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ABSTRACT - In this paper, we address the problem of priority 
scheduling in a database management system. We start by inves- 
tigating the architectural consequences of adding priority to a 
DBMS. Specific priority-based schemes are then proposed for 
managing DBMS resources. including a priority-based diik 
scheduling algorithm and two approaches to adding priority to 
the buffer manager of a DBMS. We study the performance of 
our proposals through simulation, both individually and in com- 
bination. Our simulation results indicate that the objectives of 
priority scheduling cannot be met by a single priority-based 
scheduler. They show that, regardless of whether the system 
bottleneck is the CPU or the diik, priority scheduling on the criti- 
cal re.som must be complemented by a priority-based buffer 
management policy. 

1. INTRODUCTION 

1.1. Background 

priority schedulmg of computer systems is a concept that has 
been studied extensively for more than two decades [Coff6g, 
Klei761; The priority of a task is a measure of its “importance” to 
the system. and the objective of priority scheduling is to provide 
preferential treatment to tasks with higher priority values. One 
use of priority is as an end in itself. In this case, task priorities 
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are determined externally, and are used directly to guide the sys- 
tem in making scheduling decisions. For example, a system 
designez may decide to run interactive tasks at a higher level of 
priority than long batch jobs in order to ensure good responsive- 
ness for interactive users. An alternative use of priority is as a 
means to an end Here, task priorities are. determined internally 
(i.e., assigned by the system itself) in order to meet some other 
goal. For example, priority scheduling can be used as a way of 
minimizing the number of missed deadlines in a soft real-time 
computing environment [Chang5]. 

Despite the attention that the concept of priority has received 
for CPU scheduling in operating systems, it has received ve-ry lit- 
tle attention in the database system area This is somewhat 
surprising, as priority seems every bit as useful and applicable in 
a DBMS. The interactive versus batch job example is relevant; 
in a transaction processing system, it would seem equally desir- 
able to ensure responsiveness for interactive DBMS users while 
allowing batch jobs to be nm as well. In addition, the database 
and real-time systems commnnities are beginning to show 
interest in applying database technology to data-intensive, real- 
time applications such as stock trading, computer-integrated 
mantiacturing. and command and control systems [Abbogg. 
SIGMgg, Stangg]. 

Priority scheduling in a DBMS differs from the probl& of 
priority CPU scheduling due to the heterogeneity and multiplicity 
of DBMS resources. Important DBMS resources include the 
CPU, disks, and main memory, which are physical resources. and 
data items, which can be viewed as logical resources. It is com- 
mon for each of these resources to be managed by an independent 
schedula: the underlying operating system kernel schedules the 
CPU; the operating system or DBMS device drivers handle disk 
request scheduling; the buffer manager controls the main 
memory resource (i.e., buffer pool page frames); an& the am- 
cuxrency control manager schedules accesses to data items. 
Thus, in a DBMS, there are actually four schedulers into which 
one could consider incorporating priority. 

1.2. Related Work 

As mentioned above, priority CPU scheduling for centralized 
systems has been studied extensively. Overviews of much of this 
work can be found in [Coff68. K&76]. Classical approaches to 
sche4hding a single CPU in the presence of piority involve main- 
taining the CPU queue as a priority queue. Requests are served 
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in priority or&r either non-preemptively, which is called “head- 
of-line” or “non-preemptive priority” scheduling, or preemp- 
tively, which is known as “preemptive-resume” scheduling. The 
objective of the latter approach is to ensure that a higher priority 
job is never made to wait while a lower priority job receives ser- 
vice. Recent work has addressed priority scheduling in the pres- 
ence of preemption overheads and multiple processors (e.g., in 
distributed systems [Chan85, Chan87]). Static and dynamic 
approaches to CPU scheduling for real-time systems have also 
been studied, this work is reviewed briefly in [Stan88]. and 
[Jens86] provides an excellent treatment of dynamic CPU 
scheduling approaches for real-time systems. Resources other 
than the CPU have, for the most part, been ignored with respect 
to dynamic priority and real-time scheduling [Coff68, Stan88]. 

In the database area, real-time issues are just beginning to 
attract attention. [wede86] proposed a scheme for prefetching 
data pages for canned transactions in a real-time DBMS; detailed 
a priori knowledge of the workload is assumed, and static tran- 
saction pre-analysis techniques are applied to it. others have also 
begun to address real-time DBMS issues [SIGMSS. Daya88. 
Buch89], especially in the area of concurrency control algorithms 
[Abbo88. SIGM88. Buch89]. Most notably, [Abbo88] proposed 
and investigated the performance of several priority-based lock- 
ing (and CPU scheduling) schemes in the context of a memory- 
resident, real-time DBMS. However, the question of how prior- 
ity can be used in managing the physical resources of a DBMS 
has not been addressed to the best of our knowledge. 

1.3. Our Work 

In this paper, we explicitly address the problem of priority 
scheduling in a DBMS. In particular, we are interested in how 
priority can be employed in managing the physical resources of a 
DBMS. The objective of our work is to develop and evaluate 
policies that provide the best possible service to higher-priority 
transactions while minimixmg the negative impact on lower- 
priority transactions. Essentially, we would like the DBMS to 
behave as much like a preemptive-resume server as possible. 
That is, we would like it to give transactions of a given priority 
the same service that they would experience in a system that does 
not serve transactions of lower priority. Thus, the goals of this 
paper are three-fold First, we investigate the architectural conse- 
quencs of adding priority to a DBMS. Second, we develop 
specific priority-based algorithms for managing the key DBMS 
resources, especially the disk(s) and the buffer pool. Third, we 
study the performance of our proposed algorithms, both individu- 
ally and in combination with one another. 

Figure 1.1 depicts the overall architecture of a DBMS from a 
resource perspective. From the figure, it can be seen that there 
are several places where a DBMS makes resource scheduling 
decisions into which priority could be incorporated. Firs4 a 
DBMS often controls the. total number of transactions allowed to 
be active at any one time. requiring additional transactions to 
wait outside the system until they can be admitted in order to 
prevent thrashing due to buffer pool over-utilization [Chou85]. 
Second, as discussed earlier, the DBMS or the underlying operat- 
ing system must make CPU scheduling decisions; similarly, disk 

Figure 1 .l : DBMS Resource Architecture. 

scheduling decisions must be made. Finally, the buffer manager 
must make page replacement decisions when a non-resident page 
is requested and there are no free page frames. 

In order to see how adding priority at some or all of these 
decision points might enable us to reduce the response time of 
high priority transactions, let us consider the composition of a 
transaction’s response time (Ta). Basically, there are two major 
components of this time, the external waiting time due to admis- 
sion control (2’~~rxr ). and the time spent insii the. system (Tsrs ). 
Tws itself has two components. CPU time (To”) and disk time 
(TWX).’ The CPU time for a transaction consists of two sub- 
components, the waiting time due to CPU contention crw_cpV) 
and the actual CPU service time (7’s cm). The disk time for a 
transaction is the product of the r&be.r of disk requests that it 
makes (&s) and the. average disk access time, the disk access 
time also consists of a waiting time (TwOms) and a service time 
(Tsemm ). Thus, we see that: 

TR = Tw-m + Tw_cpv + TS~CRJ + hw *VW-DISK + TS~WSK 1 
Incorporating priority into the admissions control decision, by 

ordering waiting transactions according to priority and preempt- 
ing lower-priority transactions in favor of higher-pfiority transac- 
tions, is a way of reducing TW m for high-priority transactions. 
In terms of their CPU time, p&@-based CPU scheduling can 
reduce Tw cm for high-priority transactions; Ts cp~ cannot be 
reduced, however. Similarly. the disk waiting time TW_O~K for 
high-priority transactions can be redud through the priority- 
based scheduling of disk requests; this may actually lead to an 
increase in TsHx. though, as using a non-positional diik 
scheduling criterion may increase the expected seek time. 
Finally, buffer replacement decisions can potentially reduce 
NmM for high-priority transactions. Gf course, none of these 
reductions for high-priority transactions will come for free. 
Rather, we must expect cotrespondmg increases in the response 
time components for transactions of lower priority. 

’ Since our concern is physical resource scheduling, not concum- 
cy cmtml, we focus on mad-only queries in this paper. Lock waiting 
time is therefore not a potenbl component of response time here. 
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The remainder of the paper is organized as follows: Section 2 
discusses approaches to priority scheduling for the CPU, disk, 
and buffer resources. This section includes new, priority-based 
algorithms for disk scheduling and buffer management Section 
3 describes a simulation model for studying the performance 
consequences of our proposed algorithms. Section 4 presents a 
series of performance experiments that demonstrate the effective- 
ness and importance of the various algorithms under workloads 
of varying intensities for the different resources. Lastly, Section 
5 summarizes the contributions of the paper and describes our 
plans for future work 

2. PRIORITY-BASED RESOURCE MANAGEMENT 
ALGORITHMS 

As described in the introduction, there are three types of phy- 
sical resources in a DBMS: the processors, the disks. and the 
main memory buffers. In this section, we describe priority 
scheduling algorithms for each of these resource types. We 
present a known algorithm for priority CPU scheduling, and we 
extend known algorithms for disk scheduling and buffer manage- 
ment to enable them to handle priorities. 

2.1. CPU SCHEDULING 

A number of options for priority CPU scheduling have been 
discussed in the operating systems literature [Coff68, Klei76, 
Pete86]. Preemptive-resume priority scheduling. where a high- 
priority job preempts a low-priority job, and the low-priority job 
resumes its CPU processing after all high-priority jobs have com- 
pleted their processing. does not seem suitable for database sys- 
tems. This is because preempting transactions while they hold 
short-term locks or latches may lead to the convoy problem, as 
described in [Blas79]. It seems more reasonable. then to use a 
non-preemptive form of priority sche+ling. while ensuring that 
high-priority requests do not suffer greatly as a result of the non- 
preemptability of low-priority requests. In or&r to reconcile 
priority with non-preemptabiity. the CPU can be scheduled 
according to a priority-based round-robin scheme where the 
length of a CPU slice is determined by the transaction and not by 
the scheduler. In this scheme, a transaction gives up the CPU at a 
“safe point” after a short burst of CPU use. Once the CPU is 
released, it is assigned to the transaction at the head of the CPU 
queue. The queue is managed in priority order with requests of 
the same priotity being served in FCFS order. 

2.2. DISK SCHEDULING 

Classical disk scheduling schemes such as the shortest seek 
time fvsr and elevator algorithms [Teor72, Pete.861 attempt to 
minimize the average seek distance. Since the elevator algorithm 
performs especially well under high disk loads and has good fair- 
ness characteristics. it is a good candidate to serve as the basis of 
a priority scheduling algorithm at the disk. In the elevator algo- 
rithm, the disk head is either in an inward-seeking phase or an 
outward-seeking phase. While seeking inward, it services any 
requests it passes until there are no more requests ahead. The 
disk head then changes direction, seeking outward and servicing 
all requests in that diiection as it reaches their tracks. 

Current Request Bein Accessed 
(Upward Phase f 

Priority 3 (High) 

Next Request To Be Ser&ced 

Increasing Track A&iresses - 

Priorily 1 (L.ow) 

Figure 2.1: Priority-based Disk Scheduling. 

In order to support priority, the elevator algorithm can be 
modiied in the following way: disk requests are grouped on the 
basis of their priority, and the elevator algorithm is used within 
each group. There is one queue per priority level for buffering 
outstanding diik requests. Within each queue, requests are 
arranged in order of their physical (track) addresses. While seek- 
ing inward or outward, the disk services any requests that it 
passes in the currently-served priority queue until there are no 
more requests ahead. On the completion of each disk request, the 
scheduler checks to see whether a disk request of a higher prior- 
ity is waiting for service. If such a request is found, the scheduler 
switches to the queue that contains the request(s) of the highest 
priority among those waiting and starts serving that queue. When 
it switches to a new queue, the request with the, shortest seek dii- 
tance from the head’s current position is used to determine the 
diiection in which the head will move. 

Figure 2.1 shows the way that the disk scheduler organizes 
outstanding disk requests in the case of three priority levels. 
Priority increases as we move from the bottom to the top of the 
figure. An important side-effect of introducing priority in diik 
scheduling in this fashion is that the average seek time can wor- 
sen as the number of priority levels increases. As an example, 
consider Figure 2.1. where the disk is currently servicing the 
request to access track 642 in the queue of prior@ 3, and the disk 
head is moving towards higher track numbers. The next request 
serviced will access track 969. even though there are other 
requests (for track 878 of priority 2. and track 903 of priority 1) 
that could be handled earlier as the disk head moves in its upward 
phase. In the worst case, if each request had a different priority, 
the prioritized elevator algorithm described above would degen- 
erate into straight priority schedulmg. This suggests that in order 
to provide reasonable I/O performance, it will be preferable to 
map disk requests into a small number of priority levels at the 
diik scheduler (even if each transaction has a distinct priority in 
othe-r parts of the system). 

2.3. BUFFER MANAGEMENT 

It was shown in [Effe84. Chou85, Sacc85] that the perfor- 
mance of a DBMS can be significantly influenced by the buffer 
management algorithm used. In general, buffer managers can 
make three types of de&ions: transaction admission, b@r 
allocation, and buffer replacement. When a transaction arrives at 
the system, the buffer manager is asked if enough buffer space is 
available to allow the transaction to be admitted into the system. 
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The arriving transaction may then be blocked outside the system 
until sufficient memory becomes available. Gnce a transaction 
begins running and submits a request for a page that is currently 
not in the buffer pool, the buffer manager must determine the set 
of candidate buffers from among which one is to be allocated to 
the transaction. If there are no free buffers, the buffer manager 
determines which of the data pages currently in the buffer pool 
should be. repfuced. Buffer management becomes somewhat 
more complicated when each transaction has a priority, as the 
buffer demands of diiferent transactions can no longer be treated 
equally. For example, when making the transaction admission 
decision, the buffer manager may choose to deallocate buffers 
from some low-priority transactions in order to allow a high- 
priority transaction to begin execution. priorities may also be 
considered when making replacement and allocation decisions. 

The Global LRU buffer management algorithm [Effe84] is 
simple and is the one most commonly implemented in commer- 
cial database systems. The DBMIN algorithm [Chou85]. while 
more difficult to implement, was shown to outperform Global 
LRU as well as several more sophisticated algorithms (e.g., the 
“Hot Set” algorithm [Sacc86]). The DBMBU algorithm thus 
represents the sophisticated end of the buffer management algo- 
rithm spectrum. while Global LRU represents the simple, com- 
monly used end. Together. they provide a good pair of algo- 
rithms into which the concept of priority may be introduced. In 
this section, we present two priority buffer management algo- 
rithms, the Priority -L&Y policy, based on Global LRU. and the 
Priority -DBMIlV policy, based on DBMM. As this paper 
focuses on a query-only environm~ both algorithms are 
described here assuming no updates.2 Priority -LJW and 
Priority-DBMN differ in their model of the information avail- 
able to the buffer manager; as a consequence, the buffer pool is 
organized differently in the two cases. We begin by defining 
some terms that are needed to describe both algorithms. Then 
for each priority-based algorithm. we review the basics of the ori- 
ginal algorithm and describe our changes to the buffer pool 
organization and the policies for transaction admission, buffer 
replacement, and buffer allocation. 

2.3.1. Detinitions and Assumptions 
At any point in time, the transactions that have accessed a par- 

ticular resident page (since it was last brought into memory) and 
are still executing are called the users of the page. The owner of 
the page is the transaction with the highest priority among the 
users of that page. A page is free if does not have any users. 
The buffer manager associates a global timestamp with each 
resident page in order to keep track of the recency of usage of 
pages. A global counter called buflequence is maintained to 
assign timestamps to resident pages. The bufsequence counter is 
initially set at 0 at system startup time. Each time the data in any 

2Update-related buffer mmagwent issues (such as when to flush 
dirty psges to the disk) are essentially orthogonal to the issue of priority- 
based buffer management. Details of handling updates in a conventionat 
DBMS buffer manager are discussed in [Chen84. Effe&l]. 

of the buffers is accessed, buj%quence is incremented and its 
new value. is inserted as the timestury of the data page. Thus, 
the larger the value of the timestamp of a page, the more recently 
the page was accessed. 

A transaction may be admitted to the system right away, or it 
may be blocked initially by the transaction admission policy. 
Gnce a transaction is allowed to begin execution, it continues 
until it commits or until it is suspended. A transaction is said to 
be suspended by the buffer manager if it is temporarily prohi- 
bited from making further buffer requests; the buffers owned by 
the transaction (except those that it has fixed) are freed. The 
buffer manager considers reactivating suspended transactions at 
the same decision point that it considers admitting blocked tran- 
sactions, which is whenever a running transaction completes. A 
reactivated transaction resumes its execution at the point where it 
was suspended. 

2.3.2. The Priority-LRU Algorithm 
Global LRU [Effe84] is a buffer replacement policy based on 

the assumption that there is a temporal locality of data references 
in relational database operations. Thus, when a buffer frame is 
required by a transaction, and no free frame is available, the 
frame with the least recently accessed data (from among all the 
frames in the buffer pool) should be selected for replacement. 
The policy is global in that all the frames in the buffer pool are 
treated according to a single criterion (recency of usage) for allo- 
cation as well as for rephuzanen~ thus, there is no difference 
between the policy used for replacement and the policy used for 
allocation. 

Priority-LRU Buffer Pool Organization 
In Priority-LRU, our prioritized version of Global LRU, the 

buffer pool is organized dynamically into priority levels in the 
following way. At system startup time., all the buffer frames are 
free. and are arranged in a free list. When a transaction with 
priority P is allocated a frame from the free list, the frame is 
inserted in an LRU queue of frames whose owners have priority 
P . Thus, if thexe are tmnsactions having m different priority lev- 
els at any given time, the buffer pool consists of m LRU queues 
(one per pbrity level) and a free list. Figure 2.2 shows an exam- 
ple of the organization of the buffer pool for Priority-LRU, there 
are three priority levels. and thus three LRU queues, and there are 
no free frames in this example. Priority increases as we move 
from the bottom to the top of the figure, and the least recently 
used page of each queue is in the rightmost frame. 

Priority-LRU Transaction Admission 
When a new transaction arrives at the DBMS, the buffer 

manager has to decide whether to allow the transaction to begin 
execution or not. The key idea in making the admission decision 
is that, at the very least, every running transection must have 
sufficient buffer space to hold all of the pages that it needs to fix 
concurrently. Gtherwise, deadlocks may occur due to contention 
for buffers. Thus, transactions are required to estimate the max- 
imum number of pages that they will need to fix concurrently, 
and the buffer manager keeps track of the sum of these “fixing 
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- hcreasin~ Recanc)r of use 

Set of Possible 
Replacement Victims 

(bl) 
Figure 2.2: Example of Priority-LRU Buffer Pool Organization. 

requirements” for all active transactions. If admitting a newly 
arrived transaction does not cause this sum to exceed the size of 
the buffer pool, then the transaction is admitted. Otherwise, if 
there are rtmning transactions of lower priority than the new 
arrival, the one(s) with the lowest priority among them are 
suspended until enough buffer space is available for the transac- 
tion to be admitted.3 

Priority-LRU Buffer Replacement and Allocation 
As in the conventional Global LRU policy, the buffer alloca- 

tion and replacement policies coincide in our algorithm. There 
are two factors that must be weighed when choosing a victim 
page for replacemenu the likelihood that it will be accessed 
soon, and the priority of the transaction that will access it. These 
two factors are modeled by the timestomp field associated with 
resident pages and the use of the priority-based LRU queues for 
buffer pool partitioning, respectively. Note that if priority and 
recency of usage are the only factors used to choose a replace- 
ment victim, then the victim will always be the least recently 
used page of one of the LRU queues.4 Let us call the set of possi- 
ble victims Pm.. In Figure 2.2, Pup” consists of the frames con- 
taining the data pages Pl, P17. and P16. 

The key i&a of the replacement policy is that the least 
recently used page of the lowest priority should be chosen as the 
victim, with the following caveat: the W, (for Wiiw of 
Replacement) most recently accessed data pages should not be 
chosen for replacement regardless of priority. W, is a threshold 
parameter; by varying it, it is possible to vary the relative impor- 
tance given to recency and priority when making replacement 
decisions. Let m be the cardinality of PLRu, i.e., let there be m 
LRU queues in the system. In order to 6nd a replacement victim, 
we must look at a maximum of m candidates. We start the 

‘Among multiple transactions of the same priority, older transac- 
tions are favored over younger ones. 

‘Also note that fued pages cannot be considered for replacement, 
since this could lead to -ption of data. The admissions policy guaran- 
tees that them will always be at least one unlixed replacement candidate. 

search at the lowest priority queue, and check whether the 
candidate’s timestamp falls inside the protected W, window. If it 
does, we move up one priority level, and we repeat the process 
until we have either found a victim or else exhausted the search. 
If all the members of PIRu fall within the window, then the 
default victim is simply the one with the lowest priority. 

An example using Figure 2.2 illustrates the replacement pol- 
icy. Let buJSt?qlrence , the global timestamp counter, be 100, and 
let W, be 25. We start the search for a victim at Pl. the LRU 
page of the lowest priority level. Since 10&71 > 25, Pl will be 
chosen as the victim. If W, were 30, however, then Pl would 
fall within the window; in this case, P17 would be chosen as the 
victim instead. 

2.3.3. The Priority-DBMIN Algorithm 
As discussed in [Chou85]. the primitive operations (e.g., 

selections, joins) of transactions in a relational DBMS can be 
described as a composition of a set of regular reference patterns 
such as sequential scans and hierarchical index lookups. These 
patterns are known to the query optimizer. The DBMIN buffer 
management policy makes use of this information using the fol- 
lowing key ideas: 

(1) 

(2) 

(3) 

(4) 

Buffers should be allocated to transactions on a “per file 
instanee” basis: i.e., since the pattern of accessing each file 
used by a transaction can be diiferent, a diierent set of 
buffers (called a ‘locality set”) should be allocated to a tran- 
saction for each file that it opens. 

For each file instance Fi. there is an optimum number of 
buffers (OptBufsIFi) and an optimum replacement policy 
(ReppolFi). As long as the number of buffers actually allo- 
cated to file instance Fi is less than OptBufsFi, the admii- 
sion policy (see (4)) guarantees that there will be at least one 
free. buffer available for Fi; when the number of buffers 
allocated to Fi is equal to Op~~~fsFi, RepPolFi is USIA to 

choose a victim from Fi ‘s locality set when replacement is 
required. Thus. the replacement policy in DBMIN is local 
rather than global. 

The query optimizer can inform the buffer manager of 
OptBufsFi ad RepPolpi for each file instance Fi. The 
buffer manager can then ensure that the maximum mimber 
of buffers allocated to a file instance is OptbufsFi . 

The buffer manager ensures that no transaction is allowed to 
begin running unless it can be guaranteed to get the 
optimum number of buffers for each of its file instances. 

Priority-DBMIN Buffer Pool Organization 
As in the original DBMIN algorithm, the buffer pool is organ- 

ized into “locality sets,” where the data pages in each set are all 
part of the same file instance and have the same owner. If a page 
is accessed by more than one concurrent transaction, its owner is 
the tmnsaction with the highest priority among them. Within a 
locality se& pages are arranged according to the replacement pol- 
icy prescribed by the optimizer. The buffer manager maintains 
the sum of the OptBufs values for the running transactions of 
each priority. Thus, for any priority P , it is easy to compute the 
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sum of the OptBufs values for all higher priority transactions that 
are running. 

Priority-DBMIN Transaction Admission 

As discussed earlier, DBMIN relies heavily on its Transaction 
Admission policy. When transactions have priorities, however, 
the guarantee that any transaction allowed to run will always find 
OptBufs buffers available must be made conditional as follows: 
Let the combined size of the locality sets of a newly arrived tran- 
saction T be OptEt&, and let its priority be PT. Let the sum of 
the optimum sixes of the locality sets of running transactions with 
priority 1 PT be OptBufsHtmm, and the sum of the optimum 
sixes of the locality sets of transactions with priority < PT be 
OptByfsLDw~~ . Then, if (N - OptBufHtG”m ) 1 OptBufsT, where 
N is the total number of buffers in the buffer pool, the buffer 
manager will admit 2’. The idea is that if there are sufficient 
buffers for all currently rurming transactions of priority Pr or 
higher and for T itself, then T should be allowed into tbe system. 
However, if (N - OptBufsHIwHER - OptBccfsmwm) < OptBufs*, 
then some buffers may have to be deallocated from lower priority 
transactions in order .to satisfy T’s buffer requirements. In this 
case, the buffer manager will successively suspend transactions 
(starting with the lowest priority) until there is room enough to 
admitT. 

Priority-DBMIN Buffer Replacement and Allocation 

Buffer allocation and replacement are exactly the same as in 
the original DBMIN algorithm. 

3. MODELING A PRIORITY-ORIENTED DBMS 

In this section, we describe our performance model of a 
priority-oriented DBMS. The model, which we implemented 
using the DeNet simulation language [Livn88]. consists of five 
mmponents: the database itself, a Source, which generates the 
workload of the system; a Query hfanuger. which models the 
execution behavior of queries; a Resource Manager, which 
models the CPU, MI, and buffer resources of the system; and a 
Covlcwrency Control Manager. which implements the details of 
a particular concurrency control algorithm. Smce we will be 
using only read-only workloads here, we will not discuss the 
Concurrency Control Manager further. 

3.1. MODELING THE DATABASE 

The database is modeled as a collection of relations. In turn 
each relation is modeled as a collection of pages. In addition to 
relations, the database model contains indices on relations. An 
index may be either a clustered or a nonclustered B+ Tree. Table 
3.1 summarizes the key parameters of the database model. The 
number of relations in the database is NumRelatirms . For each 
relation i (1 I i 5 NwnRelatim). RelSizei is the relation size in 
pages, and It&&r determines whether or not the relation has an 
index. If the relation is indexed, IndexTypei indicates whether 
the index is clustered or non-clustered, and FanoWi indicates the 
fanout of the internal nodes in the index (and thus determines the 
number of levels of the B+ Tree). 

r Parameter I Meaning 
NumRelations I Number of relations in database 

Table 3.1: Database Model Parameters. 

3.2. THE SOURCE MODULE 

The Source module is the component responsible for model- 
ing the workload for the DBMS. Table 3.2 summarizes the key 
parameters of the workload model. A query may belong to any 
one of NwnCkses classes, and it may have any one of 
NumPriorities priority levels. The model is that of an open sys- 
tem, and the arrival rate of queries of every <class, priority> 
combination is controlled by a matrix of arrival rates called 
ArrRate . The arrival of queries of each <class, priority> combi- 
nation is a Poisson process. Among the per-class parameters is 
Q~@ypei. which indicates the query type for the class. 
Currently, only single-relation select queries and two-relation 
select-join queries are supported, the model supports selections 
performed via sequential relation scans, selections performed 
using either clustered or nonclustered indices, and selections of 
any of these types followed by a join (which can be either a 
nested loops join or an index join). Queries are modeled at a log- 
ical level because one of the algorithms of interest to us is 
Priority-DBMIN. which makes use of the logical sequencing of 
the page accesses of a query. Since the looping behavior of 
queries can affect buffer bit ratios significantly, the particular 
query types supported were chosen to provide queries both with 
and without looping in theii page access behavior. 

For each query type i , a query plan is provided in the form of 
a set of parameters. For a join query, JoinMethodi indicates the 
join algorithm (nested loops or indexed join), and Imri and 
Olcteri indicate which relation is the inner relation and which is 
the outer. For each relation j accessed by query i , AcCewWPothii 

Parameter 1 Meaninn 
Overall Arrival Pattern Parameters 

NumCXasses Number of query classes 
NumPriorities Number of query priority levels 
ArrRateq Mean exponential arrival rates of queries 

of class i and priority level j 
Per-Class Parwneters (lli <_NwnClasses ) 

Qw&%ei Type of query. e.g., select or select-join 
JoiruUetW. Join algorithm used 
OUteri Outer relation 
IWlWi Inner relation 
AccessPathii Access path used to access j th relation 
S&CtiVi&j Fraction of jth relation selected 
I?ldexPageCPUi CPU time for processing an index page 
DOraPageCPUi CPU time for processing a data page 

Table 3.2: Workload Model Parameters. 
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indicates the access method used (e.g., a clustered index scan or a 
sequential scan). In selections, Sefecti&yij indicates the propor- 
tion of relation j’s data that satisfies the selection criterion of 
query i. We assume a uniform probability of access to all data 
pages within each relation. The per-class parameter 
InderPUgeCPUi specifies the expected amount of CPU process- 
ing squired per index page, and the parameter DotaPa&PiJi 
specifies the expected amount of CPU processing required per 
data page of each relation accessed for query type i . (The actual 
CPU processing times per page are exponentially distributed.) 

Given a query plan, the Source module generates a list of 
page accesses that models the sequence in which pages will be 
accessed by the query. For example, in a selection using a 
clustered index, the Source uses the selectivity parameter and the 
size of the target relation to generate a list of page accesses that 
start at the root of the index, traverse the index to the leaf level, 
and then access a sequence of index leaf pages and corresponding 
data pages. In addition to generating a lit of page accesses, the 
Source module also provides information on the number of local- 
ity sets, the optimum number of buffers for each set, and the 
optimal replacement policy (such as MRU or LRU) for each 
locality set. The maximum mnnber of concurrently lixed pages is 
similarly provided. Thii information can be used by the buffer 
manager. As discussed shortly, the Source must interact with the 
Resource Manager to determine whether a query is allowed to 
enter the system right away or whether it has to wait until 
sufficient buff& become available. 

3.3. THE QUERY MANAGER MODULE 

The Query Manager is responsible for accepting queries from 
the Source and modeling their execution. For each page accessed 
by the query, the Query Manager sends a read request to the 
Resource Manager the Resource Manager informs the Query 
Manager when the read request is completed. The Resource 
Manager aLso informs the Query Manager when a query is 
suspended or reactivated. When the Resource Manager decides 
to reactivate a suspended query, the Query Manager ensures that 
the reactivated query resumes execution at the point where it was 
SUSpended. 

3.4. THE RESOURCE MANAGER MODULE 

The Resource Manager controls the physical resources of the 
DBMS, including the CPU, the disk, and the buffer pool in main 
memory. Two versions of the Resource Manager have been 
implemented, supporting the Priority-LRU and Priority-DBMIN 
buffer management algorithms, respectively. In addition, the 
model allows priority to be. switched on and off at each resource 
of interest, i.e., at the CPU, the disk, and the buffer pool. 
(“Switching off’ priority at a resource means that all of its service 
requests are treated as being of equal priority.) The parameters of 
the Resource Manager are summarized in Table 3.3. CPUPrio , 
DiskPrio. and EufirPrio are the parameters used to switch 
priority on and off for the various resources. 

CPU and Disk Models 

The DBMS has one CPU, which is scheduled using the 
priority-based round-robin algorithm described in Section 2. The 
length of each CPU request from a query is its per-page CPU pro- 
cessing time, and each query voluntarily gives up the CPU after 
processing one page. There is one disk in the system, with 
requests being scheduled according to the prioritized elevator 
algorithm of Section 2. Each disk request requires access to one 
page. The track number of a disk request is chosen at random 
from among NumTracks tracks (i.e., we model the data as being 
uniformly distributed across all tracks). The total time required to 
complete a disk access is computed as the sum of its seek time, 
rotational latency, and transfer time components. The rotational 
latency and transfer time are together modeled as a single param- 
eter called DisbZonst . The seek time for seeking across n tracks 
is computed using the formula: 

Seek Tie(n) = SeekFactor *G 

SeekFactor is specified as a parameter. This square-root rela- 
tionship between seek time and seek distance is based on the dii- 
cussion of current disk technology in [Bitt88]. 

Buffer Manager Models 

The buffer manager component of the resource manager 
encapsulates the details of the buffer management scheme 
employed by the DBMS. It maintains information about resident 
pages, and it uses the information provided by the Source module 
to decide when to allow queries to enter the system. The Num- 
B@ers parameter specifies the number of page frames available 
in the buffer pool. The Priority-LRU and Priority-DBMIN algo- 
rithms are each represented by a different buffer manager model, 
and the Priority-LRU model has an additional parameter WR that 
it uses to balance priority and recency when making replacement 
decisions. In order to simplify the implementation, we decided 
not to model fixing and unfixing explicitly. However, we do 
model their effects on query admission decisions in Priority-LRU 
(in the manner described in Section 2). 

4. EXPERIMENTS AND RESULTS 

In this sectia we present performance results for the 
priority-oriented DBMS resource schedulmg algorithms 
described earlier. Our goal is to analyze the relative importance 

c 

Parameter I Meanintz 
CPVPrio I Switch to turn priority on/off at CPU 

Switch to turn priority on/off at disk 
I 

DiSkPdO 
BufferPrio Switch to turn priority on/off at buffer pool 
NWlT~oCkS Number of tracks per disk 
Diskfotst Sum of rotational and transfer delays 
Seekhcfor Factor relating seek time to seek distance 
NumBuffers Number of buffer frames in buffer pool 
Wff Window of timestamps used when choosing 

a replacement victim in Priority-LRU 

Table 3.3: Parameters of the Resource Manager. 
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of priority scheduling at each of the various resources and to 
understand the interaction between them. In order to simplify the 
analysis, we consider just two priority levels (“low” versus “high” 
priority) in the 6rst four experiments presented here. An experi- 
ment with four priority levels is also included at the end of this 
section. Depending on the nature of the workload, any of the 
physical resources of a DBMS (e.g., the CPU, the disks, or the 
buffer pool) may become the bottleneck. Together, our experi- 
ments cover each of these possibilities. 

4.1. Performance Metrics 
As discussed earlier, we use an open queuing system to model 

the DBMS. Response time will thus be the primary performance 
metric of interest in this study. In particular, we will examine the 
average response time for queries at each priority level in the 
workload. Since OM performance objective is to provide high 
priority queries with a preemptive-resume view of the DBMS, we 
will focus most of our attention on the response time for high 
priority queries. Two important issues regarding the response 
time for these queries will be the range over which the system is 
stable for them and the extent to which the system is able to meet 
our preemptive-resume performance goal. 

Note that in a priority-oriented DBMS, the system can remain 
stable for high-priority queries long after the a&al rate has 
bewme high enough to make the system unstable for low-priority 
querie.s. This is because more and more of the system’s resources 
are devoted to high-priority queries as the overall load on the sys- 
tem increases. Thus, there are two regions of operation in each of 
our experiments. In the iirst region. the system is stable for both 
high priority and low priority queries. In the second region, the 
system has become unstable for low-priority queries, but contin- 
ues to be stable for high-priority queries. Consequently, we 
present response time results foi low-priority and high-priority 
queries (in their stable regions) separately for each experiment. 

A query’s response time is wm uted by subtracting the time 
at which the query completes from fil e time at which it was sub- 
mitted to the DBMS. As discussed in Section 1, the response 
time of a query can be broken down into the following wm- 
portents: 

TR =Tw_arr +Tw-CPU +Ts_cpu +~D~~K*~T~JHK +&-DISK) 
We measured each of these components separately in our experi- 
ments in order to aid us in analyzing the results. 

ln order to obtain a statistically significant sample of query 
response times, each experiment was run long enough for a total 
of 4000 high-priority queries to complete. (The number of low- 
priority query completions varied with the load.) Other informa- 
tion was also gathered in the wurse of each simulation, includmg 
the utilization of the CPUs and disks, the average seek time per 
disk access, and the average number of queries of each priority 
level nmning concurnzntly. 

4.2. Parameter Settings 
We first present the parameters that were kept wnstant across 

all w~kloads. These parameters are listed in Table 4.1. We then 
describe our representative workloads and the parameter settings 

Parameter Setting 
NumRelations 40 
RelSizei 1000 pages, 500 pages, 6 pages, 3 pages 

(10 relations of each size) 
Indexed{ YES (lOOO-page 8c 500-page relations) 

NO (6-page Jc 3-page relations) 
InderTypei Clustered (lOOO-page & 5O@page relations) 
Fanout; 20 (lOOO-page & 500~page relations) 
NumTrack-s loo0 
DiskConst 15ms 
SeekFactor 0.6 ms 
NumLhff~s 50 

( w, 10 

Table 4.1: Workload-Independent Parameter Settings. 

that changed with each workload. 

Workload-Independent Parameters 
The database is modeled as a collection of 40 relations. We 

use four different relation sizes in our experiments - 1000 
pages, 500 pages, 6 pages, and 3 pages - with the database wn- 
taining 10 relations of each size. The lOOO-page and 500-page 
relations each have a clustered index availabie, while the smaller 
relations are not indexed at all. The disk has 1000 tracks, and the 
sum of the rotational latency and the transfer time per diik access 
is 15 milliseconds. The factor relating seek distance to seek time 
is 0.6 millisecotis, so the expected diik access time is between 
15 and 30 milliseconds. There are 50 buffer frames in the buffer 
pool. The WR parameter used in the Priority-LRU algorithm is 
set to 10, as this value was found to work well for the range of 
workloads considered. (For the w~kloads studied here, the sys- 
tem turns out not to be very sensitive to WR .) 

The model’s switches for determining whether M not priori- 
ties are used for scheduling at the CPU, the disk, and the buffer 
pool will be tumed off and on as part of each experiment. In the 
description of the. results. the following notation will be used to 
identify the resources where priority scheduling is turned on: the 
letters B , C , and D refer to the buffer manager, the CPU. and the 
diik respectively, while the subscripts YES and NO refer to 
priority being hurted on and off respectively. For example, the 
label BYES Cr, DNo refers to an experiment where priority is 
turned on at the buffer manager and at the CPU, but is turned off 
at the disk. 

Workload Parameter Settings 
Four different query workloads are employed in our five 

experiments. Each workload consists of arrival streams of a sin- 
gle query type, but at different levels of priority; in all of the 
experiments reported here, the arrival rates for each of the prior- 
ity levels will be equal. The parameters used to generate the four 
workloads are listed in Table 4.2. The first three workloads 

these values for determining disk access times were chosen based 
on [Bit&?. Gray89]. 
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ImkxPageCPU 15ms 2m.s 
DataPageCPU 15 ms 2ms 
Page Accesses 23 23 
Locality Set Sizes 1. L3 1. 1.3 
index outer inner 

SC lctivity I 
IndexPa~eCPU 
DataPageCPU 
Page Accesses 

I2ms I5ms 
I 38 1 13 

~! 
Table 4.2: Workload Parameter Settings. 

consist of select-join queries, with the result of a selection using a 
clustered index on a 500-page outer relation being joined to a 
smaller inner relation; the fourth workload consists of a clustered 
index selection on a lOOO-page relation. For each relation 
accessed by a query, the actual relation accessed was chosen uni- 
formly from among the 10 relations of that size, so there is not 
much data sharing in the system. To aid in understanding the 
nature of the workloads, Table 4.2 also includes the total number 
of page accesses for each query type. In addition, it lists the 
optimum locality set sixes and replacement policies for Priority- 
DBMIN, and it lists the query fixing requirements for Priority- 
LRU. 

4.3. Experiment I (Admission Control) 

In this experiment, we investigate the impact of priority 
scheduling on performance under the Type I workload. This 
workload consists of a mix of CPU-intensive, indexed- 
select/nested-loops-join queries. In fact, given the Type I 

parameter settings, the disk utilization is only about 65% when 
the CPU is fully utilized, so the presence or absence of priority- 
based disk scheduling has no effect on performance. Thus, the 
priority scheduling combinations studied here are those with and 
without CPU and buffering priority (i.e., B,,&oD,, 
BNCICYESDYET, BYEFCNODYES, md&EsCymDyEs). 

Figure 4.1 shows the response time results for high priority 
queries using the Priority-DBMIN buffering algorithm, and Fig- 
ure 4.2 shows the correspondiig results for low priority queries. 
The arrival rate axis of these figures indicates the combined 
arrival rate of both priority levels. The arrival rates for the two 
priority levels are equal, so the arrival rate for each of the levels 
is half of this total rate. In addition to the curves showing the 
high priority response times for the four scheduling combina- 
tions, Figure 4.1 also includes a curve labeled HP0 (for High- 
Priority Only) that indicates what the high priority response times 
would be if no low priority queries were arriving. This curve will 
help us evaluate how successful we are at getting the DBMS to 
treat high priority queries lie a preemptive-resume server 
should, the better we do at approximating thii curve, the closer 
we are to meeting this design goal. Figure 4.2 contains a similar 
curve (labeled LPO) that shows how the system would perform 
with low priority queries only, indicating the extent to which low 
priority queries suffer due to competition from high priority 
queries. Despite the fact that the system is CPU-bound, Figures 
4.1 and 4.2 show that the use of priority in the buffer manager is 
extremely important. Without priority in the buffer manager, the 
system saturates at an arrival rate of about three queries per 
second for both low and high priority queries. With priority, 
however. the system is stable for high priority queries until the 
arrival rate reaches about six queries per second. These differ- 
ences, as we will see, are due to the use of priority in the 
Priority-DBMM admission control policy. 

To understand why admission control has such an effect, let 
us consider how priority affects the view that queries of each 
priority have of a given resource. Arriving low priority queries 
see a resource containing other queries of both low and high 
priority. This view is the same whether or not priority scheduling 
is employed at the resource, although the quality of service that 
low priority queries receive is affected by the scheduling policy. 
This is consistent with Figure 4.2, which shows that low priority 
query performance is affected only slightly by the presence or 
absence of priority scheduling. The system always saturates at 
the same point from the perspective of low priority queries. High 
priority queries get the same view of a resource as low priority 
queries if it is not scheduled using priority. This explains why, 
when the buffer manager does not use priority to control admii- 
sion in Figure 4.1 (in the BNo curves), the system saturates at 
three queries per second for high priority queries. In this case the 
saturated “resource” is the DBMS itself, and if priority is not used 
for admission control, the external waiting time for high priority 
queries is limited by the response time of low priority queries. 
However, when the buffer manager’s admission policy does 
favor high priority queries, the DBMS admits them preferentially 
and even suspends low priority queries in their favor. In this 
case, they see only other high priority queries in the system so 
they essentially see only half of the actual system load. This 
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explains why the system remains stable twice as long for high 
priority queries under Priority-DBMIN. 

Another interesting feature of Figure 4.1 is how priority 
scheduling at the CPU affects the response time for high priority 
queries under Priority-DBMIN. With priority used in the buffer 
manager but not at the CPU (i.e., the ErEFCNo DyET curve), high 
priority response time is similar to low priority response time 
until the system saturates for low priority queries. After this 
point, the response time is stable for a while as more and more 
low priority queries are suspended due to high priority arrivals. 
That is, the buffer manager has already admitted as many queries 
as it can, so all it can do in this range is trade low priority queries 
for high priority ones. Since the workload is CPU-bound, the 
load that high priority queries see does not change in this range if 
CPU scheduling is not priority-based. The CPU eventually 
becomes saturated with high priority queries alone (at an arrival 
rate of six queries per second, which is three high priority queries 
per second). However, when CPU scheduling is also priority- 
based in Figure 4.1 (i.e., the l&~Cy~Dy~ curve), we see a dif- 
ferent trend. Here, the high priority response time behavior is 
very close to that of the HP0 curve; recall that this curve shows 
the response time behavior without low priority queries. Thii 
indicates that priority scheduling at the CPU is succeeding at 
shielding the high priority queries from the low priority queries 
(i.e., giving them the impression of being the only queries in the 
system). Thus, a combination of Priority-DBMlN and priority 
CPU scheduling indeed gives high priority queries a preemptive- 
resume-like view of the DBMS. 

Figure 4.3 shows the response time results for high priority 
queries using the Priority-LRU buffering algorithm, we do not 
show the low priority query results, as they are very similar to 
those for Priority-DBMIN in Figure 4.2. The Priority-LRU 
trends in Figure 4.3 are quite similar to those that we saw in Fig- 
ure 4.1, and the explanation of the trends are the same here. The 
main difference between the Priority-LRU and Priority-DBMIN 
results is that priority CPU scheduling is more critical for 
Priority-LRU. The two algorithms perform almost identically 
when priority scheduling is used everywhere (extiept at the 
highest loads, where Priority-DBMIN is marginally better). 
However, when CPU scheduling is not priority-based, high prior- 
ity queries suffer more under the Priority-LRU algorithm. This is 
due to the difference between the admission control policies of 
the two algorithms. Since the Priority-DBMIN policy is more 
conservative, it admits fewer queries than Priority-LRU does. 
This is evident in Figure 4.4, which shows the number of con- 
current queries (both high priority and total) inside the system as 
opposed to waiting outside, under the two buffer management 
algorithms. Priority scheduling at the CPU changes the number 
of competing queries seen by high priority queries from being the 
total number in the system to being just the high priority number, 
which is a bigger change in the Priority-LRU case. The general 
Priority-LRU conclusions are the same, though: priority is 
needed both in the buffer manager (for priority-based admissions 
control) and at the CPU in order to achieve the HP0 performance 
objective for high priority queries. 

4.4. Experiment II (Disk Priority) 
In our second experiment, we focus on the impact and trade- 

offs involved in priority scheduling at the disk Here we use the 
Type II workload, which is just like the Type I workload except 
that the per-page CPU time for queries is now just 2 milliseconds 
instead of 15 milliseconds. Thus, the workload consists of a mix 
of I/O-intensive, indexed-select/nested-loops-join queries. With 
this workload, the CPU utilization is approximately 35% when 
the disk becomes 100% utilized, so the presence or absence of 
priority-based CPU scheduling has no effect here. Thus, we 
examine situations with priority scheduling at the disk and the 
buffer manager (i.e., BNO CYESDNO 9 BNO CY, DYEF . 
BY.~GEsDNO. and BYEKYEFDYES). 

Figure 4.5 shows the response time results for high priority 
queries using Priority-DBMIN. and Figure 4.6 shows the 
corresponding results for low priority queries. Figure 4.7 
presents the high priority query response time results for 
Priority-LRU; again, the low priority results for Priority-LRU 
were very much like those of Priority-DBMIN. so we omit them 
here. Figure 4.8 shows the mean diik access times for Priority- 
DBMIN and Priority-LRU with and without priority-based disk 
scheduling (for the two cases Bra Crm DNO and BrmCm DyEF ). 
For the most part, Figures 4.54.7 display the same trends that we 
saw in Figures 4.14.3. and they do so for the same reasons 
(albeit with a different bottleneck resource). Again, it is evident 
that priority must be incorporated in the buffer manager as well 
as the bottleneck resource. (the disk) in order to provide the 
desired level of performance for high priority queries; and again 
priority scheduling of the bottleneck resource is more important 
for Priority-LRU because of its less effective admission control 
policy. However, there are also several other interesting points to 
be noted from this experiment. 

The first point to notice is that in Figure 4.6, unlike Figure 
4.2, low priority queries clearly suffer performance-wise due to 
priority-based scheduling of the bottleneck resource (the disk in 
this case). This is due to the fact that, in the range where they 
suffer, priority scheduling has reduced the service capacity of the 
disk by increasing the mean disk access time (as shown in Figure 
4.8). Combined with large waiting times, which are in excess of 
eight times larger than those for high priority queries, thii pro- 
duces earlier response. time degradation for low priority queries. 
In contrast, high priority response time is again close to that of 
the HP0 curve when priority scheduling is used everywhere, 
indicating that high priority queries are largely unaffected by the 
somewhat increased mean disk access time. Thii is because this 
increase is more than offset by the decrease in diik waiting times 
that priority-based disk scheduling produces for the high priority 
queries. Put another way, there is a price to be paid for doing 
disk scheduling based on priority, but it is the low priority queries 
that pay the pice. 

Another interesting observation can be made from Figure 4.8. 
At low arrival rates, where the disk load is low, there is no 
penalty for priority-based disk scheduling. This is because there 
is little or no queuing for the diik in this region. However, there 
is also no penalty at the highest arrival rates. The explanation is 
different in this case. Here., the reason that priority scheduling is 
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able to do as well as the strict elevator algorithm is that it, too, 
effectively becomes the elevator algorithm, the disk is so heavily 
loaded due to high priority requests that it is kept busy serving 
their elevator queue. In the middle range of arrival rates, where 
there is a mean disk access time penalty, the benefits of priority 
scheduling far outweigh the penalty for high priority queries, as 
described above. Thus, priority-based disk scheduling appears to 
be very worthwhile for a priority-based DBMS. 

4.5. Experiment III (Buffer Priority) 
In our third experiment, we focus on the relative behavior of 

the DBMIN-based and LRU-based approaches to buffer manage- 
ment. Here we use the Type III workload, which is similar N the 
Type II workload but with an inner relation that is twice as large 
as before. Thus, the queries in the workload have a more 
significant looping behavior here. Again, we focus our attention 
on priority scheduling at the disk and in the buffer manager. 

Figure 4.9 shows the response time results for high priority 
queries using Priority-DBMIH. and Figure 4.10 shows the 
corresponding results for low priority queries. The trends here 
are basically those of Experiment II, but the absolute perfor- 
mance is different due to the larger query size. The only apparent 
relative difference is that priority disk scheduling leads to some- 
what less of an improvement in the high priority response time 
when buffering priority is used. Thii is because the bottleneck 
here is actually buffer space; the disk utilization never exceeds 
90% because the admission control policy is unable to allow 
enough queries into the system to saturate the disk. 

Figure 4.11 presents the high priority query response time 
results for Priority-LRU, as always, the low priority results for 
Priority-LRU are virtually identical to those for Priority-DBMIN, 
so we do not show them. For the high priority queries, we see 
significantly different behavior for Priority-LRU here (relative to 
Priority-DBMIN) than that observed in previous experiments, 
especially without diik priority scheduling. The difference is a 
consequence of the admission control policies of the two algo- 
rithms. As was shown in [Chou85]. the information-based 
admission controller of the basic DBMIN algorithm can 
significantly reduce thrashing relative to the basic LRU algo- 
rithm, and the same is (of course) true of our priority-based ver- 
sions of these algorithms. Figure 4.12 shows the buffer pool hit 
ratio for high priority queries under both the Priority-DBMIN and 
Priority-LRU algorithms. The hit ratio for Priority-LRU drops 
significantly where the high priority response times increase in 
Figure 4.11, indicating that this is indeed the problem. This 
thrashing is due to the fact that Priority-LRU admits too many 
high priority queries, which leads them to take buffers from one 
another since the nlrmber of available low priority buffers is 
insufficient. The result is especially drastic without priority at the 
disk. The low priority queries in the system have extremely low 
hit ratios, as their buffers are consistently chosen as replacement 
victims for high priority queries; this causes them to generate 
many more disk requests than they would under the carefully 
controlled Priority-DBMIN policy. Without priority at the disk, 
this volume of requests generates much more diik traffic for high 
priority queries to contend with, increasing their response times. 

Buffering priority alone is thus not enough to ensure stability for 
high priority queries in this workload under Priority-LRU. 

4.6. Experiment IV (Minimal Buffer Contention) 
In our hal two-priority experimenb we investigate the per- 

formance of the priority-based scheduling algorithms for a work- 
load where buffer contention is not a significant factor. Here we 
use the Type IV workload, which consists of indexed-selection 
queries with no looping behavior. The Type IV workload is I/O- 
bound due to its 5 millisecond page CPU time and lack of loop- 
ing behavior, so we again focus on priority scheduling at the disk 
and in the buffer manager. 

Figure 4.13 shows the response time results for high priority 
queries using Priority-DBMIN, and Figure 4.14 shows these 
results for Priority-LRU. We omit the low priority results, as 
they are qualitatively the same as in Experiments II and III. The 
main things to observe here are the impact of priority-based 
management of the diik and buffer resources on the performance 
of high priority queries. Since buffer contention is a non-issue 
under this workload, the Priority-DBMIN and Priority-LRU algo- 
rithms perform Pretty much identically. However, they are still 
essential: without a priority-based buffer management algorithm 
(for priority-based admiision control), the system satllratea for 
high-priority queries at 4.5 queries per secoruh with priority in 
the buffer manager, the saturation point is extended to nine 
queries per second. Likewise, priority disk scheduling is crucial 
for good performance here. This is because the workload is I/C 
bound and buffer hits are rather rare. 

4.7. Experiment V (Four Priorities) 
In the. last experiment of the paper, we briefly examine the 

performance of the priority-based scheduling algorithms for a 
workload consisting of four levels of priority. We reNm to the 
Type III (buffer-intensive, I/O bound) queries for this experi- 
ment. Here we look only at how queries of the diiferent priority 
levels perform when priority is employed everywhere (i.e. at the 
CPU scheduler, the disk scheduler, and the buffer manager). 

Figure 4.15 shows the query response time results for the four 
priority levels under Priority-DBMIN, and Figure 4.16 shows the 
results for the Priority-LRU algorithm. The observed trends are 
what we would expect based on the results of our earlier experi- 
ments. First, the system succeeds at providing preemptive- 
resume-like performance, as the highest priority query response 
times are quite close to the HP0 curves. Second, the saturation 
points are not linearly distributed over the range of arrival rates. 
This is because of the system view that priority scheduling pro- 
vides to the different priority levels: the highest priority queries 
see only themselves (i.e., one-fourth of the load), queries at the 
second-highest priority see themselves and the highest priority 
queries (i.e., one--half of the load), the second-lowest priority 
queries see the top three levels (i.e., three-fourths of the load), 
and the lowest priority queries see the entire query load as com- 
petition for system resources. Finally, as in Experiment III, 
Priority-DBMIN provides somewhat better performance than 
Priority-LRU here, as the workload is one where buffer manage- 
ment has a significant role to play in determining performance. 
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5. CONCLUSIONS AND FUTURE WORK 

This paper has examined the problem of priority scheduling in 
a database management system. First, the architectural conse- 
quences of adding priority to a DBMS were investigated, given 
the importance of effectively scheduling the multiple, hetero- 
geneous resources of such a system. Several concrete. priority- 
based algorithms were then proposed for managing DBMS 
resources, including a priority-based disk scheduling algorithm 
and two algorithms for priority-based buffer management. The 
proposed disk scheduling algorithm is a priority-based variant of 
the elevator algorithm, and the two buffer management proposals 
are extensions of the LRU and DBMJN algorithms. 

JII addition to suggesting approaches to DBMS priority 
scheduling, we studied their performance through simulation and 
obtained a number of interesting performance insights. Using 
preemptive-resume as our model of desirable priority scheduling 
behavior. we found that it is indeed possible to do a good job of 
priority scheduling in a DBMS context. However, our simulation 
results indicate that the objectives of priority scheduling cannot 
be met by a single priority-based scheduler. Rather, whether the 
system bottleneck is the CPU or the disk, it is essential that prior- 
ity scheduling on the critical resource be used in conjunction with 
a priority-based buffer management algorithm. Between our two 
proposed algorithms, we found that Priority-DBMJN dominates 
Priority-LRU in cases where buffer contention is a factor. When 
buffer contention is not a key factor, either algorithm is sufficient 
to enable the system to achieve its performance goals. 

We view this work as a first step, with a number of interesting 
problems and opportunities for future work remaining. First, in 
the area of algorithm design. there are a number of alternative 
&sign decisions that we could have made differently in the 
Priority-DBMJN and priority-LRU algorithms; we plan to study 
these design tradeoffs carefully in the future. Second, our perfor- 
mance study focused on a read-only workload. While we believe 
that allowing high priority queries to be update queries would not 
alter our conclusions sign%cantly, we do need to examine the 
interaction of lower priority updates and the admission control 
policy. Gne issue here is that suspending an update query and 
replacing its pages will carry the vice of writing its updates to 
disk. A related issue is the impact of suspending queries that 
hold locks; restarts might be superior to suspensions in such 
situations. Finally. at a higher level. we plan to study how prior- 
ity can be used as a means to meeting performance goals in a 
DBMS context. In particular, we plan to study the problem of 
mapping soft real-time constraints into priorities in such a way as 
to minimize missed deadlines. 
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