
Priority in DBMS Resource Scheduling

Michael J. Carey
Rajiv Jauhari
Miron Livny

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT - In this paper, we address the problem of priority
scheduling in a database management system. We start by inves-
tigating the architectural consequences of adding priority to a
DBMS. Specific priority-based schemes are then proposed for
managing DBMS resources. including a priority-based diik
scheduling algorithm and two approaches to adding priority to
the buffer manager of a DBMS. We study the performance of
our proposals through simulation, both individually and in com-
bination. Our simulation results indicate that the objectives of
priority scheduling cannot be met by a single priority-based
scheduler. They show that, regardless of whether the system
bottleneck is the CPU or the diik, priority scheduling on the criti-
cal re.som must be complemented by a priority-based buffer
management policy.

1. INTRODUCTION

1.1. Background

priority schedulmg of computer systems is a concept that has
been studied extensively for more than two decades [Coff6g,
Klei761; The priority of a task is a measure of its “importance” to
the system. and the objective of priority scheduling is to provide
preferential treatment to tasks with higher priority values. One
use of priority is as an end in itself. In this case, task priorities

This wulc was pcrfomuxl under rubumtnct to Xerox Advanced
Information Technology, which W~I rupported by the Defense Advanced
Research Projects Agency and by the Rome Air Dexl~ent Center
under Contract No. P330602-81-(34X29. Additional support was provided
by the National Science Foundation under grant lRM657323 and by the
Digital Equipment Cofporation tbrougb ita Initietives for Excellence pro-
gram. ?heviewsudcondu~oartrinedin~reporla~~eofthe
iuthors md do IW necessarily nqnzsent the official-policies of the De-
fense Advanced Research Pmjeds Agency, the Rane Air Develqnent
Center, ur the U.S. Govenanent.

Permission LO copy wiihoui fee all or part of fhis material is
granted provided that the copies are nof made or disiribuied jor
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given ihat copying is by permission oj the Very Large Data Rose
Endowment. To copy otherwise, o+ to republish, requires a Jee
and/o+ special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

are determined externally, and are used directly to guide the sys-
tem in making scheduling decisions. For example, a system
designez may decide to run interactive tasks at a higher level of
priority than long batch jobs in order to ensure good responsive-
ness for interactive users. An alternative use of priority is as a
means to an end Here, task priorities are. determined internally
(i.e., assigned by the system itself) in order to meet some other
goal. For example, priority scheduling can be used as a way of
minimizing the number of missed deadlines in a soft real-time
computing environment [Chang5].

Despite the attention that the concept of priority has received
for CPU scheduling in operating systems, it has received ve-ry lit-
tle attention in the database system area This is somewhat
surprising, as priority seems every bit as useful and applicable in
a DBMS. The interactive versus batch job example is relevant;
in a transaction processing system, it would seem equally desir-
able to ensure responsiveness for interactive DBMS users while
allowing batch jobs to be nm as well. In addition, the database
and real-time systems commnnities are beginning to show
interest in applying database technology to data-intensive, real-
time applications such as stock trading, computer-integrated
mantiacturing. and command and control systems [Abbogg.
SIGMgg, Stangg].

Priority scheduling in a DBMS differs from the probl& of
priority CPU scheduling due to the heterogeneity and multiplicity
of DBMS resources. Important DBMS resources include the
CPU, disks, and main memory, which are physical resources. and
data items, which can be viewed as logical resources. It is com-
mon for each of these resources to be managed by an independent
schedula: the underlying operating system kernel schedules the
CPU; the operating system or DBMS device drivers handle disk
request scheduling; the buffer manager controls the main
memory resource (i.e., buffer pool page frames); an& the am-
cuxrency control manager schedules accesses to data items.
Thus, in a DBMS, there are actually four schedulers into which
one could consider incorporating priority.

1.2. Related Work

As mentioned above, priority CPU scheduling for centralized
systems has been studied extensively. Overviews of much of this
work can be found in [Coff68. K&76]. Classical approaches to
sche4hding a single CPU in the presence of piority involve main-
taining the CPU queue as a priority queue. Requests are served

Amsterdam, 1083

- 397 -

in priority or&r either non-preemptively, which is called “head-
of-line” or “non-preemptive priority” scheduling, or preemp-
tively, which is known as “preemptive-resume” scheduling. The
objective of the latter approach is to ensure that a higher priority
job is never made to wait while a lower priority job receives ser-
vice. Recent work has addressed priority scheduling in the pres-
ence of preemption overheads and multiple processors (e.g., in
distributed systems [Chan85, Chan87]). Static and dynamic
approaches to CPU scheduling for real-time systems have also
been studied, this work is reviewed briefly in [Stan88]. and
[Jens86] provides an excellent treatment of dynamic CPU
scheduling approaches for real-time systems. Resources other
than the CPU have, for the most part, been ignored with respect
to dynamic priority and real-time scheduling [Coff68, Stan88].

In the database area, real-time issues are just beginning to
attract attention. [wede86] proposed a scheme for prefetching
data pages for canned transactions in a real-time DBMS; detailed
a priori knowledge of the workload is assumed, and static tran-
saction pre-analysis techniques are applied to it. others have also
begun to address real-time DBMS issues [SIGMSS. Daya88.
Buch89], especially in the area of concurrency control algorithms
[Abbo88. SIGM88. Buch89]. Most notably, [Abbo88] proposed
and investigated the performance of several priority-based lock-
ing (and CPU scheduling) schemes in the context of a memory-
resident, real-time DBMS. However, the question of how prior-
ity can be used in managing the physical resources of a DBMS
has not been addressed to the best of our knowledge.

1.3. Our Work

In this paper, we explicitly address the problem of priority
scheduling in a DBMS. In particular, we are interested in how
priority can be employed in managing the physical resources of a
DBMS. The objective of our work is to develop and evaluate
policies that provide the best possible service to higher-priority
transactions while minimixmg the negative impact on lower-
priority transactions. Essentially, we would like the DBMS to
behave as much like a preemptive-resume server as possible.
That is, we would like it to give transactions of a given priority
the same service that they would experience in a system that does
not serve transactions of lower priority. Thus, the goals of this
paper are three-fold First, we investigate the architectural conse-
quencs of adding priority to a DBMS. Second, we develop
specific priority-based algorithms for managing the key DBMS
resources, especially the disk(s) and the buffer pool. Third, we
study the performance of our proposed algorithms, both individu-
ally and in combination with one another.

Figure 1.1 depicts the overall architecture of a DBMS from a
resource perspective. From the figure, it can be seen that there
are several places where a DBMS makes resource scheduling
decisions into which priority could be incorporated. Firs4 a
DBMS often controls the. total number of transactions allowed to
be active at any one time. requiring additional transactions to
wait outside the system until they can be admitted in order to
prevent thrashing due to buffer pool over-utilization [Chou85].
Second, as discussed earlier, the DBMS or the underlying operat-
ing system must make CPU scheduling decisions; similarly, disk

Figure 1 .l : DBMS Resource Architecture.

scheduling decisions must be made. Finally, the buffer manager
must make page replacement decisions when a non-resident page
is requested and there are no free page frames.

In order to see how adding priority at some or all of these
decision points might enable us to reduce the response time of
high priority transactions, let us consider the composition of a
transaction’s response time (Ta). Basically, there are two major
components of this time, the external waiting time due to admis-
sion control (2’~~rxr). and the time spent insii the. system (Tsrs).
Tws itself has two components. CPU time (To”) and disk time
(TWX).’ The CPU time for a transaction consists of two sub-
components, the waiting time due to CPU contention crw_cpV)
and the actual CPU service time (7’s cm). The disk time for a
transaction is the product of the r&be.r of disk requests that it
makes (&s) and the. average disk access time, the disk access
time also consists of a waiting time (TwOms) and a service time
(Tsemm). Thus, we see that:

TR = Tw-m + Tw_cpv + TS~CRJ + hw *VW-DISK + TS~WSK 1
Incorporating priority into the admissions control decision, by

ordering waiting transactions according to priority and preempt-
ing lower-priority transactions in favor of higher-pfiority transac-
tions, is a way of reducing TW m for high-priority transactions.
In terms of their CPU time, p&@-based CPU scheduling can
reduce Tw cm for high-priority transactions; Ts cp~ cannot be
reduced, however. Similarly. the disk waiting time TW_O~K for
high-priority transactions can be redud through the priority-
based scheduling of disk requests; this may actually lead to an
increase in TsHx. though, as using a non-positional diik
scheduling criterion may increase the expected seek time.
Finally, buffer replacement decisions can potentially reduce
NmM for high-priority transactions. Gf course, none of these
reductions for high-priority transactions will come for free.
Rather, we must expect cotrespondmg increases in the response
time components for transactions of lower priority.

’ Since our concern is physical resource scheduling, not concum-
cy cmtml, we focus on mad-only queries in this paper. Lock waiting
time is therefore not a potenbl component of response time here.

- 308 -

The remainder of the paper is organized as follows: Section 2
discusses approaches to priority scheduling for the CPU, disk,
and buffer resources. This section includes new, priority-based
algorithms for disk scheduling and buffer management Section
3 describes a simulation model for studying the performance
consequences of our proposed algorithms. Section 4 presents a
series of performance experiments that demonstrate the effective-
ness and importance of the various algorithms under workloads
of varying intensities for the different resources. Lastly, Section
5 summarizes the contributions of the paper and describes our
plans for future work

2. PRIORITY-BASED RESOURCE MANAGEMENT
ALGORITHMS

As described in the introduction, there are three types of phy-
sical resources in a DBMS: the processors, the disks. and the
main memory buffers. In this section, we describe priority
scheduling algorithms for each of these resource types. We
present a known algorithm for priority CPU scheduling, and we
extend known algorithms for disk scheduling and buffer manage-
ment to enable them to handle priorities.

2.1. CPU SCHEDULING

A number of options for priority CPU scheduling have been
discussed in the operating systems literature [Coff68, Klei76,
Pete86]. Preemptive-resume priority scheduling. where a high-
priority job preempts a low-priority job, and the low-priority job
resumes its CPU processing after all high-priority jobs have com-
pleted their processing. does not seem suitable for database sys-
tems. This is because preempting transactions while they hold
short-term locks or latches may lead to the convoy problem, as
described in [Blas79]. It seems more reasonable. then to use a
non-preemptive form of priority sche+ling. while ensuring that
high-priority requests do not suffer greatly as a result of the non-
preemptability of low-priority requests. In or&r to reconcile
priority with non-preemptabiity. the CPU can be scheduled
according to a priority-based round-robin scheme where the
length of a CPU slice is determined by the transaction and not by
the scheduler. In this scheme, a transaction gives up the CPU at a
“safe point” after a short burst of CPU use. Once the CPU is
released, it is assigned to the transaction at the head of the CPU
queue. The queue is managed in priority order with requests of
the same priotity being served in FCFS order.

2.2. DISK SCHEDULING

Classical disk scheduling schemes such as the shortest seek
time fvsr and elevator algorithms [Teor72, Pete.861 attempt to
minimize the average seek distance. Since the elevator algorithm
performs especially well under high disk loads and has good fair-
ness characteristics. it is a good candidate to serve as the basis of
a priority scheduling algorithm at the disk. In the elevator algo-
rithm, the disk head is either in an inward-seeking phase or an
outward-seeking phase. While seeking inward, it services any
requests it passes until there are no more requests ahead. The
disk head then changes direction, seeking outward and servicing
all requests in that diiection as it reaches their tracks.

Current Request Bein Accessed
(Upward Phase f

Priority 3 (High)

Next Request To Be Ser&ced

Increasing Track A&iresses -

Priorily 1 (L.ow)

Figure 2.1: Priority-based Disk Scheduling.

In order to support priority, the elevator algorithm can be
modiied in the following way: disk requests are grouped on the
basis of their priority, and the elevator algorithm is used within
each group. There is one queue per priority level for buffering
outstanding diik requests. Within each queue, requests are
arranged in order of their physical (track) addresses. While seek-
ing inward or outward, the disk services any requests that it
passes in the currently-served priority queue until there are no
more requests ahead. On the completion of each disk request, the
scheduler checks to see whether a disk request of a higher prior-
ity is waiting for service. If such a request is found, the scheduler
switches to the queue that contains the request(s) of the highest
priority among those waiting and starts serving that queue. When
it switches to a new queue, the request with the, shortest seek dii-
tance from the head’s current position is used to determine the
diiection in which the head will move.

Figure 2.1 shows the way that the disk scheduler organizes
outstanding disk requests in the case of three priority levels.
Priority increases as we move from the bottom to the top of the
figure. An important side-effect of introducing priority in diik
scheduling in this fashion is that the average seek time can wor-
sen as the number of priority levels increases. As an example,
consider Figure 2.1. where the disk is currently servicing the
request to access track 642 in the queue of prior@ 3, and the disk
head is moving towards higher track numbers. The next request
serviced will access track 969. even though there are other
requests (for track 878 of priority 2. and track 903 of priority 1)
that could be handled earlier as the disk head moves in its upward
phase. In the worst case, if each request had a different priority,
the prioritized elevator algorithm described above would degen-
erate into straight priority schedulmg. This suggests that in order
to provide reasonable I/O performance, it will be preferable to
map disk requests into a small number of priority levels at the
diik scheduler (even if each transaction has a distinct priority in
othe-r parts of the system).

2.3. BUFFER MANAGEMENT

It was shown in [Effe84. Chou85, Sacc85] that the perfor-
mance of a DBMS can be significantly influenced by the buffer
management algorithm used. In general, buffer managers can
make three types of de&ions: transaction admission, b@r
allocation, and buffer replacement. When a transaction arrives at
the system, the buffer manager is asked if enough buffer space is
available to allow the transaction to be admitted into the system.

- 399 -

The arriving transaction may then be blocked outside the system
until sufficient memory becomes available. Gnce a transaction
begins running and submits a request for a page that is currently
not in the buffer pool, the buffer manager must determine the set
of candidate buffers from among which one is to be allocated to
the transaction. If there are no free buffers, the buffer manager
determines which of the data pages currently in the buffer pool
should be. repfuced. Buffer management becomes somewhat
more complicated when each transaction has a priority, as the
buffer demands of diiferent transactions can no longer be treated
equally. For example, when making the transaction admission
decision, the buffer manager may choose to deallocate buffers
from some low-priority transactions in order to allow a high-
priority transaction to begin execution. priorities may also be
considered when making replacement and allocation decisions.

The Global LRU buffer management algorithm [Effe84] is
simple and is the one most commonly implemented in commer-
cial database systems. The DBMIN algorithm [Chou85]. while
more difficult to implement, was shown to outperform Global
LRU as well as several more sophisticated algorithms (e.g., the
“Hot Set” algorithm [Sacc86]). The DBMBU algorithm thus
represents the sophisticated end of the buffer management algo-
rithm spectrum. while Global LRU represents the simple, com-
monly used end. Together. they provide a good pair of algo-
rithms into which the concept of priority may be introduced. In
this section, we present two priority buffer management algo-
rithms, the Priority -L&Y policy, based on Global LRU. and the
Priority -DBMIlV policy, based on DBMM. As this paper
focuses on a query-only environm~ both algorithms are
described here assuming no updates.2 Priority -LJW and
Priority-DBMN differ in their model of the information avail-
able to the buffer manager; as a consequence, the buffer pool is
organized differently in the two cases. We begin by defining
some terms that are needed to describe both algorithms. Then
for each priority-based algorithm. we review the basics of the ori-
ginal algorithm and describe our changes to the buffer pool
organization and the policies for transaction admission, buffer
replacement, and buffer allocation.

2.3.1. Detinitions and Assumptions
At any point in time, the transactions that have accessed a par-

ticular resident page (since it was last brought into memory) and
are still executing are called the users of the page. The owner of
the page is the transaction with the highest priority among the
users of that page. A page is free if does not have any users.
The buffer manager associates a global timestamp with each
resident page in order to keep track of the recency of usage of
pages. A global counter called buflequence is maintained to
assign timestamps to resident pages. The bufsequence counter is
initially set at 0 at system startup time. Each time the data in any

2Update-related buffer mmagwent issues (such as when to flush
dirty psges to the disk) are essentially orthogonal to the issue of priority-
based buffer management. Details of handling updates in a conventionat
DBMS buffer manager are discussed in [Chen84. Effe&l].

of the buffers is accessed, buj%quence is incremented and its
new value. is inserted as the timestury of the data page. Thus,
the larger the value of the timestamp of a page, the more recently
the page was accessed.

A transaction may be admitted to the system right away, or it
may be blocked initially by the transaction admission policy.
Gnce a transaction is allowed to begin execution, it continues
until it commits or until it is suspended. A transaction is said to
be suspended by the buffer manager if it is temporarily prohi-
bited from making further buffer requests; the buffers owned by
the transaction (except those that it has fixed) are freed. The
buffer manager considers reactivating suspended transactions at
the same decision point that it considers admitting blocked tran-
sactions, which is whenever a running transaction completes. A
reactivated transaction resumes its execution at the point where it
was suspended.

2.3.2. The Priority-LRU Algorithm
Global LRU [Effe84] is a buffer replacement policy based on

the assumption that there is a temporal locality of data references
in relational database operations. Thus, when a buffer frame is
required by a transaction, and no free frame is available, the
frame with the least recently accessed data (from among all the
frames in the buffer pool) should be selected for replacement.
The policy is global in that all the frames in the buffer pool are
treated according to a single criterion (recency of usage) for allo-
cation as well as for rephuzanen~ thus, there is no difference
between the policy used for replacement and the policy used for
allocation.

Priority-LRU Buffer Pool Organization
In Priority-LRU, our prioritized version of Global LRU, the

buffer pool is organized dynamically into priority levels in the
following way. At system startup time., all the buffer frames are
free. and are arranged in a free list. When a transaction with
priority P is allocated a frame from the free list, the frame is
inserted in an LRU queue of frames whose owners have priority
P . Thus, if thexe are tmnsactions having m different priority lev-
els at any given time, the buffer pool consists of m LRU queues
(one per pbrity level) and a free list. Figure 2.2 shows an exam-
ple of the organization of the buffer pool for Priority-LRU, there
are three priority levels. and thus three LRU queues, and there are
no free frames in this example. Priority increases as we move
from the bottom to the top of the figure, and the least recently
used page of each queue is in the rightmost frame.

Priority-LRU Transaction Admission
When a new transaction arrives at the DBMS, the buffer

manager has to decide whether to allow the transaction to begin
execution or not. The key idea in making the admission decision
is that, at the very least, every running transection must have
sufficient buffer space to hold all of the pages that it needs to fix
concurrently. Gtherwise, deadlocks may occur due to contention
for buffers. Thus, transactions are required to estimate the max-
imum number of pages that they will need to fix concurrently,
and the buffer manager keeps track of the sum of these “fixing

- 400 -

- hcreasin~ Recanc)r of use

Set of Possible
Replacement Victims

(bl)
Figure 2.2: Example of Priority-LRU Buffer Pool Organization.

requirements” for all active transactions. If admitting a newly
arrived transaction does not cause this sum to exceed the size of
the buffer pool, then the transaction is admitted. Otherwise, if
there are rtmning transactions of lower priority than the new
arrival, the one(s) with the lowest priority among them are
suspended until enough buffer space is available for the transac-
tion to be admitted.3

Priority-LRU Buffer Replacement and Allocation
As in the conventional Global LRU policy, the buffer alloca-

tion and replacement policies coincide in our algorithm. There
are two factors that must be weighed when choosing a victim
page for replacemenu the likelihood that it will be accessed
soon, and the priority of the transaction that will access it. These
two factors are modeled by the timestomp field associated with
resident pages and the use of the priority-based LRU queues for
buffer pool partitioning, respectively. Note that if priority and
recency of usage are the only factors used to choose a replace-
ment victim, then the victim will always be the least recently
used page of one of the LRU queues.4 Let us call the set of possi-
ble victims Pm.. In Figure 2.2, Pup” consists of the frames con-
taining the data pages Pl, P17. and P16.

The key i&a of the replacement policy is that the least
recently used page of the lowest priority should be chosen as the
victim, with the following caveat: the W, (for Wiiw of
Replacement) most recently accessed data pages should not be
chosen for replacement regardless of priority. W, is a threshold
parameter; by varying it, it is possible to vary the relative impor-
tance given to recency and priority when making replacement
decisions. Let m be the cardinality of PLRu, i.e., let there be m
LRU queues in the system. In order to 6nd a replacement victim,
we must look at a maximum of m candidates. We start the

‘Among multiple transactions of the same priority, older transac-
tions are favored over younger ones.

‘Also note that fued pages cannot be considered for replacement,
since this could lead to -ption of data. The admissions policy guaran-
tees that them will always be at least one unlixed replacement candidate.

search at the lowest priority queue, and check whether the
candidate’s timestamp falls inside the protected W, window. If it
does, we move up one priority level, and we repeat the process
until we have either found a victim or else exhausted the search.
If all the members of PIRu fall within the window, then the
default victim is simply the one with the lowest priority.

An example using Figure 2.2 illustrates the replacement pol-
icy. Let buJSt?qlrence , the global timestamp counter, be 100, and
let W, be 25. We start the search for a victim at Pl. the LRU
page of the lowest priority level. Since 10&71 > 25, Pl will be
chosen as the victim. If W, were 30, however, then Pl would
fall within the window; in this case, P17 would be chosen as the
victim instead.

2.3.3. The Priority-DBMIN Algorithm
As discussed in [Chou85]. the primitive operations (e.g.,

selections, joins) of transactions in a relational DBMS can be
described as a composition of a set of regular reference patterns
such as sequential scans and hierarchical index lookups. These
patterns are known to the query optimizer. The DBMIN buffer
management policy makes use of this information using the fol-
lowing key ideas:

(1)

(2)

(3)

(4)

Buffers should be allocated to transactions on a “per file
instanee” basis: i.e., since the pattern of accessing each file
used by a transaction can be diiferent, a diierent set of
buffers (called a ‘locality set”) should be allocated to a tran-
saction for each file that it opens.

For each file instance Fi. there is an optimum number of
buffers (OptBufsIFi) and an optimum replacement policy
(ReppolFi). As long as the number of buffers actually allo-
cated to file instance Fi is less than OptBufsFi, the admii-
sion policy (see (4)) guarantees that there will be at least one
free. buffer available for Fi; when the number of buffers
allocated to Fi is equal to Op~~~fsFi, RepPolFi is USIA to

choose a victim from Fi ‘s locality set when replacement is
required. Thus. the replacement policy in DBMIN is local
rather than global.

The query optimizer can inform the buffer manager of
OptBufsFi ad RepPolpi for each file instance Fi. The
buffer manager can then ensure that the maximum mimber
of buffers allocated to a file instance is OptbufsFi .

The buffer manager ensures that no transaction is allowed to
begin running unless it can be guaranteed to get the
optimum number of buffers for each of its file instances.

Priority-DBMIN Buffer Pool Organization
As in the original DBMIN algorithm, the buffer pool is organ-

ized into “locality sets,” where the data pages in each set are all
part of the same file instance and have the same owner. If a page
is accessed by more than one concurrent transaction, its owner is
the tmnsaction with the highest priority among them. Within a
locality se& pages are arranged according to the replacement pol-
icy prescribed by the optimizer. The buffer manager maintains
the sum of the OptBufs values for the running transactions of
each priority. Thus, for any priority P , it is easy to compute the

- 401 -

sum of the OptBufs values for all higher priority transactions that
are running.

Priority-DBMIN Transaction Admission

As discussed earlier, DBMIN relies heavily on its Transaction
Admission policy. When transactions have priorities, however,
the guarantee that any transaction allowed to run will always find
OptBufs buffers available must be made conditional as follows:
Let the combined size of the locality sets of a newly arrived tran-
saction T be OptEt&, and let its priority be PT. Let the sum of
the optimum sixes of the locality sets of running transactions with
priority 1 PT be OptBufsHtmm, and the sum of the optimum
sixes of the locality sets of transactions with priority < PT be
OptByfsLDw~~ . Then, if (N - OptBufHtG”m) 1 OptBufsT, where
N is the total number of buffers in the buffer pool, the buffer
manager will admit 2’. The idea is that if there are sufficient
buffers for all currently rurming transactions of priority Pr or
higher and for T itself, then T should be allowed into tbe system.
However, if (N - OptBufsHIwHER - OptBccfsmwm) < OptBufs*,
then some buffers may have to be deallocated from lower priority
transactions in order .to satisfy T’s buffer requirements. In this
case, the buffer manager will successively suspend transactions
(starting with the lowest priority) until there is room enough to
admitT.

Priority-DBMIN Buffer Replacement and Allocation

Buffer allocation and replacement are exactly the same as in
the original DBMIN algorithm.

3. MODELING A PRIORITY-ORIENTED DBMS

In this section, we describe our performance model of a
priority-oriented DBMS. The model, which we implemented
using the DeNet simulation language [Livn88]. consists of five
mmponents: the database itself, a Source, which generates the
workload of the system; a Query hfanuger. which models the
execution behavior of queries; a Resource Manager, which
models the CPU, MI, and buffer resources of the system; and a
Covlcwrency Control Manager. which implements the details of
a particular concurrency control algorithm. Smce we will be
using only read-only workloads here, we will not discuss the
Concurrency Control Manager further.

3.1. MODELING THE DATABASE

The database is modeled as a collection of relations. In turn
each relation is modeled as a collection of pages. In addition to
relations, the database model contains indices on relations. An
index may be either a clustered or a nonclustered B+ Tree. Table
3.1 summarizes the key parameters of the database model. The
number of relations in the database is NumRelatirms . For each
relation i (1 I i 5 NwnRelatim). RelSizei is the relation size in
pages, and It&&r determines whether or not the relation has an
index. If the relation is indexed, IndexTypei indicates whether
the index is clustered or non-clustered, and FanoWi indicates the
fanout of the internal nodes in the index (and thus determines the
number of levels of the B+ Tree).

r Parameter I Meaning
NumRelations I Number of relations in database

Table 3.1: Database Model Parameters.

3.2. THE SOURCE MODULE

The Source module is the component responsible for model-
ing the workload for the DBMS. Table 3.2 summarizes the key
parameters of the workload model. A query may belong to any
one of NwnCkses classes, and it may have any one of
NumPriorities priority levels. The model is that of an open sys-
tem, and the arrival rate of queries of every <class, priority>
combination is controlled by a matrix of arrival rates called
ArrRate . The arrival of queries of each <class, priority> combi-
nation is a Poisson process. Among the per-class parameters is
Q~@ypei. which indicates the query type for the class.
Currently, only single-relation select queries and two-relation
select-join queries are supported, the model supports selections
performed via sequential relation scans, selections performed
using either clustered or nonclustered indices, and selections of
any of these types followed by a join (which can be either a
nested loops join or an index join). Queries are modeled at a log-
ical level because one of the algorithms of interest to us is
Priority-DBMIN. which makes use of the logical sequencing of
the page accesses of a query. Since the looping behavior of
queries can affect buffer bit ratios significantly, the particular
query types supported were chosen to provide queries both with
and without looping in theii page access behavior.

For each query type i , a query plan is provided in the form of
a set of parameters. For a join query, JoinMethodi indicates the
join algorithm (nested loops or indexed join), and Imri and
Olcteri indicate which relation is the inner relation and which is
the outer. For each relation j accessed by query i , AcCewWPothii

Parameter 1 Meaninn
Overall Arrival Pattern Parameters

NumCXasses Number of query classes
NumPriorities Number of query priority levels
ArrRateq Mean exponential arrival rates of queries

of class i and priority level j
Per-Class Parwneters (lli <_NwnClasses)

Qw&%ei Type of query. e.g., select or select-join
JoiruUetW. Join algorithm used
OUteri Outer relation
IWlWi Inner relation
AccessPathii Access path used to access j th relation
S&CtiVi&j Fraction of jth relation selected
I?ldexPageCPUi CPU time for processing an index page
DOraPageCPUi CPU time for processing a data page

Table 3.2: Workload Model Parameters.

- 402 -

indicates the access method used (e.g., a clustered index scan or a
sequential scan). In selections, Sefecti&yij indicates the propor-
tion of relation j’s data that satisfies the selection criterion of
query i. We assume a uniform probability of access to all data
pages within each relation. The per-class parameter
InderPUgeCPUi specifies the expected amount of CPU process-
ing squired per index page, and the parameter DotaPa&PiJi
specifies the expected amount of CPU processing required per
data page of each relation accessed for query type i . (The actual
CPU processing times per page are exponentially distributed.)

Given a query plan, the Source module generates a list of
page accesses that models the sequence in which pages will be
accessed by the query. For example, in a selection using a
clustered index, the Source uses the selectivity parameter and the
size of the target relation to generate a list of page accesses that
start at the root of the index, traverse the index to the leaf level,
and then access a sequence of index leaf pages and corresponding
data pages. In addition to generating a lit of page accesses, the
Source module also provides information on the number of local-
ity sets, the optimum number of buffers for each set, and the
optimal replacement policy (such as MRU or LRU) for each
locality set. The maximum mnnber of concurrently lixed pages is
similarly provided. Thii information can be used by the buffer
manager. As discussed shortly, the Source must interact with the
Resource Manager to determine whether a query is allowed to
enter the system right away or whether it has to wait until
sufficient buff& become available.

3.3. THE QUERY MANAGER MODULE

The Query Manager is responsible for accepting queries from
the Source and modeling their execution. For each page accessed
by the query, the Query Manager sends a read request to the
Resource Manager the Resource Manager informs the Query
Manager when the read request is completed. The Resource
Manager aLso informs the Query Manager when a query is
suspended or reactivated. When the Resource Manager decides
to reactivate a suspended query, the Query Manager ensures that
the reactivated query resumes execution at the point where it was
SUSpended.

3.4. THE RESOURCE MANAGER MODULE

The Resource Manager controls the physical resources of the
DBMS, including the CPU, the disk, and the buffer pool in main
memory. Two versions of the Resource Manager have been
implemented, supporting the Priority-LRU and Priority-DBMIN
buffer management algorithms, respectively. In addition, the
model allows priority to be. switched on and off at each resource
of interest, i.e., at the CPU, the disk, and the buffer pool.
(“Switching off’ priority at a resource means that all of its service
requests are treated as being of equal priority.) The parameters of
the Resource Manager are summarized in Table 3.3. CPUPrio ,
DiskPrio. and EufirPrio are the parameters used to switch
priority on and off for the various resources.

CPU and Disk Models

The DBMS has one CPU, which is scheduled using the
priority-based round-robin algorithm described in Section 2. The
length of each CPU request from a query is its per-page CPU pro-
cessing time, and each query voluntarily gives up the CPU after
processing one page. There is one disk in the system, with
requests being scheduled according to the prioritized elevator
algorithm of Section 2. Each disk request requires access to one
page. The track number of a disk request is chosen at random
from among NumTracks tracks (i.e., we model the data as being
uniformly distributed across all tracks). The total time required to
complete a disk access is computed as the sum of its seek time,
rotational latency, and transfer time components. The rotational
latency and transfer time are together modeled as a single param-
eter called DisbZonst . The seek time for seeking across n tracks
is computed using the formula:

Seek Tie(n) = SeekFactor *G

SeekFactor is specified as a parameter. This square-root rela-
tionship between seek time and seek distance is based on the dii-
cussion of current disk technology in [Bitt88].

Buffer Manager Models

The buffer manager component of the resource manager
encapsulates the details of the buffer management scheme
employed by the DBMS. It maintains information about resident
pages, and it uses the information provided by the Source module
to decide when to allow queries to enter the system. The Num-
B@ers parameter specifies the number of page frames available
in the buffer pool. The Priority-LRU and Priority-DBMIN algo-
rithms are each represented by a different buffer manager model,
and the Priority-LRU model has an additional parameter WR that
it uses to balance priority and recency when making replacement
decisions. In order to simplify the implementation, we decided
not to model fixing and unfixing explicitly. However, we do
model their effects on query admission decisions in Priority-LRU
(in the manner described in Section 2).

4. EXPERIMENTS AND RESULTS

In this sectia we present performance results for the
priority-oriented DBMS resource schedulmg algorithms
described earlier. Our goal is to analyze the relative importance

c

Parameter I Meanintz
CPVPrio I Switch to turn priority on/off at CPU

Switch to turn priority on/off at disk
I

DiSkPdO
BufferPrio Switch to turn priority on/off at buffer pool
NWlT~oCkS Number of tracks per disk
Diskfotst Sum of rotational and transfer delays
Seekhcfor Factor relating seek time to seek distance
NumBuffers Number of buffer frames in buffer pool
Wff Window of timestamps used when choosing

a replacement victim in Priority-LRU

Table 3.3: Parameters of the Resource Manager.

- 403 -

of priority scheduling at each of the various resources and to
understand the interaction between them. In order to simplify the
analysis, we consider just two priority levels (“low” versus “high”
priority) in the 6rst four experiments presented here. An experi-
ment with four priority levels is also included at the end of this
section. Depending on the nature of the workload, any of the
physical resources of a DBMS (e.g., the CPU, the disks, or the
buffer pool) may become the bottleneck. Together, our experi-
ments cover each of these possibilities.

4.1. Performance Metrics
As discussed earlier, we use an open queuing system to model

the DBMS. Response time will thus be the primary performance
metric of interest in this study. In particular, we will examine the
average response time for queries at each priority level in the
workload. Since OM performance objective is to provide high
priority queries with a preemptive-resume view of the DBMS, we
will focus most of our attention on the response time for high
priority queries. Two important issues regarding the response
time for these queries will be the range over which the system is
stable for them and the extent to which the system is able to meet
our preemptive-resume performance goal.

Note that in a priority-oriented DBMS, the system can remain
stable for high-priority queries long after the a&al rate has
bewme high enough to make the system unstable for low-priority
querie.s. This is because more and more of the system’s resources
are devoted to high-priority queries as the overall load on the sys-
tem increases. Thus, there are two regions of operation in each of
our experiments. In the iirst region. the system is stable for both
high priority and low priority queries. In the second region, the
system has become unstable for low-priority queries, but contin-
ues to be stable for high-priority queries. Consequently, we
present response time results foi low-priority and high-priority
queries (in their stable regions) separately for each experiment.

A query’s response time is wm uted by subtracting the time
at which the query completes from fil e time at which it was sub-
mitted to the DBMS. As discussed in Section 1, the response
time of a query can be broken down into the following wm-
portents:

TR =Tw_arr +Tw-CPU +Ts_cpu +~D~~K*~T~JHK +&-DISK)
We measured each of these components separately in our experi-
ments in order to aid us in analyzing the results.

ln order to obtain a statistically significant sample of query
response times, each experiment was run long enough for a total
of 4000 high-priority queries to complete. (The number of low-
priority query completions varied with the load.) Other informa-
tion was also gathered in the wurse of each simulation, includmg
the utilization of the CPUs and disks, the average seek time per
disk access, and the average number of queries of each priority
level nmning concurnzntly.

4.2. Parameter Settings
We first present the parameters that were kept wnstant across

all w~kloads. These parameters are listed in Table 4.1. We then
describe our representative workloads and the parameter settings

Parameter Setting
NumRelations 40
RelSizei 1000 pages, 500 pages, 6 pages, 3 pages

(10 relations of each size)
Indexed{ YES (lOOO-page 8c 500-page relations)

NO (6-page Jc 3-page relations)
InderTypei Clustered (lOOO-page & 5O@page relations)
Fanout; 20 (lOOO-page & 500~page relations)
NumTrack-s loo0
DiskConst 15ms
SeekFactor 0.6 ms
NumLhff~s 50

(w, 10

Table 4.1: Workload-Independent Parameter Settings.

that changed with each workload.

Workload-Independent Parameters
The database is modeled as a collection of 40 relations. We

use four different relation sizes in our experiments - 1000
pages, 500 pages, 6 pages, and 3 pages - with the database wn-
taining 10 relations of each size. The lOOO-page and 500-page
relations each have a clustered index availabie, while the smaller
relations are not indexed at all. The disk has 1000 tracks, and the
sum of the rotational latency and the transfer time per diik access
is 15 milliseconds. The factor relating seek distance to seek time
is 0.6 millisecotis, so the expected diik access time is between
15 and 30 milliseconds. There are 50 buffer frames in the buffer
pool. The WR parameter used in the Priority-LRU algorithm is
set to 10, as this value was found to work well for the range of
workloads considered. (For the w~kloads studied here, the sys-
tem turns out not to be very sensitive to WR .)

The model’s switches for determining whether M not priori-
ties are used for scheduling at the CPU, the disk, and the buffer
pool will be tumed off and on as part of each experiment. In the
description of the. results. the following notation will be used to
identify the resources where priority scheduling is turned on: the
letters B , C , and D refer to the buffer manager, the CPU. and the
diik respectively, while the subscripts YES and NO refer to
priority being hurted on and off respectively. For example, the
label BYES Cr, DNo refers to an experiment where priority is
turned on at the buffer manager and at the CPU, but is turned off
at the disk.

Workload Parameter Settings
Four different query workloads are employed in our five

experiments. Each workload consists of arrival streams of a sin-
gle query type, but at different levels of priority; in all of the
experiments reported here, the arrival rates for each of the prior-
ity levels will be equal. The parameters used to generate the four
workloads are listed in Table 4.2. The first three workloads

these values for determining disk access times were chosen based
on [Bit&?. Gray89].

- 404 -

ImkxPageCPU 15ms 2m.s
DataPageCPU 15 ms 2ms
Page Accesses 23 23
Locality Set Sizes 1. L3 1. 1.3
index outer inner

SC lctivity I
IndexPa~eCPU
DataPageCPU
Page Accesses

I2ms I5ms
I 38 1 13

~!
Table 4.2: Workload Parameter Settings.

consist of select-join queries, with the result of a selection using a
clustered index on a 500-page outer relation being joined to a
smaller inner relation; the fourth workload consists of a clustered
index selection on a lOOO-page relation. For each relation
accessed by a query, the actual relation accessed was chosen uni-
formly from among the 10 relations of that size, so there is not
much data sharing in the system. To aid in understanding the
nature of the workloads, Table 4.2 also includes the total number
of page accesses for each query type. In addition, it lists the
optimum locality set sixes and replacement policies for Priority-
DBMIN, and it lists the query fixing requirements for Priority-
LRU.

4.3. Experiment I (Admission Control)

In this experiment, we investigate the impact of priority
scheduling on performance under the Type I workload. This
workload consists of a mix of CPU-intensive, indexed-
select/nested-loops-join queries. In fact, given the Type I

parameter settings, the disk utilization is only about 65% when
the CPU is fully utilized, so the presence or absence of priority-
based disk scheduling has no effect on performance. Thus, the
priority scheduling combinations studied here are those with and
without CPU and buffering priority (i.e., B,,&oD,,
BNCICYESDYET, BYEFCNODYES, md&EsCymDyEs).

Figure 4.1 shows the response time results for high priority
queries using the Priority-DBMIN buffering algorithm, and Fig-
ure 4.2 shows the correspondiig results for low priority queries.
The arrival rate axis of these figures indicates the combined
arrival rate of both priority levels. The arrival rates for the two
priority levels are equal, so the arrival rate for each of the levels
is half of this total rate. In addition to the curves showing the
high priority response times for the four scheduling combina-
tions, Figure 4.1 also includes a curve labeled HP0 (for High-
Priority Only) that indicates what the high priority response times
would be if no low priority queries were arriving. This curve will
help us evaluate how successful we are at getting the DBMS to
treat high priority queries lie a preemptive-resume server
should, the better we do at approximating thii curve, the closer
we are to meeting this design goal. Figure 4.2 contains a similar
curve (labeled LPO) that shows how the system would perform
with low priority queries only, indicating the extent to which low
priority queries suffer due to competition from high priority
queries. Despite the fact that the system is CPU-bound, Figures
4.1 and 4.2 show that the use of priority in the buffer manager is
extremely important. Without priority in the buffer manager, the
system saturates at an arrival rate of about three queries per
second for both low and high priority queries. With priority,
however. the system is stable for high priority queries until the
arrival rate reaches about six queries per second. These differ-
ences, as we will see, are due to the use of priority in the
Priority-DBMM admission control policy.

To understand why admission control has such an effect, let
us consider how priority affects the view that queries of each
priority have of a given resource. Arriving low priority queries
see a resource containing other queries of both low and high
priority. This view is the same whether or not priority scheduling
is employed at the resource, although the quality of service that
low priority queries receive is affected by the scheduling policy.
This is consistent with Figure 4.2, which shows that low priority
query performance is affected only slightly by the presence or
absence of priority scheduling. The system always saturates at
the same point from the perspective of low priority queries. High
priority queries get the same view of a resource as low priority
queries if it is not scheduled using priority. This explains why,
when the buffer manager does not use priority to control admii-
sion in Figure 4.1 (in the BNo curves), the system saturates at
three queries per second for high priority queries. In this case the
saturated “resource” is the DBMS itself, and if priority is not used
for admission control, the external waiting time for high priority
queries is limited by the response time of low priority queries.
However, when the buffer manager’s admission policy does
favor high priority queries, the DBMS admits them preferentially
and even suspends low priority queries in their favor. In this
case, they see only other high priority queries in the system so
they essentially see only half of the actual system load. This

- 405 -

nNO ho D,
o--9

BNO Cm D,
b-4

Bmssm 4z.s

10. ho Go hs
e-4 0

9. B~ocmDrm ’
BNO cm Drn

c-4 Bm cNO 4-a ib I ’ - I’ ,’
HP0 II .--*

‘I

hi&s Dm
LPO = 6.

T
A 5.
0
’ : 4.

‘ 3.

:
2.

1.

.--4

gure4.2 TypeI: LowPriority. Figure4.3: TypeI: HighRimity.
(Priority-DBMIN) (Priority-LRU)

ore 4.1: Type I: High Priority. 1
(Priority-DBMIN)

BNo-crg DNO

.

T I

A
c

: ;

:
E

1

(-010 310 Anivrl &&.-9“ 120

Figure 4.4: Number of Concurrent
Queries.

Figure 4.5: Type II: High Priority. Figure 4.6: Type II: Low Priority.
(Priority-DBMIN) (Priority-DBMIN)

7-

6.

R

: 5.

!

t 4.

T

2 3.
i
”

:
2.

E

1.

lr HP0

OJ 1
0.0 3.0

htid I&!!j”
120

Figure 4.7: Type I[: High Priority.
(Priority-LRU)

0.0 3.0 6.0 9.0 120
Anivd Rmc @lai~hr)

Figure 4.8: Mean Disk Access Times.

- 40F

explains why the system remains stable twice as long for high
priority queries under Priority-DBMIN.

Another interesting feature of Figure 4.1 is how priority
scheduling at the CPU affects the response time for high priority
queries under Priority-DBMIN. With priority used in the buffer
manager but not at the CPU (i.e., the ErEFCNo DyET curve), high
priority response time is similar to low priority response time
until the system saturates for low priority queries. After this
point, the response time is stable for a while as more and more
low priority queries are suspended due to high priority arrivals.
That is, the buffer manager has already admitted as many queries
as it can, so all it can do in this range is trade low priority queries
for high priority ones. Since the workload is CPU-bound, the
load that high priority queries see does not change in this range if
CPU scheduling is not priority-based. The CPU eventually
becomes saturated with high priority queries alone (at an arrival
rate of six queries per second, which is three high priority queries
per second). However, when CPU scheduling is also priority-
based in Figure 4.1 (i.e., the l&~Cy~Dy~ curve), we see a dif-
ferent trend. Here, the high priority response time behavior is
very close to that of the HP0 curve; recall that this curve shows
the response time behavior without low priority queries. Thii
indicates that priority scheduling at the CPU is succeeding at
shielding the high priority queries from the low priority queries
(i.e., giving them the impression of being the only queries in the
system). Thus, a combination of Priority-DBMlN and priority
CPU scheduling indeed gives high priority queries a preemptive-
resume-like view of the DBMS.

Figure 4.3 shows the response time results for high priority
queries using the Priority-LRU buffering algorithm, we do not
show the low priority query results, as they are very similar to
those for Priority-DBMIN in Figure 4.2. The Priority-LRU
trends in Figure 4.3 are quite similar to those that we saw in Fig-
ure 4.1, and the explanation of the trends are the same here. The
main difference between the Priority-LRU and Priority-DBMIN
results is that priority CPU scheduling is more critical for
Priority-LRU. The two algorithms perform almost identically
when priority scheduling is used everywhere (extiept at the
highest loads, where Priority-DBMIN is marginally better).
However, when CPU scheduling is not priority-based, high prior-
ity queries suffer more under the Priority-LRU algorithm. This is
due to the difference between the admission control policies of
the two algorithms. Since the Priority-DBMIN policy is more
conservative, it admits fewer queries than Priority-LRU does.
This is evident in Figure 4.4, which shows the number of con-
current queries (both high priority and total) inside the system as
opposed to waiting outside, under the two buffer management
algorithms. Priority scheduling at the CPU changes the number
of competing queries seen by high priority queries from being the
total number in the system to being just the high priority number,
which is a bigger change in the Priority-LRU case. The general
Priority-LRU conclusions are the same, though: priority is
needed both in the buffer manager (for priority-based admissions
control) and at the CPU in order to achieve the HP0 performance
objective for high priority queries.

4.4. Experiment II (Disk Priority)
In our second experiment, we focus on the impact and trade-

offs involved in priority scheduling at the disk Here we use the
Type II workload, which is just like the Type I workload except
that the per-page CPU time for queries is now just 2 milliseconds
instead of 15 milliseconds. Thus, the workload consists of a mix
of I/O-intensive, indexed-select/nested-loops-join queries. With
this workload, the CPU utilization is approximately 35% when
the disk becomes 100% utilized, so the presence or absence of
priority-based CPU scheduling has no effect here. Thus, we
examine situations with priority scheduling at the disk and the
buffer manager (i.e., BNO CYESDNO 9 BNO CY, DYEF .
BY.~GEsDNO. and BYEKYEFDYES).

Figure 4.5 shows the response time results for high priority
queries using Priority-DBMIN. and Figure 4.6 shows the
corresponding results for low priority queries. Figure 4.7
presents the high priority query response time results for
Priority-LRU; again, the low priority results for Priority-LRU
were very much like those of Priority-DBMIN. so we omit them
here. Figure 4.8 shows the mean diik access times for Priority-
DBMIN and Priority-LRU with and without priority-based disk
scheduling (for the two cases Bra Crm DNO and BrmCm DyEF).
For the most part, Figures 4.54.7 display the same trends that we
saw in Figures 4.14.3. and they do so for the same reasons
(albeit with a different bottleneck resource). Again, it is evident
that priority must be incorporated in the buffer manager as well
as the bottleneck resource. (the disk) in order to provide the
desired level of performance for high priority queries; and again
priority scheduling of the bottleneck resource is more important
for Priority-LRU because of its less effective admission control
policy. However, there are also several other interesting points to
be noted from this experiment.

The first point to notice is that in Figure 4.6, unlike Figure
4.2, low priority queries clearly suffer performance-wise due to
priority-based scheduling of the bottleneck resource (the disk in
this case). This is due to the fact that, in the range where they
suffer, priority scheduling has reduced the service capacity of the
disk by increasing the mean disk access time (as shown in Figure
4.8). Combined with large waiting times, which are in excess of
eight times larger than those for high priority queries, thii pro-
duces earlier response. time degradation for low priority queries.
In contrast, high priority response time is again close to that of
the HP0 curve when priority scheduling is used everywhere,
indicating that high priority queries are largely unaffected by the
somewhat increased mean disk access time. Thii is because this
increase is more than offset by the decrease in diik waiting times
that priority-based disk scheduling produces for the high priority
queries. Put another way, there is a price to be paid for doing
disk scheduling based on priority, but it is the low priority queries
that pay the pice.

Another interesting observation can be made from Figure 4.8.
At low arrival rates, where the disk load is low, there is no
penalty for priority-based disk scheduling. This is because there
is little or no queuing for the diik in this region. However, there
is also no penalty at the highest arrival rates. The explanation is
different in this case. Here., the reason that priority scheduling is

- 407 -

able to do as well as the strict elevator algorithm is that it, too,
effectively becomes the elevator algorithm, the disk is so heavily
loaded due to high priority requests that it is kept busy serving
their elevator queue. In the middle range of arrival rates, where
there is a mean disk access time penalty, the benefits of priority
scheduling far outweigh the penalty for high priority queries, as
described above. Thus, priority-based disk scheduling appears to
be very worthwhile for a priority-based DBMS.

4.5. Experiment III (Buffer Priority)
In our third experiment, we focus on the relative behavior of

the DBMIN-based and LRU-based approaches to buffer manage-
ment. Here we use the Type III workload, which is similar N the
Type II workload but with an inner relation that is twice as large
as before. Thus, the queries in the workload have a more
significant looping behavior here. Again, we focus our attention
on priority scheduling at the disk and in the buffer manager.

Figure 4.9 shows the response time results for high priority
queries using Priority-DBMIH. and Figure 4.10 shows the
corresponding results for low priority queries. The trends here
are basically those of Experiment II, but the absolute perfor-
mance is different due to the larger query size. The only apparent
relative difference is that priority disk scheduling leads to some-
what less of an improvement in the high priority response time
when buffering priority is used. Thii is because the bottleneck
here is actually buffer space; the disk utilization never exceeds
90% because the admission control policy is unable to allow
enough queries into the system to saturate the disk.

Figure 4.11 presents the high priority query response time
results for Priority-LRU, as always, the low priority results for
Priority-LRU are virtually identical to those for Priority-DBMIN,
so we do not show them. For the high priority queries, we see
significantly different behavior for Priority-LRU here (relative to
Priority-DBMIN) than that observed in previous experiments,
especially without diik priority scheduling. The difference is a
consequence of the admission control policies of the two algo-
rithms. As was shown in [Chou85]. the information-based
admission controller of the basic DBMIN algorithm can
significantly reduce thrashing relative to the basic LRU algo-
rithm, and the same is (of course) true of our priority-based ver-
sions of these algorithms. Figure 4.12 shows the buffer pool hit
ratio for high priority queries under both the Priority-DBMIN and
Priority-LRU algorithms. The hit ratio for Priority-LRU drops
significantly where the high priority response times increase in
Figure 4.11, indicating that this is indeed the problem. This
thrashing is due to the fact that Priority-LRU admits too many
high priority queries, which leads them to take buffers from one
another since the nlrmber of available low priority buffers is
insufficient. The result is especially drastic without priority at the
disk. The low priority queries in the system have extremely low
hit ratios, as their buffers are consistently chosen as replacement
victims for high priority queries; this causes them to generate
many more disk requests than they would under the carefully
controlled Priority-DBMIN policy. Without priority at the disk,
this volume of requests generates much more diik traffic for high
priority queries to contend with, increasing their response times.

Buffering priority alone is thus not enough to ensure stability for
high priority queries in this workload under Priority-LRU.

4.6. Experiment IV (Minimal Buffer Contention)
In our hal two-priority experimenb we investigate the per-

formance of the priority-based scheduling algorithms for a work-
load where buffer contention is not a significant factor. Here we
use the Type IV workload, which consists of indexed-selection
queries with no looping behavior. The Type IV workload is I/O-
bound due to its 5 millisecond page CPU time and lack of loop-
ing behavior, so we again focus on priority scheduling at the disk
and in the buffer manager.

Figure 4.13 shows the response time results for high priority
queries using Priority-DBMIN, and Figure 4.14 shows these
results for Priority-LRU. We omit the low priority results, as
they are qualitatively the same as in Experiments II and III. The
main things to observe here are the impact of priority-based
management of the diik and buffer resources on the performance
of high priority queries. Since buffer contention is a non-issue
under this workload, the Priority-DBMIN and Priority-LRU algo-
rithms perform Pretty much identically. However, they are still
essential: without a priority-based buffer management algorithm
(for priority-based admiision control), the system satllratea for
high-priority queries at 4.5 queries per secoruh with priority in
the buffer manager, the saturation point is extended to nine
queries per second. Likewise, priority disk scheduling is crucial
for good performance here. This is because the workload is I/C
bound and buffer hits are rather rare.

4.7. Experiment V (Four Priorities)
In the. last experiment of the paper, we briefly examine the

performance of the priority-based scheduling algorithms for a
workload consisting of four levels of priority. We reNm to the
Type III (buffer-intensive, I/O bound) queries for this experi-
ment. Here we look only at how queries of the diiferent priority
levels perform when priority is employed everywhere (i.e. at the
CPU scheduler, the disk scheduler, and the buffer manager).

Figure 4.15 shows the query response time results for the four
priority levels under Priority-DBMIN, and Figure 4.16 shows the
results for the Priority-LRU algorithm. The observed trends are
what we would expect based on the results of our earlier experi-
ments. First, the system succeeds at providing preemptive-
resume-like performance, as the highest priority query response
times are quite close to the HP0 curves. Second, the saturation
points are not linearly distributed over the range of arrival rates.
This is because of the system view that priority scheduling pro-
vides to the different priority levels: the highest priority queries
see only themselves (i.e., one-fourth of the load), queries at the
second-highest priority see themselves and the highest priority
queries (i.e., one--half of the load), the second-lowest priority
queries see the top three levels (i.e., three-fourths of the load),
and the lowest priority queries see the entire query load as com-
petition for system resources. Finally, as in Experiment III,
Priority-DBMIN provides somewhat better performance than
Priority-LRU here, as the workload is one where buffer manage-
ment has a significant role to play in determining performance.

- 408 -

6 1 BNO =YES DNO
6 e*

c I BNO-~YT DYES i

0.0 15 A&f&) 7.5 9.0

Figure4.9: TypeITk HighPriority.
(Priority-DBhW)

0.11 -

! O6
0
r
Y OA.

:

?

i
0 0.2.

6

OC -
0.0 1.5 ?&l-45.&.& 75 9.0

Figure4.10: Type IIIz Low Priority.
(Priority-DBMIN)

e 4
i
n 3 1

. .
Figure 4.12 Buffer Hit Ratio.

(High prioriry)
Figure 4.13: Type IV: High priority.

(Riority-DBMINl

“-_~.
0.0 111 A&&&&) 7:s 9.0

Figure 4.14: Type IV: High Riority.

(priority-LRU)
10

9
1

c-0 RiaiIylBor)

crMaily2

10

1 T

- PhkyltL&

9 nFtidly2
- Ftety’

f’ -Ridy’
- FditY4W)

!’

. .--a HP0

I 6.

:
Ii

5.

o 4.
i
n 3.

:
c 2.

1.

.o 4.0 ,*&?A 160

Fig- 4.15: Four Priorit’)f Levels
(Priority-DBMIN)

.--a

O. 0.0 15 & ,& .6-p) 9.0

Figure 4.11: Type IJIz High F%iority.
(priority-LRU)

lo Bm,CmDNo 1 o-4
9.

5”

f’
s 6.

; s-
:
o 4-
i
n 3.
:
0 2.

BNO =YB DYES

n
. 6.

i 5.
m
e 4.
i
n 3.
I
: 2.

01
0.0 4.0 mb;&&&y 16.0

Figure 4.16: Four Priority Levels
(Priority-LBU)

- 409 -

5. CONCLUSIONS AND FUTURE WORK

This paper has examined the problem of priority scheduling in
a database management system. First, the architectural conse-
quences of adding priority to a DBMS were investigated, given
the importance of effectively scheduling the multiple, hetero-
geneous resources of such a system. Several concrete. priority-
based algorithms were then proposed for managing DBMS
resources, including a priority-based disk scheduling algorithm
and two algorithms for priority-based buffer management. The
proposed disk scheduling algorithm is a priority-based variant of
the elevator algorithm, and the two buffer management proposals
are extensions of the LRU and DBMJN algorithms.

JII addition to suggesting approaches to DBMS priority
scheduling, we studied their performance through simulation and
obtained a number of interesting performance insights. Using
preemptive-resume as our model of desirable priority scheduling
behavior. we found that it is indeed possible to do a good job of
priority scheduling in a DBMS context. However, our simulation
results indicate that the objectives of priority scheduling cannot
be met by a single priority-based scheduler. Rather, whether the
system bottleneck is the CPU or the disk, it is essential that prior-
ity scheduling on the critical resource be used in conjunction with
a priority-based buffer management algorithm. Between our two
proposed algorithms, we found that Priority-DBMJN dominates
Priority-LRU in cases where buffer contention is a factor. When
buffer contention is not a key factor, either algorithm is sufficient
to enable the system to achieve its performance goals.

We view this work as a first step, with a number of interesting
problems and opportunities for future work remaining. First, in
the area of algorithm design. there are a number of alternative
&sign decisions that we could have made differently in the
Priority-DBMJN and priority-LRU algorithms; we plan to study
these design tradeoffs carefully in the future. Second, our perfor-
mance study focused on a read-only workload. While we believe
that allowing high priority queries to be update queries would not
alter our conclusions sign%cantly, we do need to examine the
interaction of lower priority updates and the admission control
policy. Gne issue here is that suspending an update query and
replacing its pages will carry the vice of writing its updates to
disk. A related issue is the impact of suspending queries that
hold locks; restarts might be superior to suspensions in such
situations. Finally. at a higher level. we plan to study how prior-
ity can be used as a means to meeting performance goals in a
DBMS context. In particular, we plan to study the problem of
mapping soft real-time constraints into priorities in such a way as
to minimize missed deadlines.

REFERENCES

[AbbofB] Abbott, R.. and Garcia-Molina, H.. “Scheduling Real-
Time Transactions: A Performance Evaluation,” Proc. 14th
VLDB Cmf., Las Angeles, CA, Aug. 1988.

[sitt88] Bitton, D., and Gray. J., “Disk Shadowing,” Proc. 14th
VLDB Conf., L.os Angeles, CA, Aug. 1988.

IBIas Blasgen. M., et al, “The Convoy phenomenon,” Operat-
ing Sys. Rev. 13(2), April 1979.

[Buch89] Buchmann. A., et al. ‘Tie-Critical Database Schedul-
ing: A Framework for Integrating Real-Tie Scheduling and
Concurrency Control,” Proc. 5th Dota Eng. Co& Los Angeles.
CA, Feb. 1989.

[Ch185] Chang. H.-Y., and Livny. M.. “Priority in Distributed
Systems,” Proc. IEEE Real-Tbne Sys. Symp.. Dec. 1985.

[ChpnS’l] Chang. H.-Y., Dynamic Scheduling Algorithms for
Distributed Soft Real-Time Systems, Ph.D. Thesis, Comp. Sci.
Dept., Univ. of Wisconsin-Madison, Sept. 1987.

[Chen&l] Cheng. J.. et al, ‘IBM Database 2 Performance:
Design, Implementation, and Tuning,” IBM Sys. J. 23(2), 1984.

[Chot&] Chou, H-T., and Dewitt, D., “An Evaluation of Buffer
Management Strategies for Relational Database Systems,” Proc.
11th VLDB Con& Stockholm, Sweden, Aug. 1985.

[CoN68] Coffinan, E.. and KXnrock, L., “Computer Scheduling
Methods end Their Countermeasures,” Proc. AFIPS Spring Joint
COOQ. Con,C. April 1968.

[DayaS] Dayal. U.. et al. “HiPAC: A Research Project in
Active, Time-Constrained Database Management,” Technical
Report CCA-88-02. Computer Corporation of America, Boston,
June 1988.

[EfTe84] Effelsberg. W.. and Haerder. T.. “Rinciples of Database
Buffer Management.” ACM Trans. on Databose Sys. 9(4), Dec.
1984.

[Gray891 Gray, J.. personal commmunication.

[Jens86l Jensen, E. D., Locke, C. D.. and Tokuda, H.. “A Tiie-
Driven Scheduling Model for Real-Time Operating Systems,”
Proc. 1EEE Real-Time Sys. Synlp.. Dec. 1986.

[wlei76] Kleinrock, L., &cueing System, John Wiley and Sons,
1976.

[Livn88] Livny. M.. Dehkt User’s Guide, Version 1.0. Computer
Sciences Dept., Univ. of Wiiconsin. Madison, 1988.

[Pete&i] Peterson 3.. and Silberschatx, A., Operating Systems
Concepts, Addison-Wesley, 1986.

[SIGMSSJ SIGMOD Record 17(l). Special Issue on Real-Tie
Data Base Systems, S. Son, ed.. March 1988.

[Sacc86] Sacco. GM.. and Schkolnick, M.. “Buffer Management
in Relational Database Systems,” ACM Trms. on Dot&se Sys.,
1 l(4), Dec. 1986.

[Stan88] Stankovic. J.. “Miiconceptions About Real-Tie Com-
puting: A Serious Problem for Next-Generation Systems,” IEEE
Computer 21(10), Oct. 1988.

fleor72] Teorey. T.. and Pinkerton, T.. “A Comparative
Analysis of Disk Scheduling Policies,” Comm. ACM 15(3),
March 1972.

[Wede86] Wedekind, H.. and Zoemtlein, G.. “Prefetching in
Realtime Database Applications,” Proc. 1986 SIGMOD Conf.,
Washington, D.C., June 1986.

- 410 -

