
Integration of Buffer Management aud Query Optimization In Relational Database Ewiroument

Douglas W. Cornell Philip S. Yu

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 1 OS98

n hstrflct
In today’s relational database systems, query optimi7alion
and hufTer management are generally treated indrpcndently.
I Iowever, the query access plan con(ains information on data
access patterns which can he useful hints to the huffcr matI-
ager. T;urlhermore, the optimal access plans under dilTerent
huffcr sizes can be quite difTcrent. In this paper, an integrated
approach to buffer management and query optimization is
proposed and analyzed. ‘I he query strategy of all transaction
types is simultaneously considered together willt the hulTcr
allocalion strategy so as to optimbe overall system perform-
ance. As the buffer allocation depends upon (he hulTer hold-
ing time or transaction response time whicft iz dcfrrn~ir~rd h)
the buffer allocation and query optimization slrnlcgirs, ;III

oplimization method combining a integer programming
model with a queueing model applied iteratively is developed
lo capture this effect. To reduce the size of the optimi7atinn
problem, a methodology hascd on the concept of hulrcr con-
sumplion is proposed to pre-analyze the query and suhstacl-
tially cut down the access plans to be considered. A detailed
simulation is used to demonstrate fhe superiority of ihe intc-
grated strategy as compared to other hulTcr tnannpenrrnt
strategies based on working set and hot set.

I. Introduction

Database systems have generally relied on memory hull-
ers to reduce disk accesses. Even with the lrcnd of ever h-
creasing memory size, the memory bulrer usually can not
accommodate all the databases in the system, and some
bufer management strategy is needed to mnkc the hcst usr
of the buffer space. The traditional approach to memory
management in a virtual memory cnvironmcnt uses a working
set model where the popular replacement policy is I,RU,
which replaces the least recently used page hy a new page
[Denn68].

Pot a network or hierarchical database system, reference
strings tend to be unpredictable except for batch processing.
A study on network databases can be found in [lTc84].
These types of systems seem to lit reasonably well with thr
working set model. Iiowever, queries to relational dalahascs
[Codd70] imply a lot of information on data rcfcrenccs. Ihc
discussion in this paper is based on a database system similar

Permission to copy without fee all OT paTt of this material is
gnznted provided that the copies are not made or distribzlted jOT

direct commercial advantage, the VLDB copyTight notice and
the title of the pzlblication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

IO syst.em R [hstr76]. ‘The query optimizer analy7cs each
query and generates an access plan which confains detailed
infoimatior;on how each rela& is accessed. (Information
related to access nlans can he found in rSeli791.) ‘These ac-
cess plans assumk that none of the refe;enced-bagcs will hc
found already in the bulTer. The buffer manager does not
take hints on reference patterns from the query optimi7cr ex-
cept prefetch for sequential scan. Although some variant 0r
the LRU policy is oflen used for hufI’er manapcmcnt, it is nnt
considered to be well suited for the reference pnltcrns of rc-
lal.ional dat,abases [Ston81]. Previous research direcled lo-
ward utilizing information availahle ahout rcfercncc pallcrns
has been described in [Sacca82], [ChouXSJ. and [SaccaRfiJ.
In [Sacca82], [Sacca86] a hot set model is proposed. The
basic idea there is to determine a hot set for every query and
allocate sullicient hulTer space to cover the ho! scl before ex-
ecuting a query. Certainly, this is a local optimization for
each query to provide it with suflicient hull& space to mini-
mize disk 10 accesses. The potential hufl’cr contention among
queries is not addressed in the buffer allocation strategy. As
pointed out in [SaacaRh], straightforward implcmcntation of
this idea can lead t.o problems such as infinite waits, long
queries blocking short queries, etc.. Some ad hoc techniques
to relieve these problems are also suggested. In [<:houflS],
active instances (due to references from different queries) of
a lile are given hirerent buffer pools and are managed hy
direrent renlacement discinlincs. A DnMlN aleorithm is
proposed-f& estimating thb sixe and discipline fey cnch filr
instance of a query is descrihcd. 7‘0 compare performance
with the hot set strategy, a simulafion is dcvelopcd in which
a query is dwrihed by the CPU usage, mm~hc; of IO’s, and
hot set size. All these works investiaate the “riaht” hufTcr nl-
location for a given query plan or access path Glccfion with
out considering the effect of other queries.

In a transaction processing environment, the ChiWaclcr-
istics of all transactions/queries arc known a priori. ‘l‘hus, if
the transaction rate for each type is atso known, a hulTcr
management strategy may be devised to optimixc hufrer allo-
cation for all queries. Furthermore, the query oplimizcr mny
be integrated with buffer management to take into considcr-
ation the bulTer availability in selecting an approprinlc access
plan for each query to optimize overall performance. In this
paper, we examine the integration of buffer management and
query optimization. A detailed simulation is devcloprd to
compare the integrated approach with huff’cr rnnnngcmrnt
schemes based on the LRU working set model and the hot
set model, respectively. We discuss the issues of hufrer man-
agement. and query optimization that motivate Ihc intrgratcd
approach in Section 2. The tnathematical formulation of the
optimization problem is given in Section 3. Section 4 shows
the performance improvement through the integrated ap-
proach using a hypothetical exatnple. ‘To reduce the size 01
the optimization problem, Section 5 develops a methodology
hased on t.he concept of hufikr consumption to suhstan~.ially
trim down the numher of access plans to he considered in thr

Amsterdam, 1989

optimization procedure. Buffer consumption is detincd to be
the product of query response time and huffcr allocation. An
access plan with a small amount of buffer allocnlion is not
desirable unless t.he buffer consumption is also small. Con-
cluding remarks appear in Section 6.

2. Buffer Management and Query Optimization

The conventional approach to query optimization is to
examine each query in isolation and select the execution plan
with the minimal cost based on some predcfincd cost flmction
of I0 and CPU requirements to execute the query [S&79].
The impact of buffer management generally is not rcflcctrd
in the cost function. The numhcr of 10’s estimated in the COSI
analysis does not reflect the potential effect of other trans-
actions concurrently under execution. On the olhcr hand, it
is also quite dificult to assess this effect without detailed
knowledge on how other concurrent transactions arc
progressing.

For each query type, different execution plans show dif-
ferent sensitivities to the size of memory allocated for dnla and
thus have different memory requirements. In this paper, we
use the expression data bufTcr to refer to memory allocntcd
for storing data from the database. The best access plan for
a given buffer size is not necessarily the best ptan for another
buffer size. Furthermore, it is not even clear whether every
query type needs to be given ihe same constraint on bun’cr
allocation. Different query types may have diffcrcnt dimin-
ishing points of return on buffer size and face JilTcrcnt pen-
alties on suboptimal buffer size. An intcgratcd hufTcr
management and query opt.imization strategy is thus needed
so that the access plans for all query types arc considcrcd to-
gether based on bulTcr availability.

Let’s look at an example. Consider a query joining thrco
relations, R,, R,, and R3. The relations consist of IO, 20, and
40 pages with cardinalitics (C,, i = 1, 2. 3) of 50, I 00, and 500,
respectively. The join selectivities used to calculate the mm-
ber of matching tuples from the join operations arc taken to
be .Ol for all joins. Assume that no index is availahlc. ‘1‘0
simplify the discussion, nested-loop join is assumed lo hc the
method of choice. The query optimizer still needs to drcidc
the join order. Ignoring b&c; availability, a convcnlional
query optimizer would choose RI, R2. R3 as the join order with
R3 t.he inner-most relation. The number of papc fcl.chrs wouhi
be 3000 (= 20 x Cl + 40 x 0.01 x C, x C,) if none of lhe
relations arc kept in the buffer. The number of’10 wo:lld bc
minimized if relations R, and R, can be kcnl. in the burcr.
A total of 61 (= 20 + 40 r, 1) bufer pages wdrlld be required.
This strategy would be oplimum if that amount of huffcr
space can be made available. If the join order is tnkcn to bc
I?,, R,, R, with R, the inner-most rclahon, the number ofpagc
fetches would be 15000 (= 20 x C, + IO x 0.01 x C, x G 1
if none of the relations ark kept. in tGe burcr. I lowe&, w%
31 (= 10 t 20+ 1) buffer pages, the number of IO can bc
minimized to read in each relation exactly once. Of course,
this access plan does need to perform more tuple compar-
isons. This illustrates that the optirnum access plan depends
upon the buffer allocation and that there arc trade-olTs be-
tween different haidware resource (CPU and IO) rcquirc-
ments. So far we have heen looking at one query alone. In
Ihe presence of multiple queries, hulTcr space needs to hc nl-

located among the diGrent queries so as to optimixc the
overall performance. One thus needs to consider all query
types together.

3. Methodology

The methodology to obtain a global optimization on
buffer management and query optimizatjon is now described
in this section. We focus on join queries here, as select type
queries have little buffer requirement. An integer program-
ming formulation is used to select the best access plan and
associated buffer allocation. The objective function is similar
to the cost function used in a conventional query optimizer,
but is the sum over all query types weighted by query frc-
quencies. The constraints are that not only the buffer allo-
cation for each query, but also the time-avcragcd buffer
requirement over all queries must be less than the total hulfcr
size. Note that the time-averaged bullkr rcquircment for each
query type is proportional to its response tirnc and arrival
frequencies in addition to the buffer allocation for each in-
stance of its execution. The response time certainly depends
upon access plan selection and buffer allocation.

To get around this inter-dcpcndency problem, we can
decompose the problem into two parts and take an itcrativc
approach. The Iirst part is the optimization just dcscrihcd
which uses an assumed response time for each query type,
and the second part is a queueing model to solve for the rc-
sponse t.ime based on the access plan selections and buf?%r
allocation from the first part (the optimization prohlcm). The
optimization prohlem then uses the response time from the
queueing model to solve for an improved solution. Altcrna-
tivcly, we can use the average response time over all queries
(derived in Section 3.2) as the objective function and employ
a heuristic technique like simulated annealing [Kirk831 to
solve the non-linear programming problem. Simulated
annealing can be helpful to address very large size problems
or optimize response times directly [WolfM].

3.1 Optimization Problem Under the Integrated Strategy

Consider a set of join queries Q,, i = 1,NQ. and rc-
lations R,, k = 1 , NR. For each query type Q,, there is a
set of different join plans, Q$ j = 1, n,. Under the inlc-
grated strategy, each join plan specifically indicntcs whethrr
a joining relation is to be kept in the buffer. For example, in
a two-way join of Rk and Rj, nested-loop join with R, (or R.)
in the buffer as the inner relation and nested-loop jnin wit I *I
R, (or Rj) as the inner relation but not in the bumcr are four
potential join plans. Although there may bc a large nrnrrbcr
of potential access plans for each query, WC can climinntc
most of them from consideration of the optimization procc-
dure discussed below through some simple prc-analysis of the
access plans. This is addressed in Section 5. I.ct Fij he I if
plan ?+j is adopted for Qi and 0 otherwise. That. IS to sny,
each lam plan is identified by a (0,l) integer programming
variable to indicate whether it is adopted or not. I.ct Di ho
the numher of pages to be read from disk if plan U, ,j d * IS
adopted. Dij can be calculated based on the join algortthms
and buflcr allocation st.rategics. Define Ri lo be the arrival
frequency for QP

Now we formulate the optimization problem. ‘l‘he oh-
jective function can be any cost function on I0 and CPU over
all query types. llere we use the aggregate IO rate as the cost
function assuming 10 is the performance bottlrnrck. Thus,

- 248 -

ohjeciive,finction = “ijXij Ai.
i j

Constraints are included to guarantee that cxac~ly one
strategy is adopted for each query,

c Xij = 1 ;,j = I,..., ?Tp

Additional constraints are added to prevent the bulrcr from
being overcommitted. First of all, no query can get n hun‘cr
allocation more than the total buffer size. 1.~1 1) be the
number of hulTer pages available and Fij be the number of
buffer pages allocated for query Qi under plan Q,F;j. ‘l’hus Fii
is an input parameter derived from the access plan.

c Xij~j I B, for each i,

Furthermore, the average buffer usage of each query type is
estimated as the product of bumer allocation and response
time times the arrival frequency. In order to accommoda(c
the fluctuations in query workload, the average hulTcr usage
needs to be less than some fraction, n, of the total burcr. ‘1.1~
appropriate value for a is explored in the next section.

where RTii is the average response time of qrtcry Q, rmdcr
plan QSij. A starting value needs to be sclcctcd for each
R7’j, for i = I,..., NQ and all plans j = I ,..., rzi for query Qi.
The join plans selected by the solution of the resulting integer
program are not yet optimum, since the initial respnnsc times
are not chosen to be optimum. In Section 3.2, a queucing
model is presented to estimate a new set of response times
based upon the “optimal” strategy {QS,., i = I ,..., NpJ chosen
hy the optimization procedure. We ilet!aGvely solve lhc exc-
cution plan selection and burer allocat.ion from (hc intcgcr
programming problem and response time calculnGon from
the queueing model until no filrthcr change in plan is ob-
served or until the calculated average response time remains
the same on successive iterations. If we choose a large rc-
sponse time for each query type to start the opt.imizaGon
problem, a very conservative burer allocation will bc made.
as exaggerated response rime lcads to overestimntcs on (he
time average buffer requirement. The qucucing analysis then
provides an improved response time based on the strategy
recommended from the optimization problem. With ~hc im-
proved response time or shortened huffcr hold time, more
bu(Ter space can be allocated and lrad to ftlrthcr improvement
in Ibe response time. It appears to converge anrr a few iter-
ations.

3.2 The Queueing Model
So far we have been conccntra(ed on bun’cr allocation. The
concurrently executing queries compete not only for bull’cr
but also CPU and 10. The contention on CPU and 10 would
increase the response time. thus the hulTer hold time. ‘1 hc
response time of the transaction processing system is detcr-
mined using an open queueing network model. ‘l‘hc system
consists of a single CPU with speed MIPS and multiple (N,)
disks. Each database is assumed to be partitioned uniformly
across the N, disks based on its primary key. Under n given

strategy, {QS,., i = I,..,, Ne} , the overall system performance
can be analyzhd hy assummR there is no reuse of IIIC bumer
between qu&ies. ‘The respc%se lime of each query can bc
calculated as its resource requirement on the CPU and disks
can be predicted given the buffer allocation strategy. IIrfine
Uip. to be the query-processing pathlength at lhc CPU for rJi
under QSip.. L.et I, be the CPU overhead for
scanning/co&paring a tuple, I2 the overhead for returning a
tuple to the application program, I3 the overhead for an IO
operation and IAi the applicafion processing pathlcngth for
type i query. Uip, can be expressed in terms of thcsc parame-
ters as given in Appendix A. The total CPU processing cost
is then

~JCNJ = c li”ipi

Let T,, be the disk service time to perform an IO operation.
-The utilization of each disk assuming the load is spread uni.
formly across all disks for each relation can be shown lo he

50
PI0 = K c It i nifii

i

The average response time of Qi is

RTifli = MIPS -‘UCpa +

where the lirst component is the sum of the service time and
waiting time at the CPU and the second component is the sum
of those times at the disks. The averaPe rcsnonse time over
all queries, under strategy, {QS,, i = 1’;..., Nb} , would then
he XT = CAiRTi,&Aj .

i i

The following model parameters are used in ~hc pcr-
formance comparisons. The pathlength parameters are set
at Z, = 70, I, = 5K, l3 = 5K and I,+ = 2flK, for all i. ‘l’tlc
system consists of a 14 MIPS processor and 4 disks, each with
a 20 millisec access time, i.e. MIPS = 14, N, - 4. and
T,, = 20 . During table scans, it is assumed that multiple
pages are fetched together in each read IO, as in IBM Dl12
rTeng84-J. To estimate nip,, a prefctch blocking factor of IO
is used here for a table scan.

4. Performance Comparison

4.1 Alternative Strategies

The proposed integrated buffer managcmcnt and query
optimization strategy is compared with two altcrnativc bufTer
management strategies. One strategy, refcrrcd lo as strategy
W. is based on the workina set model, where a RIohal I.RU
replacement algorithm is used lo manage lhc t&cr. rot
strategy W, the access plans for all queries are dccidcd with-
out consideration of available hurcring, i.e. by ar;suming lhnl
referenced pages are prcfetched from disks on sllcccssivc
scans. The other strategy, referred to as strategy II, is based
on an enhanced hot set model. The hot set in a multi-join
query is deiined here to be the subset of the joining relations
(if table scan is used) or the non-leaf parts of the indexes (if
index scan is used) that can lit into a given fraction y of thr
total buffer and result in the most l/O reduction. In choosing
the hot set, we consider different access path selections, index
vs segment, and select the one that requires the Icast IO. ‘1‘lwl

- 249 -

is to say instead of selecting the hot set for an arbitrarily
chosen access path, we choose the best access path and the
corresponding hot set under a given huffcr constraint. Still for
strategy 11, the join order is taken to be the same as that in
strategy W to reduce the number of cnumcrations to hc con-
sidered. Strategy 11 ensures that a hutTcr space of sixc equal
Lo the query’s hqt set pize can hc allocate+ heforc a query gets
executed. Otherwise Ihe query has to be put into wait state.
When additional hulTer space becomes availahlc, the longest
waiting query whose hot set can be accommodated is schcd-
uled. (An alternative is to schedule the query in IFCFS order.
For the example considered in this section, both scheduling
schemes lead to very similar result.) For both stratcgics II
and the integrated strategy, pages which are not in the hot set
compete for buffer space, which are not pre-allocated to ac-
commodate the hot sets, based on LRU. Note that for the
nested-loop join example considered lat.er in (his section, the
desired buffer allocation under DBMIN in [Chou8S] for each
relation based on the access palh selected by Stratcpy 11 is
similar to lhhe buffer allocation Strategy 1 I considered.

4.2 Simulation
A simulation program is developed to compare the three
slrategies under multi-way join queries. Although the in@
grated strategy can he applied to different join methods, LO
keep the comparison simple, nested-loop join is used as the
join algorithm. Bach join attribute is assumed to have an
index. Even in this case, substantial differences in perform-
ance can be observed among the different stratcgics. The
simulation attempts to caplure the sequence in which tlJpkS

from different relations are scanned and cornparcd, and in
which pages are fetched from disks in a multi-way join. Two
types of scan are simulated, tahle and index. In a table scan,
under the uniform distribution assumption on altrihutc value,
the number of tuples between matches has a gcomctrical dis-
tribution. (See [Chris841 for an analysis of the clTcc’ecls of as-
suming uniform distribution and attribute indcpcndrnce on
performance projections.) In the simulation, instead of gcn-
erating a random value for each tuple to carry out the join,
we treat the numher of tuplcs between matches as a random
variable with geometric distribution and simulate the actions
related to scanning and batching tuples. For example,
scanning into a new page triggers an 10 operat.ion if the page
is not in the buffer. fmdina a match in an outer relation initi-
ates a scan into th.e inne;relation, and reaching the end of
scanning an inner relation returns the scan back to the outer
relation. For index scans, the data page to bc fctched is rart-
domly selected as any one of the pages of the relation. Ac-
cessing of three index pages is required (assuming a three Icvcl
index) as well as 1 data page. The simulation program gcrl-
crates the index page addresses assuming a IVtrcc index
structure and captures the hit to re-rcfcrenced leave papcs.

Transaclions are placed on a wait list upm arrival. Each
transaction has associated with it a value which is the Icast
number of pages required on the free bufTer list that will allow
it to move to the CPU qucuc for cxcculion. For the irilrgralcd
slrategy, this is the number of pages required to accommodntc
the relat.ions to bc kept in bufTcr, as detcrmincd hy IIIC opli-
mizatiorr procedure. For strategy II, this is the numhcr of
pages in the hot SCL There is no bulTcr rcquiremcnt under
strategy W. A transaction moves from the wait lis(lo lhr
CPU queue if it is the lirst in the wait list which has a bull’cr
requirement less than the free page lisl and the mullipro-
gramming level is not exceeded.

4.3 Example Problem

We illustrate the methodology using the following trans-
action processing environment with 14 transactions and 22
relations.
relation.

Table 1 presents the cardinality and size of each
Table 2 describes the transaction characteristics.

These include the number of joins and, for each join, lhe two
relations involved and the selectivities 0-n each join att.ribute.
respectively. Also presented is the arrival frequency of each
transaction. For example, transacticin 1 has an arrival frc-
quency of .O7 Tx/sec and requires three joins. The join hc-
tween relations R2 and /&, has a join selectivity on the join
columns of both relations of .OOl .

1

2

3

4

3

6

I

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

308

1000

300

1200

300

loo0

loo0

100

500

a0

ulab

300

1Ollll

300

1200

308

1000

loo0

100

300

200

Wdpga

90

200

100

30

70

230

60

100

400

100

260

90

200

Ml0

30

m

230

a

100

4tm

100

260

Table 1. Retdons for the example prnhlcm

- 250 -

The alternative access pIaIls for a given join order arc
restricted for simplicity to using nested-loop join with the in-
ner relations either kept in memory using table scan or not
kept in memory using either table scan or index scan. If index
scan is used, the non-leaf portion of the index will hr krpt in
memory. The iterations required for the two step optimizn-
Con is about six cycles to converge and consumes about In
set of CPU time on an IBM 3090 processor.

TX RunFm. No.ofJoimx
1

2

3

4

5

9

10

11

12

13

14

.07 -

-071

.ll

.2al

.06

.210

.3aB

-072

.071

.ll

201

.062

.210

.311

3

3

3

3

4

1

1

3

3

3

3

4

1

1

Relatiom 8ekuivtties
2 4 .ool ml
4 6 .ool ml
6 8 ml .Ol

3 5 404 .tm
5 7 .002 .ool
7 9 .ool .oa?

1 4 402 .ool
4 5 .all .002
5 7 .m2 .ool

1 2 .002 ml
2 8 -001 .OlO
8 10 .OlO .005

3 5 .ow .002
5 7 .002 .ool
7 9 xl04 .a?
9 11 .an ml

1 4 .a .ool

3 5 .004 .002

13 15 .ool .ool
15 17 .ool .ool
17 19 .ool .01

14 16 404 .002
16 18 .002 .a01
18 20 .ool .w2

12 15 .002 ml
15 16 a01 .an
16 18 a02 .001

12 13 .002 .ool
13 19 ml .OlO
19 21 .OlO .005

14 16 .aM .002
16 18 .002 .ool
18 20 .004 .m2
2022 .002 .ool

12 15 a02 .ool

14 16 .a04 .002

Table 2. Transactions for the example problem

In Figure 1, we plot the average response time from the
simulation vs butTer size for the three strategies. We set
CL = 0.9 for the integrated strategy and y = 0.65 for strategy
II, respectively. Note that these parameters, 4, y, arc set at
the optimum values for a 400 page burer si7e. Sensitivities
to these parameters are discussed later. ‘I‘he illlegratcd strat-
egy shows..uniformly better performance over strategies W
and I+. This is especially the case when the hufl‘cr size is
smaller (say, a 400 page buffer). Strategy II hascd on the hot
set concept also shows significant improvement over strategy
W using LRU, in agreement with [Sacca86]. ‘Ihis sl~ows the
importance of recognizing the semantics of the query and
keeping the critical relations in the hufTer. A simplr I,RU
type strategy like strategy W, ignoring the query semantics,
performs very badly. Still, strategy 11 is only a local opti-
mization on each query. Imposing a uniform limit on hot set
size over all queries can be suboptimal. The intepratcd strat-
egy considers the behavior of all queries togcthcr to dcrivc a
decision on the amount of buffer to bc allocated for the cxc-
cution of each query.

Table 3 summarizes the access plan selection and bufTct
allocations for each of the three strategies when the hutTcr six
is 400 pages. The optimization procedure to dctrrminc the
access plan and bufYer allocation requires about 6 iterations
for this example. In the “Join Order” column, the first or
l&most relation is the outer most-relation in the join, and the
last or the rightmost relation is the inner-most relation. In the
“Scan Type” column, S and 1 represent table scan and indrx
scan, respectively, for access of each of the relations prcscnled
according to the join order. In the “Buffer” column, y means
the corresponding relation is kept in the bufTer while n means
that no eflbrt is made to keep the relation in the bufTcr. For
example, under the integrated strategy, the join order of
transact.ion 1 is R6, RQ, R,, R2, with R2 the inner-most rrlalion.
All relations are scanned sequentially through fable scan. All
relations except R, arc kept in the buffer. Note that under
strategy W, no relalion is pre-allocated any buffer space. A
dilTerent join order rnay be chosen under the din‘crent slratc-
gies. L.et us look speciiicnlly at transaction 2. Under the irt--
tegrated strategy, R7, R,, and R, are kept in the hulTcr
requiring a total of 230 pages, while R9 with 400 pages is
chosen to be the outer-most relation and is not kcpl in the
buffer. Under strategy W, as no butTcring of the rclatinn is
assumed, R9 is instead chosen as the inner-most rclnlion due
to its low selectivity and the availability of an index. Under
strategy II, the same join order is chosen as strategy W, h111
R, and R, are kept in the buffer. In Table 4, we cornparc
some run time statistics between the integrated strategy and
strategy JI. Both the average IO’s per transaction and the
fraction of transactions delayed due to insunicicnt huFer size
are substantially lower for the integrated st.rategy.

We observe that in the integrated strategy, the, avcragc
response times determined from the queueing model in Sec-
tion 3.2 and from the simulation are comfortably close to
each other, differing by amounts within 20%. The difrcrence
is mainly due to the fact that the analysis does not capture
some of the inter-transaction etTect considered in the simn-
lation. One is the IO reduction from buffer hit due to Irans-
actions referencing relations that were brought in by anolhcr
transaction referencing the same relations. For the conditions
of Figure I, none of the strategies causes the transacfions to
read as many pages as it would if it ran alone on the system.
The other is the delay due to temporary over-allocation of the

- 251 -

buffer. In the integrated strategy, if a relation to hc kept in
the buffer for the execution of a transaction cannot he AC-
commodated, the transaction execution is delayed. As shovm

in Table 4, this delay occurs quite infrequently. As the re-
sponse time estimate in the integrated strategy is only used in
the optimization constraint to measure the hu%r rcquirerncnl,
the inaccuracy can he more or less ahsorhcd in the factor o(.
We have examined the sensitivity of the integrated strategy to
cc and found that the response time remains the same over a
wide range of CL from 0.6 to 0.9 for the cxamplc shown.

RlLp
1
2
3
4
5
6
I
8
9

10
11
12
13
14

-m
1
2
3
4
5
6
I
8
9
10
11
12
13
14

-Tlrp
1
2
3
4
5
6
7
8
9
10
11
12
13
14

5.4.1.7
a2.1.10
3A7.9.11
1.4
3.5
19.17.15.13
14.16.18.20
16J5,12,18
19,13.12,21
14.16.18.20.22
12.15
14.16

loioomkr
8.6.42
33*7,9
5,4.1,7
83AlO
3*5,7,9.11
1.4
3.5
19.17,1s.13
14.16J8.20
16J5.1~18
19.13,129
14.1818~022
12J5
14.16

9.7753
1.4.5.7
21.8.10
9.753.11
1.4
315
17.15,19,13
2oJa1a14
1215.16J8
13.12.19.21
20,22,18.16J4
1%15
14.16

BMW (yn)
aaY,Y
awe
4ya.y
aaY.Y
aywa
4Y
ay
aaY*Y
am0
amy
aaY.Y
aww
ay
ay

Table 3. Access plan selection and buffer rllocation

(400 page buffer)

S-WYH 438 .42
(Y - ~5%

Table 4. Run statistics fnr 400 page huffcr

Although the integrated strategy is found to hc quite in-
sensitive to the parameter a, strategy l-l is very sensitive to the
parameter y. Figure 2 shows the sensitivity of response time
to y under strategy II for a 400 page buffer. The variation in
response time with the choice of y is quite substantial. The
variability in the response time curves points out the weakness
of a local optimization strategy. Keeping a relation in mem-
ory can red&e the response &ne of the transaction rcfcrcnc-
ine it. but mav also create a detrimental effect for other
t&&ions. This can occur if the reduction in response time
is not large enough so that hurcr consumption, which is the
product of response time and hul(kr allocation, increases.
Figure 3 shows the case for a 600 page hulfcr. A big zigzag
in resnonse time is observed. The neak at v = .5 comes about
heca&e in going from y = .4 to ; = .5, ‘query Q12 has been
allowed to keep relation R,, of 260 pages in the huffcr. The
simulation shows that although the number of page t-cads for
query Qa has been reduced from 5000 to 4020, the fraction
of queries with delayed starts has increased from .fl3 to .32.
At y = .6, Q,:, can keep both relations RI, and R, with a rc-
duction in IO to 1521. Because of the substantial reduction
in its response time and hence M&r consumption li>r Q12 ,
the fraction of delayed starts is reduced to .25 even with larger
buffer allocation. Note that the optimum y depend! upon not
only the workload hut also the buffer size. This would make
selecting y a nontrivial joh for a real environmen!.

5. Reducing the Size of the Optimization Problem

In an environment with a large number of query types
which require multiple joins over several relations, the IIWW

ber of variables, Xi), can hecome very large. We can clitninatc
many of the access plans hy pre-analyzing each query type
separately before applying the global optimization. An im-
portant observation is that for a given query, some access
plan is essentially inferior in the sense that there exists another
plan that consumes less resources and orers hcttcr or similar
serformance. Inferior plans should be climinatcd from con-
sideration in the ontimization orocedure dcscrihcd in Section
4. For a given q;ery, let us define huiTer consumption, Pp,
under access plan j to be Ri7) where T. and /?j arc the cxe-
cution time and buffer requirement of the query under plan
j, respectively. Note that here we use execution time instead
of response time. The additional queueing delay due to the
impact of concurrently executing queries is ignored so WC can
examine each query separately. An access plan is feasible if
the tot.al buffer requirement is less than the total huller size
or some predeiined maximum. We can state two simple rules
to determine whether an access plan is inferior:
I. For any access plan i , if there exists another fcasihlc

- 252 -

a’ccess plan ,j, such (hat 8, = Rj and 7; > 1; , or II, > I?,
and 7; 2 7;, access plan i is regarded as an Inferior plan.

2. For any access plan i , if there exists another fcasihle
access plan j, such that P,R > 1:” and 7; 2 7;, RCCCSS plan
i is regarded as an inferior plan.

The first rule indicates that a plan with a larger hulTcr allo-
cation should achieve a smaller execution time. l’hc srcond
rule implies that a plan with a smaller buffer allocation and
longer execution time is not necessarily desirable ur~lrss (hc
bulfer consumption is also smaller. Let access plan j, using
Bit buffer be the one with the minimum bulTcr consumption.
Any plan with a larger bulfer consumption than plan j,:
should be rejected unless the extra bulfer consumption leads
to reduction in the execution time. Thus any plan using less
than Ejc bulfer can he eliminaled because it lakes too liltlc
bufcr so the long execution time results in large bulTcr con-
sumption. Query strategies using more than 8, may achieve
smaller response time at the expense of t.be huker consump-
tion. These stratcgics may be acceptable if there is suliicicnl
buffer. This is to be determined by the global optimization
procedure in Section 4. We need only to climinatc those
where the response time improvement is small compared fo
the additional buKer used.

In Figure 4, WC! plot the execution lime verses bulfcr a!-
location for transaclion 1 of the Example prohlcm dcscrihed
in Section 4. Several different access plan stratcgics corre-
spond to each bulTer size due to join-order pcrmu(ations and
the sum of the sizes of relations R, and R, being the same as
the sum of the sizes of relations & and R,. Only (he strategy
with the smallest execution time for a given hun’cr allocation
is plotted. Also, a buffer allocation is not considered unless
a decrease in execution time can he realized compared with
a smaller buffer allocation. That is to say, WC only consider
strategies which do not violate rule 1 stated above. Trans-
aclion 1 has 216 potential access plans, as thcrc arc 8 possihlr
join orders (notice that not all permutations make scnsc, e.g.
Ra, R,, &, R,) and each relation except the outer most can
either be kept in hurer for table scan or not hc kept in huffcr
while both table scan and index scan are possible alternative
scanning slrategies. The 216 candidate access plans of
transaction 1 only result in live meaningful bulfcr allocations
and access plans as follows:

I. 4 pages: join order R,, R6, Rd, R, with index scans on
all except the outer most relation.

2. 50 pages: join order R,, R,, &, R, with R4 kept in (hc
buffer and index scans on R, and R,

3. 150 pages: join order R,. &, R,, R, with R4 and R, kcpc
in the buffer and index scan on R,

4. 250 pages: join order R,. R,, R4, R, with R, and R4 kept
in the bufTer and index scan on R6.

5. 350 pages: join order R,, R,,, R,, R2 with all pages of
relations except the outer relation be kept in Ihc huffcr
and accessed with table scans.

Figure 5 shows the plot of bulTer consumption vs burcr
size allocation for transaction 1. From rule 2, by comparing
any Iwo feasible strategies, the one with the higher huffcr
consumption can be eliminated unless it has the lower cxc-
cution time. For a given buffer size of 400 pages, all five
strategies are feasible as they all rcquirc less than 4130 pages.
Strategy 1 having 4 pages is the one with the minimum buffer
consumption. By comparison with strategy 5. slralrgics 2, 3.

and 4 are eliminated as (hey not only take longer to execute
(Figure 4) but also have larger burer consumption (I’igure
5). Strategy 5, having 350 pages of allocated bulfcr, is still
acceptable as its execution time is a lot smaller than strategy
1. Thus only strategies 1 and 5 need to be considered in the
global optimization. The glohal optimizalion in Section 4
which considers all stralegies has in fact picked out stratrgy
5. The number of strategies to be retained for global opti-
mization from the other transactions of the illusfraiive exam-
ple can be similarly reduced.

6. Summary

Existing query optimizers for relational databases attempt
to minimize a linear combination of CPU and page 10 costs
for each query separately. The impact of bulTer management
is not reflected in the cost function. Although relational que-
ries contain a lot of information on data references, it is gcn-
erally not conveyed to the bulTer manager by the query
optimizer. In this paper, we propose and analyze a math-
ematical algorithm to integrate. bufler management. and query
optimization. When making access plan selections, the inte-
grated strategy explicitly considers whether a relation is kept
in the buffer. The query strategies for all transaclions in the
workload are simulfaneously determined to oplimixe an ob-
jective function on overall system performance with con-
straints on total buffer requirement. The mathematical
formulat,ion uses a two step approach combining an integer
programming problem wit6 a $Jeueing network &ode1 &he
solved iterativelv. A detailed simulation is dcvcloncd to study
the performan& improvement of the integrated’ strategy ai
compared with two other buffer management slratcgics hascd
on the working set and hot set, rcspectivcly. The study shows
that by ignoring all the reference information in the query, (hc
LRU type strategy does very poorly. Explicitly taking into
consideration the reference behavior from the query in hulTcr
management, as in the hot set stra@y, can improve the query
performance. IIowever, picking the right hot set size can bc
ditlicult. Integration of query optimization and hulTcr man-
agement to consider the requirement of all qucrics togcthcr
gives substantial further improvement to the perlhrmance.
This showed the importance of imcgrating of buffer managc-
ment and query optimization strategies so that rcfcrcnce in-
formation from the queries can be captured lo manage Ihe
bulTer, and buffer availability can be reflected in the access
path selection. Furthermore, each query can he pre-analyzed
separately to reduce the number of access plans to hc con-
sidered in the global optimization. We proposed an approach
which eliminates an access plan if there exists another one
which has less bullkr consumption but similar or bcttcr pcr-
formance. This pre-analysis was found to he ahlc to greatly
reduce the size of the optimization program.

Acknowledgement:
The authors would like to thank Guy I.ohman for his sug-
gestions on revising the paper.

- 253 -

References
[Astr76] M.M. Aslrahan. M.W. rhgen, D.D.

Chamberlin, K.P. Eswaren, J.N. Gray, P.P.
Griffith, W.F. King, R.A. I.orie, P.R. McJones,
J.W. Mehl, G.F. Putzolu, I.L. Traiger, B.W.
Wade, and V. Watson, “System R: Relational
Approach to Database Management”, ACM
Transactions on Database Systems, Vol. I, No.
2, June 1976, pp. 97-137.

[ChougS] H.-T. Chou and D. J. Dewitt, “An Evaluation of
Buffer Management Strategies for Relational Da-
tabase Systems”, Proc. of the 11 th International
Conference on Very Large Data Dases,
Stockholm, 1985, pp. 127-141.

[Chris841 S. Christodulakis. “Implications of certain RS-
sumptions in database performance evaluation”,
ACM Trans. Datahase Syst., Vol. 9, No. 2, June
1984, pp. 163-186.

[Codd70] E.F. Codd, “Relational Model of Data for I.arge
Shared Data Danks”, Comm. of the ACM. Vol.
13, No. 6, June 1970, pp. 377-387.

[Denn68] P. J. Denning “The Working Set Model for Pro-
gram Behavior.“, Comm. of the ACM, Vol. I I,
No. 5, May 1968, pp. 323-333.

[Effe84] W. EfTelberg and M. E. S. Loomis, “I.ogical,
internal and physical reference hehavior in
CODASYL database systems”, ACM Trans. Da-
tabase Syst., Vol. 9, No.2, June 1984, pp. 187-213.

[Kirk831 S. Kirkpatrick, C.D. Gelatt, and M.P. Vccchi,
“Optimization by Simulated Annealing”, Science,
Vol. 220, No. 4598, May 1983, pp. 671-680.

[Sacca82] G. Sacca and M. Schkolnick, “A Mechanism for
Managing the l3uffer Pool in a Relational Data-
base System using the ilotset Model”, Proc. of the
8th International Conference on Very I,arge Data
Bases, Mexico City, Sept. 1982, pp. 257-262.

[Sacca86] G. Sacco and M. Schkolnick, ” nulfer Manage-
ment in Relational Database Systems”, ACM
Trans. on Database Syst., Vol. 11, No. 4. Dec.
1986, pp. 474-498.

[Seli79] P.G. Selinger, M.M. Astrahan, D.D. Chamhcrlin.
R.A. Lorie, and T.G. Price, “Access Path Se-
lection in a Relational Database Management
$.$n”, Proc. of ACM SIGMOD 20, 1979, pp.

[Ston81] M. Stonebraker, ” Operating System Support for
Database Management”, Comm. of the ACM.
Vol. 24, No. 7, July 1981, pp. 412-418.

[Teng84] T.Z. Teng and R.A. Gumaer, “Managing IBM
Database 2 Buffers To Maximize Pcrformancc”, .
IBM Systems Journal, Vol. 23, No. 2, 1984, pp.
211-218.

[WoM)8] J.L. Wolf, D.M. Dias, RR. lyer, and P.S. YIJ, “A
Ilybrid Data Sharing-Data Partitioning Architec-
ture for Transaction Processing”, Proc. 4th InIl.
Conference on Data Engineering, 1.0s Angeles.
CA, Peh. 1988, pp. 520-527.

Fig. I Transaction respmse time vs huffcr Siw

Fig. 2 Sensitivity of strategy II to y (400 page buffer)

- 254 -

Fig. 3 Ser$tivity of strategy II to y (608 page huffcr)

*r

Fig. 5 Buffer consumption of transaction I

Fig. 4 Execution time nf transaction I

- 255 -

- 256 -

