
The Effect of Bucket Size Tuning
in the Dynamic Hybrid GRACE Hash Join Method

Masaru KITSUREGAWAt M asaya NAKAYAMAI Mikio TAKAGIt

t Institute of Industrial Science, The University of Tokyo
7-22-l Roppongi, Minato-ku, Tokyo 106, Japan

$ Toyohashi University of Technology
l-1 Tempaku-cho, Toyohashi 440, Japan

Abstract

In this paper, we show detailed analysis and performance
evaluation of the Dynamic Hybrid GRACE Hash Join
Method (DHGH Method) when the tuple distribution
in buckets is unbalanced.

The conventional Hash Join Methods specify the tuple
distribution in buckets statically. However it may differ
from estimation since join operations are applied with se-
lection operations. When the tuple distribution in buck-
ets is unbalanced, the processing cost of join operation
becomes more costly than the ideal case when you use
Hybrid Hash Join Method (HH Method). On the other
hand, when you use the DHGH Method, the destaging
buckets are selected dynamically, gives the same perfor-
mance as the ideal case even if the tuple distribution in
buckets is unbalanced such as Zipf-like distributions.

We analyze the total I/O cost of a join operation at
various number of buckets. The result shows that we
have to determine the number of buckets baaed on the
tuple distribution in buckets rather than the size of the
source relation. It is shown that we had better partition
the source relation using a large number of small buckets
instead of the smaller number of buckets almost filling
the whole main memory adopted in the HH Method.

1 Introduction

The join is one of the most expensive relational al-
gebra operations and many join methods have been
proposed [Sto76,Kit83,Bra84,DeW84,Yam85]. Among
them, ‘split based hash-partitioned join methods’, such as
GRACE Hash Join Method, present good performance

Permission lo copy without fee all or part of this material is
granted provided ihat the copies are not made or dislribuled for
direct commercial advantage, the VLDB copyrighl notice and
Ihe title of the publicalion and its date appear, and notice is
given that copying is by permission of Ihe Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from Ihe Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

for large scale database [Kit83,DeW84,Sha86]. In those
join methods, the source relations are partitioned into
number of “buckets” by a “split function” when the size
of the smaller relation exceeds that of the available stag-
ing memory. The number of buckets is determined by
the size of the source relation. In the Hybrid Hash Join
Method (HH Method), which combines the good fea,
tures of GRACE Hash Join Method and Simple Hash
Join Method, the number of buckets is determined by
the relative sizes of available staging memory and rela-
tion; it is computed so as to make the aggregated size
of buckets are almost same to the size of staging mem-
ory, excepting for the first processing bucket called “RI
bucket”. So, if the split function does not suit for the
tuple distributions in the source relations, some buckets
exceed the memory size. Such buckets, named “over-
flown buckets” in this paper, diminish the performance
of the HH Method and you cannot expect to achieve
optimal performance [Nak88]. In order to minimize the
overflown buckets, we divide the source relations into
a large number of buckets. We name this approach as
“Dynamic Hybrid GRACE Hash Join Method” (DHGH
Method), because we dynamically select the first pro-
cessed buckets and establish a scheduled processing se-
quence of buckets. In this join method, the unbalanced
tuple distribution in buckets does not diminish the per-
formance as shown in [Nak88].

The purpose of this paper is twofold. First, we evalu-
ate the processing cost of the DHGH Method at various
number of buckets to examine the minimal occurrence
of overflown buckets and to identify the guideline for
determining the number of buckets when the tuple dis-
tribution in buckets is unbalanced.

If we divide the source relations into a large number of
buckets, the size of each bucket may become too small
to fill up one page. We call such short-filled pages as
‘fragment pages”. The I/O operations for them dimin-
ish the performance. Therefore, in our join algorithm,
many of these short-filled buckets a.re put together to
a larger bucket in accordance with the available main

Amsterdam, 1989

- 257 -

memory. This technique is called “bucket size tuning’
as in [Kit83]. Second purpose of this paper is to eval-
uate this strategy. We show the detailed evaluation of
this strategy and exhibit its effectiveness.

In section 2, we define the notations used in this paper
and explain the environment of our performance evalu-
ation.

In Section 3, we analyze the DHGH Method and show
certain requirements for its algorithm. Roughly speak-
ing, there are two conditions: the first condition is for
eliminating overflown buckets, and the second one is for
keeping the first processing bucket in the available stag-
ing memory.

Section 4 gives the performance results of three kinds
of tuple distributions. Performance was evaluated by
using various number of buckets. When we treat large
sized relations, all results indicate that the elimination
of overflown buckets is the key condition to attain good
performance. They also show that large enough number
of buckets is effective to minimize overflown bucket.

Section 5 shows the performance results for medium
sized relations. In this section, we show the effect of
bucket size tuning strategy. Bucket size tuning for the
first processing buckets gives advantages when the num-
ber of buckets is small. On the other hand, bucket size
tuning for other buckets is effective when the number of
buckets is large because this tuning is also effective for
I/O reduction of fragment pages.

Section 6 concludes this paper. The results of all
evaluations show that we should divide relations into
larger number of buckets than conventional suggestions.
The conventional join method determines the number
of buckets based on the relative size of the source rela-
tion and the available main memory, but we determine
it based on the tuple distribution in buckets.

2 Overview of the Dynamic Hybrid
GRACE Hash Join Method

Previous researches in hash-partitioned join methods did
not concern themselves with the unbalanced tuple distri-
bution in buckets and assumed optimal tuple distribu-
tions. Our proposed join method can dynamically han-
dle most of distributions i. Our previous paper [Nak88]
shows an evaluation for a triangular tuple distribution
in buckets (Figure 1) as an example with good results.
In this paper, we show a more detailed evaluation of the
DHGH Method including the tuple distribution used in
[Nak88]. In add t i ion, Zipf-like distribution is selected for

‘If there is a bucket which exceeds the available main mem-
ory size with same valued join attributes, we have to use nested
loop manner for achieving join operation. This is an exceptional
example for our algorithm.

-D Unbalanced Bucket (DHGH nethod)
* Unbalanced Bucket (HH tlethod)
-) Balanced Bucket (DHGH nethod)
+ Balanced Bucket (HH tlethod)

1500 , 1

3
t

Y 1000

t
i=

t

P
500

::

B

04 . I
100 300 500 700 900

Number of Tuples (k tuples)

Figure 1: Comparison of processing time between our
join method and conventional join method

another example of unbalanced tuple distribution as is
used in AS3AP benchmark set [Tur87,Tur88].

2.1 The notations and definitions used
in this paper

The two source relations of join operation are named R
and S (R < S). The result relation is named RES.
When the size of relation R is smaller than that of
the available main memory, Simple Hash Join Method
[DeW84,DeW85] may be applied. While staging the
whole relation R into the available main memory, we
apply a hash function to each tuple and make a hash
table. Then each tuple in relation S is staged and applied
to the same hash function to achieve the join process-
ing. In short, one scanning of each relation is enough to
achieve join operation in this case.

On the other hand, when the size of relation R is larger
than that of the available main memory, we have to di-
vide it into sets of subrelations. We call these subrela-
tions ‘buckets’ and describe them as & (1 2 i 5 H,)
in this paper. Here, H, means the number of splitting
buckets. The function to divide the source relations into
buckets is called ‘split function’. When the bucket size
is smaller than that of the available main memory, join
operation for this bucket can be achieved by one scan-
ning as described above. It means that join operation
can be achieved by using two phase algorithms. The
first phase is to divide the source relations into many
buckets, and the second phase is to process the join op-
eration for each bucket. The former phase is called ‘split
phase’ and the latter ‘probe phase’. Figure 2 shows
the outline of join processing.

- 258 -

IRI - JR1 I
lRil = H,-l (2 5 i 5 Hs) (3)

Split Function

I i-1, BYch., 0, Hash Function

Figure 2: Two kinds of hash
based join methods

functions used by split

Available Hain Hemory ,

1 l/- N pages 7
_ f : i / : ; i i i
; ? : : i ; j i
- I : i j j f f

i : : : : : j ; i i : :
tit, : : ; : : : :

I- e

L L Staging Buffer for Relation R

Input Buffer for Relation S

Output Buffer for Result Relation
Figure 3: Memory usage for processing a join operation
in our experiments

In the split phase, the CPU cost (the tuple splitting
cost and the tuple movement cost) is negligible in com-
parison with I/O cost. So we treat buckets in main
memory by page unit and tuples in the same bucket are
placed closely together to save the I/O cost. As shown
in Figure 3, main memory contains N pages for staging
relations and 2 pages for input and output buffers.

When we partition relations into H, buckets, N - H,
pages are not used in the split phase if each phase is
fully isolated (GRACE Hash Join Method). Instead of
this method, the “Hybrid Hash Join Method” uses
these free pages for staging RI bucket. This technique
saves the I/O cost for RI bucket in join processing. In
[DeW85,Sha86], it is shown that this method always
gives the best performance among all of join methods
when the following formula is satisfied.

H, = (1)

lR11 = IMI-H&+1 (2)

In the formula above,]M] means the number of pages
of available staging memory and IRI means the number
of pages of relation R. The notation]M] is equivalent to
N in our environment. In addition to this notation, we
use {R} to describe the number of tuples of relation R.

When the above formula is not satisfied for any reason,
additional processing cost is required. If the size of RI
bucket is small, the saving of the I/O cost is not signifi-
cant. In such a case, other buckets get more tuples than
the estimation and some buckets may exceed N pages
(overflown buckets). These buckets must be recursively
split into many sub-buckets and only then join oper-
ations can be performed. If the i-th bucket exceeds N
pages and is partitioned into Hi sub-buckets, we describe
them as Rij (1 5 j < Hi). On the other hand, if the
size of RI bucket exceeds the available staging memory,
we have to re-split the RI bucket dynamically.

These additional overheads are necessary because of
the statical decision of the RI bucket. In the DHGH
Method, however, we dynamically determine the RI
bucket and split the source relations into a large number
of buckets to prevent overflown buckets. We discuss the
method to determine the number of buckets in section
4.

When we divide the source relations into a large num-
ber of buckets, each bucket may have fewer tuples than
{M} (fragment pages). Such fragment pages can be put
together into a bucket for further processing: i.e. a set
of buckets, in effect, can be processed at a time. This
strategy is called ‘bucket size tuning’ and there are
two kinds of size tuning. The size tuning for the buckets
whose join processing are overlapped with split phase
is called ‘RI bucket size tuning’. The other bucket
size tunings is called ‘R; bucket size tunings’. The
advantages of size tuning are discussed in section 5.

2.2 Enviromnent for performance eval-
uation

In this paper, we evaluate the performance for the Zipf-
like distribution as is used in the AS3AP benchmarks
[Tur87’,Tur88], This distribution is the generalization of
the Zipf distribution [Knu73]. A power of the rank of an
item is inversely proportional to its frequency:

iz X fi =
1

conslad’)
(1 5 i 5 n)

In this formula, z is the decay factor and constant(‘)
is the n-th harmonic number of order z. If z = 0, the
distribution becomes uniform. When z = 1, it shows

- 259 -

the Zipf distribution. And also, G. K. Zipf found the
distribution of personal income when .z = 0.5.

We assume that tuple distribution of each bucket fol-
lows this distribution. For instance, i-th bucket of rela-
tion R has such number of tuples as shown in the fol-
lowing formula:

In this paper, we analyze the I/O cost for join oper-
ation changing the number of buckets. If we can stage
t buckets in the main memory at the end of split phase,
we can denote the I/O cost of join operation, C(R, S),
‘as follows.

{Ri) = If! (1 I i I H.) (4)

i’.C$
j=l

C(R,S) = PI + ISI + lR=l VI I WI) (8)

C(R,S) = IRI + ISI + 2 IRJW

Though each bucket has an unbalanced distribution,
we assume that each join attribute has a unique value in
the relation in order to get the same total I/O cost for
join operation for all distribution of buckets.

kc1

H.

+ c (I&l + IskI + C(Rk, Sk))

k-t+1

WI < IW (9)

3 Performance analysis of the Dynamic
HybrSd GRACE Hash Join Method

When the size of relation R is larger than that of avail-
able memory, total I/O cost of join operation is recur-
sively defined. If we can divide the source relation into a
number of buckets to satisfy the condition (5), C(R,S)
can be denoted as follows.

The algorithm of new join method was shown in [Nak88].
In this section, we show two conditions to ensure the
good performance of the DHGH Method. As illustrated
in the last section, the HH Method determines the num-
ber of buckets as small as possible. When the tuple
distribution in buckets is unbalanced, performance be-
comes worse because of the overflown buckets. In the
DHGH Method, we determine the number of bucket as
large as we can for preventing overflown buckets; we di-
vide the relation into number of buckets to satisfy the
following formula:

C(.R S)

= IRI+ISI+&-kI
H.

krl

+ c {IRkI + IskI -t (IRkI + IskI + IRESkI))

k=t+l

= M-t-lSl+lRESl +‘2 2 (IRkj+Iskl) (10)

k=t+l

m=lRilI IMI (5)

As for the size of RI bucket, it is determined by the
formula (2) in the HH Method. In our method, however,
the minimum sized bucket is dynamically selected for the
RI bucket. So the condition is denoted as the following
formula:

When all those buckets between u + 1 and HI are
overflown buckets and thus further divided into Hi’)
sub-buckets satisfying the condition (5), total I/O cost
becomes as follows.

r

C(& S)

= lRI+IS~+~IRE&I + 2 (IRkl+Iskl)

min lRil< IMI - H, + 1 (6) k-1 k=t+l

u

Also, when we apply a join operation to small sized
relations, we may collect a number of buckets to the first
processing bucket. This schedule is called RI bucket size
tuning. If you give the bucket identifier L in accordance
with the size sequence, the previous condition (6) can
by rewritten as follows. In this case, we assume that t
buckets are selected as the first staging buckets.

+ c (IRkI + Is&l+ (-S&I)

k=t+l

H.

+ c {l&l + IskI + IREskI

k=u+l

Hp

+2 c (h/ + iskll))

kc(k)+1

Jr.

-&&I <lMl-Hs+t (7) = IRI + IsI + IRESI + 2 c (l&l + Is&l)
. ._ . -

It=* fist+1

- 260-

Sip)
+2 5 c (IRkIl+ PHI) (11)

The extra I/O cost for processing the overflown bucket
can be calculated as follows.

k=utl t=t@)+1

In this formula, we assume that t(k) sub-buckets can ,,
be collected into the first staging sub-bucket in split
phase of k-th bucket. Both tck) and H,(k) are depen-
dent on the tuple distribution in the k-th bucket and
tck) is also dependent on the size of k-th bucket. Here,
we assume that the tuple distribution in sub-buckets is
same distribution as in buckets and assume that Hik’
(u < k 5 H,) is equal to the H, value.

In this remaining section, we analyze the I/O cost of
join operations for the same two relations. As described
before, each tuple has a unique value at join fields in the
relation R and the amount of result relation becomes
twice the source relation ((RESJ = 21RI): Formula (10)
and (11) are rewritten as follows.

C(R,R)=41RI+4 5 IRkl (formula 10) (12)
k=t+l

C(R,R)=4lRI+4 2 IRkI +4 5 5 IRHI
k=t+l k=ut1 l=t@)+l

(formula 11) (13)

Now, we can get information about extra I/O cost for
overflown buckets. For detailed analysis, we have to fix
the tuple distribution in buckets. We choose the triangu-
lar distributions for this analysis. The tuple distribution
in buckets can be described as follows.

2{W
lRk) = H,(H,+ 1)” (1 I k I HS)

Here T denote the minimum number of buckets to
satisfy the condition (5). When t buckets can be staged
into the staging memory at the same time, CT can be
described as follows.

C97=4lRI +4 2 a."
k=t+l

When we use T - 1 buckets in the split phase, the
largest bucket (R ~-1 bucket) becomes overflown bucket
and the I/O cost of join operation is described as follows.
(Appendix A shows the reason why we get such a for-
mula.)

T-l

CT-1 = 41R1+4 c IRkI +41&-~~-11

k=t+l

T-l

= WA 4lRI +4 c 7.
k=t+l (T - ‘)

k +441RI

T1

C e.TtPa = CT-1 -CT

= 8lRI. L-
(

t(t + 1)
T1 T(T-1)(57+1) >

This formula shows that an overflown bucket leads
about 2/T' of I/O cost disadvantages at most 2. When
we treat large relations, the occurrence of the overflown
bucket is not so serious a problem because T is large.
When we treat the small relations, however, we have to
carefully determine the number of buckets to avoid the
overflown bucket. The following two sections show these
phenomena separately.

4 Performance results of three kinds of
the bucket distributions

As shown in Figure 1, the HH Method does not suit
for unbalanced tuple distribution in buckets. The pro-
cessing cost for unbalanced buckets is about 1.4 times
worse than that for balanced buckets. The reason for
this phenomenon is not clearly discussed in [Nak88]. In
this section, we evaluate the join performance of three
kinds of tuple distribution in buckets as we change the
number of buckets and the size of source relations.

We choose the triangular distribution, the Zipf-like
distribution and the uniform distribution as the three
kinds of tuple distribution in buckets. The former two
distributions are used to evaluate the join performance
for unbalanced buckets. The uniform distribution is used
to get the base join performance.

In each distribution, we calculate the I/O cost during
a join operation as we change the size of source relations
and the number of buckets. We assume that the avail-
able staging memory has 100 pages and each page can
contain 32 tuples in it. In this case, H, can be changed
between 2 and 99 (=]A41 - 1). When the size of re-
lation R is greater than that of the available staging
memory, we need at least 2 buckets for achieving join
operation. And the Dynamic Destaging Strategy, used
in the DHGH Method, determines the upper bound of
H, . When we have no free pages in the staging memory
at the split phase, destaging bucket is selected from the
set of buckets which has more than one page. So the
number of buckets must be less than [MI.

2For splitting the source relation into buckets, twice I/O opera-
tions (read the source relation and write to the temporal relation
) are needed for each source relation. To probe join operation,
another read and write operations are needed. Totally, 8 I/O op-
erations are needed for basic join operation.

- 261-

Number of BwkeIs(Hs)

Figure 4: The performance results for triangular distri-
bution

For all performance evaluations in this section, the
number of tuples in source relations is changed every
10,000 tuples from 10,000 tuples to 100,000 tuples. As
described above, at most 3,200 tuples can be staged in
the available staging memory at a time. Most of the re-
lations used for performance evaluation have more than
five times larger tuples than the available staging mem-
ory contains. They are called “large sized relations” in
[Nak88]. The performance results of “medium sized re-
lations” are shown in the next section.

4.1 Performance results of the triangu-
lar distributions

First, we show the results of triangular distribution.
This distribution is chosen in [Nak88] and we evaluate
more detailed phenomena in this paper. Figure 4 shows
the number of I/O operation for each number of bucket
and for each size of the source relation.

In this figure, two different dotted lines show the
boundary conditions of equation (5) and (7). The white
points show the results of the HH Method and the black
points show the results of the DHGH Method for each
size of relation.

If the size of each bucket does not exceed the size of
the available staging memory, H, does not affect the
performance that much. These phenomena are shown in
the area whose H, value is greater than the condition (5)
line.

When some buckets exceed the available memory size,

extra I/O cost is required to perform join operation for
such overflown buckets. However, it is not so large on
amount. These phenomena are shown in the area whose
H, value is between two condition lines.

When all the buckets exceed the size of available mem-
ory, the performance becomes extremely worse. These
phenomena are shown in the area whose H, value is
smaller than the condition (7) line. In this situation, the
maximum size of sub-bucket of IRH,] bucket exceeds the
size of IRll bucket as follows.

max l(max l&l)rl - min l&l

= Ih,%I - Pll
2 214

= H,+l’H,-
WI

H*(H* + 1)
If, - 1

= WI* Jf(H# + 1)s ’ O

It means that sub-buckets whose size exceed the avail-
able staging memory need much more re-splitting oper-
ation to process the join operation. This is the reason
why the performance of join operation becomes so much
worse.

4.2 Performance results of the uniform
distributions

In this subsection, we show the results of uniform dis-
tributions. Similar to the triangular distributions, we
evaluate the I/O cost of join operation at various size of
the source relation and the number of buckets. Figure 5
shows the results. Two different dotted lines, the white
points and the black points have the same meaning as
Figure 4.

Unlike the triangular distribution, the condition (5) is
more severe than the condition (7). When all buckets
satisfy both conditions, the I/O cost can be described
by using formula (10) as follows:

C(R, R) = 4lRl+4 5 l&l
k:=t+l

= 4~R~+4$+~-1)

= slRl-4!+ .t
,

(14)

When T denotes the minimum number of the buckets
which satisfies the condition (7), the I/O cost can be
described as follows.

CT = 8lRI - 4!$

- 262 -

Number of Buckets(Hs)

Figure 5: The performance results for uniform distribu-
tion

When the condition (7) is not satisfied, the total I/O
cost can be calculated as t = 0 in the formula (14).

CT-1 = 8,R,

The extracost for the RI bucket overflown is described
as follows. And the disadvantage becomes about l/27’.

C eztra = CT-1 -CT = SIRI&

When the tuple distribution in buckets is balanced,
each bucket has the same number of tuples. If the con- .
dition (5) is not satisfied, all destaging buckets become
overflown buckets. The total I/O cost is described as
follows.

C(R,R) = 41Rl+&&, +4g 2 ,&cl,
kc1 k=l I=t+l

In this formula, t is a constant value for all buckets.
When T denotes the minimum number of the buckets to
satisfy the condition (5), the I/O cost of join operation
can be described as follows.

Figure 6: The performance results for Zipf-like distribu-
tion (z = 0.5)

And the extra I/O cost can be calculated as follows.

C e+t,.a = CT-1 -CT = 41RI. T;l;'a

In this formula, both value of T and t are dependent
on IRI. When IRI is small, (T - 1 - t)/(T - 1) also
becomes small and the extra I/O cost does not affect
the performance. On the other hand, when IRI is large,
(T-l-t)/(T-1) b ecomes large and the extra I/O cost
will affect the performance.

4.3 Performance results of the Zipf-like
distributions

To evaluate the performance for actual databases, we
use the Zipf-like distributions in this subsection. The
Zipf-like distribution has a parameter, the decay factor
z. We evaluate the performance when z is 0.5 and 1.0.
Figure 6 and Figure 7 show the results respectively. The
white points show the results of the HH Method and the
black points show the results of the DHGH Method.

We get similar results to those of the triangular dis-
tributions. However the results of Zipf-like distributions
are not as good as that of the triangular distributions.
Because Zipf-like distribution is more severe than the tri-
angular distributions for the condition (5). In the trian-
gular distributions, the largest bucket contains 2{R)/H,
tuples at most. However, in the Zipf-like distributions, it

H.
contains {R}/(x l/y) tuples. If we treat the Zipf dis-

j=l

- 263 -

Number of Suckers loo

Figure 7: The performance results for Zipf-like distribu-
tion (z = 1.0)

tribution (z=l.O), sum of the inverse numbers becomes
in H, and the largest bucket contains {R}/ In H, tuples.
It means that the source relation which contains more
than 15k tuples produces overflown buckets even though
we use dynamic destaging strategies. In this case, ad-
ditional I/O cost for processing join operation is needed
and the performance is degraded. This phenomenon is
observed in tke income distribution (2=0.5). If the re-
lation contains more than 60k tuples, overflown bucket
is occurred though the amount is little in such cases.

The following figure shows the total I/O cost ratio in
each join method to the basic I/O cost for join operation
WW

This figure clearly shows that we need additional I/O
to apply join operation for Zipf-like distributions. It
also shows that, medium sized relation for all distribution
does not have overflown buckets.

5 Discussion of bucket size tuning

We show the results for medium sized relations which has
triangular distribution and discuss the effect of bucket
size tuning in this section.

As described in [DeW84,DeW85,Sha86,Ger86], the
advantage of RI bucket overlap processing is remarkable
when the source relation is a small size as the available
staging memory. In our environment, 3,200 tuples can
be staged at a time. And we evaluate the performance of
5,000 tuples and 10,000 tuples relations. As illustrated

10 20 20 a 50 00 70 00 00 100

Numbrr oltu@er (k luf~l.8)

Figure 8: The total I/O ratio to the basic I/O operation

before, we have two kinds of schedules about bucket size
tuning, RI bucket size tuning and R+ bucket size tun-
ing. To evaluate the detailed performance of bucket size
tuning, we use following four kinds of algorithms.

l The algorithm 1 is applied neither to RI bucket
size tuning and to & bucket size tuning.

l The algorithm 2 is applied only to RI bucket size
tuning.

l The algorithm 3 is applied only to & bucket size
tuning.

l The algorithm 4 is applied both to RI bucket size
tuning and to R+ bucket size tuning.

Algorithm 1 includes the result of the HH Method. It
determines the join processing sequence of buckets stat-
ically. The algorithm 2 only schedules a set of buckets
in the RI bucket using the Dynamic Destaging Strat-
egy. And the algorithm 3 schedules the join processing
sequence of buckets by their sizes. A number of buckets
are collected to fill up the available memory. This sched-
ule can reduce the I/O operations for fragment pages.
Lastly, the algorithm 4 denotes the DHGH Method it-
self. Figure 9 and Figdre 10 show the result for 5,000
tuples relation and 10,000 tuples relation respectively.

These figures show that RI bucket size tuning is effec-
tive when the number of buckets is small. That is to say,
this strategy is effective when the available staging areas
for first processing bucket has a large number of pages.
And the advantages of RI bucket size tuning decrease as
the number of buckets increase. However, this overhead
is much less than that of overflown buckets.

When the number of buckets is large enough to avoid
the overflown buckets in this situation, each bucket has
very small number of tuples in it. In this environment,

- 264 -

-..-. A :lm, ---.
- 2 :$i

@

Figure 9: The I/O performance for 5000 tuples relation

the performance becomes worse because of the I/O oper-
ations for fragment pages. The result of algorithm 1 and
algorithm 3 show these phenomena. So the R+ bucket
size tuning is effective to reduce such overheads.

Difference between the result of 5,000 tuples relation
and that of 10,000 tuples relation shows the fact that
the effect of bucket size tuning is large when the source
relation size is small.

6 Conclusions

Conventional split based hash-partitioned join methods
determine the processing sequence of each bucket stat-
ically. They assume that the size of each bucket is
almost same size. However, such cases are actually
rare because join operations generally follow some se-
lection/restriction operations and there is no guarantee
that the split function is suitable for any kinds of tuple
distribution in the source relation. Unbalanced tuple
distribution in the buckets diminishs the performance in
comparison with the estimation in the conventional join
method. We extends the GRACE hash algorithms to
obtain high performance than Hybrid Hash algorithms.
We name it the Dynamic Hybrid GRACE Hash algo-
rithms.

In this paper, we evaluate the join performance of
three kinds of tuple distribution in buckets at various
number of buckets and the size of source relations to in-
vestigate the phenomenon. The three distributions are;
the uniform, the triangular and the Zipf-like distribu-
tion. Performance results show that we have to deter-

”

Number of B~dmlr(Hs)

Figure 10: The I/O performance for 10000 tuples rela-
tion

mine the number of buckets to minimize the overflown
buckets. There are two conditions which describe the
boundary conditions of overflown bucket:

min l&l 5 1441 - H, + 1

And the minimum number of buckets which satisfys
such conditions depends on the distribution not the size
of source relation. In our join method, if we cannot get
information about tuple distribution in buckets before
processing join operation, the number of buckets is cho-
sen as the maximum number to minimize the overflown
buckets.

Also, in this paper, we check the effect of bucket size
tuning strategy using the medium sized relation. The
RI bucket size tuning is efficient when the number of
buckets is small and the amount of staging area for RI
bucket can be taken largely. On the other hand, &
bucket size tuning works together some fragment pages
to reduce the I/O cost of them. So this tuning is efficient
when the size of source relation is small and the number
of buckets is large.

Appendix A How to lead the I/O cost
formula with overflown bucket

When we partition the source relation R into H, buckets
and each bucket follows the triangular distributions, the
tuple distribution in buckets becomes as follows.

- 265 -

2(R)
IRk1 = H.(II, + 1) * k (1 I k 5 IL)

Here, we denote the minimum number of buckets
which satisfys the condition (5) as T.

maxI& = 21RI -.T < IMI
T(T + 1)

WIT > WI - WI (15)

And if we use T - 1 buckets to partition the source
relation R, the largest bucket (RT-~ bucket) becomes
overflown bucket in this case.

21RI IRT--II = T(T- q ‘(T- l) > I”I

214 > IWT 06)

Using these conditions, we can lead the fact that the
h-2 bucket does not exceed the size of available staging
memory.

PI - IRT--21
214

= I”I T(T - 1)
--*(T-2)

= & WITP - 1) - 2lRIV - ‘41
.

> 6 KW - IW)(T - 1) - 2lRKT - 2)l

(Condition (15))

= & PIRI - IWT- 111

> & WIT - IWT- 111

(Condition (16))

WI
= T(T - 1) ’ ’

For all situations when T is larger than 2, only (T-l)-
th bucket exceeds the size of available staging memory.
It means that both 21 and tcT-l) in the formula (13)
become T - 2. And the I/O cost with the overflown
bucket can be described as follows.

C(R,R)=4lRI+4 2 IRkI +4 2 5 IRki
k=t+l k=zutl r+(k)+1

References

[Bra841

[DeW84]

[DeW85]

[Ger86]

[Kit831

[Knu73]

[Nak88]

[Sha86]

[Sto76]

[Tur87]

[Tur88]

[Yam851

K. Bratbergsengen. “Hashing Methods and Tech-
niquues for Main Memory Database Systems,,. In
Proc. of the 10th Int. Conf. on VLDB, pp. 323-
333, 1984.

D. J. Dewitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. R. Stonebraker, and D. Wood. “Implements
tion Techniques for Main Memory Database Sys-
terns”. In ACM SIGMOD ‘84, pp. l-8, 1984.

D. J. Dewitt and R. Gerber. ‘Multiprocessor
Hash-Based Join Algorithms’,. In Proc. of the flth
Int. Conf. on VLDB, pp. 151-164, 1985.

R.. II. Gerber. “Dataflow Query Processing Us-
ing Multiprocessor Hash-partitioned Algorithms,, .
Technical Report 672, University of Wisconsin,
1986.

M. Kitsuregawa, H. Tanaka, and T. Mot+oka.
“Application of Hash to Data Base Machine and Its
Architecture*. New Generation Computing, Vol. 1,
No. 1, pp. 66-74, 1983.

D. E. Knuth. “The Art of Computer Program-
ming,,, volume 3. Addison-Wesley Pub. Co., 1973.

M. Nakayama, M. Kitsuregawa, and M. Takagi.
“Hash-Partitioned Join Method Using Dynamic
Destaging Strategy,,. In Proc. of the 14th Int.
Conf. on VLDB, pp. 468-478, 1988.

L. D. Shapiro. “Join Processing in Database Sye
terns with Large Main Memories,,. ACM Tmnsac-
tions on Database Systems, Vol. 11, No. 3, pp. 239-
264, 1986.

M. Stonebraker, E. Wong, P. Kreps, and G. Held.
“The Design and Implementation of INGRES”.
ACM Tmnsactions on Database Sgstema, Vol. 1,
No. 3, pp. 189-222, 1976.

C. Turbyfill. “Compamtive Benchmarking of Re-
lational Database Systems”. PhD thesis, Cornell
University, September 1987.

C. Turbyfill, C. Orji, and D. Bitton. “AS3AP -
An Ansi Sequel Standard Scalable and Portable,
Benchmark for Relational Database Systems,,.
University of Iilinois Technical Report, December
1988.

Y. Yamane. “A Hash Join Technique for Relational
Database Systems,, . In Proc. on Foundations of
Data Organization, pp. 388-398, 1985.

T-l

= 4lRI + 4 c IRkI +~IRT--I,T--11

- 266 -

