
Argument Reduction by Factoring

J. F. Naughton* R. Ramakrishnant Y. Sagiv$ J. D. Ullman§

Abstract

We identify a useful property of a program with re-
spect to a predicate, called factoring. While we prove
that detecting factorability is undecidable in general,
we show that for a large class of programs, the pro-
gram obtained by applying the Magic Sets transfor-
mation is factorable with respect to the recursive
predicate. When the factoring property holds, a sim-
ple optimization of the program generated by the
Magic Sets transformation results in a new program
that is never less efficient than the Magic Sets pro-
gram and is often dramatically more efficient, due
to the reduction of the arity of the recursive predi-
cate. We show that the concept of factoring general-
izes some previously identified special cases of recur-
sions, including separable recursions and right- and
left-linear recursions, and that the specialized evalua-
tion algorithms and rewriting strategies developed for

*Department of Computer Science, Princeton University.
Work supported by DARPA and ONR contracts NO0014
85-C-6456 and N60914-85-K-0465, and by NSF Cooperative
Agreement DCR8420948

tcomputer Sciences Department, University of Wisconsin,
Madison, Wisconsin. Work supported in part by an IBM Fac-
ulty Development award and NSF grant IRI-8804319. Part
of this work was done while visiting IBM Almaden Research
Center.

tDept. of Computer Science, Hebrew University, Jerusalem,
Israel. Work supported in part by grant 2545-2-87 from
the Israeli National Council for Research and Development
(ILNCRD).

fStanford University. Work supported by NSF grant IRI-
87-22886 and Air Force grant AFOSR88-0266 and a grant of
the IBM Corp.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made ot distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

those classes can be derived automatically by apply-
ing the Magic Sets transformation and then factoring
the result.

1 Introduction

The Magic Sets transformation [BMSU86, BR87] is
a rule rewriting technique that, given a query and
a recursive program, produces a new program such
that the semi-naive bottom-up evaluation of the new
program constructs the answer to the query more
efficiently than the original recursion. Magic Sets
achieves its power by restricting the search of the un-
derlying database to the portion of the database that
is relevant to the query.

The Magic Sets transformation is conceptually sim-
ple and the potential savings gained by ignoring the
irrelevant tuples in the database is large. However, for
some important recursions much better algorithms
are known. Intuitively, this is because Magic Sets
does not reduce the arity (number of columns) of the
recursive predicate. Since the size of the relation com-
puted is bounded by nk, where n is the number of
distinct constants in the database and h is the ar-
ity of the recursive predicate, reducing the arity (k)
can result in an order of magnitude increase in the
efficiency of the algorithm.

In this paper we identify a useful property of a
program with respect to a predicate, called factor-
ing. If a program can be factored nontrivially with
respect to a query, then the program can be rewrit-
ten to reduce the arity of the recursive predicate. Few
programs and queries have the factoring property as
written; however, in many important cases the Magic
Sets transformation produces programs that do have
the factoring property. While we prove that in general
detecting factorable recursions is undecidable, we de-
scribe classes of recursions for which the Magic Sets
transformation always produces a factorable recur-
sion.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

- 173-

Amsterdam. 1989

Recently the separable recursions [Nau88] and the
left- and right-linear recursions [NRSU89] have been
identified as significant classes of recursion for which
there are arity reducing evaluation algorithms. In
this work we show that these classes of recursions are
proper subsets of the class of recursions for which
Magic Sets produces a factorable recursion. Fur-
thermore, the special purpose evaluation algorithms
of [Nau88] and the special purpose rewriting tech-
niques of [NRSU89] can be derived automatically by
simple optimizations applied to the factored Magic
program.

We introduce the notion of factoring in Section 2,
and show that in general it is undecidable. We de-
scribe classes of programs for which the corresponding
“Magic” programs are factorable in Section 3. In Sec-
tion 4, we summarize some simple optimizations that
can be used in conjunction with factoring to refine a
program. We discuss the connections between our ap-
proach, that is, Magic Sets followed by factoring, and
the Counting transformation and the Separable, One-
sided, and Right- and Left-linear classes of programs
in Section 5. In Section 6, we present conclusions and
directions for future work.

Example 1.1 As an example of the power of our
approach, consider a definition of transitive closure
including all three forms of the recursive rule, shown
in Figure 1. We obtain the following program by
first applying the Magic Sets transformation and then
factoring:

mA”‘(W) :- ft(w).

m-t*‘(5).

ft(Y) :- mJbf(X), e(X, Y).

ww(Y) :- ft(Y).

(This example is presented in detail in Section 3.) 0

t(x, Y) :- t(X, Iv), t(w,Y).

G, Y) :- e(X, W), t(W, Y).

t(x, Y) :- t(X, W), e(W, Y).

G, Y) :- e(X,Y).

cwv(Y) :- t(5,Y).

Figure 1: The three rule transitive closure.

2 The Factoring Property

Consider a program P, a query Q, and a predicate p
that appears in P. Let P’ be the program obtained

- 174

by adding the following rules to P:

pl(Xi, 7 * * .p Xi,) :- p(Xl, . . . , Xn).

p2(Xj, 1.. . , Xjl) :- p(X1,. . . ,Xn).

P(Xl,***,Xn) :- pl(Xil,-*-,Xi~),

P2(Xj, 9 * - * 9 Xj,)-

where the Xi’s are distinct variables. Here,
Xi,,*-*, Xi, andXjl,..., Xi, represent subsets of X1
through X,, . We say that (P, Q, p) has the fac-
toring property if P and P’ compute the same an-
swers to Q for all EDBa. More precisely, we say that
P(&,...Jn) can be factored into pl(Xi, . . . , Xi)
adpz(&,..., Xl) in P with respect to Q. This holds
trivially if either pl or p2 contains all arguments of p.
We say that p can be non-trivially factored if neither
p1 nor p2 contains all arguments of p, and hence-
forth, we shall consider only non-trivial factoring of
programs.

Note that factoring is defined for general logic pro-
grams, not just Datalog. The following theorem
shows that factorability is undecidable even for Dat-
alog programs.

Theorem 2.1 It is undecidable whether a predicate .
in a given program is non-trivially factorable with re-
spect to a given query.

The proof of Theorem 2.1 is by reduction from the
containment problem for Datalog queries, and as-
sumes multiple IDB predicates. To our knowledge,
the decidability of factoring for single IDB predicate
programs is open.

We have the following simple observation, which
suggests an equivalent definition of factoring.

Proposition 2.1 Let P’ be obtained from a given
program P by the following transformation with re-
spect to predicate p:

l Every body literal p(tl, . . . , tn) is replaced by the
litetds pl(ti,, . . . ,tir) and pz(tj,, . . . , tj,).

l Every rule with head p(tl, . . . , t,,) is replaced by
two rules with the same body, and with heads
Pl(til,*-*, tir) and n(tjl, . . . , tit)-

P and P’ compute the same answers to Q for
all EDBs if and only if p(Xl, . . . ,X,,), where the
Xs are distinct variables, can be factored into
Pl(Xil,*--, Xi,) and pz(Xj,, . . . , Xj,) in P with me-
spect to a query Q.

We refer to the transformation described in the
above proposition as the factoring transformation.
Note that applying this transformation results in a
program that does not contain p, which is replaced
by two predicates, p1 and ~2, of strictly lower arity.

3 Classes of Efficiently Evalu-
able Programs

The Magic Sets transformation [BMSU86, BB87]
rewrites a program with the objective of restrict-
ing the computation by propagating bindings in the
query. We identify classes of programs for which the
program produced by applying the Magic Sets trans-
formation can be factored with respect to the recur-
sive predicate.

3.1 Preliminary Definitions

We begin by introducing some terminology and con-
ventions. We only consider programs in which there
is a single (recursive) IDB predicate, say p, and there
is a single reachable adornment, say pa. We refer to
such programs as unif programs.

A rule is said to be in standard form if every argu-
ment of >a) in the head or the body, is a variable, and
no variable appears in two arguments of the same pa-
literal. We require all rules to be in standard form,
and we allow the use of a special predicates to en-
sure that this requirement does not entail a loss of
generality. Thus, a literal p”(X,X, 5,Y) could be
replaced by p”(X, U, V, Y), equal(V, 5), equal(X, V),
while a literal pQ(X.Y, 2) must be replaced by the
conjunct p” (U, 2) , list (X, Y, V) . Conceptually, list
and equal are infinite EDB relations. Once this trans-
lation to standard form is done, the results in this
paper can be used to test for factorability

We use pa@, n to denote a pa-literal, where x is
the vector of variables in the bound argument posi-
tions of a pa-literal, and 7 is the vector of variables
in the free argument positions.

Consider a rule in the adorned program with head
literal pa(x,n. A left-linear occurrence of pa is a
body literal p”(x,v), and a right-linear occurrence
of pQ is a body literal p”(v,n.

The following definitions generalize those
in [NRSU89].

Definition 3.1 A rule is lefl-linear if it is of the form

p”(T,F) :- left(X),P~(~,~‘1),P~(~,Uz),
.,.)

where

p;(X,v*),last(vl,77’2,. ..&,Y).

l The rule is in standard form.

l left(r) and last(rr , . . . ,r,,T) are disjoint
conjunctions of EDB predicates.

Definition 3.2 A rule is right-linear if it is of the
form

:- fir&Z, v),

p*(V,7), right(T).

where

l The rule is in standard form.

l first(z,‘i7) and right(Y) are disjoint conjunc-
tions of EDB predicates.

Definition 3.3 A rule is a combined rule if it is of
the form

. ..)

p,*(X, 7Tn), center(77,7),

p”(V,T), right(L).

where

l The rule is in standard form.

0 left(lT), center(T,V), and right(y) are disjoint
conjunctions of EDB predicates.

We remark that some of the conjunctions of EDB
predicates referred to in the above definitions may
contain occurrences of the special EDB predicate
equal. As a special case, a conjunction may contain
only such occurrences.

3.2 Factorable Programs

We present theorems that identify classes of programs
for which the corresponding Magic programs are fac-
torable. The importance of these theorems lies in the
technique that they exemplify: a two-step approach
to optimizing programs in which the programs are
rewritten using the Magic Sets transformation and
subsequently factored if possible.

Let P be a program, & a query, and Pad the
adorned program corresponding to a left-to-right
evaluation of the rules of P. Pm# represents the pro-
gram obtained by applying the Magic Sets transfor-
mation to P and Q.

Example 3.1 The rewriting algorithms presented
in [NRSU89] were the first to derive automatically
unary programs for single-selection queries for all
three forms (left-linear, right-linear, non-linear) of the
transitive closure. We achieve the same result here
by first applying the Magic Sets transformation and

- 175 -

m_tbf (W) :- m~tb’(X),tbf(X, W).
m_tbf(W) :- mlbf(X), e(X, W).

mAbf(5).

tbfp, Y) :- rn-tbf(X), tbf(X, W), t”‘(W, Y).

t”‘(X, Y) :- mlbf(X), e(X, W), t”/(W, Y).

t”f(x, Y) :- mfbf(X),tbf(X, W), e(W, Y).

tbf(x, Y) :- m-t”‘(X), e(X, Y).

query(Y) :- tbf(5, Y).

Figure 2: Pms for the three-rule transitive closure.

then factoring the rewritten program. To illustrate
the technique, we again consider the single program
that includes all three forms of the recursive rule pre-
sented in Figure 1. The Magic Sets algorithm rewrites
this program to produce the program in Figure 2.

If we identify mJ”f tuples with goals in a top-down
evaluation, we see that only the last occurrence of t”f
in a rule body generates new goals, and further, the
answer to a new goal is also an answer to the goal
that invoked the rule. In fact, every answer to a sub-
goal is also an answer to the query goal mf’f . Also,
if c is generated as an answer to a subgoal, then a
new subgoal m-tbj(c) is also generated. These obser-
vations imply that it does not matter which subgoal
an answer corresponds to; its role in the computation
is the same in any case. That is, tbj(X,Y) can be
factored into bt(X) and ft(Y) in the Magic program.
This yields the program shown in Figure 3.

Applying further optimizations, discussed in Sec-
tion 4, we finally obtain the following unary program:

m_t”‘(W) :- ft(W).

mAbf(5).

ft(Y) :- mlbf(X), e(X, Y).

query(Y) :- ft(Y).

Cl

Definition 3.4 Let p be the only IDB predicate in a
program P, and Q be a query on p. Then the combi-
nation of P and Q is an RLC-stable program if P con-
sists only of right-linear, left-linear, and combined-
linear rules plus one exit rule, and pa is the only
adorned version of p in Pad.

We now define some auxiliary conjunctive queries
that appear often later in this section.

m_t’j(W)

mfbf(W)

m-tbf(5).

WX)

W)

ww
ft(Y)

ft(Y)

ft(Y)

:- m-t”‘(X), bt(X), ft(W).

:- mdbf(X), e(X, IV).

:-

:-

:-

:-

mf”‘(X), W), ft(W,

WV, ft(Y).

m-tbf(W, 4X, W,

WW, ft(Y).
mat”(X), bt(X),

ft(W, e(W Y).
m-t”‘(X), e(X, Y).

m-tbf(W, bt(X), ft(W,

bt(W, ft(Y).

mJbf(X), 4X, W,

WV, ft(Y).
m-t”(X), bt(X),

PW), e(W 0
m-t”(X), e(X, Y).

W, fW’).

Figure 3: The factored version of P”s.

Definition 3.5 The conjunctive query free-exit is
defined as follows:

free-exit(F) :- exit(T, I?).

where exitfl,P) is the body of the exit rule.
The conjunctive query bound-first is defined for a

given right-linear rule:

bound-f irstfl) :- first(X, sr).

where first(x,fT) appears in the body of the rule.
The conjunctive query bound is defined for a given

left-linear or combined rule:

bound0 :- Zeft(X).

where left(x) appears in the body of the rule.
The conjunctive query bound is defined for a given

right-linear or combined rule:

free(T) :- right(F).

where right(F) appears in the body of the rule.
The conjunctive query middle is defined for a given

combined rule:

middle@, ?J> :- center(T, V).

where center(?l,v). appears in the body of the rule.

- 176-

Often by a slight abuse of notation we will refer to
left, right, and center as conjunctive queries instead
of using bound, free and middle.

Our first theorem essentially generalizes of the re-
sults in [NRSU89], although it must be used in con-
junction with the additional optimizations described
in Section 4 in order to do so. It uses the following
definition,

Definition 3.6 Let P, Q be an RLC-stable program
with IDB predicate p. Then P, Q is selection-pushing
if the following conditions hold:

l For any combined or right-linear rule r in P, the
conjunctive query “free-exit” must be contained
in the conjunctive query “free” for r.

l For any pair of rules ri and r2 in P, if both ri and
r2 contain a “left” conjunctive query, these must
be equivalent. If one contains a “left” query,
and the other a “first” query, the conjunctive
query “bound-first” must be contained in the
conjunctive query ubound”.

Theorem 3.1 Let P,Q be an RLC-stable program
with IDB predicate p, and let x be the vector of vari-
ables appearing in bound arguments ofpa in the heads
of the rules of Pod, and let ‘f;; be the vector of variables
appearing in free arguments of pa in Pad. If P, Q is
selection-pushing then pa(;it,q can be factored into
b(x) and fp(F) in Pms with respect to the query Q.

Example 3.2 We illustrate the intuition behind
selection-pushing and show that violating any of the
associated conditions could destroy this property.

P(X, Y) :- lUX),P(X, l-9, cl@4 V),

P(K Y), rl(Y).

PKY) :- 12(X),P(X, W, c2W V),

P(K Y), r2(Y).

PWY) :- fV, V),p(V, Y), NY).
p(X,Y) :- e(X,Y).

query(Y) :- p&Y).

The Magic Sets algorithm rewrites this to

m,pbf (V) :- m-pb’(W, WV,

Pb’(X, w, WL 0
m-p”‘(V) :- m-pb’(x), W9

P”‘(X, 0 cw, 0
m-pb’ (V) :- m-pbf(W, f (X7 0
mqbf(5).

p”f(X, Y) :- m-pbf(x), W),pbf(X, u),

cl(K V),p”W,Y), rl(Y).
pb’(X, Y) :- m-pbfV), 12(X),pbf(X, 0

W7, V),P”N Y), r2W.
p”f(X, Y) :- m_p”‘W, f(X, 0

P”‘W 0 NY).
pbf(X, Y) :- m-pb’(X), e(X, Y).

query(Y) :- ~“‘(5, Y).

Factoring this program and applying further trans-
formations described in detail in Section 4 yields

m-pbf(V) :- bp(X), 11(X),

fPV), wx v.
m,pbj(V) :- bp(X), 12(X),

fPV), cw, VI.
m,p’j(V) :- m-pbf(X), W, 0
m-pbf(5).

bp(X) :- m-pbfW, f V, VI,

bP(V, fp(Yh W’).
bp(X) :- m_pbfW, 4X, 0

fP(Y) :- m*bj(X), 4X, Y).

ww(Y) :- fpW

The transformations that produce the above program
from the factored version of the Magic program pre-
serve equivalence. We have applied these transform*
tions in order to delete some unnecessary literals and
rules in the factored program, thus making it easier
to understand the essential ideas.

Consider the following EDB instance: f(5, l),
e(5,6), e&7), e(%8), 11(l), 46,2), rV), rW.
Because the condition that bound-first should be a
subset of I1 is violated by this EDB, 8 is incorrectly
derived as an answer. Indeed, m,sbj(l) is generated
using msbf(5) and f(5,l). This generates bp(1) us-
ing e(l,7). Also, the tuple e(5,6) gives us fp(6). The
critical step follows: the fact fp(6) is used in the first
rule with bp(l), 11(l) and c1(6,2) to generate the fact
m-p”!(2). That is, the fact fp(6), which is an answer
to the goal m-pbf(5), is incorrectly used where an
answer to the goal m-pbf(l) is required, thereby gen-
erating a spurious subgoal. One can verify that 8 is
a valid answer if ll(5) is added to the EDB. A sim-
ilar example can be constructed if I1 and 12 are not
identical, since the answer generated in response to a
subgoal that satisfies 11 but not 12 can be used in the
second rule to generate spurious subgoals.

Now consider the EDB instance: f(5, l), e(5,6),
e(l,7), 11(5), cl(6,l). The fact fp(7) is incorrectly
generated. The first rule is used to generate m+‘j(l)
from the query goal and the fact e(5,6). The fact

177 -

fp(7) is generated in response to this subgoal, but
it cannot be an answer to mq”f(5) unless rl(7) is
true. The EDB instance violates the condition that
free-e& should be contained in rl. This made it
possible to generate subgoals whose answers are not
answers to the original goal. CI

Intuitively, we are separating the bound arguments
from the free arguments, and we must ensure that
every answer to a subquery (keeping in mind a top-
down evaluation of the program) is also an answer to
the original query. (We refer to the vector of values
in the free arguments as the answer, corresponding
to a query that is the vector of values in the bound
arguments of a pa-fact.) For this, we require that the
right conjunctive queries be satisfied by every per
tential answer tuple, that is, free-exit is contained
in every right conjunctive query. (Some answer tu-
ples may be generated from left-linear rules, but these
need not satisfy the right queries since there is a
derivation of these answers to the original query that
does not propagate these answers through right-linear
occurrences of p”.)

In addition, we must ensure that no spurious an-
swers are generated. The main idea is that for every
derivation of a fact using Pms, there is an equiva
lent derivation in which the bound arguments of every
left-linear p” fact is identical to the bound arguments
in the query. That is, in every recursive rule that con-
tains a left-linear occurrence of pa, we can replace the
variables Xi, . . . ,X,,, in the bound arguments by the
constants provided in the original query. This is in
fact the motivation for the term “selection-pushing.”

When a right-linear rule is applied to generate new
subqueries, the answers to these subqueries could be
used in left-linear occurrences of p”. To justify this,
we must ensure that a subquery invoking the right-
linear rule is reachable from a subquery that satis-
fies the conditions on the bound arguments of the
left-linear occurrences of p”. Since every subquery is
reachable from the initial goal, this is guaranteed if
the initial query satisfies the (unique, for the given
program) left conjunctive query. If the initial goal
does not satisfy the left conjunctive query, then we
cannot apply the right-linear rule, and the condition
that the bound-first conjunctive queries should be
contained in the left conjunctive query ensures this.

We can identify further classes of programs that
can be factored.

Definition 3.7 Let P, Q be an RLC-stable program
containing only combined recursive rules. Then P, Q
is symmetric if the following conditions hold:

l Each rule contains exactly two occurrences of

l

pa in the body, and the “middle” conjunctive
queries are all equivalent.

For any recursive rule r in P, the conjunctive
query “free-exit” must be contained in the con-
junctive query “right” for r.

Theorem 3.2 Let P,Q be an RLC-stable program
with IDB predicate p, and let x be the vector of vari-
ables appearing in bound arguments of p“ in the heads
of the rules of Pad, and let P be the vector of vari-
ables appearing in free arguments of pa in Pad. If P,
Q is symmetric, then p”(x,ir) can be factored bp(m
and fp(y) in P”‘s with respect to the query Q.

The Magic program for the following query can
thus be factored:

P(X,Y) :-

P(X,Y) :-

P(XY) :-
query(Y) :-

W)7P(X, W, c(K 0

P(K n 40

lWOP(X, D), c(K V),

P(K Y), r2(Y).

4X, Y).

P(5, Y).

In summary, the results in this section are illustra-
tive of a general approach to optimizing programs, in
which we first apply the Magic Sets transformation
and then factor. When we factor a Magic program
and separate the bound and free arguments, we must
establish two things:

l Every answer to a subquery is also an answer to
the original query.

l No spurious subqueries or answers are generated.

Because testing for these classes of recursions in
general requires testing for containment of conjunc-
tive queries, and testing for conjunctive query con-
tainment is NP-complete [CM77, ASU79], testing for
membership in these classes is also NP-complete. It is
important that the measure of size here is the size of
the recursion and query, not the database. An algo-
rithm that is exponential in the size of the recursion
and query (small) may be worth running during query
planning in order to save time proportional to the size
of the database (large) during query evaluation. Fur-
thermore, in many cases, the conjunctive queries will
be empty, in which case polynomial time algorithms
for testing if a recursion satisfies Theorems 3.1 and
3.2 recursions exist.

- 178

4 Some Additional Optimiza-
tions

We use the following definitions.

Definition 4.1 A bound argument position of pQ is
a static argument position if for every p”-literal in the
body of a rule, the variable in this argument position
also appears in the same argument position in the
head of the rule. (Recall that the head must also be
a pp literal, since we only consider unit programs.)

Definition 4.2 Let (P, Q) be a unit program -
query pair, and let the ith argument of pQ be a static
argument. Without loss of generality, let the variable
in the ith argument of PQ always be X, and let the
constant in the ith argument of the query Q be c.
The program P is reduced with respect to argument
position i a.9 follows:

l Every rule r is replaced by a(r), where u is the
substitution X t c.

l Every pa-literal - in the head or the body of a
rule - is replaced by a #-literal with the same
vector of arguments except for the ith argument,
which is deleted. s is a new predicate with one
fewer argument position, and 8 is identical to
the adornment Q, but with the b corresponding
to the ith argument deleted.

We begin with a result that augments the theorems
presented in the previous section. Some programs
that do not satisfy the conditions of these theorems
can be transformed into programs that do by applying
the following lemma.

Lemma 4.1 Let (P, Q) be a unit program - query
pair, let the ith argument of Pa be a static argument,
and let P’ be the reduced program. Then P and P’
are equivalent with respect to Q.

In the rest of this section, we summarize a few sim-
ple optimizations that are often applicable to factored
programs.

If pa is factored into bp and fp in P”‘g, then the
relation bp is contained in magic-pa, since every rule
defining bp contains magic-p” (with identical argu-
ments) in the body. Further, for every rule defining
fp (resp. bp) there is a rule with an identical body
describing bp (resp. fp). Therefore, the goal bp(-),
where _ denotes an “anonymous” variable, succeeds
if any fp goal succeeds, and vice-versa. These obser-
vations lead to the following propositions.

Proposition 4.1 If a rule contains both bp and
magic,pQ in the body, with identical arguments, then
we may delete the magicpa literal.

Proposition 4.2 If a rule contains the literal bp(-)
and also an fp literal, the literal bp(-) can be deleted.

A symmetric proposition allows us to delete some
fp(,) literals.

A similar observation is that if m-pm(F) is the orig-
inal query goal, then bp(i?) is true if any fp goal suc-
ceeds. This is because every fp fact, in particular the
successful fp goal, is an answer to the original query.
However, note that in general, pa may be factored
but the original query may not be on predicate pQ.

Proposition 4.3 Let the original query correspond
to the fact m-p”(Z). If a rule contains the literal bp@)
and also an fp literal, then the literal bp(z) can be
deleted.

Some additional simple observations that are useful
are mentioned below.

Proposition 4.4 We may delete a rule if the head
literal also appears in the body, or if the head predicate
is not reachable from the query predicate.

This is a special case of deletion under uniform
equivalence [Sag87].

Proposition 4.5 We may introduce an “anony-
mous” variable in an argument position if the variable
in it appears nowhere else in the rule.

As shown in [RBK88], the preceding proposition
can be strengthened to prove that an anonymous vari-
able can be introduced in any existential argument
position.

Example 4.1 Consider again the factored version of
Pm8 from the three-rule transitive closure (Figure 3.)
We can delete the first and the third rules defining bt
and the first two rules defining ft because the head
literal also appears in the body. We can also delete
the literal rn-t”f (X) from every rule that also contains
bt(X), and then replace all variables that only appear
once in a rule by anonymous variables. This yields:

m_t’f(W) :- bt(,), ft(W).

m-t”‘(W) :- m-t”‘(X), e(X, W).

m-t”‘(5).

bt(X) :- m-tbf(W, 4X, W,

WW,fW.
bt(X) :- m-t”(X), e(X, Y).

ff(Y) :- W-), fW), 4W 0
ft(Y) :- mAbf(X), e(X, Y).

query(Y) :- bt(5), ft(Y).

- 179-

We can delete both body occurrences of bt(,) since
the rules in which they appear also contain ft liter-
als in the body. Similarly, we can delete the literal
bt(5) from the rule defining the query. This makes
bt unreachable from the query, and we can delete all
remaining rules for bt. This gives us:

ml”‘(W) :- ft(W).

m-t*‘(W) :- m-t*‘(X), e(X, W).

m-t”(5).

ft(Y) :- ft(W), e(W Y).
ft(Y) :- ml*‘(X), e(X, Y).

query(Y) :- ft(Y).

The second rule defining m-t*j and the first rule
defining ft can be deleted under uniform equivalence,
and we finally obtain the following program:

m-t*‘(W) :- ft(W).

m-t”‘(5).

ft(Y) :- m>“(X), e(X, Y).

query(Y) :- ft(Y).

Cl

5 A Unifying Overview

We consider how the refinements of the Magic Sets
transformation presented in this paper are related to
some previously defined optimizations.

5.1 One-Sided Recursions

One-sided recursions were identified in [Nau87] as a
class of recursions for which there are efficient evalua-
tion algorithms. Here we restate the characterization
of one-sided recursions.

Theorem 5.1 (Theorem 3.1 from [Nau87]) Let D be
a recursive definition with a single, linear recursive
rule r. Then D is one-sided if and only if the full
A/V graph for r has only one connected component
with a cycle of nonzero weight, and that component
has a cycle of weight 1.

An important subset of the one-sided recursions
are those such that the full A/V graph has one con-
nected component with a cycle of nonzero weight, and
that component contains exactly one cycle of nonzero
weight, and that cycle is of weight 1. We call such
a one-sided recursion a simple one-sided recursion.
Any simple one-sided recursion can be “expanded”

(by substituting the rule into itself some number of
times) to produce a rule of the form

PG 3) :- P(W%(C~,B). 0)

where x, B, c, and B are vectors of disjoint variables,
and c is a conjunction of EDB predicates.

The preceding recursion is written in a form iso-
morphic to what we have called a left-linear recursive
rule. However, the definition of left-linear is in terms
of both the recursion and the specific query in ques-
tion. By contrast, the one-sided recursions are de-
fined independently of queries. Notice, however, that
coupled with the query p(i?, Y)?, the preceding rule is
left-linear; while coupled with the query p(X, z)? it is
right-linear.

A selection that binds either every variable in x
or B is a full-selection. With this definition, we can
formalize the preceding discussion with the following
theorem.

Theorem 5.2 Let P be a simple one-sided recursion,
ezpanded so that it is of the form of Equation 1. Let Q
be a full-selection query on p, the recursive predicate
of P. Also, let Pm9 be the output of the Magic Sets
algorithm on P and Q. Then Pm9 and Q factor with
respect to p.

5.2 Separable Programs

Separable programs, defined in [Nau88], were de-
fined to be class of recursions for which selection
queries have efficient evaluation algorithms. Essen-
tially, [Nau88] gave conditions that determine if a
given recursion is separable and a schema for evaluat-
ing selection queries over separable recursions. Given
a specific selection query on a recursion that is sep-
arable, the schema can automatically be instantiated
to produce an evaluation algorithm for the query.

As was the case with one-sided recursions, the
variables appearing in the heads of rules in separa-
ble recursions can be divided into equivalence classes
(see [Nau88] for details.) A selection query that binds
every variable of some equivalence class is a full-
selection query, as before.

Theorem 5.3 Let P be a separable recursion, let Q
be a full-selection query on p (the recursive predicate
of P), and let Pm9 be the result of the Magic Sets
transformation applied to P, Q. Then the pair Pms, Q
is factorable.

The proof proceeds by showing that the conditions
for separability given in [Nau88] guarantee that the
pair P, Q will satisfy the conditions of Theorem 3.1.

- 180-

To see that the converse is not true, that is, that
there are factorable programs that cannot be viewed
as full selections on separable recursions, note that
separable recursions are all linear, whereas factorable
programs need not be linear.

There is also a close connection between the in-
stantiated separable recursion evaluation algorithm
and the program resulting from Magic Sets followed
by the factoring rewrite. Essentially, for a full selec-
tion on a separable recursion, the instantiated separa,
ble recursion evaluation schema represents the same
computation as the semi-naive bottom-up evaluation
of the output of the factoring rewrite applied to the
Magic program.

5.3 Left- and Right-Linear Programs

In [NRSU89], recursions containing right-linear, left-
linear, mixed-linear, and combined-linear recursions
were identified and special rewriting algorithms in the
spirit of the Magic Sets transformation were given.
A simple check shows that the classes of programs
defined in [NRSU89] are a proper subset of the pro-
grams satisfying the conditions of Theorem 3.1, and
that Theorem 3.2 handles some additional programs.
In addition, for the programs considered in that pa-
per, the Magic Sets plus factoring transformation pr&
duces the same final program as the rewriting alge
rithms from that paper.

5.4 The Counting Transformation

The Counting transformation [BMSU86, BR87, SZSS]
can be understood as a variant of the Magic Sets
transformation. First, every derived predicate is aug-
mented with some index fields, which, intuitively, en-
code the derivation of the fact. That is, the value of
the index encodes the sequence of rule applications,
and the literal that is expanded at each step, that
was used to derive the fact. The program Pm9 with
these additional fields is then refined by deleting the
fields corresponding to bound arguments in derived
predicates.

When we describe Counting as reducing the arity
of derived predicates, we ignore the new index fields
that are introduced. The cost of computing the in-
dices can be significant; in fact, this may make the
Counting strategy more expensive than even Naive
fixpoint evaluation, or cause non-termination.

There is an obvious parallel to factoring Magic pro-
grams, since the objective here is again to reduce the
arity of derived predicates by separating the bound
and free arguments. The connection is quite close
- for the class of programs for which we have shown

the Magic program to be factorable, the factored pro-
gram (with some of the simple optimizations that we
discussed in Section 4) is identical to the Counting
program with all index fields deleted. In effect, this
is a class of programs for which the benefits of the
Counting strategy - reductions in predicate arity,
and accompanying deletion of some literals and rules
- can be obtained without the overhead of comput-
ing indices.

If a program contains left-linear or combined rules,
the Counting program will not terminate since a rule
is created that generates the same fact with an infinite
number of values in the index fields. The following
example is illustrative:

tqx, Y) :- tbf(X, Z), e(Z, Y).

t*qx, Y) :- e(Z,Y).

The first rule generates the Magic rule:

magicA”j(X) :- magic-t”j(X).

With the indices added in the Counting transforma-
tion, this is:

cntf”f(X, I + 1) :- cnt_t*f(X, I).

This is a rule whose fixpoint evaluation does not ter-
minate, given an initial cntl*f fact, which is obtained
from the query.

Theorem 5.4 If a program satisfies the conditions
of the factoring theorems in Section 3, and no rule
contains a left-linear literal, then the factored Magic
program, after deleting trivially redundant r&es, is
identical to the Counting program with all index fields
deleted.

The factoring approach allows us to reduce arities
of some programs with left-linear literals, whereas
the Counting program would never terminate in such
cases. On the other hand, the well-known same-
generation program is the canonical example of a pro-
gram that cannot be factored, and in which the index
fields introduced in Counting are necessary.

6 Conclusion and Directions
for Future Work

We have shown that the Magic Sets transformation
followed by factoring produces programs on which
bottom-up evaluation efficiently produces the answer
to the query.

The results presented in this paper motivate several
interesting problems.

- 181 -

l We have identified classes of programs for which
the corresponding Magic program can be fac-
tored. However, there are other interesting pro-
grams that can also be factored. Identifying
broader classes of factorable programs is an in-
teresting research direction.

l We showed that for the classes of factorable
Magic programs identified in this paper, the in-
dices in Counting were unnecessary. Can we
show that the Counting indices are unnecessary
in factorable Magic programs, independently of
the sufficient conditions that we use to ensure
factorability?

l Not all one-sided recursions have arity-reducing
evaluation algorithms, and not all one-sided
recursions produce factorable Magic programs.
Does Theorem 3.1 cover all one-sided recursions
that have arity-reducing evaluation algorithms?

l Suppose the program for pQ is factorable, but
this predicate is not the query predicate. How
can we identify cases in which pa can be factored
even though it is not the top-level query?

l Consider the various techniques for deleting rules
and literals in Section 4 (additional optimiza-
tions). Does the order in which these are ap-
plied to a program affect the final result? If so,
can we identify classes of programs for which the
final result is unique?

References

[ASU79]

[BMSU86]

[BR87]

[CM771

Alfred V. Aho, Yehoshua Sagiv, and Jef-
frey D. Ullman. Equivalence of relational
expressions. SIAM Journal of Computing,
8(2):218-246,1979.

Francois Bancilhon, David Maier,
Yehoshua Sagiv, and Jeffrey D. Ullman.
Magic sets and other strange ways to im-
plement logic programs. In Proceedings
of the ACM. Symposium on Principles of
Database Systems, pages 1-15, Boston,
Massachusetts, March 1986.

Catriel Beeri and Raghu Ramakrishnan.
On the power of magic. In Proceedings
of the ACM Symposium on Principles of
Database Systems, pages 269-283, San
Diego, California, March 1987.

Ashok K. Chandra and Philip M. Mer-
lin. Optimal implementation of conjunc-
tive queries in relational data bases. In

[Nau87]

[Nau88]

[NRSU89]

[Ram871

[RBK88]

[Sag871

[SZSS]

Conference Record of the Ninth Annual
ACM Symposium on Theory of Comput-
ing, pages 77-90, Boulder, Colorado, May
1977.

Jeffrey F. Naughton. One sided recur-
sions. In Proceedings of the ACM Sym-
posium on Principles of Database Sys-
tems, pages 340-348, San Diego, Califor-
nia, March 1987.

Jeffrey F. Naughton. Compiling separable
recursions. In Proceedings of the SIGMOD
International Symposium on Management
of Data, pages 312-319, Chicago, Illinois,
May 1988.

Jeffrey F. Naughton, Yehoshua Sagiv,
Raghu Ramakrishnan, and Jeffrey D. Ull-
man. Efficient evaluation of right-, left-,
and combined-linear rules. In Proceedings
of the SIGMOD International Symposium
on Management of Data, pages 235-242,
Portland, Oregon, May 1989.

Raghu Ramakrishnan. Magic Templates:
A Spellbinding Approach to Logic Pro-
grams. In Proceedings of the Intema-
tional Conference on Logic Programming,
pages 146-159, Seattle, Washington, Au-
gust 1988.

Raghu Ramakrishnan, Catriel Beeri, and
Ravi Krishnamurthy. Optimizing exis-
tential datalog queries. In Proceedings
of the ACM Symposium on Principles of
Database Systems, pages 89-102, Austin,
Texas, March 1988.

Yehoshua Sagiv. Optimizing datalog pro-
grams. In Proceedings of the ACM Sympo-
sium on Principles of Database Systems,
pages 349-362, Austin, TX, March 1987.

Domenico Sacca and Carlo Zaniolo. The
generalized counting methods for recur-
sive logic queries. In Proceedings of
the First International Conference on
Database Theo y, 1986.

- 182 -

