the structure and the behaviour of
a set of objects. The structural part of a class is a

type as defined above and the behavioural part is a
set of methods (see Section 4). Classes are created
using schema definition commands as follows:

add class City
type tuple(name: string,

country: string,
population: integer,
monuments: set(Monument))

add class Monument
type tuple(name: string,

address: tupIe(street: string,
city: City),

description: string,
closing-day: Ii&(&ring),
admission-fee: integer)

We denote class by capitalizing the first letter. The
first class has a name “City” and a type which is
given after the keyword type. Instances of this class
are objects. That is, they have a unique internal
identifier and a value which is an instance of the
type associated to the class. Objects are encapsu-
lated, that is, their value is not directly accessible
and they are manipulated by methods as explained
in Section 4. The second class defines historical mon-
uments. Note that classes can be mutually referenc-
ing. The “City” class references the “Monument”
class which in turn references the “City” class. For
every “Monument” object, the value of the “city”
attribute is an object which may itself references the
“Monument” object . .
Following an approach similar to Galileo [AC0 851,
the equivalence of classes is by name as opposed to
type equivalence which is by structure. That is, the
type of the values only depends of their structure.
One the other hand, two classes are always distinct
and the compatibility rule is the name equivalence
rule.

3.2 Object Creation

Creation of objects is done through a system com-
mand called “new”. This command “new” takes as
input the name of the class corresponding to the ob-
ject to be created. The object is created with a de-
fault value depending on the type associated to the
class. The default values are: the empty string, the
integer 0, the float 0.0, the empty list and the empty
set for list and set types, and a tuple of default values
for tuple types.

- 413 -

3.3 Naming and Persistence

In 02, objects or values can be named. The following
is an example of naming:

add object Eiffelfower: Monument

The name Eiffel-tower will then stand for an object
of class Monument. In the same way, one can name
a value as follows:

add value Parismonuments: set(Monument)

“Parismonuments” is a name for a value of type
(set(Monument)). In 02, persistence is attached to
names, that is, every named object or value is per-
sistent. Such a name can be seen as a global vari-
able dynamically attached to a given object or value
and makes it persistent. The attached object can be
changed by assignment. For instance, we can write:

Eiffel-tower = new(Monument)

This instruction assigns a newly created object
to the name “Eiffelfower”. The initial value of the
object is the tuple default value corresponding to the
type. This object will always be accessible trough
the name “Eiffelfower” during the life of the system,
except if the user makes another assignment.

The persistence rules are the following:

1. every named object or value is persistent,

2. every object or value which is a part of another
persistent object or value is persistent.

For example, let us assume that we have made the
following assignment:

Parismonuments =
set(Eiffelfower, triumph-a&)

where Eiffelfower is a named object and triumph-arch
denotes an object of class Monument with no name.
Then, these objects are persistent. The first one is
already persistent due to its name and the second
is persistent because it is an element of the named
value. The same holds for objects or values which
appear as an attribute value in the named object
“Eiffelfower”.

The eden&on of a class is the set of all objects
created using the new command applied to that
class. The system provides the user with an auto
m-at&management of class extensions. This is done
using a set value which collects all the objects of a
class. For instance, one can write:

add City with extension
type tuple(name: string,

country: string,
population: integer,
monuments : set (Monument))

The with extension clause in the class defini-
tion tells the 02 system to create a named value of
type “set(City)” with name “City”. Moreover, every
city created with the “new(City)” command will be
automatically inserted in this set and will thus per-
sist, as it is a component of a persistent set. Note
that, according to our persistence rules, objects of a
class without extension will not persist unless they
are explicitly named or components of some other
persistent object or value. Classes with no extension
are a natural way of dealing with transient objects.

4 Objects and Values Manip-
ulat ion

4.1 Methods Definition

In the object-oriented approach, objects are manip-
ulated by methods. A method is a piece of code
which is attached to a specific class and which can be
applied to objects of this class. In 02, method def-
inition is done in two steps. First, the user declares
the method by giving its signature, that is, its name,
the type or class of the arguments and the type or
class of the result if there is one. Then, he/she gives
the code of the method. The following is a method
declaration:

add method increasefee (amount: integer)
in class Monument

This method increases the admission-fee field
of a Monument object. Methods can be private or
public. Private methods are only visible within their
class, i.e. in the methods attached to that class.
Public methods are visible by every classes and can
be freely used. When declaring a method, the user
can add the keywords is public in order to make it
public. The default is private.

02 follows a multi-language approach. This means
that method programming is done in a standard pro-
gramming language such as C or Basic with manip-
ulation of 02 objects and values. Therii%iGdea
is that most of the programming is done using the
programmer’s favorite language. This includes iter-
ations, control structures and arithmetics. Access
to, and manipulation of, objects and values is done
using 02 features. We give below, as an example,

- 414 -

the code of the method “increase-fee” using the CO2
language.

body increasefee(amount: integer) in class Monument
co2 { (*self).admission-fee += amount; }

street: “Champs de Mars”),
description: “Paris famous monument”,
closing-day: list(“Christmas”, “Easter”);
admission4 ee: 25)

This assumes the * method is public for the Mon-
ument class. We have seen above that we can extract
a field of a tuple value using the dot operator. All
the CO2 value manipulations are done in this way,
using the classical C constructs. For instance, we
shall append elements to the closing-day list of the
Eiffel tower or modify one entry of the list as follows:

The curly brackets delimit the CO2 block of code as
in pure C. The value of an object is obtained using
the “dereferencing” method *, thus “self” is the ob-
ject and “*self” is the associated value. This method
is applied using a special syntax which follows the C
“*” use. It illustrates the association between ob-
jects and values. As in standard programming lan-
guages, objects can be seen as pointers to values. In
the example, the value “*self” is tuple-structured,
and the access to an attribute is done using the dot
operator. The assignment is done as in C and incre-
ments the integer value representing the admission
fee. Notice that we stick to the C syntax for manip-
ulating 0s values such as dereferencing or extract-
ing a tuple field. This way of manipulating objects
is syntactically very close to what is done in C++
[Str 861. In 02, however this similarity is purely syn-
tactical, as objects and values are implemented and
manipulated in a special way by a persistent object
manager and the CO2 compiler generates calls to
this object manager [VBD 891.

A method is applied to an object by message
passing whose syntax is the following:

[receiver selector(arguments)]

The square brackets are used to delimit 02 message
passings. “receiver” denotes an object to which the
method whose name is “selector” is applied. This
eventually returns an object depending on the method
code. For example, “increase-fee” is applied to a
monument using the message passing:

“[Eiffel-tower increasefee(3)]“.

The keyword “self’ in the above code will denote the
object “Eiffelfower” when the method is applied.

4.2 Manipulating Values

The CO2 language allows the construction of 02 val-
ues using the set, list and tuple constructors. We
can, for instance, write a set value containing four
integers as follows: set(l, 4, 34, -21). The following
associates a value to a newly created object:

Eiffel-tower = new(Monument);
*Eiffel-tower =
tuple(nanre: “Eiffel tower”,

address: tupIe(city: park,

*EiffeLtower.closing-day += list(“June 6th”);
*Eiffel-tower.closingday[l] = “January 1st”;

02 provides the user with the usual sets and lists op-
erators (union, intersection, difference, cardinality,
concatenation, . . .) whose syntax follows as much as
possible the C syntax.

4.3 Iterator

The iterator described here is applied on set or list
structured values, not on objects. Indeed, objects
are encapsulated and one should not know what is
the structure of the encapsulated value. Of course,
the values to which the iterator is applied may be a
set (a list) of values or a set (a list) of objects. CO2
provides the user with an iterator which allows for
easy sets or lists manipulations.

for (x in S [when condition]) <Statement>.

This is an extension of the classical C iterator.
It applies the given statement with the variable x
bound to every element of the set (or list) value S
satisfying the optional condition. The when clause
adds no power to the for iterator, but allows some
optimization when the condition is directly evaluable
by the object manager. For instance, we can write:

co2{ 02 Monument x;
for (x in Parismonument
when (*x.admission-fee < 20.00))
[x increasefee(amount)];

1

The above code increases the admission fee of all the
monuments located in Paris, whose admission-fee
is less or equal to 20.00FF. The expression “02 Mon-
ument x” declares an 02 variable which is used to
denote objects of class “Monument”. Recall that
“ParisLnonument” is a named value of type set(Monument)
which is supposed to contain all monuments of Paris.
The for iterator is of course less concise but more

- 415 -

flexible than the classical join operation. The reader
should notice that it is far more powerful in the con-
text of 0s which is a programming language and not
an end-user query language.

5 Subtyping and Inheritance

Inheritance is a powerful mechanism which allows
the user to define classes in an incremental way by
refining already existing ones. 02 provides the user
with an inheritance mechanism based on subtyping.

5.1 Subtyping

Subtyping is a semantic relationship which connects
two types. There are several ways of defining subtyp-
ing. In 02, we defined a set inclusion semantics for
subtyping. That is, a type is a subtype of another
if and only if every instance of this type is also an
instance of its supertype. This allows to say that a
person is a human or that an employee is a person.
The formal definition of the 0s type system is given
in [LR 891. Another approach is taken by Vision
[Car 871. In this system, subtyping is expressed by
means of a mapping from the objects of the subtype
to objects of the supertype. We adopted a Cardelli-
like approach [Car 841 for tuple subtyping. A tuple
type is a subtype of another if it is more defined,
that is, if it contains every attribute of its supertype
plus some new ones and/or refines the type of some
attributes of its supertype. The following example
illustrates this.

tuple(name: string,
address: tuple(street: string,

city: City),
description: Text,
closing-day: list(string),
admission_fee: integer,
number~ooms: integer,
rate: integer)

is a subtype of:

tuple(name: string,
address: tuple(street: string,

city: City),
description: Text,
closing-day: list(string),
admission-fee: integer)

Another characteristic of this subtyping relationship
is that a set-structured type “set(T)” is a subtype
of %&(T’)” if and only if T is a subtype of T’. For
instance:

set(tuple(name: string,
address: string))

is a subtype of:

set(tuple(name: string))

The same relationship holds for lists.

5.2 Inheritance

Based on this subtyping relationship, 0s offers an
inheritance mechanism. We can define the Histori-
cal-hotel class as follows:

add class Historical-hotel inherits Monument
type tuple (numberzooms: integer,

rate: integer)

The effect of this declaration is the definition of
an Historical-hotel class whose associated type is a
subtype of the Monument type. The user only has
to give the extra attributes (the other ones are taken
from the definition of inherited class). The 0s com-
mand interpreter checks whether the inheritance def-
inition is legal, that is if there is no subtyping vi-
olation, and creates the subclass according to the
subtyping rules. An object of class Historicalhotel
will automatically be considered as an object of class
Monument. This results in the possibility of apply-
ing any method of class Monument to Historical-hotel
objects. 0s also allows for multiple inheritance, as
shown below. We first define a “Restaurant” class.

add class Restaurant with extension
type tuple (name: string,

address: tuple(city: City,
street: string),

menus: set(tuple(narae: string,
rate: float)))

add method checksates(float): boolean
in class Restaurant

The method “checkmates” checks whether the
menus rates- are less than a given amount. We can
now define an “Historical-restaurant” class as fol-
lows:

add class Historicalsestaurant with extension
inherits Monument, Restaurant
type tuple (redefines name: string,

redefines address:
tuple(city:City,

street: string))

add method check-rates(float): boolean
in class Historical-restaurant

- 416 -

Class “Historical-restaurant” inherits both from
Monument and from Restaurant. Here, the method
“check-rates” checks whether the menus rates are
less than twice the amount3. We shall not detail
the conditions that method signatures must satisfy
in order to be inherited through the subclasses, see
[LRV 881.

As opposed to single inheritance, possible ambi-
guities may arise with multiple inheritance when an
attribute or a method name is defined in two or more
superclasses. There are several solutions to such am-
biguities [Ban et al 871, [SCBKW 861. We decided
to follow an approach similar to that of Trellis/Owl
[SCBKW 861. That is, the user has to explicitly re-
define the attribute or method name when needed.
We think that, as opposed to solutions where the
system solves the ambiguity by itself by ordering
the superclasses, this solution is more natural and
enhances the readability and maintainability of the
schema. Thus, the “Historical-restaurant” class re-
defines the attributes “name” and “address” which
are both present in the classes “Restaurant” and
“Monument”. The reader should note that we do
not infer the subclass relationship which is user de-
fined. The system just checks whether it is legal with
respect to the subtyping rules.

5.3 Late Binding

An important feature of object-oriented systems, which
is fully implemented in 02, is late binding. The ac-
tual code of a method to be executed is not selected
at ,compile-time but at run-time depending on the
actual type of the receiver object. The main benefit
is dynamicity and reuse of existing software. Indeed,
existing methods do not have to be recompiled when
the code of the methods they use is changed. An
example of use of late binding is:

for(x in Restaurant) {
if(![x check-rate(120.50)])

printf(“restaurant %s is expensive”, *x.name);
1

This iteration loop applies the “check-rate” method
to every restaurant. Due to our subtyping semantics,
some of them are historical restaurants. For these
ones, the system automatically applies the method
defined in the class “Historical-restaurant”. This
avoids to explicitly take into account the different
status of historical restaurants. Late binding is a

3The restaurant is historical and is allowed to increase its
rates!

critical operation from the performance point of view.
The 02 choice for the implementation of late binding
is described in [VBD 891.

6 Interesting Features

In this section, we describe some interesting features
of 0s which improve the expressibility of the 0s
language.

6.1 Exceptional Attributes

Due to the semantics of the subtyping relationship,
a tuple value can have extra attributes. If we con-
sider the Monument class, the “Eiffelfower” object
can have a value which also contains an attribute
“height”. This extra attribute will not be dealt with
by the methods associated to the Monument class,
however, the standard operators available on tuple
values will handle it. For instance, the following is a
correct CO2 code:

{Eiffel-tower = new(Monument);
*Eiffelfower=
tuple(name: “tour Eiffel”,

address: tuple(street: “Champs de Mars”,
city: Paris),

description: “Paris famous monument”,
closing-day: list(“Christmas”, “Easter”),
height: 315,
power: 15.5);

(*Eiffelfower). height = 320;
return ((*Eiffel+ower).height);)

Assuming that de-encapsulation is allowed on Mon-
ument, this code first modifies the value of “Eif-
fel-tower” and adds a “height” and a “power”4 at-
tribute. Then, using the dot operator, the height
attribute is updated and finally its new value is re-
turned. Note that exceptional attributes are allowed
for any tuple object or value, even if not named.

6.2 Exceptional Methods

One can associate specific methods to named objects.
These methods are used to characterize the excep-
tional behaviour of an object. One can also override
an existing method in the class of the object with an
exceptional method. An example of this mechanism
is given below:

“The Eiffel tower is also a radio and a TV broadcasting
station

- 417 -

add method increase-power (amount: float)
in object Eiffel-tower

This method will be used to increase the broadcast-
ing power of the Eiffel tower station. Note that the
method is associated to the name not to a particular
object, and that the actual object associated to the
name “Eiffel-tower” can change at run-time. The
late binding process will associate the exceptional
method to the object currently bound to the name.

7 Type-Checking

02 emphasizes user defined’classes and their associ-
ated types. This is a natural way to structure data.
An other important motivation is type-checking. The
goal of 02 is to increase the productivity of business
applications programmers. In this context, safety of
programs is critical. Thus, 02 offers a static type-
checker which detects the illegal manipulations of
02 objects and values when inheritance is not used.
When full use of inheritance or of exceptional at-
tributes is done, 02 must perform some run-time
type-checking. Of course, since the method code
of 02 can be written in several languages which
may be loosely typed such as C, there also may
be errors due to the host languages manipulations.
The type checking algorithm used in 02 is stan-
dard. It is conceptually similar to that of Trellis/Owl
[SCBKW 861 in that a variable can only be assigned
values (resp objects) of its declared type (resp class)
or of any subtype (resp subclass). The user may mc+
dify the schema dynamically. In this case, a method
which has not been recompiled may perform message
passings which reference non existing methods. Of
course, if ,the user recompiles every method which
may be concerned by the schema modifications, ref-
erences to non existing classes or methods are de-
tected by the type-checker. Other run-time errors
occur with exceptional attributes. At compile-time,
the type-checker may not know whether an attribute,
which is not present in the variable declaration, but
is referred to in the code, is an exceptional attribute
or not. Accepting such a manipulation implies that
the method may fail at run-time because the actual
value does not possess this exceptional attribute. We
accept this for the sake of expressive power. The
user may choose not to use exceptional attributes
and have safe programs.

8 Related Works

In this section, we list the main characteristics of
02 and see what kind of solutions others OODBS’s
provide. We compare 02 to other systems on the
basis of the programming language only. We shall
not be concerned by query facilities, user interface
or physical management.

Gemstone [MOP 851 is to our knowledge the first
implementation of an OODBS. The philosophy of
Gemstone was to turn Smalltalk into an database
system without significant modifications of the Smalltalk
programming language. Vision [Car 871 is another
interesting approach. Vision models data in a way
similar to Daplex [Sch 811. All informations about
an object are embodied in functions which map a
collection of objects into another. However, function
application follows a message passing mechanism us-
ing a Smalltalk-like approach. Iris [DFKLR 861 also
follows a functional approach in that, to every ob-
ject, is associated a set of functions which charac-
terize its content. Orion [Ban et al 871 is another
example of a functional approach since it is imple-
mented using Lisp and has a Lisp syntax for the
message passing. Vbase [AH 871 follows an approach
similar to 02 as the corresponding language (COP)
is a strict superset of the C programming language.
Although it is not a true OODBS, Trellis/Owl is an-
other example of an object-oriented language with
an imperative way of programming. It has a con-
ventional programming language syntax and uses a
procedure call notation to invoke operations on ob-
jects. Trellis/Owl does not have all the database
functionalities but provides persistence through an
object repository. A common characteristic of these
approaches is that they provide compile-time type-
checking. The Exodus system [CDV 881 is also an
object-oriented system which allows abstract data
types definitions, objects and values and a query lan-
guage named Excess. Programming is also done in
the E language which is a persistent C++.

We now list the main original features of 02 and
describes what is done in other OODBS’s.

l 02 provides the user with both objects and struc-
tured values.
We do not follow a pure object approach as
in Smalltalk or Gemstone but allow the defi-
nition of nested values built using the set, list
and tuple constructors. 02 manipulates ob-
jects using methods and values using opera-
tors. That is, full object-oriented features are
available for objects (such as late binding and
inheritance of methods) and values are manip-

- 418 -

ulated as in database systems. Most OODBS’s
provide object constructors similar to the set
and tuple constructors. The Exodus system
also gives an array constructor which is simi-
lar to the 02 list constructor. The distinction
between objects and values can also be found
in Orion. In this system, however, the notion
of complex value is implemented as a depen-
dent object [KBCGW 871. That is, non shared
values are still objects with a constraint en-
forcing their privacy. The Exodus data model
[CDV 881 also provides the user with this dis-
tinction. However, just as in Orion, values are
second-class objects with no identity. In 02,
we enforce the distinction between objects and
values in the programming language because
we encapsulate objects which can only be ma-
nipulated through methods. Exodus adopts
a point of view which is less object-oriented
but more database oriented. In Exodus as in
Orion, for the sake of query simplicity and uni-
formity, objects and values are manipulated in
the same way. In Iris and in Vision, one only
has objects. Objects are atomic items which
can be printable (like the object “3”) or not.
If an object is not printable, its value is char-
acterized by a set of functions which can be
stored, and thus plays the role of attributes, or
computed. As opposed to 02, where the three
object constructors have exactly the same rights,
due to their approach, Iris and Vision manipu-
late complex bbjects which are records of func-
tions which can however be multi-valued.

02 follows a multi-language approach.
Classes and types are created using the 02
schema commands, but the code of methods
can be implemented using several 02 exten-
sions. In this paper, we concentrated on CO2
but another extension is currently under imple-
mentation based on the Basic language. Up to
now, among the existing OODBS’s, 02 is the
only multi-language system.

02 has a compile-time type-checker.
Systems such as Gemstone based on a Smalltalk
like approach do not provide such a functional-
ity nor do systems based on Lisp such as Orion.
On the other hand, systems based on an imper-
ative paradigm are statically typed. Among
them, let us quote Trellis/Owl and Vbase. As
in 02, Trellis/Owl and Vbase have a strong
typing. That is, every object is an instance
of a type and every variable is declared of a

.

type. A variable can only be assigned objects
of its type or of a subtype of its type. In or-
der to have statically typed languages, types
and methods are not modeled as objects and
manipulated by methods but are primitive con-
structions manipulated by schema commands.

02 provides an automatic management of per-
sistence through named objects and values.
Every named object or value is persistent and
every component of a persistent object or value
is itself persistent. The name can be seen as a
handle which allows the user to access an ob-
ject or value after the end of a program which
has defined it. Other systems provide a some-
how similar way of managing persistence. Ob-
jects in Orion also persist because they are
components of persistent collections. For ev-
ery user defined type, the system generates a
set structured class which has at least one in-
stance which groups the instances of the former
+ss. In Gemstone, the management of persis-
tence also uses reachability informations, that
is, objects are persistent if they are attached to
a persistence root or another persistent object.
An Exodus database is a collection of named
persistent objects.

l Updates are always implicit in 02.
Objects are created using the “new” command.
If a clags is created “with extension” then a
named set value is created which will contain
every object of the class which will thus per-
sist. If the class is not created with extension,
then the created objects will only persist if at-
tached to other persistent objects. Deletion
of objects or values is obtained by removing
the links which attach them to the persistence
roots (the names). Classes with extension are
also provided with a “delete” method which
allows objects to be removed from the class
extension when no other objects or values re-
fer to it. Gemstone and Orion have a similar
update policy, as they have a similar persis-
tence policy. In Vbase, however, every object
is persistent, and temporary objects have to be
deleted explicitly.

l 02 has a set inclusion semantics for subtyp-
ing.
Objects of a subclass are objects of the super-
classes. For instance, if one performs a display
on the instances of Monuments, one will also
see the instances of Historical-hotel. Some sys-
tems follow this approach, such as Trellis/Owl

- 419

and Iris. On the other hand, Vision has a map-
ping semantics: an object of a subclass has a
corresponding image object in its superclass.
We find this somehow unnatural. However,
this provides the same kind of functionalities
at least in the context of single inheritance as
provided in Vision. Iris has also a set inclusion
semantics. This is even more general, since
an object can have several types even if these
types are not related in the specialization hier-
archy. We are not aware of the way they solve
ambiguities. Orion has no set inclusion seman-
tics.

a Multiple inheritance conflicts are solved by

l

users.
Trellis/Owl proposes a similar solution. The
user must solve the ambiguities which may arise.
For instance, when there is an ambiguity on
the inheritance of a method (operation in Trel-
lis/Owl), the user must specify which one he/she
wishes to inherit or redefine it. 0s follows ex-
actly the same approach as shown in Section
5. Another system which provides multiple in-
heritance is Orion. As opposed to 0s or Trel-
lis/Owl, Orion automatically solves ambigui-
ties. Roughly speaking, the system maintains
an ordering among the superclasses which de-
sambiguates inheritance of methods. To our
knowledge, other systems, such as Gemstone
or Vbase do not support multiple inheritance.

The 02 system allows exceptional methods and
attributes for objects.
Exceptional methods can be associated to names.
These methods are only accessible from the ob-
ject currently attached to the name and over-
ride the methods of the class. Exceptional at-
tributes can be added to every tuple structured
objects or values. To our knowledge, no other
OODBS provides such a functionality.

Another interesting approach is that of Galileo
[AC0 851. We did not put it in the collection of
items above since it is not really an object-oriented
data base management system, however it has some
object-oriented features such as classification, ab-
stract types and types hierarchies. As opposed to
02, Galileo does not have the set constructor but
is higher order and has a function type construc-
tor. It has the notions of concrete and abstract types
which roughly correspond to our types and classes.
Galileo presents a very interesting solution to persis-
tence which is however not yet implemented to our
knowledge. Another important difference with 02

is that Galileo does not support object identity. We
did not put in this list the Damokles database system
[DGL 871 which is designed for software engineer-
ing environment. As their designers say, Damokles
is a “structurally object-oriented” database. That
is, Damokles provides the user with object identity,
complex objects baaed on the tuple constructor and
n-ary bidirectional relationships between objects. How-
ever, Damokles does not provide encapsulation, in-
heritance or late binding. It is rather an U complex
objects” system.

9 Conclusion

In this paper, we have described the features of the
0s system as it is currently running. We only de-
scribed the CO2 programming language, but most
of the described features are common to both CO2
and BasicOa, and the difference between the two
languages is mainly syntactical.

The target applications for our language are (i)
traditional applications such as business and trans-
actional (excluding however very high performance
transaction processing systems), (ii) office automa-
tion applications and (iii) spatial data management
(such as geographic data management). At this stage
of the game, no specific emphasis is given to CAD/CAM,
CASE or knowledge base applications, but we believe
that, in a later stage, the system could be enhanced
to serve also these applications.

AltaIr started in September of 86. We first imple-
mented, in December 87, a throw away prototype
[Ban et al 881 whose data model is described in [LRV 881,
in order to test and show the functionalities of the
system.

This gave us a lot of feed back and we completely
redesigned the system, its language, its data model
[LR 891 and its architecture. The major differences
between this version and the throw away prototype
from the language point of view are: (1) complex
values together with objects, (2) names for objects
and values, (3) the list type constructor, (4) an au-
tomatic persistence mechanism, (5) the possibility of
separating classes and method definitions from the
implementation and (6). last but not least, a better
merge between the 02 syntax and the host language
ones, i.e. every implementation of 0s on a given host
language follows the syntax of the host language.
The current prototype runs on Sun and implements
all of the functionalities listed above. The Basic02
compiler is under implementation.

- 420 -

10 Acknowledgments [Ban et al 881 F. Bancilhon, G. Barbedette, V. Ben-

The authors thank F. Bancilhon and P. Kanellakis
for their careful reading and comments which greatly
improve the quality of this paper. The 02 com-
piler was implemented by the language team of the
GIP Alta’ir which includes D. Excoffier, L. Haux. C.
LCcluse and P. Richard. The module which is in
charge of storing and managing classes and methods
was designed and implemented by S. Gamerman and [Ban 881

C. Delcourt. The object manager has been imple-
mented by the system team. Numerous suggestions

zaken, C. Delobel, S. Gamerman, C.
Ldcluse, P. Pfeffer, P. Richard and F.
Velez, “The design and Implementation
of 02, an Object-Oriented Database Sys-
tern”“”
in Advances in Object-Oriented Database
Systems Springer- Verlag, September 1988.

F. Bancilhon, “Object-Oriented Database
Systems”, Proc of PODS 88, Austin,
March, 1988.

and improvements qn the language and its syntax
have been proposed by the Alttir team and in par-

[Ban et al 871 Banerjee J., et al., “Data Model Is-

titular by F. Bancilhon.
sues for Object-Oriented Applications”,
ACM trans. on Ofice Information Sys-
tems, Jan 1987.

References [Ber et al 881 P. Bernstein et al., “Future directions

[AB 871

[AK 891

[AN 861

[AC0 851 A. Alb ano, L. Cardelli and R. Orsini,
“Galileo: a Strongly typed, Interactive [Car 871 M. Caruso, “The VISION tibject Oriented

Conceptual Language”, in ACM Trans. Database Management System”, Proc of

on Database Systems, 10(.2):MO-260, June the Workshop on Database Programming

1985. Languages, Rosco& France, Sept. 1987.

[AH 871 T. Andrews and C. Harris, “Combin-
[DKV 871 S. Danforth, S. Khoshaf?an and P. Val-

ing language and Database Advances in
duriez, “FAD - A Database Programming

an Object-Oriented Development Envi-
Language”, MCC Technical Report, Octo-

ronment” , Proc of the OOPSLA Confer-
her, 1987.

ence, October 1987. [DFKLR 861 N. P. Derrett, D. H. Fishman, W.

[AtB 871 M.P. Atkinson and O.P. Buneman, “Types
and Persistence in Database Program-
ming Languages”, ACM Computing Sur-
veys, June 1987.

Kknt, P. Lyngbaek and T. A. Ryan, “An
Object-Oriented Approach to Data Man-
agement”, Compcon 31 IEEE Computer
Sot. Int. Conference, 1986.

[BK 861 F. Bancilhon and S. Khoshafian, “A Cal-
[DGL 871 K. Dittrich, W. Gotthard and P. Locke-

culus for Complex Objects”, ACM PODS,
man, “DAMOKLES - The Database Sys-

1986.
tem for the UNIBASE Software Engineer-
ing Environment”, Database Engineering,
Vol 10, No 1, March 1987, pp 97-47.

S. Abiteboul and C. Beeri, “On the
Power of Languages for Manipulating
Complex Objects”, International Work-
shop on Theory and Applications of Nested [Car 841
Relations and Complex Objects, Darm-
stadt, 1987.

S. Abiteboul and P. Kanellakis, “ Object [CW 851

Identity As A Query Language Primitive”,
internal report, 1989.

in DBMS Research”, Workshop of the
International Computer Science Institute,
Feb 4-5, 1988.

L. Cardelli, “A Semantics of Multiple In-
heritance”, Semantics of Data Types, Lec-
ture Notes in Computer Science, 1984.

L. Cardelli and P. Wegner, “On Under-
standing Types, Data Abstraction, and
Polymorphism”, ACM Computing Sur-
veys, Vol 17:4, 1985.

H. Ait-Kaci and R. Nasr, “LOGIN: A
Logic Programming Language with Built- [CDV 881 M. Carey, D. Dewitt and S. Vandenberg, Carey, D. Dewitt and S. Vandenberg,

in Inheritance”, Journal of Logic Program- “A Data Model and Query Language for ’ [ode1 and Query Language for ’

ming, 1986. EXODUS”, Proc of the ACM-SIGMOD , Proc of the ACM-SIGMOD
Conference, Chicago, 1988. - - . -, - . -. - - -, Chicago, 1988.

- 421 -

[GR 831 A. Goldberg and D. Robson, “Smalltalk80: [VBD 891 F. Velez, G. Bernard and V. Darnis, “The
The Language and its Implementation”, 02 object Manager, An Overview”, Altdir
Addison Wesley, 1988. Internal Report, 1989.

[KBCGW 871 W. Kim, J. Banerjee, H-T. Chou,
J. F. Garza and D. Woelk, “Compos-
ite Object Support in an Object-Oriented
Database System”, Proc of the OOPSLA
Conference, October 1987.

[Kup 851 G. Kuper, “The Logical Data Model: a
new Approach to Database Logic”, PhD
thesis, Standford University, September
1985.

[LRV 881 C. LCcluse, P. Richard and F. Velez, “02,
an Object-Oriented Data Model”, Proc of
the ACM-SIGMOD Conference, Chicago,
1988.

[LR 88) C. L&luse, P. Richard, “Modeling Inher-
itance and Genericity in Object-Oriented
Databases”, Proc of the ICDT 88 Confer-
ence, Brugge, Aug 91-Sep 2, 1988.

[LR 891 C. Lecluse and P. Richard. “Modeling
Complex Structures in Object-Oriented
Databases”, to appear in proc of the PODS
89 Conference, Philadelphia, March &9-
31, 1989.

[MOP 851 D. M aier, A. Otis and A. Purdy, “De-
velopment of an Object-Oriented DBMS”,
in a Quaterly Bulletin of the IEEE Com-
puter Society Technical Committee on
Database Engeneering, Special issue on
Object-Oriented Systems, Vol 8.4, 1985.

[Pri 841 D.
Price, “Introduction to ADA”, Prentice-
Hall , Inc., Englewood Cliffs, new Jersey,
1984.

[SCBKW 861 G. Schaffert, T. Cooper, B. Bullis, M.
Kilian and C. Wilpot, “An Introduction
to Trellis/Owl”, in Proc of the OOPSLA
Conference, Portland, 1986.

[Sch 811 D. W. Shipman, “The Functional data
Model and the Data language DAPLEX”,
ACM lhnsactions on Database Systems
6(l), pp 140-173, March 1981.

[Str 861 B. Stroustrup, “The C++ Programming
Language”, Addison Wesley, 1986.

- 422 -

