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ABSTRACT 

A two-step optimization strategy for relational schemas 
that contains a class of inclusion dependencies is 
described. Both steps take into account additional 
information that indicates how to preserve each inclu- 
sion dependency in the presence of insertions an‘d 
deletioy. The first step eliminates inclusion dependen- 
cies which are redundant with respect to both the 
semantics of the data and the behavior of the trans- 
actions. The second step discards dependencies 
through a structural transformation that again preserves 
the semantics of the data and of the transactions and 
that applies both to ihrF and to iV# relational 
schemas. 

1. INTRODUCTION 

Among the classes of integrity constraints considered 
for the relational model, we fmd the inclusion depend- 
encies [CFP], or ISDs. For example, one may. 
declare an ISD between tables SECRETARY and 
EMPLOYEE to capture that all secretaries are 
employees. The specification of an IND is often com- 
plemented with insertion/deletion options [CFT,Da] 
that indicate how to preserve the dependency in the 
presence of insertions and deletions. For example, 
one specify that the deletion of an entry of table 
EMPLOYEE must propagate to the deletion of the cor- 
responding entry of SECRETARY, if any, and that the 
insertion of an entry of SECRETARY must be blocked 
if there is no corresponding entry of EMPLOYEE. 
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This paper describes an optimization process that 
minimizes the set of INDs of a relational schema by 
eliminating redundant dependencies and by redesigning 
the schema, without modifying the basic semantics of 
the data and the behavior of the transactions. The 
process assumes that all INDs are key-based and that 
are qualified with insertion/deletion options. A key- 
based IND, or K-ISD, is just an ISD whose right- 
hand side is a key. This restricted class of ISDs is 
sufficiently powerful to capture important semantic 
properties, such as hierarchies of sets of objects or 
relationships between sets of objects, in an informa- 
tion model. 

The process of eliminating redundant inclusion 
dependencies is based on the inference rules for ISDs 
described in [CFP], adapted to K-INDs and to the 
insertion/deletion options. 

The process of discarding K-ISDs through a struc- 
tural transformation may work in the context of 1NF 
schemas or in the context of NF2 schemas. For 1NF 
schemas, the transformation eliminates a K-IND by 
collapsing the two tables the dependency relates into a 
single table:. For h‘F2 schemas, the transformation 
also eliminates an inclusion dependency by nesting the 
two tables related. The transformation is used only 
when the dependency meets certain criteria that guar- 
antee that the new table will not contain undue redun- 
dancies and that the old tables can be redefined as 
views of the new table. Dependencies satisfying these 
criteria are called trivializable. 

From another perspective, the optimization process 
can be viewed as a design discipline for schemas con- 
taining a class of K-INDs which is defined both for 
the traditional and the NF* variations of the relational 
model. In this aspect, the process differs substantially 
from the well-known design disciplines for the rela- 
tional model [Ma], as well as from those defined for 
the NF2 variation [AMM,FG,OY,RKS], since it is 
based on inclusion dependencies whereas the vast 
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majority of published disciplines are based on func- 
tional or multivalued dependencies or their generaliza- 
tions. 

The organization of the paper is as follows. Section 2 
discusses the elimination of redundant K-INDs. 
Section 3 describes the structural transformation 
assuming that all tables must be in first-normal form. 
Section 4 shows how to adapt the transformation for 
the NF* version of the relational model. Finally, 
section 5 contains the conclusions. 

The reader is referred to [CTFB] for a more detailed 
presentation. 

2. ELIMINATING REDUNDANT KEY-BASED 
INCLUSION DEPENDENCIES 

2.1 Preliminary Definitions 

We assume a scenario where the database designer 
specifies the conceptual schema of a database within 
the traditional relational model, that is, using relation 
schemes in first-normal form. We will be interested in 
three classes of integrity constraints, the null con- 
straints, indicating when attributes do not admit null 
values, keys and a class of inclusion dependencies 
which is sufficiently powerful to capture hierarchies of 
sets of objects and to help defme relationships over 
sets of objects. 

More precisely, a relation scheme is an expression of 
the form R[A,,..., A,] where R is the name and 
A,,..., A, is the list of attribute names of the scheme, 
taken from a given set of identifiers. We will fre- 
quently use the term “attribute” instead of “attribute 
name”. 

Let E be a set of relation schemes with distinct names 
in the rest of this subsection. A state for E is a func- 
tion CJ that associates an nary relation O(R) to each 
name R of a scheme R[A, ,..., A,] in E. 

We assume familiarity with the relational algebra and 
denote the value of a relational expression Q in a state 
(J of E by o(Q). 

Let h denote both the null value and tuples, with 
arbitrary length, of null values. A null constraint over 
E is an expression of the form “R: X f h” where R is 
the name of a relation scheme in E and X is a 
sequence of distinct attributes of R. We say that each 
attribute A in X does not admit null vaIues in R. A 
state (7 for E satisfies “R: X Zh” ifi tA #h, for each 

tuple t in G(R) and for each attribute A in X. 

A key over E is an expression of the form “R: K” 
where R is the name of a relation scheme in E and K 
is a sequence of distinct attributes of R. A state CJ for 
E satisfies “R: K” iff, for each pair of tuples t,u in 
o(R), if tK = UK then t = u and, for each tuple w in 
o(R), vA #?,, for each attribute A in K. Therefore, 
by definition, “R: K” implies “R: K z h” and we also 
say that every attribute in a key “R: K” does not admit 
null values in R. 

Let Ei be a set of keys over E. We say that a key 
“R: K” in K is minimal iff there is no other key in K 
of the form “R: L” such that all attributes in L also 
occur in K. In the definition of a relational schema, 
to be soon introduced, we wiII indeed require that 
&ery key be minimal. 

Let K be a set of keys and N be a set of null con- 
straints over E. A key-based inclusion dependency 
over E, K and N, or a K-IXD, is an expression of the 
form RI[XI]~R2[X2]:(y,F) where, for i= 1,2, 

l Ri is the name of a relation scheme in E; 
l Xi is a sequence of distinct attributes of Ri such 

that Xt and X2 have the same length and X2 is 
defined as a key of R2 in K; 

l y is the insirtion option and 6 is the deIetion 
op$on of the K-Ih’D, taking values from the set 
(b’,bd,p’,pdj, with the following intended inter- 
pretation: 

bi block immediately 
i propagate -immediately . 

Ed 
Pd 

block deferred!y 
propagate deferredly 

with the restriction that y can be equal to pi or pd 
only if all attributes of R-J, excluding those in X2, 
admit null values, that is, no null constraint in N 
says the contrary. 

The restrictions imposed on y just avoid indetermina- 
ties when propagating insertions into RI to insertions 
into R2. Indeed, an insertion into RI determines only 
the value of the attributes in X2. Hence, if some attri- 
bute A of R2 did not admit a null value, the propa- 
gation of the insertion would have to arbitrate some 
non-null value for A, which is not reasonable. 

The semantics of K-INDs has a static and a dynamic 
perspective. The static perspective is reflected by 
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defining that a state CJ for E satisfies 

R, W,I=#~I:(Y,~) iff V, [X,1) s V2W21). 

The dynamic perspective refers to the fact that the 
insertion and deletion options affect the behavior of 
the operations over RI and R2 as defined in 
[CFT,Da]. For example, if the deletion option is b’, 
for block immediately, then there is a test that 
rejects the deletion of a tuple t from R2 in a state (J, if 
‘X2 E CF(R~[X,]). Note that, since X2 is a key of R2, 
no other tuple f’ in (3(R2) is such that f’X2= fx . 
Moreover, the test need not consider updates on Jf 2 
since we do not permit updates on keys. If the 
deletion option is bd, for block deferredly, there is 
a test that aborts the transaction if the state up at 
commit time is such that (p(R1[X1]) Q (P(R~[X~]). 

A relational schema is a pair S= (E,Ij where E is a set 
of relation schemes with distinct names and I is a set 
of null constraints, keys and K-ISDs over E such that 
every key in I is minimal. A state of S is a state of E. 
A state of S is consistent iff it satisfies all constraints in 
I. 

We recall that, given a set D of dependencies and a 
dependency d over a set of relation schemes E, we say 
that d is a logical consequence of D iff any state (3 of 
E that satisfies all dependencies in D also satisfies d. 

Let S= (E,I) be a relational schema and T be a trans- 
action over S. The behavior of T in S is the set of 
pairs.(0,<~‘) of states of E such that there is an exe- 
cution of T, starting in CJ and terminating in CT’, that 
correctly fires all possible triggers and assertions, 
immediate or deferred, associated with the 
insertion/deletion options of K-INDs in I. 

Let S = (EJ) be a relational schema and d be a 
K-ISD in I. We say that d is redundant in I iff 

l d is a logical consequence of I-16); 
l every transaction T over S has the same behavior 

in S and in S’= (E,I-(6)). 

The notion of redundancy just extends the usual 
notion of logical consequence for dependencies to 
accommodate the behavior of transactions. For this 
reason, it was phrased in a non-traditional way. 

2.2 A Motivating Example 

Consider a database storing information about soft- 
ware modules, where a module can be in three stages: 

planned, specified and implemented. Assume that 
every implemented module must have been first speci- 
fied and that every specified module must have been 
first planned. Then, a simplified relational schema for 
this database would contain the relation schemes 

P[NAME,DESC] 
S[NAME,SPEC] 
I[NAME,CODE] 

where P, S and I stands for ‘planned module’, ‘speci- 
fied module’ and ‘implemented module’, respectively, 
and the following K-INDs: 

(do,) S[NAME]sP[NAME]: (@,$) 
(cF’J I[NAME]sS[NAME]: (b’,p’) 
(do,) I[NAME]_cP[NAME]: (b’,b’) 

Let yi and 6, be the insertion and deletion options of 
do,. We intuitively prove that d”j is only partially 
redundant or, more precisely, we argue that: (1) &1 is 
a logical consequence of 8, and flz; (2) ~3 is redun- 
dant; but (3) 63 is not redundant. 

Indeed, (1) follows directly from the semantics of 
K-INDs. To prove (2), note that ~3 is a consequence 
of ~2 and the definition of 8,. Indeed, since ~3 is b’, 
~3 will block the insertion of a new implemented 
module m iff m is not yet planned. But if m is not 
yet planned, by a,, then m is not yet specified. 
Hence, since ~2 is b’, ~2 will also block the insertion 
of m, making it unnecessary to define ~3. Finally, to 
prove (3), observe that, as 63 is, b’, 83 will reject the 
deletion of a planned module m, if m is already imple- 
mented, independently of any other assertion and 
trigger. On the other hand, if 63 were not specified, 
6t and 82 alone would propagate the deletion of a 
planned module m to the deletion of its specification 
and implementation. Hence, 8s is not redundant 
because its deletion option affects the behavior of 
transactions. 

Suppose now that we replace 8, by: 

(do,‘) S[NAME]cP[NAME]: (b’,b’) 

Then, 8s becomes redundant for do,’ and a,, which 
indicates that we may drop 8s without affecting the 
semantics of the data and the behavior of the trans- 
actions. Intuitively, by a,, all implemented modules 
must have been specified. Hence, if the deletion of a 
planned module m is blocked because m has already 
been implemented, the deletion will also be blocked 
because m must have already been specified. 
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In general, the database designer may specify a rela- 
tional schema that contains any set of K-IXDs. The 
goal of this section therefore is to analyse which of the 
K-INDs specified are redundant. 

2.3 Conditions for Redundancy of K-IN& 

To analyse when a K-MD is redundant in the pres- 
ence of a set of K-ISDs, we will adapt the inference 
rules for INDs given in [CFP] to take into account 
insertion and deletion options. In particular, one of 
the rules will use regular expressions to define sets of 
sequences of options. Thus, for example, the regular 
expression (p” U bX) + bX(pX U bX)* denotes the set 
containing the sequences pXbX, bxbx, pXbXpX, 
pXbXbX, bXbXpX, bXbXbX, . . . 

The modified inference rules are: 

(Extended Reflexivity) . 
R[X]cR[X]:(p’,p’), ifX is a key of R 

(Extended Permutation) 
if SIB, ,...,B,lEW ,,... &,,l:(y,~) 
then S[Bi, ,..., 
where it ,...,i,.,, 

Bi,,,lER[Ai, v***sAiIJIl:(y,S)t 
is a permutation 0 ,...,m 

(Extended Transitivity) 
if Ri-l[Xi-r]=Ri[Xi]:(yi,Gi), for i = l,...,k, 

then R&$I~R&J:(Y,~) 
where y and 6 are as follows (with x~{i,d)): 

Yl -.Yk I Y I 
(PX) + PX 

(bX U pX)*bX(bX U p”)+ px,bX 

(pX)*bX bX 

6, . ..6k 

(P")+ 

6 

PX 

(bX U p”)+ bx(bx U p”)* 

bX(pX) * 

pX,bX 

bX 

Intuitively, the antecedents of the extended transitivity 
rule are ordered. Line 1 of the first table says that if 
all insertion options are of the form px then the 
insertion option of the conclusion must also be px; 
line 2 says that if all insertion options are immediate 
or all deferred (i.e., X= i or x =p) and at least one 
insertion option before the last one is bX then the 
insertion option of the conclusion can either be px or 

bX; line 3 says that if all insertion options are px, 
except the last insertion which is bX, then the insertion 
option of the conclusion must be bX. The second 
table has a similar interpretation for deletion options. 

For example, from 

we may derive just Ro[X&R3[X-J:(b’,pi). Indeed, 
the insertion options of the K-INDs form the 
sequence p’p’b’, which is in the set denoted by 
(p’)*b’, but not in the sets denoted by (pi)+ or 
(b’ U p’)*b’(b’ U pi)+, and hence the insertion option 
of the derived K-ISD must be b’. . $4oreover, the 
deletion options form the sequence p’p’p’, which is in 
the set denoted by (pi) + , but not in the sets denoted 
by (b’ U p’)+b’(b’ U pi)* or b’(p’)*, and hence the 
deletion option of the derived K-IXD must be p’. 
Therefore, Ro[X&R3[X3]:(b’,p’) follows from the 
other three EK-ISDs by the extended transitivity rule. 

These rules are sound, which means that whenever a 
relational schema S= (E,o has a K-ISD din I which 
can be obtained by the extended rules from the other 
dependencies in I, we may optimize the database 
design by replacing S by a new schema S’= (EJ), 
where I’ = I-(6): This transformation will affect 
neither the semantics of the data nor the semantics of 
the transactions since a state CT of E satisfies I iff it 
satisfies I’ and any transaction T has the same 
behavior in S and in S’. 

The reader is referred to [CTFB] for a fast algorithm 
testing redundancy for a special class of K-INDs. 

3. ELIMINATING K-INDS IN THE 1NF 
RELATIONAL MODEL BY STRUCTURAL 
TRANSFORMATIONS 

3.1 Preliminary Definitions 

We now address an optimization process that mini- 
mizes the set of K-INDs of a relational schema by a 
structural transformation that preserves first-normal 
form. The transformation eliminates each K-IND 
that satisfies certain criteria by collapsing the two 
tables related by the dependency into a single table. 
The transformation is made transparent to users by 
redeftig the original tables as views over the new 
table and by mapping their operations onto operations 
on the new table. The transformation is advantageous 
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exactly because the view operations are much faster in 
most cases than the corresponding operations on the 
original relational schema, that is, on the schema con- 
tained the non-trivialized K-IND. 

The definition of the transformation requires the fol- 
lowing additional concepts. Let E be a set of relation 
schemes with distinct names. A view definition over E 
is a triple (V[A, ,..., A,],Q,T) where 

l V[A,,..., A,,] is a relation scheme whose name is 
distinct from the names of the schemes in E; 

l Q is an n-ax-y relational expression over E; 
l T is a specification of correct translations for the 

operations over V into operations over the 
schemes in E (see [FC]). 

When the specification of T is not of interest, we will 
denote the view definition by V[A,,...,A,] = Q. We 
also say that V is the name of the view and that Q is 
the defining expression of the view. 

Let V be a set of view definitions over E. Suppose 
that the schemes in E and those defined in V have dis- 
tinct names. We extend a state (3 of E to V by 
assigning to each view V in V, whose deftig 
expression is Q, the value u(Q). 

Although a defining expression may be any valid rela- 
tional expression, the structural transformation will 
produce only h-restrictions, defmed below, followed 
by projections. 

Let h again denote both the null value and tuples, 
with arbitrary length, of null values. ‘We define a 
h-restriction over a relation scheme R in E as a 
restriction of the form R[Ai, #h]...[Ai #h], where 
Ai, ,-*.Ai, are attributes of R. We wilI requently use r 
the following equivalences for relational expressions: 

Original Expression Equivalent Expression 

R[X][Y] R[Y] , ifY E X 
R[Xfh][Y #h] R[XY #h] 

R[X][Y #h] R[Y #h][X] , ifY E X 

The transformation also requires extending the classes 
of integrity constraints previously introduced to 
relations defined by h-restrictions. 

Thus, an extended null constraint over E is an 
expression of the form “P: X f h” and an extended 
key over E is an expression of the form “P: X” where 
P either is equal to the name R of a relation scheme 

in E or is a h-restriction over R and X is a sequence 
of distinct attributes of R. The semantics of both 
classes of constraints is a direct generalization of the 
semantics of the original classes. 

Let K and N be sets of extended keys and null con- 
straints. An extended key-based inclusion dependency 
over E, K and N, or an EK-IND, is an expression of 
one of the forms 

1) R,[X,lCR#,l:(r~~) 
2) R,[Y, #hl[x,l~R~[x,l:(~,~), 
3) RI [X,lSR2[Y2 #~~IV~I:(Y,@ or 
4) R,b’, ~3~1~~,1~~,~~,~~1~~,1:~~,~~ 

where, for i = 1,2, 

Ri is the name of a relation scheme in E; 
Yt is a sequence of distinct attributes of Ri such 
that Y2 fl X2= 0; 
Xi is a sequence of distinct attributes of Ri such 
that Xt and X2 have the same length and X2 is 
defined as a key of R2 in K; 
y is the insertion option, taking values from the set 
{b’,bd,p’,pdj. However, y can be equal to pi or 
pd only if the dependency is of the forms (1) or 
(2) and all attributes of R2, excluding those in X2, 
admit null values, that is, no null constraint in N 
says the contrary. 
6 is the {eletivn option, taking values from the set 
(bi,bd,p’,pd,n’,ndj, where n’ stands for “Bropa- 
gate immediately by nullifying” and n stands 
for “propagate deferredly by nullifying”. 
However, 6 can be equal to ni or nd only if the 
dependency is of the forms (2) and (4) and all 
attributes in Yt admit null values in R 1. 

The restrictions imposed on y again just avoid inde- 
terminacies when propagating insertions and the 
restrictions on 6 just reflect when consistency can be 
restored, after a deletion from R2, by nullifying attri- 
butes values. 

We say that the EK-IND is simpIe on the right-hand 
side in cases (1) and (2) and that it is simple on the 
left-hand side in cases (1) and (3). We also say that 
the EK-IND is from RI to R2. 

The semantics of EK-INDs is a direct extension of the 
semantics of K-INDs and the new deletion options 
have the following interpretation. Consider a 
EK-IND of the forms (2) or (4). If the deletion 
option 6 is n’, there is a trigger associated with the 
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EK-ISD that is fired right after each deletion affecting 
R, terminates. Let o be one such deletion and 
suppose that o is the state right after o terminates and 
that D is the set of tuples that o deletes. The trigger 
sets to null the Yt-values of every tuple u in 
o(Rt [Yt # h]) such that there is a tuple t in D such 
that uX = tx 

‘d 
and tx ECI(R~[Y~ #k][Xt]). With 

option n , w?e associaL a trigger, fired when each 
transaction commits data, that sets to null the 
Yt -values of U, for each tuple u in (P(R, [Yt Z h]) 
such that UX #(P(R~[X~]), where up is the commit state 
of the transaltion. 

The optimization method will work with more 
complex schemas, defmed as follows. An extended 
relational schema is a pair SS= (IS, VS) where .I 

l IS= (BS,VD,Ic), the internal component of SS, 
is such that 
- BS is a set of relation schemes with distinct 

names, called base schemes of SS; 
- VD is a set of view definitions over BS whose 

schemes have distinct names; 
- IC is a set of integrity constraints over the 

schemes in BS, called active constraints of SS, 
such that every key in ZC is minimal. 

l VS= (E,l), the visible component of SS, is a rela- 
tional schema such that E G BS U e( VD), where 
e( VD) is the set of relation schemes introduced in 
view definitions in VD. 

An extended relational 
SS= ((BS,VD,IQ,(E,I)) is correct iff 

schema 

l every consistent state of (BS,Zc) induces, via VD, 
a consistent state of (EJ); 

l the deletion and insertion options qualifying the 
inclusion dependencies in IC guarantee, again via 
VD, the deletion and insertion options qualifying 
the inclusion dependencies in I. 

3.2 Description of the Transformation 

This section describes a structural transformation for 
relational schemas, in first-normal form, that mini- 
mixes the number of EK-INDs. The transformation 
is called trivialization. 

Let SS= ((BS, VD,IC),(E,Z)) be an extended schema. 
An active EK-IND d in IC is trivializable iff d is of 
the form S[L]ER[K]:(y,8) or of the form 
S[L]CR[Z Z h][K]:(y,6) where 

1) S is a base scheme of SS with key L that has an 
attribute N that does not occur in L and does not 
admit null values; 

2) R is a base scheme of SS with key K and Z is a 
list of attributes of R; 

3) y, 6 E {bid); 
4) there is no active EK-Ih’D in IC from a scheme T 

to S such that the insertion option is pi or pd. 

Condition (2) is a direct consequence of the definition 
of EK-IND and is repeated here just to highlight that 
K must be a key of R. Condition (3) indicates that 
the insertion and deletion options of d are either b’ or 
pi, that is, they must be both immediate, but it does 
not require that the options be equal. 

Conditions ( 1) and (2) permit, via the keys K and L, 
to collapse schemes S and R into a single scheme G 
without creating redundancies. Each tuple t in G 
always encodes exactly one tuple of R and, if tN f h, 
also encodes exactly one tuple of S. Condition (3) 
clarifies which are the insertion and deletion options 
compatible with the creation of G. Without any of 
these three conditions, collapsing R and S into G 
would produce a new relational schema that does not 
preserve the semantics of the original schema. Finally, 
condition (4) reflects the restrictions imposed on the 
insertion options that may qualify a EK-IND. 
Without it, step (7) of the trivialization process, 
described in what follows, would produce an invalid 
insertion option. 

The trivialization algorithm takes as input a relational 
schema SS, and produces as output an extended 
schema SS,.,. Each step of the algorithm transforms 
an extended schema SSi into a new extended schema 

ssi+l by trivializing an EK-Il’!D di of SSt as 
follows. Suppose that di is of the form 

WlEWKl:(y,~) of the form 
S[L]CR[Z Z h][K]:(y,i?yf where R[K,X] and S[L,Y] 
are base schemes of SSt. Suppose that N is an attri- 
bute of S that does not belong to L and that does not 
admit null values. The new extended schema SSi + t 
is obtained from SSi through the following transf- 
ormations: 

1) Remove di from the set of active integrity con- 
straints; 

2) Add G[K,X,Y’] to the set of base schemes, where 
Y’ is a renaming of the attributes in Y to avoid 
contlicts with the attributes of K and X (we will 
denote by A’ the attribute of Y’ corresponding to 
an attribute A of Y). 
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3) Remove R[ K,X] from the set of base schemes 
transforming it into a view by adding to the set of 
view definitions the triple (R[K,X],G[K,X],T), 
where T defines the translation of the operations 
over R to G as follows: 

update R set X=t update G set X = t 
where Q where Q 

Notes: 

(1) translation when 6 = p’, that is, when deletions 
from R propagate immediately; 

(2) translation when 6 = b’, that is, when deletions 
from R block immediately; 

(3) N’ = h indicates that a tuple of G does not 
encode a tuple of S. 

4) Remove S[L,Y] from the set of base schemes 
transforming it into a view by adding to the set of 
view definitions the triple 
(S[L,Y],G[N’ # h][K,Y’],U) where U is defined 
as: 

I Operation I Translation I I h’ote 

insert into S 

(L=uL,Y=uy) 

inset-l into S 

inset-l into G (1) 
(K=uL,Y’=uy,X=h) 

if insert fails then 
update G set Y’=uY 

where K = uL and N’ =h 

update G set Y’ = uy (2) 
(L=QY=uy) where K=uL and N’= 

insert into S 

(L=$,Y=uy) 
update G set Y’=uY (3) 
where K=uL and N’= 

and Z#h 

delete from S update G set Y’=h 
where Q where Q’ (4) 

update S set Y = uY update G set Y’= uy (5) 
where Q where Q’ and N’ fh 

Kotes: 

(1) translation when “/ = pi, that is, when 
insertions into S propagate immediately. Note 
that, in this case, the trivialized EK-IND can only 
be of the form S[L]cR[K]:(y,8) because y speci- 
fies propagation; 

(2) translation when y = b’, that is, when 
insertions into S block immediately, and the 
EK-IND is of the form S[L]ER[K]:(y,6); 

(3) translation when y = b’ and the EK-IND is of 
the form S[L]=R[Z #3,][K]:(y,6); 
(4) Q’ is a renaming of Q reflecting the renaming 
of Y to Y’; 

(5) the term N’ #?b avoids that the update 
becomes an insertion. 

5) In each view deftig expression, except those of 
R and S, replace R and S by their defining 
expressions, simplifying the result if possible. 

6) In ,each translation of a view operation, except 
those associated with R and S, apply the trans- 
lations specified in T and U to each operation over 
RandS. 

7) Define K as a key of G. Each active integrity con- 
straint C of SSi, except the keys K of R and L of 
S, generates an active integrity constraint C’ of 
ssi+l obtained by - 

a) replacing R in C by its defining expression; 
b) replacing S in C by its defining expression and 

renaming the attributes of S to their new 
names in G; 

c) simplifying the result. 

Moreover, if C is a EK.-IND, the deletion and 
insertion options of C’ remain the same as those 
of C, except if C is of the form 

qx,l=p[x,l:(Y~~) and the deletion option 6 is 
p’ or pd, in which case the deletion option of C’ 
becomes ni or nd, respectively. 

8) Discard the view definitions whose schemes do 
not belong to the visible part. 

The algorithm is correct in the sense that the visible 
component of the final extended schema SS, is 
exactly the original relational schema SS, and that 
SS,, is correct (as defined at the end of section 3.1). 
In other words, the optimization is transparent to 
users since they will still see the original schema SS, 
and, moreover, the semantics derived from that of the 
internal component and from the view definitions of 
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SS,, is equivalent to the semantics originally specified. 
The correctness of the algorithm follows by induction 
on the number of iterations observing that, in each 
step, the dependencies over R and S, which are now 
views over G, become consequences of the dependen- 
cies over G. Indeed, by defining K as a key of G in 
step (2), we guarantee that K and L are keys of R and 
S and, through the generic transformation defined in 
step (7), we automatically map all null constraints, 
keys and EK-INDs involving R and S to equivalent 
dependencies over G . 

As an example of the algorithm, consider a relational 
schema containing the relation schemes 

P[NAME DESC] 
I[NAMEkODE] 
Mm;,E#J 

S[NAME SPEC] 
a-’ 

standing for ‘planned module’, ‘specified module’, 
‘implemented module’, ‘chief-programmer’ and 
‘manages’, respectively, where keys are underlined and 
all attributes do not admit null values. Suppose also 
that the schema contains the following INDs: 

S[NAME]cP[NAME]: (b’,p’) 

I[NAME]G[NAME]: (b’,p’) 

M[NAME]cP[NAME]: (b’,p’) 

M[E#]EC[E#]: (b’,p’) 

Intuitively, in terms of the entity-relationship model, 
these dependencies say that I is a specialization of S, S 
is a specialization of P and M represents a relationship 
between P and C, which is n-l with P on the “n” side. 

The algorithm will transform this schema into a final 
extended relational schema with just two relation 
schemes and one EK-IND, thus trivializing the main- 
tenance of three EK-INDs. For example, the 
trivialization of d”, will produce one new scheme, 
SI[NAME SPEC,CODE], -9 and will transform S and I 
into views with defining expressions: 

S[NAME,SPEC] = SI[NAME,SPEC] 
I[NAME,CODE] = SI[CODE Z I,][NAME,CODE]. 

Furthermore, this trivialization will modified all con- 
straints involving S and I. For example, do, becomes 

SI[NAME]EP[NAME]: (b’,p’) 

To conclude this section, we remark that the 
trivialization algorithm may be reinterpreted according 
to two opposite views. On one hand, if we under- 
stand a normalization process in the broad sense of a 
process that simplifies the treatment of dependencies 

by structural transformations, then the trivialization 
algorithm can be viewed as a normalization process. 
Indeed, defme that an extended relational schema 
SS,.,= ((ES,, VD,.,,IC,,),(E,I)) is in extended key- 
based inclusion dependency normal form (EK- IND/ Nfl 
iff IC, has no trivializable EK-IND. We can then 
reinterpret the trivialization algorithm as a process to 
transform a given relational schema S= (E,r) into an 
extended relational schema in EK-IND/NF. On the 
other hand, if we understand a denormalization 
process as any process that collapses into a single rep- 
resentation two logically separated concepts, then the 
trivialization algorithm can also be viewed as a denor- 
malization process. 

4. EXTENDING THE STRUCTURAL 
TRANSFORMATION TO THE NF2 RELATIONAL 
MODEL 

This section briefly discusses, using an exampI how 
to extend the structural transformation to NF rela- 
tional schemas. Without defining them explicitly, we 
shall use the basic notation of [Ja] and the counterpart 
for the NF* model of the concepts introduced in 
section 3. In particular, to indicate the operation that 
unnests an XF* relation, we shall use the symbol l.t, 
subscripted with an expression E defining the part to 
be unnested. The unnest operation may be recursively 
applied to the result of other unrest operations. Xote 
that l.t automatically filters out the tuples whose 
unnested component is the empty set. 

Let SS be an extended NF* relational schema. A 
EK-IND d in SS is N$-trivializable ifi it is of the 
form S[L]cR[K] or of the form S[L]G~E(R)[K] 
where 

1) S is a base scheme of SS with at least one attri- 
bute N not in L; 

2,3,4) Identical to conditions (2),(3) and (4) of 
trivialization in the traditional model. 

Note that, in the NF* model, L need not be a key of 
S and N may admit nulI values. The trivialization of 
d nests S into R, creating a single scheme G. Each 
tuple f of G always encodes the tuple of R with key tK 
and the set of tuples u of S such that UL= fK. If this 
set is empty, the projection of t over the nested attri- 
butes of S will be simply the empty set, and not a 
tuple of nulls, as in the traditional model. 

The trivialization algorithm can be extended to NF* 
relational schemas as the following example suggests. 
Let us consider a relational schema containing just 
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two relation schemes: 

E(w,NAME,DESC) 
D(SSN,DNAME) 

where E and D stands for ‘employee’ and ‘dependent’, 
respectively, and where the keys are underlined. 
Suppose also that the schema has one K-IND, 

(do,) D[SSN] E E[SSN]: (b’,p’) 

Then, we may trivialize 8, producing a single SF* 
relation scheme: 

ED(c,NAME,DESC,D(DNAME)) 

and transforming E and D into views with defining 
expressions: 

E(SSN,NAME,DESC) = ED[SSN,NAME,DESC] 

D(SSN,DNAME) = 

In a general setting, it is convenient to carefully 
analyze the benetits of nesting a scheme S into 
another scheme when there are EK-INDs involving S 
that will not be trivialized because they wiIl be trans- 
formed into EK-IXDs over relations defined with the 
help of the unnest operator. 

As for the traditional model, the deftition of 
trivializable dependencies induces a normal form for 
the SF* model and the trivialization algorithm corre- 
sponds to a normalization process. 

5. CONCLUSIONS 

The optimization process described in this paper mini- 
mizes the set of K-ISDs of a relational schema by 
eliminating redundant K-IXDs and by trivializiig 
EK-INDs without modifying the semantics of the 
application. As a conceptual design process, it diiers 
from the strategies defined for the traditional as well as 
the h’F* variations of the relational model because is 
based on inclusion dependencies and depends in a fun- 
damental way on the insertion and deletion options to 
avoid altering the behavior of the transactions. 
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