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n hstrflct 
In today’s relational database systems, query optimi7alion 
and hufTer management are generally treated indrpcndently. 
I Iowever, the query access plan con(ains information on data 
access patterns which can he useful hints to the huffcr matI- 
ager. T;urlhermore, the optimal access plans under dilTerent 
huffcr sizes can be quite difTcrent. In this paper, an integrated 
approach to buffer management and query optimization is 
proposed and analyzed. ‘I he query strategy of all transaction 
types is simultaneously considered together willt the hulTcr 
allocalion strategy so as to optimbe overall system perform- 
ance. As the buffer allocation depends upon (he hulTer hold- 
ing time or transaction response time whicft iz dcfrrn~ir~rd h) 
the buffer allocation and query optimization slrnlcgirs, ;III 

oplimization method combining a integer programming 
model with a queueing model applied iteratively is developed 
lo capture this effect. To reduce the size of the optimi7atinn 
problem, a methodology hascd on the concept of hulrcr con- 
sumplion is proposed to pre-analyze the query and suhstacl- 
tially cut down the access plans to be considered. A detailed 
simulation is used to demonstrate fhe superiority of ihe intc- 
grated strategy as compared to other hulTcr tnannpenrrnt 
strategies based on working set and hot set. 

I. Introduction 

Database systems have generally relied on memory hull- 
ers to reduce disk accesses. Even with the lrcnd of ever h- 
creasing memory size, the memory bulrer usually can not 
accommodate all the databases in the system, and some 
bufer management strategy is needed to mnkc the hcst usr 
of the buffer space. The traditional approach to memory 
management in a virtual memory cnvironmcnt uses a working 
set model where the popular replacement policy is I,RU, 
which replaces the least recently used page hy a new page 
[Denn68]. 

Pot a network or hierarchical database system, reference 
strings tend to be unpredictable except for batch processing. 
A study on network databases can be found in [lTc84]. 
These types of systems seem to lit reasonably well with thr 
working set model. Iiowever, queries to relational dalahascs 
[Codd70] imply a lot of information on data rcfcrenccs. Ihc 
discussion in this paper is based on a database system similar 
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IO syst.em R [hstr76]. ‘The query optimizer analy7cs each 
query and generates an access plan which confains detailed 
infoimatior;on how each rela& is accessed. (Information 
related to access nlans can he found in rSeli791.) ‘These ac- 
cess plans assumk that none of the refe;enced-bagcs will hc 
found already in the bulTer. The buffer manager does not 
take hints on reference patterns from the query optimi7cr ex- 
cept prefetch for sequential scan. Although some variant 0r 
the LRU policy is oflen used for hufI’er manapcmcnt, it is nnt 
considered to be well suited for the reference pnltcrns of rc- 
lal.ional dat,abases [Ston81]. Previous research direcled lo- 
ward utilizing information availahle ahout rcfercncc pallcrns 
has been described in [Sacca82], [ChouXSJ. and [SaccaRfiJ. 
In [Sacca82], [Sacca86] a hot set model is proposed. The 
basic idea there is to determine a hot set for every query and 
allocate sullicient hulTer space to cover the ho! scl before ex- 
ecuting a query. Certainly, this is a local optimization for 
each query to provide it with suflicient hull& space to mini- 
mize disk 10 accesses. The potential hufl’cr contention among 
queries is not addressed in the buffer allocation strategy. As 
pointed out in [SaacaRh], straightforward implcmcntation of 
this idea can lead t.o problems such as infinite waits, long 
queries blocking short queries, etc.. Some ad hoc techniques 
to relieve these problems are also suggested. In [<:houflS], 
active instances (due to references from different queries) of 
a lile are given hirerent buffer pools and are managed hy 
direrent renlacement discinlincs. A DnMlN aleorithm is 
proposed-f& estimating thb sixe and discipline fey cnch filr 
instance of a query is descrihcd. 7‘0 compare performance 
with the hot set strategy, a simulafion is dcvelopcd in which 
a query is dwrihed by the CPU usage, mm~hc; of IO’s, and 
hot set size. All these works investiaate the “riaht” hufTcr nl- 
location for a given query plan or access path Glccfion with 
out considering the effect of other queries. 

In a transaction processing environment, the ChiWaclcr- 
istics of all transactions/queries arc known a priori. ‘l‘hus, if 
the transaction rate for each type is atso known, a hulTcr 
management strategy may be devised to optimixc hufrer allo- 
cation for all queries. Furthermore, the query oplimizcr mny 
be integrated with buffer management to take into considcr- 
ation the bulTer availability in selecting an approprinlc access 
plan for each query to optimize overall performance. In this 
paper, we examine the integration of buffer management and 
query optimization. A detailed simulation is devcloprd to 
compare the integrated approach with huff’cr rnnnngcmrnt 
schemes based on the LRU working set model and the hot 
set model, respectively. We discuss the issues of hufrer man- 
agement. and query optimization that motivate Ihc intrgratcd 
approach in Section 2. The tnathematical formulation of the 
optimization problem is given in Section 3. Section 4 shows 
the performance improvement through the integrated ap- 
proach using a hypothetical exatnple. ‘To reduce the size 01 
the optimization problem, Section 5 develops a methodology 
hased on t.he concept of hufikr consumption to suhstan~.ially 
trim down the numher of access plans to he considered in thr 

Amsterdam, 1989 



optimization procedure. Buffer consumption is detincd to be 
the product of query response time and huffcr allocation. An 
access plan with a small amount of buffer allocnlion is not 
desirable unless t.he buffer consumption is also small. Con- 
cluding remarks appear in Section 6. 

2. Buffer Management and Query Optimization 

The conventional approach to query optimization is to 
examine each query in isolation and select the execution plan 
with the minimal cost based on some predcfincd cost flmction 
of I0 and CPU requirements to execute the query [S&79]. 
The impact of buffer management generally is not rcflcctrd 
in the cost function. The numhcr of 10’s estimated in the COSI 
analysis does not reflect the potential effect of other trans- 
actions concurrently under execution. On the olhcr hand, it 
is also quite dificult to assess this effect without detailed 
knowledge on how other concurrent transactions arc 
progressing. 

For each query type, different execution plans show dif- 
ferent sensitivities to the size of memory allocated for dnla and 
thus have different memory requirements. In this paper, we 
use the expression data bufTcr to refer to memory allocntcd 
for storing data from the database. The best access plan for 
a given buffer size is not necessarily the best ptan for another 
buffer size. Furthermore, it is not even clear whether every 
query type needs to be given ihe same constraint on bun’cr 
allocation. Different query types may have diffcrcnt dimin- 
ishing points of return on buffer size and face JilTcrcnt pen- 
alties on suboptimal buffer size. An intcgratcd hufTcr 
management and query opt.imization strategy is thus needed 
so that the access plans for all query types arc considcrcd to- 
gether based on bulTcr availability. 

Let’s look at an example. Consider a query joining thrco 
relations, R,, R,, and R3. The relations consist of IO, 20, and 
40 pages with cardinalitics (C,, i = 1, 2. 3) of 50, I 00, and 500, 
respectively. The join selectivities used to calculate the mm- 
ber of matching tuples from the join operations arc taken to 
be .Ol for all joins. Assume that no index is availahlc. ‘1‘0 
simplify the discussion, nested-loop join is assumed lo hc the 
method of choice. The query optimizer still needs to drcidc 
the join order. Ignoring b&c; availability, a convcnlional 
query optimizer would choose RI, R2. R3 as the join order with 
R3 t.he inner-most relation. The number of papc fcl.chrs wouhi 
be 3000 (= 20 x Cl + 40 x 0.01 x C, x C, ) if none of lhe 
relations arc kept in the buffer. The number of’10 wo:lld bc 
minimized if relations R, and R, can be kcnl. in the burcr. 
A total of 61 (= 20 + 40 r, 1) bufer pages wdrlld be required. 
This strategy would be oplimum if that amount of huffcr 
space can be made available. If the join order is tnkcn to bc 
I?,, R,, R, with R, the inner-most rclahon, the number ofpagc 
fetches would be 15000 (= 20 x C, + IO x 0.01 x C, x G 1 
if none of the relations ark kept. in tGe burcr. I lowe&, w% 
31 (= 10 t 20+ 1) buffer pages, the number of IO can bc 
minimized to read in each relation exactly once. Of course, 
this access plan does need to perform more tuple compar- 
isons. This illustrates that the optirnum access plan depends 
upon the buffer allocation and that there arc trade-olTs be- 
tween different haidware resource (CPU and IO) rcquirc- 
ments. So far we have heen looking at one query alone. In 
Ihe presence of multiple queries, hulTcr space needs to hc nl- 

located among the diGrent queries so as to optimixc the 
overall performance. One thus needs to consider all query 
types together. 

3. Methodology 

The methodology to obtain a global optimization on 
buffer management and query optimizatjon is now described 
in this section. We focus on join queries here, as select type 
queries have little buffer requirement. An integer program- 
ming formulation is used to select the best access plan and 
associated buffer allocation. The objective function is similar 
to the cost function used in a conventional query optimizer, 
but is the sum over all query types weighted by query frc- 
quencies. The constraints are that not only the buffer allo- 
cation for each query, but also the time-avcragcd buffer 
requirement over all queries must be less than the total hulfcr 
size. Note that the time-averaged bullkr rcquircment for each 
query type is proportional to its response tirnc and arrival 
frequencies in addition to the buffer allocation for each in- 
stance of its execution. The response time certainly depends 
upon access plan selection and buffer allocation. 

To get around this inter-dcpcndency problem, we can 
decompose the problem into two parts and take an itcrativc 
approach. The Iirst part is the optimization just dcscrihcd 
which uses an assumed response time for each query type, 
and the second part is a queueing model to solve for the rc- 
sponse t.ime based on the access plan selections and buf?%r 
allocation from the first part (the optimization prohlcm). The 
optimization prohlem then uses the response time from the 
queueing model to solve for an improved solution. Altcrna- 
tivcly, we can use the average response time over all queries 
(derived in Section 3.2) as the objective function and employ 
a heuristic technique like simulated annealing [Kirk831 to 
solve the non-linear programming problem. Simulated 
annealing can be helpful to address very large size problems 
or optimize response times directly [WolfM]. 

3.1 Optimization Problem Under the Integrated Strategy 

Consider a set of join queries Q,, i = 1, . . ..NQ. and rc- 
lations R,, k = 1 , . . . . NR. For each query type Q,, there is a 
set of different join plans, Q$ j = 1, . . . . n,. Under the inlc- 
grated strategy, each join plan specifically indicntcs whethrr 
a joining relation is to be kept in the buffer. For example, in 
a two-way join of Rk and Rj, nested-loop join with R, (or R.) 
in the buffer as the inner relation and nested-loop jnin wit I *I 
R, (or Rj) as the inner relation but not in the bumcr are four 
potential join plans. Although there may bc a large nrnrrbcr 
of potential access plans for each query, WC can climinntc 
most of them from consideration of the optimization procc- 
dure discussed below through some simple prc-analysis of the 
access plans. This is addressed in Section 5. I.ct Fij he I if 
plan ?+j is adopted for Qi and 0 otherwise. That. IS to sny, 
each lam plan is identified by a (0,l) integer programming 
variable to indicate whether it is adopted or not. I.ct Di ho 
the numher of pages to be read from disk if plan U, ,j d * IS 
adopted. Dij can be calculated based on the join algortthms 
and buflcr allocation st.rategics. Define Ri lo be the arrival 
frequency for QP 

Now we formulate the optimization problem. ‘l‘he oh- 
jective function can be any cost function on I0 and CPU over 
all query types. llere we use the aggregate IO rate as the cost 
function assuming 10 is the performance bottlrnrck. Thus, 

- 248 - 



ohjeciive,finction = “ijXij Ai. 
i j 

Constraints are included to guarantee that cxac~ly one 
strategy is adopted for each query, 

c Xij = 1 ;,j = I,..., ?Tp 

Additional constraints are added to prevent the bulrcr from 
being overcommitted. First of all, no query can get n hun‘cr 
allocation more than the total buffer size. 1.~1 1) be the 
number of hulTer pages available and Fij be the number of 
buffer pages allocated for query Qi under plan Q,F;j. ‘l’hus Fii 
is an input parameter derived from the access plan. 

c Xij~j I B, for each i, 

Furthermore, the average buffer usage of each query type is 
estimated as the product of bumer allocation and response 
time times the arrival frequency. In order to accommoda(c 
the fluctuations in query workload, the average hulTcr usage 
needs to be less than some fraction, n, of the total burcr. ‘1.1~ 
appropriate value for a is explored in the next section. 

where RTii is the average response time of qrtcry Q, rmdcr 
plan QSij. A starting value needs to be sclcctcd for each 
R7’j, for i = I,..., NQ and all plans j = I ,..., rzi for query Qi. 
The join plans selected by the solution of the resulting integer 
program are not yet optimum, since the initial respnnsc times 
are not chosen to be optimum. In Section 3.2, a queucing 
model is presented to estimate a new set of response times 
based upon the “optimal” strategy {QS,., i = I ,..., NpJ chosen 
hy the optimization procedure. We ilet!aGvely solve lhc exc- 
cution plan selection and burer allocat.ion from (hc intcgcr 
programming problem and response time calculnGon from 
the queueing model until no filrthcr change in plan is ob- 
served or until the calculated average response time remains 
the same on successive iterations. If we choose a large rc- 
sponse time for each query type to start the opt.imizaGon 
problem, a very conservative burer allocation will bc made. 
as exaggerated response rime lcads to overestimntcs on (he 
time average buffer requirement. The qucucing analysis then 
provides an improved response time based on the strategy 
recommended from the optimization problem. With ~hc im- 
proved response time or shortened huffcr hold time, more 
bu(Ter space can be allocated and lrad to ftlrthcr improvement 
in Ibe response time. It appears to converge anrr a few iter- 
ations. 

3.2 The Queueing Model 
So far we have been conccntra(ed on bun’cr allocation. The 
concurrently executing queries compete not only for bull’cr 
but also CPU and 10. The contention on CPU and 10 would 
increase the response time. thus the hulTer hold time. ‘1 hc 
response time of the transaction processing system is detcr- 
mined using an open queueing network model. ‘l‘hc system 
consists of a single CPU with speed MIPS and multiple (N,) 
disks. Each database is assumed to be partitioned uniformly 
across the N, disks based on its primary key. Under n given 

strategy, {QS,., i = I,..,, Ne} , the overall system performance 
can be analyzhd hy assummR there is no reuse of IIIC bumer 
between qu&ies. ‘The respc%se lime of each query can bc 
calculated as its resource requirement on the CPU and disks 
can be predicted given the buffer allocation strategy. IIrfine 
Uip. to be the query-processing pathlength at lhc CPU for rJi 
under QSip.. L.et I, be the CPU overhead for 
scanning/co&paring a tuple, I2 the overhead for returning a 
tuple to the application program, I3 the overhead for an IO 
operation and IAi the applicafion processing pathlcngth for 
type i query. Uip, can be expressed in terms of thcsc parame- 
ters as given in Appendix A. The total CPU processing cost 
is then 

~JCNJ = c li”ipi 

Let T,, be the disk service time to perform an IO operation. 
-The utilization of each disk assuming the load is spread uni. 
formly across all disks for each relation can be shown lo he 

50 
PI0 = K c It i nifii 

i 

The average response time of Qi is 

RTifli = MIPS -‘UCpa + 

where the lirst component is the sum of the service time and 
waiting time at the CPU and the second component is the sum 
of those times at the disks. The averaPe rcsnonse time over 
all queries, under strategy, {QS,, i = 1’;..., Nb} , would then 
he XT = CAiRTi,&Aj . 

i i 

The following model parameters are used in ~hc pcr- 
formance comparisons. The pathlength parameters are set 
at Z, = 70, I, = 5K, l3 = 5K and I,+ = 2flK, for all i. ‘l’tlc 
system consists of a 14 MIPS processor and 4 disks, each with 
a 20 millisec access time, i.e. MIPS = 14, N, - 4. and 
T,, = 20 . During table scans, it is assumed that multiple 
pages are fetched together in each read IO, as in IBM Dl12 
rTeng84-J. To estimate nip,, a prefctch blocking factor of IO 
is used here for a table scan. 

4. Performance Comparison 

4.1 Alternative Strategies 

The proposed integrated buffer managcmcnt and query 
optimization strategy is compared with two altcrnativc bufTer 
management strategies. One strategy, refcrrcd lo as strategy 
W. is based on the workina set model, where a RIohal I.RU 
replacement algorithm is used lo manage lhc t&cr. rot 
strategy W, the access plans for all queries are dccidcd with- 
out consideration of available hurcring, i.e. by ar;suming lhnl 
referenced pages are prcfetched from disks on sllcccssivc 
scans. The other strategy, referred to as strategy II, is based 
on an enhanced hot set model. The hot set in a multi-join 
query is deiined here to be the subset of the joining relations 
(if table scan is used) or the non-leaf parts of the indexes (if 
index scan is used) that can lit into a given fraction y of thr 
total buffer and result in the most l/O reduction. In choosing 
the hot set, we consider different access path selections, index 
vs segment, and select the one that requires the Icast IO. ‘1‘lwl 
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is to say instead of selecting the hot set for an arbitrarily 
chosen access path, we choose the best access path and the 
corresponding hot set under a given huffcr constraint. Still for 
strategy 11, the join order is taken to be the same as that in 
strategy W to reduce the number of cnumcrations to hc con- 
sidered. Strategy 11 ensures that a hutTcr space of sixc equal 
Lo the query’s hqt set pize can hc allocate+ heforc a query gets 
executed. Otherwise Ihe query has to be put into wait state. 
When additional hulTer space becomes availahlc, the longest 
waiting query whose hot set can be accommodated is schcd- 
uled. (An alternative is to schedule the query in IFCFS order. 
For the example considered in this section, both scheduling 
schemes lead to very similar result.) For both stratcgics II 
and the integrated strategy, pages which are not in the hot set 
compete for buffer space, which are not pre-allocated to ac- 
commodate the hot sets, based on LRU. Note that for the 
nested-loop join example considered lat.er in (his section, the 
desired buffer allocation under DBMIN in [Chou8S] for each 
relation based on the access palh selected by Stratcpy 11 is 
similar to lhhe buffer allocation Strategy 1 I considered. 

4.2 Simulation 
A simulation program is developed to compare the three 
slrategies under multi-way join queries. Although the in@ 
grated strategy can he applied to different join methods, LO 
keep the comparison simple, nested-loop join is used as the 
join algorithm. Bach join attribute is assumed to have an 
index. Even in this case, substantial differences in perform- 
ance can be observed among the different stratcgics. The 
simulation attempts to caplure the sequence in which tlJpkS 

from different relations are scanned and cornparcd, and in 
which pages are fetched from disks in a multi-way join. Two 
types of scan are simulated, tahle and index. In a table scan, 
under the uniform distribution assumption on altrihutc value, 
the number of tuples between matches has a gcomctrical dis- 
tribution. (See [Chris841 for an analysis of the clTcc’ecls of as- 
suming uniform distribution and attribute indcpcndrnce on 
performance projections.) In the simulation, instead of gcn- 
erating a random value for each tuple to carry out the join, 
we treat the numher of tuplcs between matches as a random 
variable with geometric distribution and simulate the actions 
related to scanning and batching tuples. For example, 
scanning into a new page triggers an 10 operat.ion if the page 
is not in the buffer. fmdina a match in an outer relation initi- 
ates a scan into th.e inne;relation, and reaching the end of 
scanning an inner relation returns the scan back to the outer 
relation. For index scans, the data page to bc fctched is rart- 
domly selected as any one of the pages of the relation. Ac- 
cessing of three index pages is required (assuming a three Icvcl 
index) as well as 1 data page. The simulation program gcrl- 
crates the index page addresses assuming a IVtrcc index 
structure and captures the hit to re-rcfcrenced leave papcs. 

Transaclions are placed on a wait list upm arrival. Each 
transaction has associated with it a value which is the Icast 
number of pages required on the free bufTer list that will allow 
it to move to the CPU qucuc for cxcculion. For the irilrgralcd 
slrategy, this is the number of pages required to accommodntc 
the relat.ions to bc kept in bufTcr, as detcrmincd hy IIIC opli- 
mizatiorr procedure. For strategy II, this is the numhcr of 
pages in the hot SCL There is no bulTcr rcquiremcnt under 
strategy W. A transaction moves from the wait lis( lo lhr 
CPU queue if it is the lirst in the wait list which has a bull’cr 
requirement less than the free page lisl and the mullipro- 
gramming level is not exceeded. 

4.3 Example Problem 

We illustrate the methodology using the following trans- 
action processing environment with 14 transactions and 22 
relations. 
relation. 

Table 1 presents the cardinality and size of each 
Table 2 describes the transaction characteristics. 

These include the number of joins and, for each join, lhe two 
relations involved and the selectivities 0-n each join att.ribute. 
respectively. Also presented is the arrival frequency of each 
transaction. For example, transacticin 1 has an arrival frc- 
quency of .O7 Tx/sec and requires three joins. The join hc- 
tween relations R2 and /&, has a join selectivity on the join 
columns of both relations of .OOl . 

1 

2 

3 

4 

3 

6 

I 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

308 

1000 

300 

1200 

300 

loo0 

loo0 

100 

500 

a0 

ulab 

300 

1Ollll 

300 

1200 

308 

1000 

loo0 

100 

300 

200 

Wdpga 

90 

200 

100 

30 

70 

230 

60 

100 

400 

100 

260 

90 

200 

Ml0 

30 

m 

230 

a 

100 

4tm 

100 

260 

Table 1. Retdons for the example prnhlcm 
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The alternative access pIaIls for a given join order arc 
restricted for simplicity to using nested-loop join with the in- 
ner relations either kept in memory using table scan or not 
kept in memory using either table scan or index scan. If index 
scan is used, the non-leaf portion of the index will hr krpt in 
memory. The iterations required for the two step optimizn- 
Con is about six cycles to converge and consumes about In 
set of CPU time on an IBM 3090 processor. 

TX RunFm. No.ofJoimx 
1 

2 

3 

4 

5 

9 

10 

11 

12 

13 

14 

.07 - 

-071 

.ll 

.2al 

.06 

.210 

.3aB 

-072 

.071 

.ll 

201 

.062 

.210 

.311 

3 

3 

3 

3 

4 

1 

1 

3 

3 

3 

3 

4 

1 

1 

Relatiom 8ekuivtties 
2 4 .ool ml 
4 6 .ool ml 
6 8 ml .Ol 

3 5 404 .tm 
5 7 .002 .ool 
7 9 .ool .oa? 

1 4 402 .ool 
4 5 .all .002 
5 7 .m2 .ool 

1 2 .002 ml 
2 8 -001 .OlO 
8 10 .OlO .005 

3 5 .ow .002 
5 7 .002 .ool 
7 9 xl04 .a? 
9 11 .an ml 

1 4 .a .ool 

3 5 .004 .002 

13 15 .ool .ool 
15 17 .ool .ool 
17 19 .ool .01 

14 16 404 .002 
16 18 .002 .a01 
18 20 .ool .w2 

12 15 .002 ml 
15 16 a01 .an 
16 18 a02 .001 

12 13 .002 .ool 
13 19 ml .OlO 
19 21 .OlO .005 

14 16 .aM .002 
16 18 .002 .ool 
18 20 .004 .m2 
2022 .002 .ool 

12 15 a02 .ool 

14 16 .a04 .002 

Table 2. Transactions for the example problem 

In Figure 1, we plot the average response time from the 
simulation vs butTer size for the three strategies. We set 
CL = 0.9 for the integrated strategy and y = 0.65 for strategy 
II, respectively. Note that these parameters, 4, y, arc set at 
the optimum values for a 400 page burer si7e. Sensitivities 
to these parameters are discussed later. ‘I‘he illlegratcd strat- 
egy shows..uniformly better performance over strategies W 
and I+. This is especially the case when the hufl‘cr size is 
smaller (say, a 400 page buffer). Strategy II hascd on the hot 
set concept also shows significant improvement over strategy 
W using LRU, in agreement with [Sacca86]. ‘Ihis sl~ows the 
importance of recognizing the semantics of the query and 
keeping the critical relations in the hufTer. A simplr I,RU 
type strategy like strategy W, ignoring the query semantics, 
performs very badly. Still, strategy 11 is only a local opti- 
mization on each query. Imposing a uniform limit on hot set 
size over all queries can be suboptimal. The intepratcd strat- 
egy considers the behavior of all queries togcthcr to dcrivc a 
decision on the amount of buffer to bc allocated for the cxc- 
cution of each query. 

Table 3 summarizes the access plan selection and bufTct 
allocations for each of the three strategies when the hutTcr six 
is 400 pages. The optimization procedure to dctrrminc the 
access plan and bufYer allocation requires about 6 iterations 
for this example. In the “Join Order” column, the first or 
l&most relation is the outer most-relation in the join, and the 
last or the rightmost relation is the inner-most relation. In the 
“Scan Type” column, S and 1 represent table scan and indrx 
scan, respectively, for access of each of the relations prcscnled 
according to the join order. In the “Buffer” column, y means 
the corresponding relation is kept in the bufTer while n means 
that no eflbrt is made to keep the relation in the bufTcr. For 
example, under the integrated strategy, the join order of 
transact.ion 1 is R6, RQ, R,, R2, with R2 the inner-most rrlalion. 
All relations are scanned sequentially through fable scan. All 
relations except R, arc kept in the buffer. Note that under 
strategy W, no relalion is pre-allocated any buffer space. A 
dilTerent join order rnay be chosen under the din‘crent slratc- 
gies. L.et us look speciiicnlly at transaction 2. Under the irt-- 
tegrated strategy, R7, R,, and R, are kept in the hulTcr 
requiring a total of 230 pages, while R9 with 400 pages is 
chosen to be the outer-most relation and is not kcpl in the 
buffer. Under strategy W, as no butTcring of the rclatinn is 
assumed, R9 is instead chosen as the inner-most rclnlion due 
to its low selectivity and the availability of an index. Under 
strategy II, the same join order is chosen as strategy W, h111 
R, and R, are kept in the buffer. In Table 4, we cornparc 
some run time statistics between the integrated strategy and 
strategy JI. Both the average IO’s per transaction and the 
fraction of transactions delayed due to insunicicnt huFer size 
are substantially lower for the integrated st.rategy. 

We observe that in the integrated strategy, the, avcragc 
response times determined from the queueing model in Sec- 
tion 3.2 and from the simulation are comfortably close to 
each other, differing by amounts within 20%. The difrcrence 
is mainly due to the fact that the analysis does not capture 
some of the inter-transaction etTect considered in the simn- 
lation. One is the IO reduction from buffer hit due to Irans- 
actions referencing relations that were brought in by anolhcr 
transaction referencing the same relations. For the conditions 
of Figure I, none of the strategies causes the transacfions to 
read as many pages as it would if it ran alone on the system. 
The other is the delay due to temporary over-allocation of the 
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buffer. In the integrated strategy, if a relation to hc kept in 
the buffer for the execution of a transaction cannot he AC- 
commodated, the transaction execution is delayed. As shovm 

in Table 4, this delay occurs quite infrequently. As the re- 
sponse time estimate in the integrated strategy is only used in 
the optimization constraint to measure the hu%r rcquirerncnl, 
the inaccuracy can he more or less ahsorhcd in the factor o(. 
We have examined the sensitivity of the integrated strategy to 
cc and found that the response time remains the same over a 
wide range of CL from 0.6 to 0.9 for the cxamplc shown. 

RlLp 
1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 

-m 
1 
2 
3 
4 
5 
6 
I 
8 
9 
10 
11 
12 
13 
14 

-Tlrp 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

5.4.1.7 
a2.1.10 
3A7.9.11 
1.4 
3.5 
19.17.15.13 
14.16.18.20 
16J5,12,18 
19,13.12,21 
14.16.18.20.22 
12.15 
14.16 

loioomkr 
8.6.42 
33*7,9 
5,4.1,7 
83AlO 
3*5,7,9.11 
1.4 
3.5 
19.17,1s.13 
14.16J8.20 
16J5.1~18 
19.13,129 
14.1818~022 
12J5 
14.16 

9.7753 
1.4.5.7 
21.8.10 
9.753.11 
1.4 
315 
17.15,19,13 
2oJa1a14 
1215.16J8 
13.12.19.21 
20,22,18.16J4 
1%15 
14.16 

BMW (yn) 
aaY,Y 
awe 
4ya.y 
aaY.Y 
aywa 
4Y 
ay 
aaY*Y 
am0 
amy 
aaY.Y 
aww 
ay 
ay 

Table 3. Access plan selection and buffer rllocation 

(400 page buffer) 

S-WYH 438 .42 
(Y - ~5% 

Table 4. Run statistics fnr 400 page huffcr 

Although the integrated strategy is found to hc quite in- 
sensitive to the parameter a, strategy l-l is very sensitive to the 
parameter y. Figure 2 shows the sensitivity of response time 
to y under strategy II for a 400 page buffer. The variation in 
response time with the choice of y is quite substantial. The 
variability in the response time curves points out the weakness 
of a local optimization strategy. Keeping a relation in mem- 
ory can red&e the response &ne of the transaction rcfcrcnc- 
ine it. but mav also create a detrimental effect for other 
t&&ions. This can occur if the reduction in response time 
is not large enough so that hurcr consumption, which is the 
product of response time and hul(kr allocation, increases. 
Figure 3 shows the case for a 600 page hulfcr. A big zigzag 
in resnonse time is observed. The neak at v = .5 comes about 
heca&e in going from y = .4 to ; = .5, ‘query Q12 has been 
allowed to keep relation R,, of 260 pages in the huffcr. The 
simulation shows that although the number of page t-cads for 
query Qa has been reduced from 5000 to 4020, the fraction 
of queries with delayed starts has increased from .fl3 to .32. 
At y = .6, Q,:, can keep both relations RI, and R, with a rc- 
duction in IO to 1521. Because of the substantial reduction 
in its response time and hence M&r consumption li>r Q12 , 
the fraction of delayed starts is reduced to .25 even with larger 
buffer allocation. Note that the optimum y depend! upon not 
only the workload hut also the buffer size. This would make 
selecting y a nontrivial joh for a real environmen!. 

5. Reducing the Size of the Optimization Problem 

In an environment with a large number of query types 
which require multiple joins over several relations, the IIWW 

ber of variables, Xi), can hecome very large. We can clitninatc 
many of the access plans hy pre-analyzing each query type 
separately before applying the global optimization. An im- 
portant observation is that for a given query, some access 
plan is essentially inferior in the sense that there exists another 
plan that consumes less resources and orers hcttcr or similar 
serformance. Inferior plans should be climinatcd from con- 
sideration in the ontimization orocedure dcscrihcd in Section 
4. For a given q;ery, let us define huiTer consumption, Pp, 
under access plan j to be Ri7) where T. and /?j arc the cxe- 
cution time and buffer requirement of the query under plan 
j, respectively. Note that here we use execution time instead 
of response time. The additional queueing delay due to the 
impact of concurrently executing queries is ignored so WC can 
examine each query separately. An access plan is feasible if 
the tot.al buffer requirement is less than the total huller size 
or some predeiined maximum. We can state two simple rules 
to determine whether an access plan is inferior: 
I. For any access plan i , if there exists another fcasihlc 

- 252 - 



a’ccess plan ,j, such (hat 8, = Rj and 7; > 1; , or II, > I?, 
and 7; 2 7;, access plan i is regarded as an Inferior plan. 

2. For any access plan i , if there exists another fcasihle 
access plan j, such that P,R > 1:” and 7; 2 7;, RCCCSS plan 
i is regarded as an inferior plan. 

The first rule indicates that a plan with a larger hulTcr allo- 
cation should achieve a smaller execution time. l’hc srcond 
rule implies that a plan with a smaller buffer allocation and 
longer execution time is not necessarily desirable ur~lrss (hc 
bulfer consumption is also smaller. Let access plan j, using 
Bit buffer be the one with the minimum bulTcr consumption. 
Any plan with a larger bulfer consumption than plan j,: 
should be rejected unless the extra bulfer consumption leads 
to reduction in the execution time. Thus any plan using less 
than Ejc bulfer can he eliminaled because it lakes too liltlc 
bufcr so the long execution time results in large bulTcr con- 
sumption. Query strategies using more than 8, may achieve 
smaller response time at the expense of t.be huker consump- 
tion. These stratcgics may be acceptable if there is suliicicnl 
buffer. This is to be determined by the global optimization 
procedure in Section 4. We need only to climinatc those 
where the response time improvement is small compared fo 
the additional buKer used. 

In Figure 4, WC! plot the execution lime verses bulfcr a!- 
location for transaclion 1 of the Example prohlcm dcscrihed 
in Section 4. Several different access plan stratcgics corre- 
spond to each bulTer size due to join-order pcrmu(ations and 
the sum of the sizes of relations R, and R, being the same as 
the sum of the sizes of relations & and R,. Only (he strategy 
with the smallest execution time for a given hun’cr allocation 
is plotted. Also, a buffer allocation is not considered unless 
a decrease in execution time can he realized compared with 
a smaller buffer allocation. That is to say, WC only consider 
strategies which do not violate rule 1 stated above. Trans- 
aclion 1 has 216 potential access plans, as thcrc arc 8 possihlr 
join orders (notice that not all permutations make scnsc, e.g. 
Ra, R,, &, R,) and each relation except the outer most can 
either be kept in hurer for table scan or not hc kept in huffcr 
while both table scan and index scan are possible alternative 
scanning slrategies. The 216 candidate access plans of 
transaction 1 only result in live meaningful bulfcr allocations 
and access plans as follows: 

I. 4 pages: join order R,, R6, Rd, R, with index scans on 
all except the outer most relation. 

2. 50 pages: join order R,, R,, &, R, with R4 kept in (hc 
buffer and index scans on R, and R, 

3. 150 pages: join order R,. &, R,, R, with R4 and R, kcpc 
in the buffer and index scan on R, 

4. 250 pages: join order R,. R,, R4, R, with R, and R4 kept 
in the bufTer and index scan on R6. 

5. 350 pages: join order R,, R,,, R,, R2 with all pages of 
relations except the outer relation be kept in Ihc huffcr 
and accessed with table scans. 

Figure 5 shows the plot of bulTer consumption vs burcr 
size allocation for transaction 1. From rule 2, by comparing 
any Iwo feasible strategies, the one with the higher huffcr 
consumption can be eliminated unless it has the lower cxc- 
cution time. For a given buffer size of 400 pages, all five 
strategies are feasible as they all rcquirc less than 4130 pages. 
Strategy 1 having 4 pages is the one with the minimum buffer 
consumption. By comparison with strategy 5. slralrgics 2, 3. 

and 4 are eliminated as (hey not only take longer to execute 
(Figure 4) but also have larger burer consumption (I’igure 
5). Strategy 5, having 350 pages of allocated bulfcr, is still 
acceptable as its execution time is a lot smaller than strategy 
1. Thus only strategies 1 and 5 need to be considered in the 
global optimization. The glohal optimizalion in Section 4 
which considers all stralegies has in fact picked out stratrgy 
5. The number of strategies to be retained for global opti- 
mization from the other transactions of the illusfraiive exam- 
ple can be similarly reduced. 

6. Summary 

Existing query optimizers for relational databases attempt 
to minimize a linear combination of CPU and page 10 costs 
for each query separately. The impact of bulTer management 
is not reflected in the cost function. Although relational que- 
ries contain a lot of information on data references, it is gcn- 
erally not conveyed to the bulTer manager by the query 
optimizer. In this paper, we propose and analyze a math- 
ematical algorithm to integrate. bufler management. and query 
optimization. When making access plan selections, the inte- 
grated strategy explicitly considers whether a relation is kept 
in the buffer. The query strategies for all transaclions in the 
workload are simulfaneously determined to oplimixe an ob- 
jective function on overall system performance with con- 
straints on total buffer requirement. The mathematical 
formulat,ion uses a two step approach combining an integer 
programming problem wit6 a $Jeueing network &ode1 &he 
solved iterativelv. A detailed simulation is dcvcloncd to study 
the performan& improvement of the integrated’ strategy ai 
compared with two other buffer management slratcgics hascd 
on the working set and hot set, rcspectivcly. The study shows 
that by ignoring all the reference information in the query, (hc 
LRU type strategy does very poorly. Explicitly taking into 
consideration the reference behavior from the query in hulTcr 
management, as in the hot set stra@y, can improve the query 
performance. IIowever, picking the right hot set size can bc 
ditlicult. Integration of query optimization and hulTcr man- 
agement to consider the requirement of all qucrics togcthcr 
gives substantial further improvement to the perlhrmance. 
This showed the importance of imcgrating of buffer managc- 
ment and query optimization strategies so that rcfcrcnce in- 
formation from the queries can be captured lo manage Ihe 
bulTer, and buffer availability can be reflected in the access 
path selection. Furthermore, each query can he pre-analyzed 
separately to reduce the number of access plans to hc con- 
sidered in the global optimization. We proposed an approach 
which eliminates an access plan if there exists another one 
which has less bullkr consumption but similar or bcttcr pcr- 
formance. This pre-analysis was found to he ahlc to greatly 
reduce the size of the optimization program. 
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Fig. I Transaction respmse time vs huffcr Siw 

Fig. 2 Sensitivity of strategy II to y (400 page buffer) 
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Fig. 3 Ser$tivity of strategy II to y (608 page huffcr) 

*r 

Fig. 5 Buffer consumption of transaction I 

Fig. 4 Execution time nf transaction I 
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