
The 02 Object Manager: an Overview 

Fernando Velez, Guy Bernard and Vineeta Darnis 
Alta’ir BP 10’5, 78153 Le Chesnay Cedex France 

Abstract 

02 is the Object-Oriented Database System being 
developed at Alta’ir. The 02 Object Manager is the 
layer of the system concerned with complex object ac- 
cess and manipulation, transaction management, per- 
sistence and disk management., and distribution in the 
server/workstation configuration. This paper describes 
the main choices made in the design of the Object Man- 
ager, and presents its overall architecture. 

1 Introduction 

‘The major objective of Altdir is to build a new genera- 
tion development environment for data intensive appli- 
cations. The functionality of the system should include 
that of a DBMS, of a programming language, and of 
a programming environment. The target applications of 
the system are business applications, transactional appli- 
cations (except very high performance. transaction pro- 
cessing systems), office automation, and multimedia ap- 
plications. The physical configuration we aim at, consists 
of a server connected to a set of workstations (which vay 
be heterogeneous). The server is the common repository 
for shared data. The target customers are application 
programmers and end users. Our main interest is in 
application programmers, since we consider the major 
problem to be the improvement of programmer produc- 
tivity. 

To meet these requirements, we decided to build an 
object-oriented database system and its programming 
environment. q2 is both a Database System and an 
Object-Oriented System. As a Database System it pro- 
vides support for accessing and updating large amounts 
of persistent, reliable, and shared data. As an Object- 
Oriented system, it supports features such as complex 
objects with identity, inheritance (of classes or types), 
encapsulation (of an object state by the methods defined 
on its class), overriding (redefining methods in classes), 
and run-time binding of methods to objects. Our inter- 
pretation of these notions are condensed in the definition 
of the 02 data model [22], [21]. Section 2 presents a quick 
overview of the model. 

Permission to copy without fee all OT part of this material is 
granted provided that the copies are not made OT distributed jOT 

direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very LaTge Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the Fifteenth Internatkmal 
Conference on Very Large Data Bases 

02 has a complete programming environment. It 
provides tools such as editors, browsers, and debuggers. 
When developing an apphcation, programmers specify a 
schema and write the code for methods. The schema 
is specified in the 02 language. Methods are written 
using standard programming languages. In the current 
implementation of the system, methods are written in 
either CO2 or Basic02, which are extensions of C and 
Basic respectively. The schema declarations are inter- 
preted and handled by the Schema Manager. Methods 
are precompiled, then compiled by the “host” program- 
ming language compiler, and they may be loaded and 
executed. 

A first, throwaway prototype was built in 1987 and 
is reported in [3]. S ince then, we redefined the system at 
all its levels: data model and language, programming 
environment, compilers, Schema Manager and Object 
Manager. The work reported here concerns only the last, 
module. 

The Object Manager (OM) is the piece of software 
that handles persistent and temporary complex objects 
with identity. Furthermore, objects are shared, reliable 
and move from a work&at-ion to the server and vice versa. 
The OM is used by all the upper modules of the system. 

We believe that the OM synthesizes techniques pro- 
posed in the database field and in the object-oriented 
programming field. A similar approach is found in 
Gemstone [24], Orion [19], Encore [14], Vbase [2], and 
Iris [ll]. Bowever, it is is original in the following re- 
spects. Firstly, in the way it handles distribution: ap- 
plications may run either entirely on the server, or en- 
tirely on the workstation, or the programmer may mi- 
grate control from one machine to another at his will 
when passing a message to an object. We consider this 
to be a powerful performance tuning facility, not found 
in the systems mentioned above and well adapted to a 
server/workstation configuration (the first three fall in 
this category). 

Secondly, the system adapts itself to a wide range 
of application requirements ranging from development of 
applications to execution of data-intensive applications. 
We distinguish a development mode in which users are 
programmers developing applications from an ezecution 
mode in which previously built applications are executed 
and the main concern is performance. The systems men- 
tioned above do not make such a difference and run in a 
single mode. 

Lastly, the system implements a number of facilities 
that make the life easy for application programmers: (i) 
exceptional attributes for tuple objects may be attached 

Amsterdam, 1989 

- 357 - 



at any time without performance degradation, (ii) per- 
sistence is implemented with a simple composition-based 
sc.hema in which deletions are implicit (this obviously is 
not new in the programming Ian&age world), and (iii) 
clustering issues are clearly separated from the schema 
information and specified by the DBA in the form of a 
subset of the composition graph. 

The rest of this p,aper is organized as follows: Sec- 
tion 2 discusses the functional requirements of the OM 
both with respect to the 02 data model and.with iespect 
to the applications the system k intended to support. 
Section 3 presents the main design choices we faced when 
developing the OM. Section 4 presents an architectural 
overview of the system. Section 5 compares our system 
to other related work, and Section 6 concludes the. pa- 
per, summarizes the differences with the first prototype 
reported in (31 and presents some future extensions. 

2 Functional Requirements 

2.1 Data Model Requirements 

In what follows, we present the particularities of the 
model pertinent to the system design. In 02, we distin- 
guish between values, on which we can perform any of a 
set of predefined primitives, and objects which have iden- 
tity and encapsulate values and user defined methods. 
Values can be set, list or tuple structuied, or atomic. 
Each value has a type which describes its structure. Ob- 
jects belong to classes. A class has a name, a type t 
(specifying the common structure of the set of objects 
of the class) and a set of methods M. Every object of a 
certain class haa a value of type t and has the same set 
of methods M. 

Classes and types are partially ordered according 
to an inheritance relationship. Multiple inheritance is 
supported. Our interpretation of tuple types follows the 
one proposed by Cardelli in [7], implying that inheritance 
has natural set inclusion semantics: if C is a subclass of 
C , then the set.of all possible instances of C is included 
in the set of all possible instances of C . The prescriptive 
interpretation of tuple types implies that a tuple object 
or value may have “exceptional” attributes, i.e. attribute 
values not declared in its class or type. The 02 code 
below shows this: 

class Person type tuple (name:string, 
age:integer); 

02 Person x ; 
*x = tuple(name: “john”, age: 27, 

my-opinion: “nice fellow”) ; 

Here, the expression “*x” refers to the value encap- 
sulated in object x. Reference to values encapsulated in 
objects is allowed only in methods of class Person (or 
in other methods. if the de-encapsulation method “*” is 
exported by the creator of class Person - see [23]). In 
order that the my-opinion attribute could be used while 

conserving a “strict” typing, it is necessary to have in 
the language a- clause which permits to verify the exis- 
tence. of this exceptional attribute. This is scheduled for 
the,next version of the language. 

A named o’bject or value is an object or value with a 
user-defined name. These objects or values are the roots 
of persistence. Persistence is user controlled: in order 
to make an object persistent, the user has to make it a 
compon&nt of an already persistent object. 

An 02 schema consists of classes, types, named ob- 
jects and named values. A query language has been de- 
signed [4] which uses the distinction between objects. and 
values arid the existence, in the data manipulation lan- 
guage, of primitives to manipulate structured values. 

2.2 Application Requirements 

The.system should support a wide range of application 
requirements. Consider the three following utilization 
scenarios: 

(i) Users are programniers developing 02 applications. 
They constantly define new &s&s andnew meth- 
ods, and methods are generally tested with few ob- 
jects in main memory. 

(ii) Users are “end users” (i.e., not necessarily program- 
mers),, and they execute applications which have 
been previously developed and tested. Here, we 
have a notion of “application” which contains a 
set of classes and methods. In this mode, the es- 
sential concern is execution speed. Data are mas- 
sive, shared and have to be reliable. The schema 
is static. 

(iii) Users are progltammers developing (rapid) proto- 
types with 02. Data would fit in -main memory in 
many cases and is seldom shared.. Execution speed 

‘is important and the schema may be flexible. 

These three scenarios’imply very different and con- 
tradictory requirements. In the first scenario, which we 
call development mode, flexibility is at a premium, and 
therefore, it is important to optimize method compi- 
lations and schema concurrency protocols. Execution 
speed is less important. 

In the second scenario, the execution mode, we need 
all the functionality of a database system: persistence, 
disk management (i.e., indexing, clustering, and smart 
buffering), concurrency on objects (not necessarily on 
the schema), and recovery. Message passing should 
be optimized, referencing an attribute of a tuple value 
should be done in “compiled mode” (i.e., the system 
should not interpret an attribute name), and operations 
on large sets and lists should be done efficiently. 

In the third scenario, the resident mode, the system 
could load all persistent data in main memory to enhance 
execution speed. This is in contrast with what we could 
call object fault mode which is typical of Data Managers. 

- 358 - 



2.3 Architectural Requirements 

The OM should be as canonical as possible, i.e., other 
projects should be able to use the OM as a backTend 
in charge of persistence and transaction management for 
complex objects. This idea is not new: other projects 
such as Mneme [26] and Observer [14] pursue. this idea 
of a canonical object manager. 

Another requirement is that it should be easy to 
downgrade the system to.a single-site machine. 

-We tried to use existing products as much as possi- 
ble. We use WiSS, the Wisconsin Storage System [lo], 
as the low-level layer of the OM to provide persistence, 
disk management and concurrency control. It runs un- 
der Unix’ System V but bypasses the Unix File System 
and does its own buffering. 

3 Main Design Choices 

3.1 Modes of Operation 

3.1.1 Compiling Modes 

.The sharp differences in application requirements be- 
tween the two modes (development mode vs. execx- 
tion mode) mentioned in the previous section drove us 
to build two different “compiling modes”. We designed 
the OM in’ such a way that these modes affect only the 
compilers. .They do not imply building two different ver- 
sions of the OM. In any case, both modes must share the 
same persistent data. 

Execution mode applications are the result of 
“dkeply compiling” some classes and methods developed 
by a programmer, to gain speed when executing these 
methods. The code is optimized in the following re- 
spects: 

(i) Late binding is replaced by a function call whenever 
possible. 

(ii) Access to tuple attributes by name is replaced by 
physical offsets. 

(iii) No run-time method fault occurs: methods are 
loaded statically. In development mode, methods 
are loaded dynamically, as flexibility is required. 

3.1.2 Transaction Modes 

The OM interfaces either with a full-fledged execution 
mode application or with a development,mode session. 
We shall denote both by the term application. An ap- 
plication is composed of one or more transactions. 

Our notion of transaction differs from the classical 
database notion of transaction (namely, an atomic and 
serializable sequence of database commands) in the fol- 
lowing respects: 

‘Unix is a registered trademark of AT&T laboratories 

(i) We distinguish concurrency on schema from concur- 
rency on objects, and allow them to be activated 
or disactivated independently. 

(ii) Recoverv mav be switched on or off. When run- 

(iii) 

ning prototype applications, one may be willing to 
sacrifice safety for the sake of performance.. 

A transaction may choose to run in resident mode 
or qbject fault, mode. Note that this is specified 
at execution time, not at compile time. A good 
candidate. to run in resident mode is the Schema 
Manager. In the current version, the Schema Man- 
ager can-run in object fault mode if it wishes to. 

3.2 Handling Distrib.ution 

The OM has a workstation version and a server version. 
Both -versions have (almost) the same interfacq. The 
main distinction is in the actual implementation: the 
workstation version is single user (as a workstation is 
single-user), memory based; while the server version is 
multi-user, disk based. 

An important problem we faced while designing the 
system was: given an (execution mode) application pro- 
gram in 02, how do we decide which part runs on the 
server and which part runs on the workstation? The 
main g&al is td (i) make tasks run efficiently in the sys- 
tem configuration, and (ii) to program distribution as 
simply as possible. Recall that we are not dealing with 
a distributed query problem, but with general programs, 
since methods are programs. 

Several approaches can be taken. The simplest is 
to make distribution transparent to the application pro- 
grammer and make everything run on a single machine. 
Making distribution transparent and letting the system 
determine the “best site” is an unsolved problem up to 
now. 

We decided to make the distributed architecture vis- 
ible to the application programmer (but not to the end 
user). The programmer will be aware of the existence of 
two machines (the server and the workstation) and may 
explicitly specify on which of the machines a message 
passing expression is to be executed. 

. . . 
/* programmer specifies that the message 

“filter”, which tests */ 
/* each element of set “my-set”, should 

be run on the server */ 

result-object = [my-set filter0 on 
server1 ; 

. . . 

In this case, if the selectivity ratio is high and the 
set, is large, running the method on the server may re- 
sult, in better performance. On the contrary, methods 
displaying an object, editing a document object or per- 
forming computations on few objects should be run on 

- 359 - 



the workstation to offload the server. Note that we asso- 
ciate location with message passing and not with meth- 
ods. 

For messages without site specification, the system 
decides the evaluation site. Possible strategies include 
naive ones, such as “execute in the machine’ in which 
you are currently executing”. This is the one we have 
implemented. See Section 6 for foreseen improvements 
to this strategy. 

Our design choices were made according to.the cri- 
teria of simplicity, transparericy, .performahe, and reli- 
ability. 

Simplicity‘ (and thus portability) is achieved by 
choosing standard and well-proven tools:. the local area 
network which links the workstations and the server is 
Ethernet, the transport, protocols are TGP/IP. Trans- 
parency results from the fact that the end user is never 
concerned‘with either the client/server task’distribution 
or the heterogeneity of the machines. Performance is ob- 
tained by execution migration and by designing a com- 
munication protocol optimized for object moves, which 
are the main potential bottlenecks of any client/server 
architecture. Lastly, reliability is obtained by .a failure 
detection mechanism which prevents indefinite resource 
holding which might result from an abnormal process 
termination. 

3;3 Object Access 

Objects are uniquely identified and accessed by object 
identifiers (oids). Object identifiers could be ‘logical”, 
i.e., .give no information about their location in sec- 
ondary memory, as in GemStone [2$], Orion [19] and Ob- 
Server [14]. With logical identifiers a correspondence ta- 
ble between oids and physical addresses is needed. Mov- 
ing objects in secondary’memory is straightforward, but 
the object table might be very big as it would contain 
one entry for each object in the database. One disk ac- 
cess is likely to be performed to retrieve the object table 
entry of the object, and a second to retrieve the object. 
We have chosen the (persistent) identifiers to be physi- 
cal identifiers, i.e., reflecting their location on disk. The 
choice is largely motivated by the aforementioned per- 
formance reasons. Roughly speaking, an object will be 
stored in a WiSS record and the object identifier will be 
the record’s identifier, i.e., an RID. 

A major problem with physical identifiers is moving 
objects on disk without changing their identifien?. The 
solution we adopted is to use forwarding markers (as in 
relational data managers such as System R). We mod- 
ified WiSS in order to make the Object Manager have 
direct control. over this mechanism. 

lIf we were to change the identifier of an obiect o we want to 
m.ove.on disk, we shouih be able to attain all objects referen& 
o to update their references, but this would imply using backward 
references in the composition hierarchy, and we consider these too 
heavy to maintain. 

3.4 Object Representation 

Recall .that the 02 model distinguishes objects from val- 
ues (Section 2.1). :In the OM, we deal only with objects 
and atomic ‘values. Structured values will be given an 
identifier and are ‘managed as “standard” objects. The 
system supports both the primitives for manipulating 
values as well as the message passing mechanism for ob- 
jects. At the language level, objects are distinguished 
from values ‘and errors such as passing a message to a 
value or applying a primitive to an object will be trapped 
at compile time. In the OM, however, there are primi- 
tives which distinguish oids denoting objects from oids 
denoting values. 

3.4.1 Tuples 

On disk, a tuple is represented as a record stored in a 
page. When ,a tuple outgrows a disk page, we switch to a 
different representation suitable for storing long records, 
the Long Data Item {oi LDI) format provided by WISS. 
The oid of the tuple is unchanged (the RID of the original 
record). 

In ‘main memory, tuples are represented as a con- 
tiguouschunk containing the actual values. Only strings 
are stored away from the main chunk, which contains 
pointers to the proper locations. This way the strings 
may grow or shrink without requiring the entire object 
to change location. An exception to this rule comes from 
the fact that in 02, a tuple object may have “excep- 
tional” attributes, i.e., attribute values not declared in 
its class (Section 2.1). In such cases, the tuple object 
may grow in length. When a tuple grows, if an in-place 
extension is not possible, a level of indirection for the 
entire tuple value is generated. 

3.4.2 Lists 

Lists, which can be more accurately called insertable ar- 
rays, are represented as ordered trees as in [31] (with 
slight modifications to make fast scans). An ordered tree 
is a kind of B-tree in .which each internal node contains 
a count of the nodes under it. The insertion and dele- 
tion procedures have to update node-counts (this is the 
essential difference from standard B-tree management). 
This structure is efficient to store small and large lists. 
In EXODUS [8], it has been used to implement long 
data items. 

3.4.3 Sets 

The representation for large sets of objects needs to be 
such that (i) membership tests are efficient, and (ii) scan- 
ning the elements of the set is also efficient. A set of ob- 
jects is itself an object containing object identifiers of its 
members (the objects themselved are stored according 
to clustering strategies described in section 3.5). WiSS 
provides two kinds of indices: hash indices and B-trees. 
We use-B-tree indices to represent large sets. However, 

- 360 - 



using an index for a small set would be too costly. There- 
fore, there is a limit under which a set is represented as 
a WiSS record; a convenient value for this limit is the 
maximum record size in WiSS. Small sets are kept or- 
dered. This decision ‘was motivated by the fact that large 
sets are kept ordered, and binary operations on sets take 
advantage of this uniformity: unions,: intersections and 
differences are programmed using “merge” algorithms. 

3.4.4 Multimedia Objects 

Two types of multimedia objects are implemented: un- 
structured text and Bitmap. From the user point of 
view, they are’instances of the predefined classes Text 
and Bitmap. The predefined methods in these classes 
are display and .edit. From the system point of view, 
texts are atomic objects of type string and bitmaps 
are atomic objects of type bytes, an unstructured byte 
string preceded by its length. 

3,5 Persistence and Clustering on Disk 

Recall that persistence is defined in the 02 model as 
reachability from persistent root objects, which are 
named objects or values (Section 2.1). This is imple- 
mented by associating with each object a reference count. 
An object persists as long as this counter is greater than 
0. 

Newly created, persistent objects are given a persis- 
tent identifier when they are inserted in a file at trans- 
action commit. The mapping of objects to files depends 
on control data given by the database administrator de- 
scribing the placement of objects: the Placement Trees. 

Placement trees are described extensively in [S]. 
The main idea is that if several objects are used to- 
gether frequently, we should put them as close to one 
another as possible on disk. The main heuristic used here 
to ‘postulate that two objects will be used together fre- 
quently is their relationship through composition struc- 
ture. Roughly speaking, if class C’ is a son of class C in 
a placement tree and an object o’ of class C’ is a compo- 
nent of object o of class C, we try in fact to store o’ as 
close as possible to o. To do so, we use the elementary 
clustering facility offered by WiSS. 

3.6 Handling concurrency at the 02 level 

Concurrency on objects is handled by WiSS at the server. 
However, the distributed architecture of the system does 
not make life easy. Consider a transaction executing on 
the workstation and. updating shared objects. Before 
reaching the workstation, objects are read-locked. Note 
that it is difficult to anticipate which objects need to be 
write-locked, as objects are operated by methods of arbi- 
trary complexity. There is no concurrency control on the 
workstation, as workstations are considered to be single- 
user. The problem is to ensure consistency, and this 
in a cheap way. Straightforward solutions are (i) each 
time the transaction wants to update an object in the 

workstation, migrate execution to the server and perform 
the update there: the concurrency control mechanism of 
WiSS will ensure consistency, (ii) update the objects lo 
tally and maintain an update log that will be executed 
in the server at transaction commit, (iii) run the trans- 
action in the workstation and in the server in parallel 
(this is less straightforward!). Solution (i) has obvious 
performance problems, solution (ii) seems complicated 
to implement and. has contention problems as all con- 
trols are performed at commit time, and solution (iii) is 
difficult:to implement -because the transaction itself may 
migrate execution site from one machine to another (see 
Section 3.2). None of these being all too satisfactory, we 
chose the solution now presented. 

Concurrency in WiSS is handled by a two-phase 
locking algorithm on .pages (and files). WiSS has an 
internal lock-page primitive which sets locks on pages. 
Our solution is to move this primitive to the program 
ming interface, and ask for write locks explicitly from 
the workstation before an object is updated. The up- 
date proceeds in the workstation asynchronously without 
waiting for an answer. Unless the answer is rollback, 
the workstatiqn is not informed. Otherwise, the process 
running the transaction in the workstation is informed 
and the transaction aborted. At transaction commit, 
the workstation processasks the server process if all re- 
quested write locks have been granted (we call this “pre- 
commit”), and only if this is the case, are the objects 
transferred. This way, consistency of shared objects in 
the server is preserved. 

As mentioned previously, we handle concurrency on 
the schema differently from concurrency on objects. This 
is a consequence of our. application requirements summa- 
rized in Section 2.2, but it is also due to the following 
observation: in development mode, the schema is the hot 
spot of the system. Even executing a message passing ex- 
pression implies reading the schema information because 
methods belong to the schema. Therefore, a custom con- 
currency control for the schema is being designed which 
takes into account semantic information about schema 
updates, to allow for increased parallelism. It just does 
not seem wise to put a read lock on a page each time a 
message passing expression is solved. 

4 Overview of the System 

4.1 Global Architecture 

The OM is divided into four layers: (i) a layer which 
copes with the manipulation of 02 objects and values 
and transaction control, (ii) a Memory Management 
layer, (iii) a Communication layer taking into account 
object transfers, execution migration, and application 
downloading, and (iv) on the server, a Storage layer de- 
voted to persistence, disk management, and transaction 
support implemented by WiSS. 

The following process layout has been adopted: on 
the workstation, an application and the workstation ver- 
sion of the OM form one unique process. There will be 

- 361 - 



as many processes as running applications. 
For each process running on a workstation, there 

will be a mirror process running on the server. In addi- 
tion, there may be some terminal application processes 
running on the server which don’t have any correspond- 
ing “partner” on a workstation. Given the large number 
of such concurrent applications on the server, the OM 
is compiled as re-entrant library modules to be shared 
among all applications. The lock table and the buffer 
managed by WiSS are shared by all processes. The OM 
Object Memory is also a global buffer in shared memory, 
as detailed below. 

Both versions of the OM (workstation and server) 
are illustrated in Figure 1. 

4.2 System Interface Module 

This layer is the gateway to the OM. All object manipu- 
lations done by a transaction are treated by this inodule. 

4.2.1 Object’Manipulation 

This submodule performs the’following tasks: 

(i) Creation and deletion of structured types (creation 
of claqses and methods is the responsibility of the 
Schema Manager and not of the Object’ Manager). 

(ii) Creation and deletion of objects. 

(iii) Retrieval of objects by name. 

(iv) Support for the predefined methods for ob- 
jects. These are the methods of predefined class 
Object, namely: value-equal, deep-equal, 
value-copy, deep-copy, display, and edit. 

(v) Support for set, list’, and tuple objects. 

For sets and lists, we have implemented a twelayer 
structure in which the upper layer takes care of logical 
operations (and reference counts) and the lower layer 
handles the data structures. 

4.2.2 Support for Late Binding 

This submodule exists both on the workstation and the 
server. In development mode, it provides support for 
late binding and also handles the application of the se- 
lected binary code to the receiver object. In execution 
mode, the message is replaced by a function call when- 
ever possible and in the few cases which remain unsolved, 
method name resolution is done by the executing code 
in an ad-hoc manner. 

4.3 Transaction Support 

An 02 transaction maps directly to a WiSS transaction. 
This submodule supports the functionality described in 
Section 3.1.2 and handles concurrency according to the 
strategy presented in Section 3.6. 

When a transaction runs in memory resident mode, 
the system is given information about the persistent root 
objects it accesses, and fetches all objects accessible from 
these at transaction start. Once this is done, all inter- 
object references are changed to memory addresses. 

At both sites,- this submodule keeps track of the 
set of dirty’tibjectt (this includes newly created objects) 
and the set of persistent objects to be deleted from the 
database. When control is transferred from one site to 
another (at transaction commit or when migrating exe- 
cution), these two sets, as well as the objects referenced 
to by these sets, are also transferred. In this way, trans- 
actions preserve their execution context. The coupling 
of the workstation version and the server version.of the 
system is tight, as they communicate via “lower” system 
interfaces, as it is shown in the following sections (this 
has also been done in AIM-P [IS]). This contrasts with 
(relational) distributed database systems, in which com- 
munitation is done mostly via the high-level relational 
database inteiface. 

4.4 Memory Management Module 

This layer takes care of translating object identifiers into 
inemory addresses. This includes handling object faults 
for objects requested by the application and not cur- 
rently in memory. It is also responsible for managing 
the space occupied by objects in main memory. 

As in Orion [19] and Gemstone [24] (but unlike Ob- 
Server [14]), a dual buffer management scheme is im- 
plemented: a page buffer implemented by WiSS and an 
object buffeti pool, the object memory. Objects in the 
page buffer are in their disk format. In the object mem- 
ory, they are in their memory format. 

On the server, an object fault implies reading a 
WiSS record and transferring it between the page buffer 
and the server object memory. Even though an object 
corresponds to one WiSS record, on every object fault, 
all the Valid records on the same page as the object in 
question are transferred into the object memory. This 
“read-ahead” strategy is based on the fact that objects 
which have a strong.correlation between them are clus- 
tered on the same or nearby pages and reading an en- 
tire page (which is anyway placed in the page buffer by 
WiSS) will accelerate further processing. 

As some degree of sharing is expected among appli- 
cations, the server object memory is implemented as a 
data segment shared by all the concurrent processes [15]. 

On the workstation, the object memory is private 
to each application. The memory allocation and deallo- 
cation tasks are left to the Unix virtual memory mech- 
anism. An object fault is addressed to the Communi- 
cation Manager, which in turn asks the server mirror 
process to send the object across the network. As be- 
fore, all objects stored in the same page as the requested 
object are transferred to the workstation. 

Both on the server and on the workstations, the 
memory address at which an object is stored never 
changes until the object migrates to another machine 

- 362 - 



WORKSTATION SERVER 

System Interface System Interface 

Memory Manager Memory Manager 

Communication Manager Communication Manager WiSS 

NETWORK 
Operating System Operating System 

I 

Figure 1: Architecture of the OM 

database 

H 0 
I) 0 

or is written out to disk. While an object is in memory, 
in order to access it given its identifier, we use an object 
table. This table is hashed on identifier values and con- 
tains entries for resident objects only, as in LOOM [18]. 

4.5 Communication Module 

4.5.1 Session Level 

When an application is started on a workstation, a mir- 
ror application process must be started on the server in 
order to interact with the lower layers of the.system. 

The workstation application process and the mir- 
ror application process behave differently: whereas the 
workstation application process executes the code of the 
application as a transaction, the mirror application pro- 
cess is psssivei it goes to sleep until receipt of an incom- 
ing message, processes it by upcalling the appropriate 
primitive and goes back to sleep until the next message 
arrives, or the workstation application process is ended. 

4.5.2 Presentation Level 

The heterogeneity between machines is handled by a pre- 
sentation protocol, namely XDR [l], chosen for its sim- 
plicity. For object moves, the size of an object when re- 
ceived at a site depends on the machine parameters. In 
order to minimize extraneous memory-to-memory copy- 
ing, this size is computed from the type of the transferred 
object. It is used to determine the place in memory 
where the object data will be copied, and data trans- 
fer is done directly from network to this memory ad- 
dress. Another optimization consists of grouping in a 
single message several objects to move (for instance at 
commit time). This minimizes the number of network 
accesses. 

4.5.3 Execution Migration 

In the current version of the system, the execution site 
for a message passing is specified statically by the appli- 
cation programmer. Embedded execution transfers may 
appear. For instance, if a selection operation results in 
displaying one tuple over 1000 in average, the program- 
mer may specify that the selection operation should be 
done on the server but the display, of course, can be 
done only on the workstation. This way, the two sites 
may act alternatively as client or server. Our execution 
migration protocol is thus more than an unidirectional 
classical Bemote Procedure Call mechanism. 

5 Comparison with Related Work 

We attempt to compare here the 02 OM with other ex- 
isting object managers. Caveat: as there is a lack of 
agreement on higher level object-oriented concepts for 
databases, object managers actually implement different 
kinds of functionality for different kinds of data models. 

A major concern throughout the design has been 
to build a common kernel for different object oriented 
paradigms. Outside Altair, the OM is currently being 
used as a back-end bearing persistence to a frame-based 
expert system generator [27]. In fact, most of the se- 
mantics of the Oz type system has been shifted to the 
upper layers, i.e., the Schema Manager and the Com- 
pilers. The part of the OM depending on classes and 
methods is essentially the message-passing mechanism 
and has beenclearly isolated from the rest of the system, 
which handles shared and persistent typed objects with 
identity. Most object-oriented languages propose tuple 
objects and some have a notion of (ordered or unordered) 
collections. In this sense, the OM implements “state of 
the art” complex objects. The difference with nested 
relational kernels such as DASDBS [29] is that the lat- 
ter are geared towards optimizing selections and joins, 

- 363 - 



and don’t support traversing the composition graph, nor 
important (object-oriented) functionality such as orthog- 
onal persistence, garbage collection or support for meth- 
ods and message passing. 

Other projects such as Mneme [26] and Observer 
[14] pursue this idea of a “canonical” object manager. 
Both provide untyped objects, the typed layer being im- 
plemented by a client of the object manager. In this 
case, traversing the composition graph is either done at 
the client level, with an obvious performance penalty, 
or the object manager must distinguish between object 
references and other kinds of .data within the object, as 
in (261. 

For space reasons, we will restrict ourselves to a sub- 
set of object-oriented DBMSs, namely GemStone [24] 
and Orion [19]. Other well known systems are Vbase [2], 
Iris [ll]. Extensible DBMS such as Exodus [9] and Post- 
gres [30] are close to object-oriented DBMS for their abil- 
ity to deal with procedures and with an inheritance hi- 
erarchy. 

5.1 GemStone 

The original objective of Gemstone [24] was to make 
Smalltalk a database system. Stone, the lower layer of 
Gemstone has the same kind of functionnality as the 
OM : it provides persistence, secondary storage manage- 
ment, transactions, concurrency control, recovery, sup- 
port for associative access, and authorization functions. 
However, the decomposition in processes is different than 
in 02, as Stone is run as a single process on the server, 
and it communicates with different upper layer processes 
(Gem processes), one for each active user, also running 
on the server. Gem corresponds, roughly speaking, to 
the virtual image of the standard Smalltalk implemen- 
tation. On the workstation, an interface to Gemstone 
(PIM) has been developed and implements remote pro- 
cedure calls to functions supplied by Gemstone. So, 
the way the client/server architecture is handled is com- 
pletely different as in our system. 

Applications run exclusively in “development 
mode” in GemStone. Also, transaction management in 
Gemstone bears little similarity to ours. An optimistic 
concurrency control scheme is implemented. Access con- 
flicts are checked at commit time, rather than prevent- 
ing them through locking. The main disadvantage with 
this scheme is that a long transaction can loose arbitrary 
amounts of work if prevented from committing. To al- 
leviate this problem, a pessimistic concurrency control 
based on locking is explored in [28]. 

One of the major innovations of Gemstone is its in- 
dexing mechanism to support associative access on large 
collections [25]. The main feature is that indexes can be 
defined on a path along the composition hierarchy, and 
that they index into sets rather than into classes. 

5.2 Orion 

Orion [5], [19] is an object-oriented DBMS developed 
at MCC extending Common-Lisp with object-oriented 
programming and database capabilities. The database 
type system is different from the host language type sys- 
tem, and Orion’s persistence is not orthogonal. A version 
of Orion implements a multi-user, multi-task system in 
which a server provides persistence and sharing of ob- 
jects on behalf of several workstations. Unlike 02, an 
application does not have the ability to execute general 
methods in the server and the workstation while it runs. 
As with GemStone, the system is geared towards devel- 
opment mode. 

The architecture of Orion consists of the following 
modules: (i)-a message handler receives all messages sent 
to Orion objects, (ii) an object subsystem provides func- 
tions such as schema evolution, version control, query 
optimization, and multimedia information management, 
(iii) a transaction subsystem provides concurrency con- 
trol and recovery mechanisms, and (iv) a storage sub- 
system provides access to objects on disk. The two last 
modules implement functionalities similar to those of the 
OM: The storage subsystem implements a dual buffer 
management scheme (page buffer and object buffer) and 
maintains a resident object table hashed by oid. How- 
ever, as oids are logical, there is another hash-based 
oid-tophysical-id for all objects in the database. Buffer 
management for objects in the object buffer is far more 
complex than ours: fragmentation is dealt with by a 
garbage collection mechanism that reclaims space occu- 
pied by objects that can still be referenced to by the 
application, and thus an intermediate structure, the res- 
ident object descriptor or ROD, has to be introduced 
between the resident object table and the actual object. 
Applications point to RODS only, and these may not be 
swapped. 

‘Transaction management [12] is rather “classical”: 
concurrency control is based on a locking protocol and 
recovery is based on logging. However, a composite ob- 
ject (a hierarchy of exclusive and dependent composite 
objects) may be locked as a whole. To this end, the hi- 
erarchical locking protocol [13] has been extended. Also, 
a class-lattice locking protocol, which is needed to allow 
access to instances of a class while preventing changes to 
the definitions of the superclasses of the class has been 
proposed. Other important database features in Orion 
are indexing, authorization and version support. Indexes 
may be defined on a class or on subclasses of a class, and 
are used when evaluating queries. 

6 Conclusions and Future Work 

In this paper, we described the main choices involved in 
the design of the 02 Object Manager, and presented its 
overall architecture. The OM is used by all the upper 
modules of the 02 system. It combines well known tech- 
niques from the database field and the object-oriented 
programming field, and has the following original as- 

- 364 - 



pects: 

(i) The programmer has control over distribution. This 
is done in an easy way when passing messages to 
objects. We consider this to be a powerful perfor- 
mance tuning facility. 

(ii) The system adapts itself to a wide range of appli- 
cation requirements ranging from development of 
applications to execution of data-intensive applica- 
tions. 

(iii) The system implements a number of facilities that 
make life easier for application programmers: (i) 
exceptional attributes for tuple objects may be at- 
tached at any time without performance degrada- 
tion, (ii) persistence is implemented with a simple 
composition-based schema in which deletions are 
implicit, and (iii) clustering issues are clearly sep- 
arated from the schema information and specified 
by the DBA in the form of a subset of the compo- 
sition graph. 

Our first prototype [3] implemented an early ver- 
sion of the data model reported in [22]. There were no 
notion of values and lists were inexistent. All sets were 
implemented in the same way, regardless their size. Per- 
sistence was attached to classes, not to objects, so all 
objects of a persistent class were persistent. There were 
no clustering strategies, no transaction modes, no dif- 
ference between execution mode and development mode. 
Finally, the Schema Manager was built in an ad-hoc way 
without using the object manager. For the next version 
of the system, the major thrust will be in the following 
directions : 

(i) An ad hoc concurrency control for the schema, as 
mentioned in Section 3.6, is under design and will 
be implemented shortly. 

(ii) Recovery and rollbacks are not implemented in the 
current version of WiSS. We plan to add these 
shortly. To support long transactions, we also plan 
to provide “savepoints” in order not to loose arbi- 
trary amounts of work. 

(iii) Indices will be provided at the 02 level (WiSS pro- 
vides already B+ trees and hash-based indices on 
files). The relationship of indices with both the in- 
heritance hierarchy and the composition hierarchy 
(which has been explored separately in [20] and 
[25] respectively) is currently being investigated. 

(iv) Our large objects are currently limited by the size 
of a WiSS long data item (1.6 Mbytes). \Ve are 
looking into the possibility of modifying WiSS to 
be able to store large objects with virtually no size 
limitation. 

(v) More work is needed towards determining when ob- 
jects are “badly clustered” and should be moved 

on disk. Also, an incremental restructuring policy 
should be used. 

(vi) For messages without site specification, the system 
currently implements message passing in the same 
site in which it runs. This strategy can clearly be 
improved by letting the system decide dynamically 
on the site of application of the method. 

(vii) Versioning and authorization will be taken into ac- 
count in the next version of the system. 

Acknowledgements 

We thank Francois Bancilhon for comments on an ear- 
lier draft of this paper and for the many discussions we 
had during the design of the system. We also thank 
the following persons involved in the development of 
the Object Manager: Vkronique Benzaken, Constance 
Bullier, Philippe Futtersack, Gilbert Harrus, John Ioan- 
nidis, Jean-Marie Larcheveque, and Dominique Steve. 
The OM also benefit from discussions with Christophe 
LCcluse and Philippe Richard and especially from those 
with Sophie Gamerman and Claude Delobel. Paris 
Kanellakis, Michel Scholl and John Ioannidis read earlier 
drafts of this paper and suggested many improvements. 

References 

PI 

PI 

PI 

[41 

PI 

PI 

PI 

KExternal Data Representation Protocol Specifica- 
tion “. SUN Microsystems, February 1986. 

T. Andrews and C. Harris. “Combining Language 
and Database Advances in an Object-Oriented De- 
velopment Environment”. In Proceedings of the 
OOPSLA conference, October 1987. 

F. Bancilhon, G. Barbedette, V. Benzaken, C. De- 
lobel, S. Gamerman, C. LCcluse, P. Pfeffer, P. 
Richard, and F. Velez. “The Design and Imple- 
mentation of 02, an Object-Oriented Database Sys- 
tem”. In Proceedings of the OODBS II Workshop, 
Bad Munster, RFA, September 1988. Springer Ver- 
lag. 

Francois Bancilhon, Sophie Cluet, and Claude 
Delobel. “Query Languages for Object-Oriented 
Database Systems: Analysis and a Proposal”. Tech- 
nical Report, AltaIr, 1989. In preparation. 

J. Banerjee et al. “Data Model Issues for Object- 
Oriented Applications”. ACM Transaction on Of- 
fice Information Systems, 5(l), April 1987. 

V. Benzaken and C. Delobel. ‘%lustering Objects 
on Disk in an Object-Oriented Database”. Technical 
Report, Alta’ir, 1988. To appear. 

L. Cardelli. “A Semantics of Multiple Inheritance”. 
Computer Science, Semantics of Data Types, Lec- 
ture Notes(173), 1984. Springer Verlag. 

- 365 - 



[8] M. Carey, D. Dewitt, J. Richardson, and E. 
Shekita. Object and file management in the exo- 
dus extensible database system. In Proceedings of 
the 12th. VLDB Conference, Kyoto, Japan, August 
1986. 

[9] Michael Carey et al. “The Architecture of the EXO- 
DUS Extensible DBMS”. In Proceedings of the In- 
ternational Workshop on Object-Oriented Database 
Systems, Pacific Grove, California, September 1986. 

[lo] H.-T. Chou, David J. Dewitt, Randy H. Katz, and 
Anthony C. Klug. “Design and Implementation of 
the Wisconsin Storage System”. Software - Practice 
and Experience, 15(10), October 1985. 

[ll] D. H. Fishman et al. “IRIS: an Object-Oriented 
DBMS”. ACM Transaction on Ofice Information 
Systems, 5(l), January 1987. 

[12] Jorge F. Garza and Won Kim. “Transaction Man- 
agement in an Object-Oriented Database System”. 
In Proceedings of the ACM SIGMOD Conference, 
Chicago, Illinois, May 1988. 

[13] James N. Gray. “Notes on Database Operating Sys- 
terns”. In Operating Systems: An Advanced Course, 
Springer Verlag, 1978. 

[14] Mark F. Hornick and Stanley B. Zdonik. “A Shared, 
Segmented Memory System for an Object-Oriented 
Database”. ACM Transaction on Ofice Informa- 
tion Systems, 5(l), January 1987. 

[15] John Ioannidis. UOh no!, we need Shared Memory”. 
Technical Report, Altai’r, 1989. in preparation. 

[16] k. Kuspert, P. Dadam, and J. Gumauer. Coopera- 
tive object buffer management in the advanced in- 
formation management prototype. In Proceedings 
of the 18th VLDB Conference, Brigton, England, 
September 1987. 

[17] T. Kaehler. “Virtual Memory on a Narrow Machine 
for an Object-Oriented Language”. In OOPSLA’86 
Proceedings, September 1986. 

[18] T. Kaehler and G. Kramer. Loom - large object- 
oriented memory for smalltalk- systems. In 
Smalltalk-80: Bits of History, Words of Advice, 
Addison-Wesley, 1983. 

[19] Won Kim, Nat Ballou, Hong-Tai Chou, Jorge F 
Garza, Darrel Woelk, and Jay Banerjee. “Integrat- 
ing an Object-Oriented Programming System with 
a Database System”. In OOPSLA ‘88 Proceedings, 
Los Angeles, California, September 1988. 

[20] Won Kim, Kyung-Chang Kim, and Alfred 
Dale. Yndexing Techniques for Object-Oriented 
Databases”. Technical Report DB-134-87, MCC 
Technical Report, May 1987. 

[21] C. LCcluse and P. Richard. “Modeling Complex 
Structures in Object-Oriented Databases”. In 8th 
Symposium on Principles of Data Base Systems, 
Philadelphia, Pennsylvania, March 1989. To ap- 
pear. 

[22] C. Lecluse, P. Richard, and F. Velez. “02, an 
Object-Oriented Data Model”. In Proceedings of 
the ACM SIGMOD Conference, Chicago, Illinois, 
June 1988. 

[23] Christophe Lkcluse and Philippe Richard. “The 02 
Database Programming Language”. Technical Re- 
port, Altai’r, January 1989. Submitted for publica- 
tion. 

[24] David Maier and Jacob Stein. “Development and 
Implementation of an Object-Oriented DBMS”. In 
Bruce Shriver and Peter Wegner, editors, Research 
Directions in Object-Oriented Programming, MIT 
Press, Cambridge, Massachussets, 1987. 

[25] David Maier and Jacob Stein. “Indexing in an 
Object-Oriented DBMS”. In International Work- 
shop on Object-On’ented Database Systems, Pacific 
Grove, California, September 1986. 

[26] J. Eliot B. Moss and S. Sinofsky. Managing persis- 
tent data with mneme: designing a reliable, shared 
object interface. In Proceedings of the OODBS II 
Workshop, Bad Munster, RFA, September 1988. 
Springer Verlag. 

[271 Bertrand Neveu and Pierre Haren. “SMECI: an 
Expert System for Civil Engineering Design”. In 
First Int. Conference on Applications of Artifial In- 
telligence to Engineering Problems, Southhampton, 
England, April 1986. 

[28] Jason Penney, Jacob Stein, and David Maier. “Is 
the Disk Half Full or Half Empty?: Combining Op- 
timistic and Pessimistic Concurrency Mechanisms 
in a Shared, Persistent Object Base”. In Workshop 
on Persistent Object Systems, Appin, Scotland, Au- 
gust 1987. 

[29] M. H. Scholl, H. B. Paul, and H. J. Schek. Support- 
ing flat relations by a nested relational kernel. In 
Proceedings of the 19th VLDB Conference, Brigton, 
England, September 1987. 

[30] M. Stonebraker. “The Design of the POSTGRES 
Storage System”. In Proceedings of the 13th VLDB 
conference, Brighton, U.K., 1987. 

[31] M. Stonebraker et al. “Document Processing in a 
Relational Database System”. ACM ‘Transactions 
on Ofice Information Systems, 1(2):143-158, April 
1983. 

- 366 - 


