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Abstract

In today’s relational database systems, query optimization
and buffer management are generally treated independently.
However, the query access plan contains information on data
access patterns which can be useful hints to the buffer man-
ager. Furthermore, the optimal access plans under different
buffer sizes can be quite different. In this paper, an integrated
approach to buffer management and query optimization is
proposed and analyzed. The query strategy of all fransaction
types is simultaneously considered together with the buffer
allocation strategy so as to optimize overall system perform-
ance. As the buffer allocation depends upon the buffer hold-
ing time or transaction response time which is determined by
the buffer allocation and query optimization strafegics, an
oplimization method combining a integer programming
model with a queueing model applied iteratively is developed
to capture this effect. To reduce the size of the optimization
problem, a methodology based on the concept of buffer con-
sumption is proposcd to pre-analyze the query and substan-
tially cut down the access plans to be considered. A detailed
simulation is used to demonstrate the supcriority of the intc-
grated strategy as compared to other buffer management
strategies based on working set and hot set.

1. Introduction

Database systems have gencrally relied on memory bufl-
ers Lo reduce disk accesses. Even with the trend of ever in-
creasing memory size, the memory buffer usually can not
accommodate all the databases in the system, and some
buffer management strategy is nceded to make the best use
of the buffer space. The traditional approach to memory
management in a virtual memory environment uses a working
set model where the popular replacement policy is LRU,
which replaces the least recently used page by a new page
[Denn68]. ‘

For a network or hierarchical database system, reference
strings tend to be unpredictable except for batch processing.
A study on network databases can be found in [EffeR4].
These types of systems seem to fit reasonably well with the
working set model. However, queries to relational databascs
[Codd70] imply a lot of information on data references. The
discussion in this paper is based on a databasc system similar
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to system R [Astr76]. The query optimizer analyzes each
query and generates an access plan which contains detailed
information on how each relation is accessed. (Information
related to access plans can be found in [Seli79].) These ac-
cess plans assume that none of the referenced pages will be
found already in the buffer. The buffer manager does not
take hints on reference patterns from the query optimizer ex-
cept prefetch for sequential scan. Although some variant of
the LRU policy is often used for buffer management, it is not
considered to be well suited for the reference patterns of re-
lational databases [Ston81]. Previous research directed to-
ward utilizing information available about reference patterns
has been described in [Sacca82], [Chou85], and [Sacca86].
In [Sacca82], [Sacca86] a hot set model is proposed. The
basic idea there is to determine a hot set for every query and
allocate sufficient buffer space to cover the hol sct before ex-
ecuting a query. Certainly, this is a local optimization for
each query to provide it with suflicient buffer space to mini-
mize disk 10 accesses. The potential buffer contention among
queries is not addressed in the buffer allocation strategy. As
pointed out in [Saaca86], straightforward implementation of
this idea can lead to problems such as infinitc waits, long
queries blocking short queries, ctc.. Some ad hoc technigues
to relieve these problems are also suggested. In [ChouRS],
aclive instances (due to references from different queries) of
a file are given different buffer pools and are managed by
different replacement disciplincs. A DBMIN algorithm is
proposed for estimating the size and discipline for cach file
instance of a query is described. To comparc performance
with the hot set strategy, a simulation is developed in which
a query is degcribed by the CPU usage, number of 10's, and
hot sel size. All these works investigate the "right” buffer al-
location for a given query plan or access path sclection with-
out considering the effect of other queries.

In a transaction processing environment, the character-
istics of all transactions/queries are known a priort. 'Fhus, if
the transaction rate for each type is also known, a bufler
management strategy may be devised to optimize huffer allo-
cation for all queries. Furthermore, the query oplimizer may
be integrated with buffer management to take into consider-
ation the bufler availability in selecling an appropriale access
plan for each query to optimize overall performance. In this
paper, we examine the integration of buffer management and
query optimization. A detailed simulation is developed to
compare the integrated approach with buffer management
schemes based on the LRU working set model and the hot
set model, respectively. We discuss the issues of buffer man-
agement and query optimization that motivate the integrated
approach in Section 2. The mathematical formulation of the
optimization problem is given in Scction 3. Section 4 shows
the performance improvement through the integrated ap-
proach using a hypothetical example. To reduce the size of
the optimization problem, Section 5 develops a methodology
based on the concept of buffer consumption to substantially
trim down the number of access plans to be considered in the
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optimization procedure. Buffer consumption is defined to be
the product of query response time and buffer allocation. An
access plan with a small amount of buffer allocation is not
desirable unless the buffer consumplion is also small. Con-
cluding remarks appear in Section 6.

2. Buffer Management and Query Optimization

The conventional approach to query optimization is to
examine each query in isolation and select the execution plan
with the minimal cost based on some predefined cost function
of 10 and CPU requirements to execute the query [Seli79].
The impact of buffer management generally is not reflected
in the cost function. The number of 1Q’s estimaled in the cost
analysis does not reflect the potential effect of other trans-
actions concurrently under execution. On the other hand, it
is also quite diflicult to assess this effect without detailed
knowledge on how other concurrent transactions are
progressing.

For each query type, different exccution plans show dif-
ferent sensitivities to the size of memory allocated for data and
thus have different memory requirements. In this paper, we
use the expression data buffer to refer to memory allocated
for storing data from the database. The best access plan for
a given buffer size is not necessarily the best ptan for another
buffer size. Furthermore, it is not even clear whether every
query type needs to be given the same constraint on buffer
allocation. Different query types may have different dimin-
ishing points of return on buffer size and face different pen-
alties on suboptimal buffer size. An integrated buffer
management and query optimization strategy is thus necded
so that the access plans for all query types arc considered to-
gether based on bufler availability.

Let’s look at an example. Consider a query joining three
relations, Ry, R,, and R;. The relations consist of 10, 20, and
40 pages with cardinalitics (C,, i = 1, 2, 3) of 50, 100, and 500,
respectively. The join selectivitics used to calculale the num-
ber of matching tuples from the join opcrations arc taken to
be .01 for all joins. Assume that no index is available. To
simplify the discussion, nested-loop join is assumed Lo be the
method of choice. The query optimizer still needs to decide
the join order. Ignoring bufler availability, a conventional
query optimizer would choose Ry, R,, R; as the join order with
R, the inner-most relation. The number of page felches would
be 3000 (= 20 x C; + 40 x 0.01 x C; x C, ) if nonc of the
relations are kept in the buffer. The number of 10 would be
minimized if relations R, and Ry can be kept in the buffer.
A total of 61 (=20+40+ 1) buffer pages would be required.
This strategy would be optimum if that amount of buffer
space can be made available. If the join order is taken to be
Ry, Ry, R, with R, the inner-most relation, the number of page
fetches would be 15000 (= 20 x GG+ 10 x0.01 x (5% ()
if none of the relations are kept in the buffer. owever, with
31 (=10+20+1) buffer pages, the number of 10 can be
minimized to read in each relation exactly once. Of course,
this access plan does need to perform more tuple compar-
isons. This ijllustrates that the oplimum access plan depends
upon the buffer allocation and that there are trade-olfs be-
tween different hardware resource (CPU and 10) require-
ments. So far we have been looking at one query alone. In
the presence of multiple queries, buffer space nceds to be al-

located among the different queries so as to optimize the
overall performance. One thus needs lo consider all query
types together.

3. Methodology

The methodology to obtain a global optimization on
buffer management and query optimization is now described
in this section. We focus on join queries here, as sclect type
queries have little buffer requirement. An integer program-
ming formulation is used to select the best access plan and
associated buffer allocation. The objective function is similar
to the cost function used in a conventional query optimizer,
but is the sum over all query types weighted by query fre-
quencies. The constraints are that not only the buffer allo-
cation for each query, but also the time-averaged buffer
requirement over all queries must be less than the total buffer
size. Note that the time-averaged buffer requirement for each
query type is proportional to its response time and arrival
frequencies in addition to the buffer allocation for each in-
stance of its execution. The response time certainly dcpends
upon access plan selection and buffer allocation.

To get around this inter-dependency problem, we can
decompose the problem into two parts and take an iterative
approach. The first part is the optimization just described
which uses an assumed response time for each query type,
and the second part is 2 queueing model to solve for the re-
sponse time based on the access plan selections and buffer
allocation from the first part (the optimization problem). The
optimization problem then uses the response time from the
queueing model to solve for an improved solution. Alterna-
tively, we can use the average response time over all queries
(derived in Section 3.2) as the objective function and employ
a heuristic technique like simulated annealing [Kirk83] to
solve the non-linear programming problem. Simulated
annealing can be helpful to address very large size problems
or optimize response times dircctly [Wolf88].

3.1 Optimization Problem Under the Integrated Strategy

Consider a set of join queries Q, i=1, '“'NO' and re-
lations R,, k=1, ..,Np. For each query type Q, there is a
set of different join plans, QSy, j = 1, ..., m. Under the inte-
grated strategy, each join plan specifically indicates whether
a joining relation is to be kept in the buffer. Tor example, in
a two-way join of R, and R,, nested-loop join with R, (or R))
in the buffer as the inner relation and nested-loop join with
Ry (or R)) as the inner relation but not in the buffer are four
potential join plans. Although there may be a large number
of potential access plans for each query, we can climinate
most of them from consideration of the optimization proce-
dure discussed below through some simple pre-analysis of the
access plans. This is addressed in Section 5. lct X; be 1 if
plan QS; is adopted for Q, and 0 otherwise. That is to say,
each join plan is identified by a (0,1) integer programming
variable to indicate whether it is adopted or not. l.ct Dy be
the number of pages to be read from disk if plan QSJH is
adopted. Dy can be calculated based on the join algorithms
and bufler allocation strategics. Define 1, lo be the arrival
frequency for Q,.

Now we formulate the optimization problem. The ob-
jective function can be any cost function on 10 and CPU over
all query types. Hlere we use the aggregate 10 rate as the cost
function assuming 10 is the performance bottleneck. Thus,
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objective function = Z DXy
i

Constraints are included to guarantee that exactly one
strategy is adopted for each query,

Y Xy = 1j=1n,
7

Additional constraints are added to prevent the buffer from
being overcommitted. First of all, no query can get a buffer
aflocation more than the total buffer size. Let B be the
number of buffer pages available and I; be the number of
buffer pages allocated for query @ under plan Q. 'Thus F;
is an input parameter derived from the access plan.

D KFy < B,
j

Furthermore, the average buffer usage of each query type is
estimated as the product of buffer allocation and response
time times the arrival frequency. ln order to accommodate
the fluctuations in query workload, the average buffer usage
needs to be less than some fraction, a, of the total buffer. The
appropriate value for a is explored in the next section.

>4 XyFyRTy < B
7T

where RT is the average response time of query Q; under
plan QS A starting value nceds to be selccted for cach
RTy, for i = 1,..., Ny and all plans j = 1,..., n; for query Q;.
The join plans selected by the solution of the resulting integer
program are not yet optimum, since the initial response times
are not chosen to be optimum. In Section 3.2, a queueing
model is presented to estimate a new set of response times
based upon the “optimal” strategy {QS;;, i = 1...., Np} chosen
by the optimization procedure. We iteratively solve the exe-
cution plan selection and buffer allocation from the integer
programming problem and response time calculation from
the queueing model until no further change in plan is ob-
served or until the calculated average response time remains
the same on successive iterations. If we choose a large re-
sponse time for each query type to start the optimization
problem, a very conservative buffer allocation will be made,
as exaggerated response time leads to overestimates on the
lime average buffer requirement. The queueing analysis then
provides an improved response time based on the strategy
recommended from the optimization problem. With the im-
proved response time or shortened bufler hold time, more
bulfler space can be allocated and lead to further improvement
in the response time. It appears to converge afler a few iter-
ations.

for each i,

3.2 The Queueing Model

So far we have been concentrated on buffer allocation. The
concurrently executing queries compete not only for buffer
but also CPU and 10. The contention on CPU and 10 would
increase the response time, thus the buffer hold time. The
response time of the transaction processing system is deter-
mined using an open queueing network model. The system
consists of a single CPU with speed MIPS and multiple (V)
disks. Fach database is assumed to be partitioned uniformly
across the Np disks based on its primary key. Under a given

strategy, {Q wp i =Ly NQ} » the overall system performance
can be analyzed by assuming there is no reuse of the buffer
between queries. ‘The response time of cach query can be
calculated as its resource requircment on the CPU and disks
can be predicted given the buffer allocation sirategy. Define
Uy, to be the query-processing pathlength at the CPU for Q,
under QS,ﬂi. Let 7, be the CPU overhead for
scanning/comparing a tuple, I, the overhead for returning a
tuple to the application program, /; the overhead for an 10
operation and J,, the application processing pathlength for
type i query. Uy, can be expressed in terms of thesc parame-
ters as given in Appendix A. The total CPU processing cost
is then

Ucpy = ZAiUiﬁi
¥

Let T;, be the disk service time to perform an 10O operation.

The utilization of each disk assuming the load is spread uni-

formly across all disks for each relation can be shown 1o be
Tio Z
pio = —o— ) 4D
10 ND ,- i*ip;

‘The average response time of (; is
RT Uig, Dig,Ti0
6 = MIPS - Uepy T

1 = ppo’

where the first component is the sum of the scrvice time and
wailing time at the CPU and the second component is the sum
of those times at the disks. The average response time over
all queries, under strategy, {QSj,i=1,..., Ny}, would then
be RT = z/l,.RT,.,,i/Z,lj .

i j

The following model parameters are used in the per-
formance comparisons. The pathlength parameters are sct
at I, =170, L=SK, I;=5K and I, =20K, for all i. The
system consists of a 14 MIPS processor and 4 disks, cach with
a 20 millisec access time, i.e. MIPS =14, N, =4, and
T;p =20 . During table scans, it is assumed that multiple
pages are fetched together in each read 10, as in IBM DB2
[Teng84]. To estimate D5, a prefetch blocking factor of 10
is used here for a table scan.

4. Performance Comparison

4.1 Alternative Strategies

The proposed integrated bulfer management and query
optimization strategy is compared with two allernative buffer
management strategies. One strategy, referred to as strategy
W, is based on the working set model, where a global 1.RU
replacement algorithm is used to manage the buffer. Tor
strategy W, the access plans for all queries are decided with-
out consideration of available buffering, i.e. by assuming that
referenced pages are prefetched from disks on successive
scans. The other strategy, referred to as strategy 1, is bascd
on an enhanced hot set model. 'The hot set in a multi-join
query is defined here to be the subset of the joining relations
(if table scan is used) or the non-leaf parts of the indexes (if
index scan is used) that can fit into a given (raction y of the
total buffer and result in the most /O reduction. In choosing
the hot set, we consider different access path selections, index
vs segment, and sclect the one that requires the least 10, That
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is to say instead of selecting the hot set for an arbitrarily
chosen access path, we choose the best access path and the
corresponding hot set under a given buffer constraint. Stilt for
strategy H, the join order is taken to be the same as that in
strategy W to reduce the number of enumerations to be con-
sidered. Strategy H ensures that a buffer space of size equal
to the query’s hot set size can be allocated before a query gets
executed. Otherwise the query has to be put into wait state.
When additional buffer space becomes available, the longest
waiting query whose hot set can be accommodated is sched-
uled. (An alternative is to schedule the query in I'CFS order.
For the example considered in this section, both scheduling
schemes lead to very similar result.) For both strategics Il
and the integrated strategy, pages which are not in the hot set
compete for buffer space, which are not pre-allocated to ac-
commodate the hot sets, based on LRU. Note that for the
nested-loop join example considered later in this section, the
desired buffer aflocation under DBMIN in [Chou85] (or each
relation based on the access path selected by Strategy IT is
simitar to the buffer allocation Strategy 11 considered.

4.2 Simulation

A simulation program is developed to compare the three
strategies under multi-way join queries. Although the inte-
grated strategy can be applied to different join methods, to
keep the comparison simple, nested-loop join is used as the
join algorithm. Each join attribute is assumed to have an
index. Lven in this case, substantial differences in perform-
ance can be observed among the different strategies. The
simulation attempts to capture the sequence in which tuples
from different relations are scanned and compared, and in
which pages are fetched from disks in a multi-way join. Two
types of scan are simulated, table and index. In a table scan,
under the uniform distribution assumption on attribute value,
the number of tuples between matches has a geometrical dis-
tribution. (See [Chris84] for an analysis of the cffects of as-
suming uniform distribution and attribute independence on
performance projections.) In the simulation, instead of gen-
erating a random value for each tuple to carry out the join,
we treat the number of tuples belween matches as a random
variable with geometric distribution and simulate the actions
related to scanning and matching tuples. For example,
scanning into a new page triggers an 10 operation if the page
is not in the buffer, finding a match in an outer relation initi-
ales a scan into the inner relation, and reaching the end of
scanning an inner rclation returns the scan back to the outer
relation. For index scans, the data page to be fetched is ran-
domly selected as any one of the pages of the relation. Ac-
cessing of three index pages is required (assuming a three level
index) as well as | data page. The simulalion program gen-
erates the index page addresses assuming a B-tree index
structure and captures the hit to re-referenced leave pages.

Transaclions are placed on a wait list upon arrival. Tach
transaction has associated with it a value which is the lcast
number of pages required on the free bufTer list that wilt allow
it to move to the CPU queue for execution. [or the integrated
strategy, this is the number of pages required Lo accommaodate
the relations to be kept in buffer, as determined by the opli-

mization procedure. For strategy H, this is the number of

pages in the hot sct. There is no buffer requirement under
strategy W. A transaction moves from the wait list to the
CPU queue if it is the first in the wait list which has a buffer
requirement less than the free page list and the multipro-
gramming level is not exceeded.

4.3 Example Problem

We illustrate the methodology using the following trans-
action processing environment with 14 transactions and 22
relations. Table 1 presents the cardinality and size of each
relation. Table 2 describes the transaction characteristics.
These include the number of joins and, for each join, the two
relations involved and the selectivities on each join attribute,
respectively. Also presented is the arrival frequency of each
transaction. For example, transaction 1 has an arrival fre-
quency of .07 Tx/sec and requires three joins. The join he-
tween relations R, and R,, has a join selectivity on the join
columns of both relfations of .001.

Relation Cardinality No. of pages
1 500 %
2 1000 200
3 300 100
4 1200 50
s 500 )
6 1000 250
7 1000 60
8 100 100
9 500 400
10 200 100
11 4000 260
12 500 %
1B 1000 200
14 300 100
15 1200 0

16 500 7
17 1000 250
18 1000 60
19 100 100
20 500 400
21 200 100
2 4000 260

Table 1. Relations for the example prohlem
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The alternative access plans for a given join order are
restricted for simplicity to using nested-foop join with the in-
ner relations either kept in memory using table scan or not
kept in memory using either table scan or index scan. I index
scan is used, the non-Jeaf portion of the index will be kept in
memory. The ilerations required for the two step oplimiza-
tion is about six cycles to converge and consumes about 10
sec of CPU time on an IBM 3090 processor.

TX RunFreq. No. of Joins

1 .07 3 2 4 001 .001
4 6 .001 .001
6 8 .001 .01
2 on 3 3 5 .004 .002
5 7 .002 .001
7 9 .001 .002
3 11 3 1 4 .002 .001
4 S .001 .002
5 7 .002 .001
4 .200 3 1 2 .002 .001
2 8 .001 .010
8 10 .010 .005
5 .06 4 3 5 .004 .002
5 7 .02 .001
7 9 .004 .002
9 11 .002 .001
6 210 1 1 4 .002 .001
7 .300 1 3 5 .004 .002
8 072 3 13 15 .001 .001
15 17 .001 .00}
17 19 .001 .01
9 071 3 14 16 .004 .002
16 18 .002 .001
18 20 .001 .002
10 .1 3 12 15  .002 .001
15 16 .001 .002
16 18 .002 .001
11 201 3 12 13 .002 .001
13 19 .001 .010
19 21 .010 .005
12 062 4 14 16 .004 .002
16 18 .002 .001
18 20 .004 .002
20 22 .002 .001
13 .210 1 12 15 .002 .001
14 311 1 14 16 .004 .002

Table 2. Transactions for the example problem

In Tigure 1, we plot the average response time from the
simulation vs buffer size for the three strategics. We set
o = 0.9 for the integrated strategy and y = 0.65 {or strategy
I, respectively. Note that these parameters, «, y, are set at
the optimum values for a 400 page buffer size. Scnsitivities
to these parameters are discussed later. The integrated strat-
egy shows uniformly better performance over strategies W
and H. This is especially the case when the buffer size is
smaller (say, a 400 page buffer). Strategy H based on the hot
set concept also shows significant improvement over strategy
W using LRU, in agreement with [Sacca86]. This shows the
importance of recognizing the semantics of the query and
keeping the critical relations in the buffer. A simple LRU
type strategy like strategy W, ignoring the query semantics,
performs very badly. Still, strategy H is only a local opti-
mization on each query. Imposing a uniform limit on hot set
size over all queries can be suboptimal. The inlegrated strat-
egy considers the behavior of all queries together to derive a
decision on the amount of buffer to be allocated for the exe-
cution of each query.

Table 3 summarizes the access plan selection and bufTer
altocations for each of the three strategies when the buffer size
is 400 pages. The optimization procedure to determine the
access plan and buffer allocation requires about 6 iterations
for this example. In the "Join Order” column, the first or
lefimost relation is the outer most-relation in the join, and the
last or the rightmost relation is the inner-most refation. In the
"Scan Type” column, S and I represent table scan and index
scan, respectively, for access of each of the relations presented
according to the join order. In the "Buffer” column, y means
the corresponding relation is kept in the buffer while n means
that no effort is made to keep the relation in the buffer. For
example, under the integrated strategy, the join order of
transaction 1 is Rg, Ry, Ry, Ry, with R, the inner-most refation.
Al relations are scanned sequentially through table scan. All
relations except R; are kept in the buffer. Note that under
strategy W, no relation is pre-allocated any bufler space. A
different join order may be chosen under the different strate-
gies. Let us look specifically at transaction 2. Under the in-
tegrated strategy, R; Rs, and R; are kept in thc buller
requiring a total of 230 pages, while Ry with 400 pages is
chosen to be the outer-most rclation and is not kept in the
buffer. Under strategy W, as no buffering of the relation is
assumed, R, is instead chosen as the inner-most relation duc
to its low selectivity and the availability of an index. Under
strategy I1, the same join order is chosen as strategy W, but
R and R; are kept in the buffer. In Table 4, we comparc
some run time statistics between the integrated strategy and
strategy H. Both the average 10’s per transaction and the
fraction of transactions delayed due to insufficient buffer size
are substantially lower for the integrated strategy.

We obscrve that in the integrated strategy, the average
response times determined {rom the queucing model in Sec-
tion 3.2 and from the simulation are comfortably close to
each other, differing by amounts within 20%. The difference
is mainly due to the fact that the analysis does not capture
some of the inter-transaction effect considered in the simu-
lation. One is the 10 reduction from buffer hit due to trans-
actions referencing relations that were brought in by another
transaction referencing the same relations. IFor the conditions
of Figure 1, none of the strategies causes the transactions to
read as many pages as it would if it ran alone on the system.
‘The other is the delay due to temporary over-allocation of the
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buffer. In the integrated strategy, if a relation to be kept in
the buffer for the execution of a transaction cannot be ac-
commodated, the transaction execution is delayed. As shown
in Table 4, this delay occurs quite infrequently, As the re-
sponse time estimate in the integrated strategy is only used in
the optimization constraint to measure the buffer requircment,
the inaccuracy can be more or less absorbed in the factor a.
We have examined the sensitivity of the integrated strategy to
a and found that the response lime remains the same over a
wide range of « from 0.6 to 0.9 for the example shown.

Strategy W
TxType Join Order Scan Type(s.i) Buffer (y.n)
1 8,64,2 s,iii n,n,n,n
2 3,579 s.Li,i n.o,0,0
3 54,17 s,i,ii n,0.0,n
4 8,2,1,10 s,i,ii no,n.n
] 3,5,7,9.11 (XA} n,n,n,n,n
6 1,4 i Bn
7 3,5 s, nn
8 19,17,15,13 PREK] B.n,n,n
9 14,16,18,20 5,1, n.n,n.n
10 16,15,12,18 8,0, nn.n,n
n 19,13,12,21 8,d,i,i n,.n.n,n
12 14,16,18,20,22 8,i,i,i.i n.n,0,0,0
13 12,15 8, n,n
14 14,16 8,1 nn
Integrated Strategy
TxType Join Order Scan Type(s,i) Buffer (y,n)
1 6.4,8,2 8858 n.y,y,y
2 9,753 88,88 n,y,y.y
3 1,4,5,7 33,38 'R AAJ
4 2,1,8,10 83,88 LAARS
5 9,7,5,3,11 8338, LAAS 2
6 1.4 Y] By
7 35 3 n,y
8 17,15,19,13 335,38 B,Y.Y,¥
9 20,18,16,14 38,55 ny.y,y
10 12,15,16,18 33,88 LAAAS
11 13,12,19,21 85,88 ny.y.,y
12 20,22,18,16,14 513833 n,n,y.y,y
13 12,15 58 ny
14 14,16 38 ny
Strategy H (y = .65)
TxType Join Order Scan Type(s,i) Buffer (y.n)
1 8,6,4,2 8,i8,8 nny.y
2 3,5,7.9 88,8, ny.y.n
3 54,1,7 53538 LAAA
4 8,2,1,10 8,iss nny.y
5 3,57.911 58,5, n,y,y,0,n
6 14 53 ny
7 s 88 .y
8 19,17,15,13 8,185 nny,y
9 14,16,18,20 8,88, n.y.y.n
10 16,15,12,18 85,85 n.y.y,¥y
11 19,13,12,21 3,is8 n,n.y.y
12 14,16,18,20,22 25,801 n,y,y.n,0
13 12,15 88 ny
14 14,16 88 ny

Table 3. Access plan selection and huffer allocation

(400 page huffer)

Strategy 1/0 per wansaction Fraction of Tx with
delayed starts

Integrated 50 02

Strategy H 438 42

(y = .65)

Table 4. Run statistics for 400 page huffer

Although the integrated strategy is found to be quite in-
sensitive to the parameter «, strategy H is very sensitive to the
parameter y. Figure 2 shows the sensitivity of response time
to y under strategy 11 for a 400 page buffer. The variation in
response time with the choice of y is quite substantial. The
variability in the response time curves points out the weakness
of a local optimization strategy. Keeping a relation in mem-
ory can reduce the response time of the transaction referenc-
ing it, but may also create a dctrimental cffect for other
transactions. This can occur if the reduction in response time
is not large enough so that buffer consumption, which is the
product of response time and buffer allocation, increases.
Figure 3 shows the case for a 600 page buffer. A big zigzag
in response time is observed. The peak at y = .5 comes about
because in going from y = 4 to y = .5, query (), has been
allowed to keep relation R;; of 260 pages in the buffer. The
simulation shows that although the number of page reads for
query Q), has been reduced from 5000 to 4020, the fraction
of queries with delayed starts has increased from .03 to .32,
At y = .6, Q, can keep both relations R,z and Ry, with a re-
duction in 10 to 1521. Becausec of the substantial reduction
in its response time and hence buffer consumption for Q,, ,
the fraction of delayed starts is reduced 1o .25 even with larger
buffer allocation. Note that the optimum y depends upon not
only the workload but aiso the buffer size. This would make
selecting y a nontrivial job for a real environment.

5. Reducing the Size of the Optimization Problem

In.an environment wilth a large number of query types
-which require multiple joins over several relations, the num-
ber of variables, X, can become very large. We can climinate
many of the access plans by pre-analyzing each query type
separately before applying the global optimization. An im-
portant observation is that for a given query, some access
plan is essentially inferior in the sense that there cxists another
plan that consumes less resources and offers belter or similar
performance. Inferior plans should be climinated from con-
sideration in the optimization procedure described in Scction
4. For a given query, let us define buffer consumption, P?,
under access plan j to be B;T; where T; and B; arc the exe-

.cution time and buffer requirement of the query under plan

J» respectively. Note that here we use execution time instead
of response time. The additional queueing delay due to the
impact of concurrently executing queries is ignored so we can
examine each query separately. An access plan is feasible if
the total buffer requirement is less than the total buffer size
or some predefined maximum. We can state two simple rules
to determine whether an access plan is inferior:

1. Tor any access plan i , if there exists another feasible
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Access plan j, such that B, = Biand T,> T, , or B,> B,
and 7, > T;, access plan i is regarded as an inferior plan.

2. For any access plan i, if there exists another fcasible
access plan j, such that Pf > Pj” and 7; > T}, access plan
i is regarded as an inferior plan. '

The first rule indicates that a plan with a larger buffer allo-
cation should achieve a smaller execution time. The second
rule implies that a plan with a smaller buffer allocation and
longer execution time is not necessarily desirable unless the
buffer consumption is also smaller. Let access plan j. using
B; . buffer be the one with the minimum bufler consumption,
Any plan with a larger buffer consumption than plan j.-
should be rejected unless the exira buffer consumption leads
to reduction in the execution time. Thus any plan using less
than B, bulfer can be eliminated because it takes too little
buffer s6 the long execution time results in large buffer con-
sumption. Query strategies using more than B; _may achieve
smaller response time at the expense of the buffer consump-
tion. These strategies may be acceptable if there is sufficient
buffer. 'This is to be determined by the global optimization
procedure in Section 4. We need only to eliminate those
where the response time improvement is small compared to
the additional buffer used.

In Figure 4, we plot the exccution time verses buffer al-
location for transaction 1 of the Fxample problem described
in Section 4. Several different access plan strategics corre-
spond to each buffer size due to join-order permutations and
the sum of the sizes of relations R, and R; being the same as
the sum of the sizes of relations R, and R, Only the strategy
with the smallest execution time for a given buffer atlocation
is plotted. Also, a buffer allocation is not considered unless
a decrease in execution time can be realized compared with
a smaller buffer allocation. That is to say, we only consider
strategies which do not violate rule 1 stated above. Trans-
action 1 has 216 potential access plans, as there arc 8 possible
join orders (notice that not all permutations makc sense, e.g.
Ry, R, Ry, Ry) and each relation except the outer most can
either be kept in buffer for table scan or not be kept in bufTer
while both table scan and index scan are possible alternative
scanning strategies. The 216 candidate access plans of
transaction 1 only result in five meaningful buffer allocations
and access plans as follows:

1. 4 pages: join order Ry, Rg, Ry, R, with index scans on
all except the outer most relation.

2. 50 pages: join order Ry, R, Ry, Ry with R, kept in the
buffer and index scans on R; and R,

3. 150 pages: join order Rg, Ry, Ry, R, with R, and Ry kept
in the buffer and index scan on R,

4. 250 pages: join order Rg, Rg, Ry, R, with Ry and R, kept
in the buffer and index scan on R.

5. 350 pages: join order Ry, Ry Ry, R, with all pages of
relations except the outer relation be kept in the buffer
and accessed with table scans.

Figure 5 shows the plot of buffer consumption vs buffer
size allocation for transaction 1. T'rom rule 2, by comparing
any wo feasible strategies, the one with the higher buffer
consumption can be eliminated unless it has the lower exe-
culion time. For a given buffer size of 400 pages, all five
strategies are feasible as they all require less than 400 pages.
Strategy 1 having 4 pages is the one with the minimum buffer
consumption. By comparison with stralegy 3, strategies 2, 3.

and 4 are eliminated as they not only take longer to execute
(Figure 4) but also have larger buffer consumption (I'igure
5). Strategy S, having 350 pages of allocated buffer, is still
acceptable as its execution time is a lot smaller than strategy
I. Thus only strategies 1 and 5 need to be considered in the
global optimization. The global optimization in Section 4
which considers all strategies has in fact picked out strategy
5. The number of strategies to be retained for global opli-
mization from the other transactions of the illustrative exam-
ple can be similarly reduced.

6. Summary

Existing query optimizers for relational databascs attempt
to minimize a linear combination of CPU and page 10 costs
for each query separately. The impact of buffer management
is not reflected in the cost function. Although relational que-
ries contain a lot of information on data references, it is gen-
erally not conveyed to the buffer manager by the query
optimizer. In this paper, we propose and analyze a math-
ematical algorithm to integrate buffer management and query
optimization. When making access plan selections, the inte-
grated strategy explicitly considers whether a relation is kept
in the buffer. The query strategies for all transactions in the
workload are simultaneously determined to optimize an ob-
jective function on overall system performance with con-
straints on total buffer requirement. The mathematical
formulation uses a two step approach combining an integer
programming problem with a queueing network model to be
solved iteratively. A detailed simulation is developed to study
the performance improvement of the integrated strategy as
compared with two other buffer management, strategics based
on the working set and hot set, respectively. The study shows
that by ignoring all the reference information in the query, the
LRU type strategy does very poorly. Explicitly taking into
consideration the reference behavior from the query in buffer
management, as in the hot set strategy, can improve the query
performance. However, picking the right hot set size can be
difficult. Integration of query optimization and buffer man-
agement to consider the requirement of afl querics together
gives substantial further improvement to the performance.
This showed the importance of intcgrating of buffer manage-
ment and query optimization strategies so that reference in-
formation from the queries can be captured to manage the
buffer, and buffer availability can be reflected in the access
path selection. Furthermore, each query can be pre-analyzed
separately to reduce the number of access plans to be con-
sidered in the global optimization. We proposed an approach
which eliminates an access plan if there exists another one
which has less buffer consumption but similar or better per-
formance. This pre-analysis was found to be able to greatly
reduce the size of the optimization program.
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