
Towards an Open Architecture for IcDl

Danette Chimenti Ruben Gamboa Ravi Krishnamurthy

MCC, 3500 West Balcones Center Drive, Austin, Texas 78759
danette@mcc.com,rubenOmcc.com,ravi@mcc.com

Abstract
We extend LDl to allow programs to call external pro-
cedures and vice versa. This extension allows the mod-
ularization of L Dl, since external predicates are equiv-
alent to external procedures written in L3 DL. Exter-
nal predicates are viewed as infinite relations so that
the traditional semantics of logic programs remain ap
plicable. To avoid computing infinite relations, well-
formedness conditions for programs in extended L Df?
are given. The traditional optimization framework can
still be used; it is only necessary to define a new set of
cost functions capable of handling the infinite relations.
The problem of interfacing L3 DL programs with external
procedures-exchanging complex objects and returning
multiple solutions-is discussed. Thus, we provide a
general framework to allow logic programs to interact
with external procedures without sacrificing amenities
such as optimization, safety, etc. This approach forms
the basis for the implementation of externals and mod-
ules in the LDL compiler and optimizer at MCC.

1 Introduction

An L D t ’ program calling a graphics routine or a win-
dowing system calling an X Dt program are obvious
cases that motivate the incorporation of external predi-
cates into l DL External predicates in t DL also allow
a user to develop large programs by-what we call--hot-
spot refinement. The user writes a large L1Dl program,
validates its correctness and identifies the hot-spots; i.e.,
predicates in the program that are highly time consum-
ing. Then, he can rewrite those hot-spots more effi-
ciently in a procedural language such as C, maintaining
the rest of the program in LDL. Naturally, the cor-
rectness, optimization, safety and other amenities pro-
vided by the LDL environment should not be sacrificed.
Hence, the optimizer must understand the nature of

‘eoe, Logic Data Language, is a Horn clause based language
with extensions for negation, set operations, updates, etc.

Permission to copy without fee all OP part of this material is
granted provided that the copied are not made OT distributed for
direct comme4al advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to Tepablish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

such external procedures (referred to as computed pred-
icates), and optimize programs that use them.

Yet another reason for including external predicates
in L Df? comes from the optimizer. The time complex-
ity of an optimization algorithm is typically exponential
on the number of predicate occurrences. By modulariz-
ing the program and optimizing each module separately,
compilation time can be reduced. Intuitively, the mod-
ularization allows the user to provide a unique binding
pattern for the global (imported) predicate, thus simpli-
fying the optimization task.

Computed relations were incorporated into relational
databases in [MW81]. In this paper we present an exten-
sion of l D 11 to allow computed predicates by addressing
the following three issues: 1) Providing LTDL language
extensions to allow external predicates; 2) Interfacing
L D f? programs with external predicates; 3) Optimizing
f! D 1 programs using external predicates. Since Datalog
is a simpler subset of LO& we first discuss these issues
in the context of Datalog and, subsequently, in the full
context of L Dl.

We extend Datalog to DatalogE, which allows the
use of externals. We also provide well-formedness con-
ditions for DatalogE programs. By viewing external
predicates as infinite relations, we show that the seman-
tics of Datalog programs are preserved in the transition
to DatalogE. Then, we show that DatalogE programs
can be optimized in the traditional framework [Se1179,
KBZSS], simply by redefining the cost functions to han-
dle such infinite relations.

LDL is viewed as an extension of Datalog, where
more complex operations and data types are allowed.
We show that these extensions do not affect the seman-
tics and optimization results presented in the context of
DatalogE. However, the presence of complex objects,
e.g., sets and functor objects, does pose new problems,
since the external predicates can manipulate them. We
define enhanced cost functions, capable of handling com-
plex objects as arguments to external predicates. We
also provide protocols to interface L D L programs with
external predicates and discuss implementation issues.

After overviewing the background in Section 2, the
discussion in the context of Datalog is presented in Sec-
tion 3. The issues in the context of t DL are discussed
in Section 4, followed by the conclusion.

Amsterdam, 1989

- 195 -

2 Background

We briefly introduce Datalog, then L Dt as an extension
of Datalog, and, finally, the framework for optimization.

2.1 Datalog

We assume that the reader is familiar with Datalog and
the associated definitions for rule, base/derived predi-
cates, predicate occurrence and the mutually recursive
property. A rule base, RB is a finite set of rules. The
extensional database, EDB, is a finite set of finite base
relations. A query is a predicate occurrence written
as ?q(. . .). For a given query, Q, we denote a pro-
gram P by a triple (EDB, RB, Q). Given a program
P = (EDB, RB, Q), the answer to Q can be defined in
the usual way.

Datalog is semantically defined using the bottom-up
model, which coincides with the declarative model when
the program is viewed as a first-order formula(Ll84].
However, the program execution does not have to be
bottom-up. It is only required that the execution pre-
serve the bottom-up semantics; i.e., the answers re-
turned must be exactly the same as those returned un-
der the bottom-up semantics. The use of sideways in-
formation passing (UllSS] and memo-ing (as is done in
Prolog) results in many different executions (including
top-down) that preserve the bottom-up semantics.

2.2 LDiZ
Conceptually, we can view the execution of an t Dl pro-
gram as the manipulation of objects. Therefore, the
l Dl language can be viewed as an extension of Data-
log in two categories: first, the addition of constructs
such as negation, nondeterministic choice (i.e., declara-
tive cut,!)[KN88a], updates[NK88], etc.; and second, the
addition of functors, sets with their associated grouping
constructor, etc. These extensions enhance the compu-
tational capability of LDt programs and the data model
of the objects in the LDL. programs, respectively. As we
shall be interested mainly in the additions to the data
model, only these extensions are reviewed below. We
model f Di objects abstractly as follows:

1. An atomic object can be an. integer, a string, etc.
2. A functot object is recursively defined as an object

of the form f(objectl,. . . , objec&), where f is an
n-ary functor symbol. A tuple object is a functor
object with no functor name.

3. A set object is a (not necessarily homogeneous) col-
lection of objects. For example, { (john, lOK), . . .}
is a set object whose elements are tuple objects.

2.3 Optimization

The optimization of LDL: (and therefore, Datalog) pro-
grams can be described abstractly as follows:

Given a query Q, an execution space E, and a
cost function defined over E, find an execution
e in E that is of minimum cost; i.e.,

s%(Cost of e for Q]

Any solution to the above problem can be character-
ized by choosing: 1) an execution model and, therefore,
an execution space; 2) a cost model; and 3) a search
strategy.

The execution model encodes the decisions regard-
ing the ordering of the joins, join methods, materialis*
tion strategy, etc. The cost model computes the execu-
tion cost. The search strategy is used to enumerate the
search space, while the minimum cost execution is be-
ing discovered. These three choices are not independent;
the choice of one can affect the others. For example, if a
linear cost model is used, as in [KBZ86], then the search
strategy can enumerate a quadratic space; on the other
hand, an exponential space is enumerated if a general
cost model is used, as in the case of commercial database
management systems. Our discussion in this paper does
not depend on either the execution space or the search
strategy employed. However, it does depend on how the
cost model is used in the optimization algorithm.

For brevity, we assume the exhaustive search as de-
scribed in [KZ88]. As argued in that paper, the cost
model for any execution can be composed of elemen-
tary cost functions for join, projection, and union, i.e.,
the traditional operations in relational queries. We can
see how these cost functions are sufficient to model a
recursive query by noticing that, in a bottom-up execu-
tion, recursion is implemented as a fixpoint iteration of a
sequence of relational queries, which can be easily mod-
elled using the traditional functions. Therefore, we limit
the discussions in this paper to these cost functions.

The traditional cost functions use the description of
the relations, e.g., cardinality or selectivity, to compute
the cost. Observe that the operands for these functions
may be intermediate relations, whose descriptions must
be computed. We model the descriptor of a relation us-
ing the framework presented in [CP84], where it is called
a profile. Such a descriptor encodes all the information
about the relation that is needed for the cost functions.

The descriptor of an n-ary relation is a tuple contain-
ing (bi,ci,i = O,l,..., n), where bi and ci are the bag
(the cardinality without removing duplicates) and car-
dinality of the it” attribute of the relation, and bo and
co are the bag and cardinality of the relation itself. The
redundancy in the descriptors is assumed for ease of ex-
position. For example, consider the employee relation,
emp(Name,Age), containing 100 tuples with 50 dis-
tinctly named employees in 20 distinct age groups. The
descriptor for this relation is (100,100, 100,50, 100,20).

Let the set of all descriptors be D, and let I be the set
of cost values denoted by integers. We are interested in
two functions for each operation, Q, COST, : D x D + I

- 196 -

and DESC, : D x D + D. Intuitively, the COST,, func-
tion computes the cost of applying the binary operation
CT to two objects, and DESC, gives a descriptor for the
resulting object. The functions for the unary operators
are similarly defined. In this paper, we shall be mainly
concerned with the DESC function.

3 Extending Datalog

In this section we incorporate the notions of modules
and computed relations into Datalog to obtain DatalogE
and present well-formedness conditions for DatalogE
programs. Next, the semantics of DatalogE programs
is formalized. We then tackle the problem of optimizing
DatalogE programs by requiring schematic information
for each computed predicate. It is shown that the tradi-
tional optimization framework can use this information
to optimize DatalogE programs.

3.1 DatalogE

A DatalogE program is characterized by the four-tuple
(EDB, CDB, IDB, 9). The extensional database and
the query are defined as before. The computed database,
CDB, and the intentional database, IDB, are formal-
ized below.

The computed database is a finite set of infinite re-
lations. For example, <, > and other arithmetic predi-
cates fall into this category. Conceptually, any external
procedure, e.g., a program written in C, can be viewed
as an infinite relation with some constraints on the in-
put and output arguments. Except for these constraints
(to be discussed later), the usage of CDB predicates is
identical to that of EDB predicates.

The intentional database is a finite set of pairs
(RB, EQ), where RB is a rule base, and EQ is the set of
exported predicates from RB. The exported predicates
are query forms on the (derived) predicates defined in
the RB. For convenience, we assume the exported pred-
icates from any two RBs are disjoint. The exported
predicates over all the RBs form the set of global pred-
icates for the program. Any (derived) predicate in an
RB that is not a base, computed or global predicate is
called a local predicate. Without loss of generality, we
assume that the set of predicates in the four categories,
i.e., base, computed, global and local, partitions the set
of all predicates in the entire program. Let us also re-
define DB = EDB U IDB U CDB.

Global and computed predicates are referred to as ez-
ternal predicates, giving the rationale for DatalogE.

3.2 Well-Formed DatalogE Programs

We now introduce a class of DatalogE programs. Our
goal is to identify the programs that can be executed
without generating infinite relations for external predi-
cates and that can be compiled separately.

First, we recall the notion of finiteness constraint (FC)
from [KRS88]. Intuitively, this captures the notion of
the input/output requirements of an external predicate.
A computed predicate pis sa? to satisfy a finiteness
constraint of the form X -+ Y if and only if for each
tuple T in p, the set of tuples {S[y]] S E p and SIX) =
T[q}, is finite.2

The finiteness constraint must be explicitly stated in
the case of a computed prediete. This is done by spec-
ifying the input arguments X of the procedure corre-
sponding to the computed predicate. It is assumed that
this procedure can compute the (finite) set of values for
P in finite time, given a value for x. It is the respon-
sibility of the DatalogE environment to invoke the pro-
cedure only after a value for x is known. This imposes
an ordering on the predicate occurrences of a DatalogE
program. Consider the following example that uses the
external predicates mult and add.

P(X, Y, Z) + mult (X, X, XX), add(XX, W, Z),
mult(Y,Y,YY),bl(X),b2(Y).

We assume the FC {X, Y} --+ (2) for both mult (X,Y, Z)
and add(X,Y ,Z). Thus, none of the procedures can be
invoked until some values are taken from the base rela-
tions, bl and b2. Moreover, the add procedure must be
invoked after both occurrences of mult. The order of the
mult invocations, however, can be chosen arbitrarily.

It is possible that the predicate occurrences of a
Datalog program cannot be ordered in such a way that
the input bindings required by an external predicate are
supplied. Consider the following example:

p(X) + add(X, Y, Z).

In such a case, the DatalogE program is not well-
formed. This can be recognized at compile time by using
the following covering condition.

Given the query Q and an ordering per rule of the
predicate occurrences, we construct an adorned version
of the program as in (UllSS]. In an adorned program,
every argument of each predicate occurrence (as well
as the head predicate) is marked as bound or free. A
program is covered if there exists an adorned program,
i.e., an ordering per rule of the predicate occurrences,
in which the input arguments of each external (both
computed and global) predicate is marked as bound.

The FC need not be specified for global predicates,
since it can be inferred during compilation. Briefly,
the input bindings are specified in the query form for
which the program is compiled. During compilation,
safety analysis guarantees that the resulting execution
will produce a finite result when applied to a finite
database[KRS88]. In other words, if the arguments
zl, 52,. . . , Xk are used for input and yr, yz, . . . , y,,, are
the output arguments specified, the compiler guarantees

%ote thil notion is strictly weaker than that of functional
dependency.

- 197 -

the FC {zr, 22,. . .,zk} + {yi, ~2,. . ., ym}. This leads
to our earlier claim that the arguments of the global
predicates in a DatalogE program must also be marked
as bound for the program to be covered.

In order to compile a global predicate separately, we
must ensure that all information necessary in a global
compilation scheme is available. In particular, we would
like to guarantee the safety of the execution chosen by
the system. Consider the following example involving
two mutually recursive predicates.

PW) + b(X,Y).

P(X, Y) + q(X, Z), b(Z, Y).

4x, y) t P(X, Z), b(Z, Y).

Clearly, a safe execution can be found if the predicates
are defined in the same module. However, separate com-
pilation could result in an unsafe execution, i.e., it could
result in an infinite left-recursive descent.

Hence, we disallow mutually recursive global pred-
icates in well-formed DatalogE programs. A well-
partitioned DatalogE program is one in which any two
mutually recursive global predicates are defined in the
same RB.

We can now define the class of well-formed
Datalogx programs. A DatalogE program P =
(EDB, CDB, IDB, Q) is well-formed if and only if it
is covered and well-partitioned.

3.3 Semantics

In this section, we recall the declarative model seman-
tics for Datalog programs and show that it is unaffected
by the addition of external predicates. For the sake of
brevity, our discussion in this section is informal.

A substitution is a non-empty finite set of ordered
pairs (Xllul, . . . , Xn/un) such that (Vl 5 i 5 ta) Xi is
a distinct variable, vi is an atom. We view a substitution
as a mapping on variables. If Q is a substitution and X
a variable, the result of applying o to X is defined as

x0= >
1

if (X/u) E u
3 otherwise

We informally explain the notion of the universe, U,
of a Datalog (and DatalogE) program P. Initially we
take Uo to be the set of all atomic objects in P. VI is
defined as the set of all possible predicate occurrences
that can be formed from the elements in Uo. U is then
defined to be VI unioned with Uo.

We now define the satisfaction of a rule. Consider
a rule of the form p(. . .) + p1 (r), . . . , pm(Xm) Let
u be a substitution and I s U. The rule is satisfied
if either there is some [pi(xi)u] 4 I, or if whenever
[p~(Xi)a]EI,viE(l,..., m} then p(. . .)u is also in I.

Given a collection of rules RB, I E U is a model of
RB if I satisfies all the rules in RB. A model it4 of a
given collection of rules RB is said to be minimal if no

proper subset of M is also a model of RB. It has been
shown that Datalog programs have a unique minimal
model. This unique model is defined to be the meaning
of the program.

Note that in the semantics defined above, finiteness
of the base relations is irrelevant. Since we view exter-
nal predicates as infinite relations, and use them inter-
changeably with base predicates in the programs, the
same semantics defined above carry over to Datalog”.
Therefore, we use the same unique minimal model to be
the meaning of DatalogE programs.

The semantic definition is traditionally complemented
with a constructed model semantics, that, in some sense,
provides an operational semantics for the program. The
constructed model semantics is not relevant to the topics
discussed in the remainder of this paper and is, there-
fore, omitted.

3.4 Optimization of DatalogE

The execution space and search strategy used in the op
timiration algorithm for Datalog can also be used for
DatalogE, since the usage and semantics of base and
external predicates are very similar. We need only re-
define the cost functions to be capable of evaluating the
cost of operations on external predicates. Observe that
the descriptor for a relation cannot model an infinite re-
lation; therefore, we must define a new descriptor for the
infinite relation. We then formalire the two functions to
compute the cost and resulting descriptor for each basic
operation, i.e., join, union and projection.

3.4.1 Descriptors for Infinite Relations

Let us denote the descriptor on infinite (finite) relations
as i-descriptors (j-descriptors). An f-descriptor was pre-
viously defined. An i-descriptor is defined as a pair
(SE,FE), where the SE and FE are sefectioity and jan-
out ezpressions. SE and FE are arithmetic expressions
in which the operands are constants, cardinality, and
bag of the input argumentss; and the operators are +,

*, /, max, and min. ’ -9 SE and FE are arithmetic ex-
pressions that evaluate to positive numbers less than and
greater than 1, respectively. Intuitively, the SE repro-
sents the probability that a given binding for the input
arguments will select a nonempty subset of the infinite
relation corresponding to the computed predicate. The
FE is the expected number of tuples in the selected sub-
set of the infinite relation, conditioned on the fact that
a nonempty subset was ch0sen.a

3 We have assumed that cord and bog are the only schematic in-
formation of interest. Any other information can be incorporated
in the lame way.

‘Max and min are binary preAx operators, wherean the othem
are infix operators.

3Note that the traditional assumptions of uniformity and in-
dependence are implicit in the definition of the SE and FE.

- 198 -

Pred 1 Bound I SE IFE~ I
w, Y) x y 1 1 3
add(X, Y, 2) x, Y 1 1
sgrt(X, Y) X 1

2 2
eq x7 Y) x y m~(cord(&l),card(@z)r l

Figure 1: SE and FE for some computed predicates.

A list of SE and FE for some computed predicates
has been given in Figure 1. Note that the predicate It
is truly a predicate in the sense that it does not return
any values, whereas add and sqrt are single-valued and
multi-valued functions, respectively. The It and add are
very selective in the sense that all values for the input
arguments choose a nonempty subset of their respective
infinite relation. On the other hand, the sgrt predicate
selects a nonempty subset only if the input argument is
positive. As a result, the SE for this predicate is a. The
use of max and card are exemplified in the descriptor for
the eq predicate. The SE for this predicate is motivated
by the desire to treat the following two rules identically.

P(XV Y) + bl(X,Xl),b2(Xl,Y).

P(X, Y) + bl(X,Xl),b2(X2,Y),eq(Xl,X2).

Note that card(&) refers to the cardinality of the ar-
gument where the variable in the tzth input argument
is bound. Thus, the definition of card(O1) for eq is the
cardinality of the second argument of bl, i.e., where the
18* input argument of eq, namely Xl, is bound. Any
references to the descriptor information of an input ar-
gument, e.g., card or bag, are resolved in this manner.

Note that irrthe above example for eq, the SE evalu-
ates to a value depending upon the card of bl and b2.
This underscores the need to have an expression, not a
constant, for SE and FE.

An i-descriptor can be used to model an f-
descriptor with an FC restriction. Consider the
emp(Name, Age) relation, containing 100 tuples with
50 distinct names and 20 distinct ages, i.e., the descrip
tor is (100, 100, 100,50,100,20). Also consider the query
?emp(N, 30). Using the traditional assumptions regard-
ing the uniformity of the distribution of values and the
independence of attributes, we can estimate the result to
contain 5 tuples with 5 distinct names and exactly one
age, namely 30. Obviously, the result can be represented
by an f-descriptor. We can also represent this result us-
ing the following i-descriptor, with finiteness constraint
Age -+ Name.

The selectivity expression is unity if the cardinality of
the Age attribute, i.e., 20, is larger than the number of
distinct values in the argument where the variable oc-
curring in the Age attribute is bound. Otherwise, only

20 of those tuples will join with the emp relation, re-
sulting in the selectivity 20/card(Q2). The FE is five,
since an age that exists in the relation has, on the aver-
age, five names associated with it. This example can be
generalized to the following transformation.
f-to-i transformation:

lb
Given a relation r(Al,A2) with the f-descriptor
o, CO, bl, cl, b2, CZ), the i-descriptor corresponding to r

with respect to the FC Al + A2, is as follows:
SE = mi41, -+I), FE= 2.

Intuitively, the SE and FE model the subset of the re
lation having a single value for the first argument. We
shall use the f-to-i transformation in the definition of
the cost and descriptor functions. Note that Al and A2
could be vectors, and the above result could be extrap
olated in the obvious way.

To completely model an f-descriptor of an n-ary rela-
tion with i-descriptors, we need to have an i-descriptor
for each set of input arguments, i.e., 2” i-descriptors.
Therefore, an f-descriptor can be seen as a more concise
representation of 2n i-descriptors.

In summary, we have infinite and finite relations, with
their respective descriptors. We redefine the set of all
descriptors D to consist of the union of the set of all
i-descriptors, Di, and the set of all f-descriptors, Df .

3.4.2 Cost and Descriptor Functions

In this subsection, we provide cost and descriptor func-
tions capable of mapping from objects in Di. We assume
that the schema has the following information for each
computed predicate:

1. Name of the predicate;
2. FC, i.e., input arguments;
3. SE,
4. FE,

4

5. Cost of computing the answer for a value for each
input argument.

6. Descriptor expression for output arguments.
As all of this information is needed to compute the cost
and the resulting descriptor, we shall redefine the de-
scriptor for an infinite object to consist of the above
hextuple. The cost in the descriptor is the cost of com-
puting the answer, using this external procedure, for a
given value for each input argument. This cost ia based
on the unit cost which is used (by the optimizer) for
the operations on non-external predicates. In L D L we
use the cost of comparing a value as the unit cost. The
database administrator who sets up the schema with
the above information is expected to guesstimate the
cost using the same units. The accuracy of this infor-
mation is important only to an extent, as evident from
the following desiderata used by most designers of query
optimizers: It is more important to avoid the worst cz-
ecution than to obtain the best execution. The rationale
for this desiderata is that the spectrum of the cost of
executions spans many orders of magnitude. Therefore,

- 199 -

the cost supplied in the descriptor need only be a reason-
able estimate. Note that we shall not need the descriptor
expression for output arguments until the next section,
when we extend the language to include complex objects
such as sets, etc.

The operations are canonically viewed as follows:
1. Join of a and b:

P(X K 2) + 4X Y), W 2).
2. Union of a and b:

PW, Y) + 4X, Y).
P(K Y) + b(X Y).

3. Projection of c:
P(K Y) + 4x9 y, 2).

For each of the above operations, we describe the func-
tions using the following finite and infinite relations:

1. infinite relations: el(X, Y) and e2(X, Y) with X +
Y as their FC; SE1 and SE2, FE1 and FE2, Cost1
and Cost2 as their SE, FE and Cost, respectively.

2. finite relations: rz(X, Y) and ry(X, Y) with (bzo,
-0, h, ~21, b, WZ) and (bye, CYO, bl, CYI, bm
cyz) as their descriptors.

The functions are defined below, using a generic cost
function for operations on two finite relations, e.g.,
Jcost(rz,ry) as the cost of joining relations rz and ry.
Even though these functions are for operations on the
above binary predicates, the implementation of the 1 DL
optimizer has successfully used this approach for predi-
cates of arbitrary a&y. For convenience, we define the
following multiplication factors:

mf 1 = SE1 * FEl; mf2 = SE2 * FE2.

1. Join:

. D, x Df : Join of rx and ry:
Assume Cost = Jcost(rz, ry).
Assume Desc: Jdesc(rz, ry).

l Di x Di : Join of cl and ~2:
Cost = Cost1 + mfl*Cost2.
Desc: SE = SE1 *ne; FE = FE1 *mf2/ne,

where ne =(l - (1-SE2)FE’) is the prob.
of non-empty join of FE1 tuples with e2.

l Di x Df : Join of el and ry:
Cost = Cost1 + Jcost(ry, t),

where t is a mfl-tuple relation.
Desc: (B,C, B,l, B,mfl, B,min(mfl,cya)),

where B = byo*mf, C = bco*mf.

l D, x Di : Join of rx and e2:
Cost = bx2 * Cost2 + Jcost(rz, t),

where t is a mfZtuple relation.
Desc: similar to the Di x D, case.

2. Union

b Dj x D, : Union of rx and ry:
Assume Cost = Ucost(rz, ry).
Assume Desc: Udesc(rz, ry).

l Di x Di : Union of el and e2:
cost = Cost1 + cost2.
Desc: SE = SE1 + SE2 - SE1 * SE2;

FE = (mfl + mf2)/SE.

l Di x D, and 91 x Di: Union of el and ry:
Cost = Cost1 + Ucost(ry,t).
Desc: SE = SE1 + min[1 , (cr/card(@l))];

FE = FE1 + (co/cl).

3. Projection:

l Df : Pcost(rz), Pdesc(rz);

. Pi : SE = SEl; FE = FEl; Cost = P&(t),
where t is a mfl-tuple relation.

For brevity, we omit the detailed derivations of these
formulae. Here we provide the intuitions for a few of the
less obvious formulae and use these formulae to illustrate
the impact on the optimiser.

The result of join is finite except in the join of el and
e2. In this case, the SE for the result is the probability
of selecting a nonempty result, which is the product of
SE1 and the probability that at least one of the FE1
tuples from cl join with e2; the FE reflects the fact that
the fanout expression is conditional (i.e, the result is
non-empty).

Union results in a finite relation only when both
operands are also finite relations. The descriptor func-
tion for the union of el and ry uses the f-to-i transforma-
tion to convert the f-descriptor to an i-descriptor. The
two i-descriptors are then unioned.

Since the result of the above functions may be an i-
descriptor, some of the (local) derived predicates may
also have to be modelled as i-descriptors. Therefore,
these functions are applicable whenever two predicates
with the appropriate descriptors are operated on.

The computation of the descriptor function that re-
sults in an i-descriptor is symbolic. Consider the case
of joining cl and e2, in which the resulting SE is an ex-
pression that is formed by multiplying the expressions
symbolically. Such a symbolic manipulation of descrip
tor information was not needed in the traditional cost
functions for optimising relational queries. Such an ex-
pression is evaluated only when it is ‘applied’ to a base
relation, as in the D~x D,, and the D,x Di cases.

Given the above formulae for join, union and projec-
tion, it is natural to address the comprehensiveness of
the descriptors for infinite relations. To do so, we must
determine whether the information in the descriptors is
sufficient for any Datalog program and whether the es-
timation is ‘reasonably’ accurate. The former is obvious
from our observation that any bottom-up processing is
composed of a sequence of these operations. The latter
requires the validation of the formulae and has not yet
been done. In this paper, the formulae have been pre
vided simply to illustrate the approach. The derivations
and validations will be addressed in a more complete p;ir
per.

- 200 -

In summary, we have proposed a model for the i-
descriptor and shown that it can be used to define the
cost and descriptor functions, which are then used in
the global optimization algorithm. Note that the model
is sufficiently general in the sense that the expressions
can be extended to operate on any new schematic in-
formation that may be of interest. In that sense, we
have presented a new framework for integrating exter-
nal predicates into Datalog.

3.5 Implementation Issues

In order for the reader to understand the proposal
in the proper context, we briefly outline the relevant
implementation issues. The compiler translates each
DatalogE global predicate into a C procedure with ref-
erences to the external procedures for all other external
predicates. These references are resolved in the linking
phase to produce an executable. An answer is produced
when the executable is invoked with appropriate input
parameters.

Some mechanism must be provided to convert ob-
jects between the DatalogE and external representa-
tions. Moreover, an external procedure should be able to
return (receive) one or more results to (from) a DatalogE
program. In the following section, we outline a more
general implementation in the context of LDt, which
subsumes DatalogE.

4 Extending LDf!

LDfT has a more general data model than Datalog, in
that it allows complex objects, such as functors, tu-
ples and sets. The ZDt semantics are presented in
depth in [NT89]. As with DatalogE, these semantics
do not change with the addition of modules and exter-
nals. The syntax of modules and externals is presented
in [CGK89a]. In the remainder of this paper, we con-
centrate on the implementation issues involved for the
communication and optimization problems.

4.1 Implementation Issues

There are two orthogonal problems that must be solved
in order to allow an t Dl program to interact with a
conventional language, such as C. There is an inherent
incompatibility between the data types traditionally as-
sociated with procedural languages and the rich data
types of f?Df!. Moreover, procedural languages are ill-
suited to the multiple solution paradigm basic to declar-
ative languages, such as tDf!. In this section, we outline
a solution which addresses both of these problems.

As mentioned in the background section, the complex
data in t Dl can be recursively defined using a set-tuple
model. Basically, any object at the highest level is ei-
ther a set, a tuple or an atom. So, we provide a set

of primitives to compose and dissect any complex ob-
ject partitioned along these three categories. The com-
posing primitives include create-atom, create-tuple, cre-
ate-set and add-to-set with appropriate parameters to
define the constructed object. The add-to-set primi-
tive is used to construct a set after it is initialized to
the empty set using create-set. The dissecting primi-
tives for atoms are conversion routines from the internal
DatalogE environment to the Cenvironment. A tuple is
dissected using the get-ith-attr and get-name primitives.
Sets are dissected using the primitives open-cursor and
get-nezt-elem, which can be used in a while loop of a C
program.

In order to receive multiple solutions from a conven-
tional subprogram, we must provide a facility to collect
all the results with a single subroutine call. To do this,
the calling LDL program initializes a temporary rela-
tion which is passed to the subprogram. The results
are then stored into this relation by the subprogram.
The calling program can read the tuples in this tem-
porary relation as it would any other relation. In par-
ticular, the various LCD11 execution models [CGK89b],
such as pipelined or materialized executions, apply, as
do the various compile-time (local) optimizations, such
as existential query optimization [RBK88] and intelli-
gent backtracking. The following example shows how a
subroutine can use these primitives to return multiple
arguments.

procedure squareroots(ReZ, x);
Compute &@ and adddo-aet(ReZ);

return;

LDt uses this same method when calling a global
procedure. Hence, a conventional procedure can use this
paradigm to call L Dl by creating a temporary relation,
calling the L Dl,T compiled procedure, and, subsequently,
reading the answers from the relation. We illustrate this
in the following example.

procedure processancestors(
create-aet(Rel, 2);
call LlDL ancestor procedure with Rel and x;
open-curaor(Rel);
while (more tuples in Rel)

let t be get-nezt-eZem(ReZ);

end wrep~“““” t */
;

return;

Note that the Proceaa t above may include dissecting
the tuple returned and processing the attributes of the
tuple.

Observe that if a procedure returns a single value,
then the above paradigm requires it to be circumscribed
by a routine that puts the result in a relation and returns
it to the tDL environment. We recognize that many C
procedures that are single valued functions can be in&
grated in a simpler fashion; i.e., use them as functions to

- 201 -

compute the answer. For these functions, the l?DL en-
vironment takes care of the necessary conversions and
totally avoids the intermediate step of putting the re-
sult in a relation. Note that the user is still required
to declare this function in the schema and provide the
descriptor information.

4.2 Optimization of L3DL:

As in the case of DatalogE, the addition of external
predicates to lDf does not affect the execution space
or the search strategy. The effect is limited to the cost
functions. Even in the cost functions, only the compu-
tation of the descriptor function is affected.

The addition of complex objects to DatalogE neces-
sitates the extension of the i- and f-descriptors, The
f-descriptor must be capable of describing the complex
object. The i-descriptor is modified by adding informa-
tion required to compute the descriptors for the out-
put arguments. Note that the FC, SE and FE remain
unchanged as these are not affected by the addition of
complex objects to DatalogE. In this section, we make
the simplifying assumption that sets cannot have hetero-
geneous objects; e.g., a set cannot contain both f(X,Y)
and g(X). Thus, we can model the complex object as
nested sets. Note that the implementation of the L1Dl
optimiser does not make this assumption.

We define the representation of a complex object using
a grammar-like’ formalism.

S-t{ s}~[s,s,...,s]Iatom

Intuitively, the representation describes the nesting with
(. . .} and [. . .] denoting a set and a tuple, respectively.

A nested set is associated with an f-descriptor similar
to the one for flat relations. Each object/subobject is at-
tributed with a bag and cardinality for a corresponding
‘flat’ relation. This relation is constructed as follows:

First, identify the immediate set containing the
subobject. For this set, append a unique num-
ber corresponding to each of the parents of this
set to its elements and then union all the oc-
currences of this set. The bag and cardinality
of this subobject are the corresponding values
in the constructed set, i.e., relation.

Consider the following object:

{ [dno, lot, { [ename, { [cname, cage] }] }] }

This is a set of departments, each containing the de-
partment number (dno), location (lot) and the set of
employees. Each employee has a name (ename) and a
set of children. Each child has a name (cname) and age
(cage). The bag and cardinality of the employee set is

6Note that the we have not been precise in the rule for tuple, as
it needs another recursive rule to represent the arbitrary number
of attributes.

computed as if it were an atomic object in the depart-
ment relation. The bag and cardinality for ename is
computed for the set of all employees over all depart-
ments. Similarly, the bag and cardinality for the subob-
ject, the children set, is computed over all departments.
The bag and cardinality for cname is computed over all
departments and over all employees. Intuitively, these
numbers reflect the bag and cardinality of the universal
relation corresponding to the above hierarchical schema.
This allows the optimiser to estimate the result of join-
ing two complex subobjects, especially at different levels.

Cost functions must be changed due to both the ad-
ditional operations on complex objects and the revised
set of f-descriptors. These changes are orthogonal to
the problems incurred due to the addition of external
predicates. Therefore, we avoid any discussion on this
topic, except to note that the cost function extensions
are based on the operations viewed as if they were on
the conceptual universal relation mentioned above.

The addition of complex objects to the language also
allows the external predicates to return complex ob
jects for output arguments. Consequently, the optimiier
must be provided with the structure of the output ob-
ject. This may not be independent of the context, as
evident from the following example. Consider the eq
predicate, with only the tlrst argument as input, i.e.,
an assignment predicate. The structure of the second
argument may be atom, tuple or any complex object
depending on the input argument. As another example,
consider the predicate that returns the first argument
of a tuple. The structure of this argument cannot be
known a priori. So, once again, we use an expression
for each output argument to describe its structure and
to enable the optimirer to compute its descriptor cor-
rectly. The following grammar-like notation describes
the expression syntax:

S --) {s}l[s,s,...,S]Iatom)
01 1 clement(S) 1 attr(S, I)

where I is an integer; and atom, ‘O’, element, ottr are
terminal symbols of the grammar. Note that the first
three rules provide the mechanism to construct more
complex objects. The fourth rule provides a reference
to an input argument, i.e., It“ argument. This means
that the descriptor is identical to the Ith argument, con-
ditioned on the fact that a nonempty subset of the infi-
nite relation is chosen. Applying this condition is useful
in modulating the parameters of the descriptor for the
input argument. The last two rules provide a way to
dissect the complex object of an input argument.

For example, consider the output expression for the
two predicates in Figure 2. The second argument is de-
fined to be identical to the 6rst for eq and to be an
element of the set in member. In short, an expression
is capable of referencing the descriptor of an input ar-
gument with the use of 01 and then dissecting it (e.g.,
element, attr) or composing from it (e.g., {. . .}) to result

- 202 -

Predicate Bound Output exp

4X, Y) X Ql
member(X, S) X element(02)

Figure 2: Output for some computed predicates.

in any conceivable descriptor. Once again, note that the
computation here is symbolic.

In summary, the descriptor function is enhanced so
that it can compute the descriptor for each output ax-
gument of the external predicates. These descriptors
will, in turn, be used in later cost computations.

5 Conclusions

We have extended L Dt to include modules and external
procedures, and have presented a framework for optimiz-
ing extended L'DL. The notion of well-formedness was
introduced to identify the class of programs that could
be separately compiled and could be executed without
generating infinite relations. We addressed the inherent
problems in merging a declarative language such as ZDt
with procedural languages. In particular we showed how
an external procedure could manipulate complex 1DL
objects and handle the multiple solution paradigm of
lDf. We provided a set of functions to facilitate the
above.

We viewed external procedures as infinite relations,
and defined cost descriptors for these relations, called
i-descriptors, based on the notions of fanout and selec-
tivity. We extended the descriptor and cost functions to
operate on i-descriptors. The traditional optimization
scheme, using the new descriptors and extended func-
tions, proved sufficient for optimizing extended LDt
programs. The results reported here form the basis
for the implementation of externals and modules in the
LDl compiler and optimizer developed at MCC.

t 013 contains constructs not addressed in this pa-
per. Updates are of particular interest, since the lD1
optimizer must preserve their relative ordering in a
program[NK88]. The optimizer must be made aware of
externals that have side-effects, as they must be treated
in the same manner as updates. For example, this could
be used to guarantee that a graphics device is initialized
before anything is actually displayed.

References

[CGK89a] Chimenti, D., R. Gamboa, and R. Krishna-
murthy. “Modules and Externals in LYDl,"
MCC Technical Report No. ACA-ST-03689.

[CGK89b] Chimenti, D., R. Gamboa, and R. Krishna-
murthy. ‘Execution Models in LDt,” MCC
Technical Report in preparation.

[CP84]

[KBZ86]

[KN88a]

[KRS88]

KZ88]

L184]

[MW8i]

[NK88]

[NT891

[RBK88]

[Se11791

[Ull85]

Ceri, S. and G. Pelagatti. Distributed
Databases: Principles & Systems, McGraw-
Hill Book Company, 1984.

Krishnamurthy, R., H. Boral, and C. Zaniolo.
“Optimization of Non-Recursive Queries,” in
Proc. of the Conference on Very Large Data
Bases (VLDB), Kyoto, Japan, 1986.

Krishnamurthy, R., and S.A. Naqvi. =Non-
Deterministic Choice in Datalog Programs,’
in International Conference on Databases,
Jerusalem, 1988.

Krishnamurthy, R., R. Ramakr-
ishnan, 0. Shmueli. “Framework for Test-
ing Safety and Effective Computability of
Extended Datalog,” in SIGMOD, Chicago,
1988.

Krishnamurthy, R., and C. Zaniolo. ‘Op-
timization in a Logic Based Language for
Knowledge and Data Intensive Applica-
tions,* Extending Data Base Technology,
Venice, 1988.

Lloyd, J.W. Foundations of Logic Program-
ming, Springer Verlag, 1984.

Maier, D., D. S. Warren ‘Incorporat-
ing Computed Relations in Relational
Databases”, in Proc. SIGMOD, Ann Arbor,
MI, 1981.

Naqvi, S. A., R. Krishnamurthy. ‘Database
Updates in Logic Programming”, in Proc.
SIGACT-SIGMOD Principles of Database
Systems Conference (PODS), Austin, April
1988.

Naqvi, S. A., S. Tsur. A Language for Data
and Knowledge Bases, W.H.Freeman, 1989.

Ramakrishnan, R., C. Beeri, and R. Krish-
namurthy. “Optimizing Existential Queries,”
in Proc. SIGACT-SIGMOD Principles of
Database Systems Conference (PODS),
Austin, April 1988.

Sellinger, P.G. et al., ‘Access Path Selection
in a Relational Database Management Sys-
tem,” in Proc. SIGMOD Intl. Conf on Mgt.
of Data, 1979.

Ullman, J. ‘Implementation of Logical
Query Languages for Databases,” in TODS,
Vol. 10, No. 3, pp. 284321, 1985.

- 203 -

- 204 -

