
Percentile Finding Algorithm for llultiple Sorted Runs

Balakrishna R. Iyer Gary R. Ricard
Database Technology Institute Applications Business Systems

IBM Corporation IBM Corporation

Peter J. Varman
Elec. & Comp. Eng. Department

Rice University
San Jose, CA 95161-9023 Rochester, ilS

Abstract External sorting is frequently used b>- rela-
tional database s!-stems for building indexes on tables,
ordered retrieval, duplicate elimination, joins, sub-
queries. grouping, and aggregation; it would be quite
beneficial to parallelize this function. Previous parallel
external sorting algorithms found in the database liter-
ature used a sequential merge as the final stage of the
parallel sort. This reduces the speedup gained through
parallelism in earlier stages of sort. The solution is to
merge in parallel as well. Load balanced parallel two
way merges and approximately load balanced parallel
multi way merges are known. Measurements reported
on parallel sorting that employs one of the approxi-
mate partitioning methods indicate that even if the
sort keys are randomly distributed the load imbalance
due to the approximation degrades speedup due to
parallelism. Sort key value skews, known to occur in
database workloads, can only exacerbate this problem.
We give, prove and analyze an efficient exact method
which can find any percentile of an arbitrary number
of sorted runs. Application of our algorithm ensures
load balance during the parallel merge. By removing
the effect of skews of sort key values which caused
loss of speed up in previous approaches our method
can improve the spcedup for parallel sorting on mul-
tiple processors. While we target our work to a par-
allel computer architecture of shared memory MIMD
parallel processors, our results are also likely to be
useful for other parallel computer architectures.

1 fntroduction The need for database MIPS per data-
base installation is outstripping the uniprocessor
MIPS supplied by computer vendors. External
sorting is frequently invoked by relational database
systems for building indexes on tables, ordered
retrieval, duplicate elimination, joins, sub-queries,
grouping, and aggregation and is known to be a time
consuming operation. External sorting on multiple
processors is, therefore, an important and beneficial
problem to be solved for relational database svstems.
For purposes of exposition and analysis we w’fl
assume a shared memory shared data computer archi-
tecture. Yet, the reader may find much of our work
equally applicable to loosely coupled architectures.

Pew&&n to copy without fee all or part of this material is
granted provided that the copies are not made OT distributed for

direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

55901 Houston, TX 7725i- 1892

1.1 Background We start by examining some of the
parallel sort algorithms in the database literature.
Perhaps the simplest technique is to partition the sort
kel- range prior to accessing the database. Selected
rows from the database are assigned to different
buckets, each bucket corresponding to a key range.
Rows in different buckets are sorted in parallel and
then the result concatenated or used for further proc-
essing. This simple technique is not practical for the
following two reasons: (a) tight upper and lower
bounds for the sort key range are not easily ‘deter-
mined before the rows from a database are selected,
and (b) it is dficult to partition the sort key range
into partitions so that about the same number of rows
will have sort k.eys belonging to any one partition,
load balancing 1s compromised.

Bitton et. al. (BIT83j propose two external parallel
sort algorithms for use in database systems that they
call parallel binary merge and block bitonic sort.
Both algorithms employ the binary two way merge of
sorted runs. In a typical external sort for database
systems, sorted runs are first created as temporary
relations .on disk and then merged. If we use algo-
rithms that rely on a two way merge the number of
IiO’s. temporary relation inserts and fetches per sorted
row will be of the order of lo&(A-R) where A’R is the
number of initial sorted runs created. Both I/O’s and
number of temporary relation interactions are expen-
sive and they make algorithms based on a two way
merge expensive, suggesting that the two algorithms
are primarily useful for internal sort where there is no
I/O or temporary relation interaction. Even for par-
allel internal sorting, Bitton’s parallel binary merge
algorithm suffers from the drawback that its last phase
is essentially a sequential binary merge and it is there-
fore impossible to finish the sort earlier than the time
for one sequential pass through the entire data regard-
less of the number of processors. While it may not be
possible to avoid examining all the data for sorting,
we must avoid examining it all serialIp if we are to
obtain speedup linear in the number of processors
(over a reasonable range of values for the number of
processors). Valduriez and Gardarin (VAL84) gener-
alized the parallel binary merge algorithm to a k-way
merge algorithm. In their algorithm p proLcssors will
merge different sets of runs in parallel using a k-way
merge. We then have p runs. These are merged
(assuming p < k) sequentially on a single processor. A
pipelined version of this algorithm has been proto-

Amsterdam, 1989

- 135 -

t!-ped (BEC88) and another implemented in a product
(GRA88). The bottleneck due to a sequential merge
is still present in all these algorithms.

The idea of employing multiple processors to merge
the same runs appears in the literature in the context
of merging two runs on two processors. Based on the
pioneering work of Batcher (BAT68), an efficient
algorithm was proposed (AKL87) to break each of
two runs into two partitions so that key values in the
first partition of each run were no greater than key
values in the second partition of either run (magnitude
requirement). Also, the sum of the number of ele-
ments in the first partition of the two runs was half
the sum of the total number of elements in both runs
(size requirement). The first partition of each run was
merged on one processor and the second partition of
each run is merged independently on another
processor. Although the method meets the require-
ments for load balancing a parallel sort if there are
two runs and two processors, it provides no obvious
or intuitive algorithmic method for extension to an
arbitrary number of equal sized partitions for an arbi-
trary number of runs. The idea of employing an arbi-
trary number of processors to merge two runs appears
only recently (VAR88) (FRA88) (DE088). A
method to partition two runs into an arbitrary
number of equal parts corresponding to percentile
ranges is known. A multiprocessor multi-way merge
can be implemented by a sequence of multiprocessor
two-way merges. While this method gets around the
bottleneck due to a final sequential merge, the I/O
overheads incurred are proportional to log(N&,
where A’R is the number of sorted runs. The idea of
employing an arbitrary number of processors to merge
as man); runs as there are processors (in one pass)
appears to be fust due to Quinn (QUI88). He pro-
posed that m processors be used to merge m runs in
parallel, each processor employing an m-way merge
on l/m’th of the data.

1.2 Problem Statement How we obtain the m-way
partitioning of an arbitrary number of runs for arbi-
trary m is the subject of this paper. We show how to
solve the problem of partitioning an arbitrary number
of m sorted runs into two parts such that one parti-
tion has an arbitrary fraction f of the total number of
elements. Elements of one partition have keys greater
than any element of the other partition. Recall that
previous known exact algorithms can partition only
tw-0 runs into multiple equal parts. Initially, we sim-
plify the problem by making all runs equal in size,
restricting the size to a power of two and pad the runs
with + 00 and - 00 on either end (all other elements
in the run must be strictly greater than - 00 and
strictly less than + 00). The values taken by the frac-
tion f are also restricted. An algorithm is given to find
the partition of m such runs containing fraction

f = i/m of the data. where 1 I i 5 m, and where the
initialization (basis) step involves examining up to
O(mZ) elements.

1.3 Previous Solutions First we discuss previous sol-
utions. One simple method to solve the partitioning
problem approximately is to use a sampling technique
(LOR89). This involves sampling the keys in the m
runs, sequentially merging the samples, fading an
exact partition of the samples (through a search of the
merged runs of samples), and determining the exact m
key ranges that partition the samples. The m keys that
define the ranges are then used as indices into the runs
to defme the m partitions. Sampling techniques are
discussed in (VIT85) and (OLK86).

An approximate technique that partitions the runs
after they are formed has been proposed by Quinn
(QUI88). Equally spaced apart keys from the first run
are used to index into and partition the remaining
runs. We illustrate this technique by means of an
example of 3 runs and 3 partitions in Figure 1. The
keys 9 and 15 from run 1 are selected since they parti-
tion it into three sequences of equal length. The two
keys are used to partition the remaining two runs as
shown in Figure 1. The first partitions of each run
totalling to 11 keys will be merged on processor 1.
The second partitions of each run totalling to 8 keys
will be merged on processor 2, and the third partitions
of each totalling to 8 keys will be merged on processor
3. This method does not exhibit exact load balancing.
Experiments by Quimr show that the speed up of par-
allel sorting by employing this algorithm levels off
beyond 10 processors for sorting a random permuta-
tion of 10,000 keys. Quinn attributes the loss of
speed-up to the approximation and resulting loss of
load balancing during the merge. Skewed distribution
of sort key values in rows selected from a database are
not uncommon in practice. In these cases the risk of
the approximation is even greater. Quinn cites an
example where the first run contains eIements that are
all smaller than the elements in all the other runs.
Approximate partitioning leads to a merge time that is
comparable to a sequential merge. Speedup would be
severely compromised in other similar situations.

In order to ensure perfect load balance and prevent
Ioss of speed up during the fmal parallel merge, an
alternate and exact technique is proposed to partition
the runs after they are formed. We give an algorithm
that divides the m arbitrary sized sorted runs into two
partitions such that one partition contains any given
arbitrary fraction f of the total number of eiements in
the runs, and all elements in that partition are no
greater than the elements in the other. By employing

this algorithm repeatedly for f = A, 6, (m- 1) m

- 136-

the m-wa!- partitioning problem can be soIved. It \vilI
be shown that as number of roles grows: the com-
Flexit)- of this algorithm (for a small number of
processors) grows only logarithm&@- as the number
of ro\vs in each of the m runs. This is whv we ignore
the cost of partitioning the runs when est&ating the
elapsed time of the parallel sort algorithm. Recently-,
we became aivare of an algorithm with as!.mptotically
optimal number of comparisons for this problem
(FRES2). The algorithm is quite complex and has a
slower rate of convergence than the one proposed
here, and requires significantly greater (about six
times) the number of IiOs.

In the execution of complex queries in relational data-
base systems we can visualize multiple processors
employed in various ways. Specifically, for queries
requiring ordering, e.g. sortjmerge joins, multiple
processors may be used for selecting rows and sorting
different partitions of a relation or a composite
produced as a result of previous steps (IYE%). As
illustrated in Figure 2, the access of data from different
partitions and the formation of runs is easily
parallclized. IXff&ent partitions may bc assigned to
diffcrcnt processors. The ass&cd processor selects,
sorts and merges rows belongmg to a partition inde-
pcndent of other partitions. At the end, we need to
merge (or merge/join) in parallel with multiple input
runs. Our way to parallelize the merge (or
mergeijoin) operation is to divide the sorted runs into
equal parts based on key ranges and assign one part to
each processor. Each processor merges (or joins) its
partition of rows, roughly corresponding to different
key ranges. (For joins it is possible to extend our
problem and solution to ensure that there is no
overlap among the key ranges. For sorting the
smallest key in a range may appear as the largest key
in the adjacent range.)

In the next section we state the algorithm for a
restricted case of the problem, give its proof and an
example. The generalized algorithm is discussed in
section 3. We analyze the complexitp of the algo-
rithm in section 4. Concluding remarks are found in
section 5.

Equal Sized Lists Algorithm

2.1 Problem The casual reader may skip the following
subsections to the subsection containing the example.
We start with a formal definition of the simplified
problem. Let
.4, = u,,~, u,~, a,2, a,,N, 1 I r I m, A’ = Ik, be m
ascendmg sequences, with u,,~ = - 00, a,.~+ = + 00. ,
and + 00 > a,,; > - 00 for i > 0 . The problem is to
find for each r, 1 I r I m , an index i, that defmes a
Rrefix A”, of A, with the properties 1 and 2 below.
A, = a,,~. u,,~, u,~, a,,,, such that:

1. cll.Q] =J5llil,ll =fm(:Y+l) for
pii 1 _“‘- (f < I < m ormal statement of the parti-
tion%; requirement in terms of the cardinalities
11.11) and

2. ‘4x, x E A”, 1 _< r I m, and YJ. it E A,, J+.;,,
1 I t I m , x < y . (formal statement of the mag-
nitude requirement).

We refer to I = {i,, 1 I r I m] as the partitioning
function of (,4,, 1 I r I m> and to {A, I 1 < r 5 m} as
the leading partition of (A, I 1 I rl m}. The m
sequences defined should be interpreted as the
sequence of sort keys in the m runs. Element a,,, of
the sequence is the sort key of the i ‘th row, of the
r’th sorted run. The partitioning function is a set of
indices into the m sequences that defme where
sequences must be split. The index i, is the position
of the sort key ivith the largest value in A, and which
belongs to the partition containing the smallest ffrac-
tion of the entire data. We refer to such an element
of the sequence as a bounday clement (for fixed
length rows from a database sequentially stored on a
disk or tape, it is straightfonvard to calculate the disk
or tape address from the the index or the boundary
element in the sequence of sort keys, for unequal sized
rows we will need to use some form of inde,xing into
the run).

Let A! denote the subsequence of A, consisting of
(2~ + 1) equally spaced apart elements, i.e.,

where :1’@) = A:/2p. Let Zp = (if, if, ih} denote the
partitioning function of (A/, 1 I r I m>. Recalling
that nT = 2k, we note that A: = A, and Ik is the parti-
tioning function that we are looking for. We solve the
problem by successively computing the partitioning
functions I#-’ from 1~ using O(m) I/O’s and 0(
m lo&m) comparisons.

2.2 Definitions Consider the subsequence A! and its
leading partition 21 , 1 < r I m. These consist of the
elements
A! = a,~, a,,,), qua), =,p
.k = a,o, Qr,,,, Q,,,,,, .-*, =r,ip,
where Ip = {if, iL) is the partitioning function of
(A/, llrlm).

For the set (A;, 1 I r I m> and partitioning function
lp, let ah, denote the largest of the m bounaary ele-

ments, i.e.? afuax = 1 zra: m(a, ,P) . A consequence of
the simplifications made-in thi\ subsection is that the
leading partition of (A!, 1 I r I m) will always

- 137-

contain at least one element from each subsequence
A!. That is:

f20, for 1 Ir<m. (1)

This follows because of the restrictions we placed on
the values that can be taken by the fractions f and the
padding with - 00 ‘s and bv the appropriate selection
of the basis step to be described later. Sane of these
assumptions will be needed in the generalized algo-
rithm in the next subsection which embodies the same
key idea as the algorithm we give next to solve the
restricted problem.

At the start of the current iteration, we are given the
partitioning function IF of (,4/, 1 I r I m> and g,,,.
The former satisfies both the partition size and magni-
tude requirements. That is:

2 1 I$‘(1 =Jfi #‘I 1 (partition-size rqrmnt.) and
r=l r=l

ar j I a,, k whenever (21

a,,jEA,P, llrlm,O<j<i,P,
%,k E *4:, 1 I u 5 m, ii (k I IY (magnitude rqrmnt.)

The goal of the current iteration is to fmd from this
partition of (,4f, 1 I r< m} the partitioning for
(A/‘+‘, 1 I rl m} satisfying both partition size and
magnitude requirements.

2.3 Algorithm and Proof First, note the cardinalities of
the two subsequences A! and &+l are related as
~IIAP+‘II = (25jIA(lj) - m forp 2 1, since A/-r is

8tained by i&rting an element between every con-
secutive pair of elements of A! and from (1).
Let XP+I = ar,o, ar,Nb+l,. ar,2hrb’@il)r a,,,! be the sequence
obtained by taking the leading partition of 4,~ (i.e., &)
and adding to it the elements halfivay between every
two consecutive elements (note N@ + 1) = N@)/2).
All the elements in X, are equally spaced apart by
:y(p + 1). m Its/ c;rdinal$ty is easily computed as follows: m
~IIJPll = (2~ll&ll) - m = (2fQl&ll) -m
Z’f(~IIAf-‘ll T’m) - m = (I.CIIA=e’c’li\ - m(1 -f).

\,=I

At least, in card&&-. we ark &se to the partitioning
we want. We are only- off by m(1 -f) elements.

For each r, 1 I r I m, consider the new element of
A~p*l that is n-@ + 1) away from (greater than) the
boundary element of A!, i.e., the new element
a,+ip+h+,). Some of these could be smaller than &,?

the largest boundary element of the previous iteration,
and may have to be included in the leading partition
of {.4/‘-l, 1 I r I m} to satisfy the magnitude require-
ment. For each I? 1 I r 5 m, for which this is true
(i.e., a,,,! 4e-1) I a&, we add the elements to the
sequence X’p-1 to obtain the sequence Yp-‘. If the con-
dition is false, we let Y/-l 5 X!** . Let the total
number of elements so added be s. If we let jp-r
denote the index of the largest element in Y/-r ? then
in the first case, j/-r = ie + ;l’O, + I), othemise jr+’ =
if. Its value will be further refmed to give if-* next.

Let us compute the cardinality of the expanded
sequence:

=
(> ffl14+111 -mU-f)+J I=1

It should be clear from the construction that every
element of Yp+* is no greater than a~ , and that every
element of A!+* not included in Ye+’ is at least as large
asaL. In other words YF-’ is a leading partition of
(API’, 1 I r I m) that satisfies the magnitude require-
ment. A formal proof follows:
Claim: If a,,,i E Ye+’ then ar,, I aax
Proof: If Ye+l # X/+’ then 4.j I a,,ig+Nb+l) 5 &,x

If Ye+’ = Xf+l then a ,,,, 5 a,,ip I %, .

Claim: If a ,,,, E Ae’r and ar,,4 Y?*! then a,,, 2 ag,= .
Proof: If Yp” # Xf*i then
ar,j 2 qjp +NW)-AQ-I) = a,,ip +N@). From (2)
a,,ip,xb, 2 aax thus ar,j 2 e,. If Ye+l = Xf” then
a,,j 2 4,ipLNti-l) > au1 by definition of Y/-r.

Thus (Yp+‘, 1 I rl m} defines a leading partition of (
Alp*l, I I r< m) which satisfies the magnitude
requirement. The identification of { Yp’r , 1 I r 5 p>
takes O(m) 1;‘O’s and O(m) comparisons.

Sext we check if the partition-size requirement is sat-
isfied; if not we adjust the number of elements to
satisfy the size requirement.

Case 1: s= m(1 -f)

From (3) it foIl0w-s that ~llYp-rll =~llAp’lll , and
r=l r=l

hence .&+l= Yp+* and the partition-size re+irement is
satisfied. In this case: $+I = j/‘*i, 1 I rl m .

Case2 s>m(l -f)
From (3), we know (Y/‘-r, 1 I r I m} is close to being
the correct leading partition of (,4p+*, 1 I r I m>

- 138 -

except that it has s - m(1 -f) too many- elements.
While preserving the mabgnitude requirement, we can
satisfy the partition-size requirement for {A;-‘,
1 < r I m] if we remove the s - m(1 -f) largest’ ele-
ments from (Y!*‘, 1 I r-5 m>. The elements
remaining in (Y!*‘, 1 I r I ml after the largest
s - m(I -A elements are discarded is a leading parti-
tion of {A!*‘, 1 I r< m) that satisfies both rcquire-
ments. For ever)- clement removed from Yf-‘, -jr-’ is
dccremcnted by ,V(p + 1). Hence, if a, elements arc
removed from Y!*’ , then i!*’ =jf-’ - u,N(P + l),
l<rlm. Since,O~s<mandOcf<l.thcabove
computation can be bounded by O(m) I O’s and O(m
log m) comparisons. The s - m(1 -f) + 1 ‘th largest
element in { Y’;-‘, 1 < r I m} is also found and set to

u@ , for use in the next iteration. Sate: 2 Il,klll =

~~~;l~),l;(~ -;;1 -f>) ‘=l 
I ,p ’ rom , 

r-1 
as needed for the partition size requirement. Also, 
since the largest s - m( 1 -J) elements are moved, the 
magnitude requirement remains satisfied. 

Case 3: s-c m(1 -f) 
From (3), we know ( M-l, 1 < r I rnj is close to being 
the correct leading partition of (A!“, 1 I r I m} 
except that it contains m( 1 -f) - J too few elements. 
While preserving the magnitude requirement, we can 
satisfy the partition-size requirement for (Alp*‘, 
1 I r I m } by moving the m( 1 -f) - s smallest2 cle- 
merits from {&-I - Yr+], 1 I r 5 m} into ( Yf+‘, 
1 5 r I m). For every element moved into Ye+‘, j!+’ is 
incremented by NO, + 1). Hence, if a, elements are 
moved into Yp-’ , then ip+* =jf-’ + a,R(p + 1) , 
1 I r I m. As above, the computation can be 
bounded by O(m) IO’s and O(m log m) comparisons. 
The largest of the m( 1 -f) - s elements moved is 
found and set to a~;,:, for use in the next iteration. 
Sate: gllAe+‘ll = (%IjY/+‘(l) + m(1 -f) -s 

=fgi2e-111 from (ji’, 
,=I 

thus satisfying the partition size requirement. Since 
the smallest elements are moved into YP+‘, the magni- 
tude requirement remains satisfied. 

If the induction is then applied, described as per the 
algorithm, then after k = 1ogJ iterations, a leading 
partition of {A,, 1 2 r < m} that satisfies both require- 
ments is obtained. 

2.1 Basis Step Let p = mas 

By brute force. examine all the elements in .4f, deter! 
mine A;, and set the initial values of i! . Sate that in 
the basis step we are considering at least % elements 

because 51/4;11 = m.Z + m = m2 + mJ 
,=I (-1 /IF) 

2 z - m + m = E. There are exactly m - CO’S 
f f 

in our m sequences equal in number to fE, 
I- the number of elements in the leading partition of fA,c, 

llrlm). Hence$>Oasrequiredby(l). 

2.5 Example Consider as an example the four 
sequences given below, each consisiting of 9 elements. 
We would like to find a partition containing the 50’th 
percentile of the elements contained in the four sorted 
sequences. 

Al A2 A3 A4 

I-inf -inf -inf -inf I 
______-____------__------ 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

______-____-------_------ 

I+inf +inf +inf +inf 1 

In the basis step we examine only the first and last 
element of each sequence. and by brute force find the 
SO’th percentile of the 8 elements. For each sequence, 
each pair of elements considered are 8 elements apart. 
Because (in the simplified algorithm) we require the 
first element of each sequence to be - 00 and the last 
to be + cw the boundm marking the 5O’th percentile 
of the elements considered is as depicted above. 

1 A tie between elements in the same sequence is broken by picking the element with the larger index. A tie between 
elements in different sequences is broken by picking the element from the larger indexed sequence. 

2 A tie between elements in the same sequence is broken by picking the element with the smaller index. A tie between 
elements in different sequences is broken by picking the element from the smaller indexed sequence. 

- 139- 



In the next iteration below, we consider elements 4 
apart from each sequence. This introduces 4 new ele- 
ments 27, 13? 5 and 10 from sequences Ai , A*, As and 
Ad, respectively. The two largest among these 4 ele- 
ments are assigned to the upper partition that com- 
prises the ‘smaller’ 50’th percentile of elements 
considered and the remaining two elements are 
assigned to the lower partition or the ‘larger’ 50’th 
percentile as follows. 

Al A2 A3 A4 

I-inf -inf -inf -inf f 
------________ 

X XIX XI 

X XIX XI 

X XIX x/ 
------------- 
1 27 13 ,I 5 10 1 

-------_____ 
fx XIX x 

Ix XIX x 

Ix XIX x 

l+inf 
------------- 

+inf +inf +inf 1 

We keep track of the largest element belonging to the 
upper partition, 10. In the next iteration we consider 
elements 2 apart from each sequence. These elements 
as well as the partitioning from the previous iteration 
is given below. 

Al A2 A3 A4 

I-inf -inf -inf -inf 1 
-------------- 

X x/x x/ 

20 213 81 

X xjx x/ 
------------- 

I 27 l3 
Ix x 
I 

I 2g l5 
Ix x 

I 

1 
I ------___-__a 
I+inf +inf +inf +inf 1 

i 5 10 i 
------..----- 

X X 

6 12 

X X 

Without examinin g, we conclude that the elements 3 
and 8 of sequences As and Aq are no greater than 10 

from the knowledge that -43 and Aq are sorted 
sequences. Similarly without examination, elements 
29 and 15 of sequences Ai and AI are known to be no 
less than 10. The only in-doubt elements are 20, 2, 6 
and 12 belonging to the the four sequences. We 
examine each and pick those less than 10 to be 
included in the upper (smaller half) partition and the 
others to the lower partition. Since there are exactly 
two out of four in-doubt elements less than 10, we 
have the new partition as follows. 

Al A2 A3 A4 

I-inf -inf -inf -inf 1 
-------.. 

XIX x xi 
----e-w 

12Y2 3 81 ------- 

I 
XI XIX x I ----e-w I I 

I 27 
1311 5 18 I 

II -c----- 

I x 
XII xl x 

I 2g 
15 ( f 6 1 ii;-; 

I______ 1 1 
1 x XI x 1x1 
I --------- 
Itinf tinf tinf tinf I 

Note that of the elements considered so far we have 
found the 50th percentile. The largest element in the 
upper partition continues to be 10. In the next step 
we consider ail elements. 

Al A2 A3 A4 

I-inf -inf -inf -inf 1 
v---w--- l 

411 2 71 
------- I 

20112 3 81 
I -----w- I 

21 I 914 91 -vw---- I 
27 1311 5 10 I 

-c----- 
28 14 // 6 1 11 

I --e-- 
29 1511 61 1121 

I ------ 1 1 
31 191 7 

I21 I wmmc----- 
,inf tinf +inf tinf 1 

Again we can argue that there are only 4 in-doubt ele- 
ments, viz., 4, 9, 7 and 11 from sequences Al, AS, Aa 

- 140 - 



and A,. respectively. Three of these elements are less 
than 10 and are included in the upper partition and 
the other to the lower by using the method of the pre- 
vious iteration. Such a partitioning has the deficiency- 
that there are 19 elements in the upper partition and 
only- 17 in the lower partition as given next. 

Al A2 A3 A4 

I-inf -inf -inf -inf 1 

14 12 71 
----m-m 

201 2 3 81 

I I 
211 9 4 91 

-------- I 
27 13 1 5 10 I 

I ____-__ 
2s 14 .I 6 1 11 

I I 
29 15 I 6 1 12 

I I 
31 19 1 7 1 21 

------ 
+inf +inf +inf +inf 

The imbalance is easily adjusted by picking the largest 
elcmcnt from the upper partition, 10, and moving it to 
the lower. This solution of the 50’th percentile 
finding problem is as follows. 

Al A2 A3 A4 

I-inf -inf -inf -inf I 

I 4. 1 2 71 
--v-s-- 

201 2 3 8) 

I I 
211 9 4 91 

--_--_-_ --_---- 
27 13 1 5 1 10 

I I 
28 14 161 11 

I I 
29 15 ( 6 I 12 

I I 
31 19 I 7 I 21 

------ 
+inf +inf +inf +inf 

3 I-nrqual Sized Lists Algorithm From a practical 
point of view. it is important to remoye all the 
restrictions placed in the previous section. To accom- 
plish this, the problem is restated and we derive a gen- 
eralized algorithm from the simpler algorithm. The 
generalized algorithm handles arbitrary- sized runs (not 
necessarily equal in size), arbitrarv fraction of data f 
and does not assume i&it)- padding. The basis step 
is of order O(m). 

Let A, = a,,~, ar,2. a.3, . ..$ ~,,Ic, , 1 I r-5 m . .Vr = llAll , 
be m ascending sequences. Analogous to Section 2.1 
the problem is to find i, , 1 I r I m for 
.2, = a,,~, u,,z, u,,3, . . . . a,,,, (C = 0 implies A, is a null 
sequence.) such that: 

1. 
I 
51@,11 -JclI.4,II 1 5 1, 0 5 fl 1 (partition-size 
r=l r=l 

requirement j , and 

2. Vx, x E /1^,, 1 I r I m , Vy,y E A, , y$.& 
1 I t I m, x 5 y (magnitude requirement). 

Since we allow for any arbitrary fraction 1; the 
partition-size requirement can be met up to a differ- 
ence of 1. We allow being off in cardinalitp by (up 
to) 1 from the exact fraction. Let us denote 
I = {k, 1 I r < m} as the partitioning function of 
(.4,, I I r I m} . 

We built on the algorithm that \ve discussed earlier for 
the constrained problem on equal sized lists. We will 
avoid padding the sequences with + co or - 00 by 
selectively including more and more of the m 
sequences during the iterations. Before the end of the 
last iteration all of the sequences will be included. 
Generally, we postpone the inclusion of smaller 
sequences until later in the iteration. Specifically, the 
problem is solved by obtaining a series of solutions 
IF = ($, 1 I r < m) , successively for 
p = 0, 1, 2, . . . . k,, - 1 given a basis step at p = 0. The 

number of iterations Emax = 1 Fra: m(kl) where - 
k, = floor(logz(;Y,)) + 1 and3 Zp is the partitioning func- 
tion of a selected subsequence of selected sequences. 
At the end of the p ‘th iteration all sequences that 
have at least 2km=-p-r elements would have been 
included. The refined partitioning function Ip+* is 
found from the partitioning function 1~ in the p’th 
iteration using O(m) 1’0’s and O(m lo&m) compar- 
isons. The required definitions the algorithm and an 
example are given in (IYE89). 

4 Time Complexit?- Analysis All logarithms in the fol- 
lowing discussion are base 2. Let p denote the 

3 Floor(logz(x)) where x is a positive integer can be calculated using only integer arithmetic 

- 141 - 



number of processors. To partition m sequences into 
two partitions the number of iterations required is 
log(.V& > where A’,,,,, is the number of elements in 
the longest sequence since elements are added in 
power-of-2 increments each iteration and, b\- de& 
nition, the algorithm must iterate log(:Y,& times to 
determine a partition of all elements. Each iteration 
involves O(m) I ‘OS and no more than O(m log m) 
comparisons. This can be seen as follows. Of all the 
elements that are under consideration for partitioning 
during an iteration, the element immediately following 
the current partition boundary in each scqucnce must 
be inspected to determine if it must be moved into the 
leading partition. This requires at most m - 1 com- 
parisons and m - 1 1,‘Os. The m log m term arises for 
the number of comparisons in Case 2 and Case 3 
where at most m largest or smallest elements must be 
dctermincd such that the partition-size requirement is 
satisfied. Note, this involves only O(m) I ‘OS. Thus 
the worst case order of the number of I ,Os is 0( 
m log JY,,,,,) and the number of comparisons is 0( 
m log m log h:,,,). In the best case, the number of 
IiOs and comparisons for an iteration are both O(m) 
and occurs if the iteration of the algorithm executes 
Case 1, thereby eliminating the need for determining 
up to m smalIest or largest elements in Case 2 and 
Case 3. For database applications the number of 
rows to be sorted is much larger than the number of 
processors, and the cost of partitioning is far out- 
weighed bp the cost of merging the runs as discussed 
next. 

Once the partitioning is found, each of the p 
processors can independentlyWmerge the portions of 
the m lists in its partition. ( I he following analysis 
assumes that the 1’0s can also be parallelized, i.e., the 
I,:0 subsIstem can support p concurrent accesses to m 
lists.) This can be done in a single pass using an m 
way merge using O((iY log m)/p) comparisons per 
processor and O(N/p) 1;Os per processor, where N is 
the total number of elements to be merged. It is often 
the case in database applications that the number of 
I.‘Os primarily determines the execution time of a 
query. A sequential algorithm would require 0( 
,Y log m) comparisons and O(h) I:‘O’s for the merge. 
For cases of practical interest for database systems the 
number of processors p < < N the number of rows to 
be sorted, and the number of runs to be partitioned 
m = p, since the processors can sort independently 
without interference until p runs are obtained 
(VAL83). We assume m =p in the following dis- 
cussion. The cost of partitioning itself is negligible: 
what matters is the merge cost. 

There have previously- been two general types of 
approaches to solving this partitioning problem. The 
first is to partition pairs of sequences exactly. This 
leads to workload balance and minimal contention for 

each 2-way merge but requires log(p) merge passes to 
complete. Wh.ile any merging algorithm (ARL87, 
FRA88, VAR88, DEO88) which requires parallel 
2-way merges can be done with O((;Y log m)/p) com- 
parisons per processor, the number of I/OS per 
processor is O((:Y logp)/p), once again assuming that 
the IiOs can be parallelized, and the cost of parti- 
tioning for each iteration is negligible. IO costs 
(these also represent the insertion and fetch costs into 
temporary tables that stores runs) need also to be 
minimized in a database system. The second parti- 
tioning method is to use a sampling method that 
divides the sequences based on a sort key (QI.1188, see 
section 1). These methods perform a p-way merge of 
the partitions leading to a theoretical O((,Y logp)/p) 
for the expected number of comparisons per processor 
and 0(X/p) for number or I ~OS per processors. 
However, since the original partitioning was only 
approximate, any skew in key- vahres will lead to 
workload imbalance and a degradation in pcrforrn- 
ante. In fact, Quinn (QLISS, see section 1) indicates 
that even with randomly distributed data, no speedup 
is obtained beyond p = 10 because of this workload 
imbalance. 

In contrast, our algorithm will find an arbitrary exact 
partition for an arbitrary number of sequences. This 
leads to a nearly perfect workload balance and permits 
a single p-way merge phase. Thus the order of the 
merge is O((iV logp)/p) for comparisons per processor 
and 0(X/p) for I/OS per processor, and solves the 
load balancing problem in parallel multi way merge. 
It is currently the best approach of which we arc 
aware that will provide linear speedup in merge with 
respect to number of processors independent of key 
value distributions. Currently, implementations are 
underway to obtain empirical performance figures, and 
to optimize performance of the overall parallel sort by 
determining the optimal number of runs to merge in 
parallel given a fixed number of processors, I:0 sub- 
system, and file organization. 

5 Conclusions and Implcmcntation Sotcs In this paper 
we examined the problems involved in employing 
multiple processors for parallel execution of a fre- 
quently used relational database function: external 
sorting. Previous solutions found in the database lit- 
erature either rely on two way merges that makes the 
cost of merging expensive or use a fmal sequential 
merge that adversely impacts the speedup. We pick 
the best among three previously implemented sort 
algorithms for a shared memory parallel computer. 
Speedup due to this algorithm was shown to peak at 
about 10 processors. It failed to achieve e&ciency and 
linear speedup beyond 10 processors because of 
approximations in the algorithm used to partition 
multiple sorted runs into equal percentile ranges. The 
approximations caused load imbalances among the 

- 142 - 



multiple processors. \l’e have given an algorithm that 
CXI solve the percentile finding problem exacth- that 
Lvorks for an arbitrq number of runs and arbitraq 
percentiles eliminating the possibilitl- of load imbal- 
ance. B>- employing our algorithm h parallel external 
sorting and eliminating load imbalances due to the 
previous approximations linear speed up is possible 
for the number of processors typically used for data- 
base related operations. We have also given an 
oxample to illustrate the working of our percentile 
finding algorithm. The parcentile finding algorithm 
has been prototyped and tested successfull!- on various 
sets of sorted runs. A comparison between our algo- 
rithm and Quinn’s parallel sorting method using 
random and skewed key values is necessary to deter- 
mine the actual benefits provided b!- each approach. 

From an implementation vielvpoint we need to 
address the question of how to directly access an arbi- 
tray i’th row of a run, as required b!- our percentile 
fmdmg algorithm. The issue is for variable length 
rows. We can either use an index or estimate the 
location location based on an average row size. We 
suggest an alternate approach: to place load balancing 
rcquircmcnts (partition size requirements) in terms of 
number of pages of rows merged by each processor, 
rather than in number or rows as per the exposition in 
this paper. The algorithm given in this paper can be 
extended to solve the run partitioning problem with 
such a load balancing requirement. 

Acknowldgement We acknowledge help from Pat 
Selingcr, Don Haderle, Dennis DcLorme, John 
Vriezen, John Palmer and Joel Wolf. 

Rcfcrcnccs 

(AKL87) 

(BAT68j 

(BEC88) 

(BIT83) 

Akl, S. G., and Santroo, s., “Optimal 
Parallel llerging and Sorting Without 
Memory Conflicts” IEEE Trans. on 
Camp., C36, 11, 1987, 1367-69. 

Batcher, K. I?., “Sorting Setworks and 
their Applications”, Proc. AFIPS 1968 
Spring Jt. Computer Conf., Vol 32, 
AFIPS Press, Arlington, VA. 

Beck, >I.. Bitton, D. and Wilkinson, W. 
K., “Sorting Large Files on a Backend 
>lultiprocessor”, IEEE Transactions on 
Computers, 37, 7, July 1988. 

Bitton, D., Boral, H., DeWitt, D. J.: and 
W.lkinsor., W. K., “Parallel ,4lgorithms for 
Relational Database Operations”, ACM 
Transactions on Database Systems, Vol. 8, 
So. 3, Sept. 1983 

(DE088) 

(FRA88) 

(FRE82) 

(GRA86) 

(IYE88) 

(IYE89) 

(LOR88) 

(QUI88) 

(KSc’73) 

(OLK86) 

(VAL84) 

Deo, S. and Sarkar, D., “Optimal Parallel 
Algorithms for Merging and Sorting”, 
Proc. Third Intl. Conf. on Supercom- 
puting. Boston: May 15-20, 1988, 513-521. 

Frances, R. S. and Zfathieson, I. D., “A 
Benchmark Parallel Sort for Shared 
Memory Multiprocessors”, IEEE Trans. 
on Computers. Vol C37, So. 12, Dec. 
1988, pp. 1619-26. 

Fredrickson, G. N. and Johnson, D. B., 
“The Complexity of Selection and 
Ranking in X + Y and Matrices with 
Sorted Columns:, J. Comp. and Sys. Sci- 
ences, 24, 197-208, 1982. 

Gray, J., Stewart, -M., Tsukerman, A., 
Wren, S. and Vat&en, B., “Fastsort: An 
external sort using-parallel Processing”, 
Tandem Syst. Review, Vol. 2, Dec. 1986. 

Iyer, B. R. and Dias, D. M., “System 
Issues in ParalIcl Sorting for Database 
Systems”, IBM Research Report RJ 6585, 
San Jose, CA, November 30, 1988. 

Iyer, B. R., Ricard, G. R. and \‘arman, P. 
J., “An Efficient Percentile Finding Algo- 
rithm for Multiple Sorted Runs”, IBM 
Research Report, San Jose, CA, 1989. 

Lorie, R. A. and Young, H. C., “A Low 
Communication Sort Algorithm for a Par- 
allel Database Machine”, IBM Research 
Report RJ 6669, San Jose, CA, February, 
1989 (also to appear in VL.DB 89). 

Quinn, XI. J., “Parallel sorting algorithms 
for tightly coupled m&i-processors”, Par- 
allel Computing, 6, 1988, pp. 349-367. 

Knuth, D. E., ‘The Art of Computer Pro- 
gramming: Volume 3”, Addison-Wesley, 
Reading, MA, 1973. 

Olken, F., Rotem, D., “Simple Random 
Sampling from Relational Databases”, 
Proc. of the 12’th Intl. Conf. on Very 
Large Data Bases, Kyoto, Japan, August 
1986, pp. 160-169. 

Valduriez, P., Gardarin, G., “Join and 
Semijoin Algorithms for a .Muiriprocessor 
Database ILlachine”, ACM Trans. on Data 
Base Systems, Vol. 9, No. 1, March 1984, 
pp. 133-161. 

- 143 - 



(VAR88) Varman, P. J., Iyer, B. R. and Haderle, D. (VIT85) Vitter, J. F, “Random Sampling with a 
J., “Parallel Merge on an arbitrq number Reservoir”, ACM Trans. on Math. Soft- 
of Processors”, IBM Internal Report, ware, Vol. 11, So. 1: March 1985, pp. 
August 1988 (available as IBM Research 3747. 
Report RJ 6632, San Jose, CA. December 
30, 1988). 

1 5 q . 12 13 pJ 17 19 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 6 1 12 13 14 i 16 17 18 ;. : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :.:::::::::::::....."""""""""" 
13 4 5 

Partition 1 

7 9 i IO 14 i 

Partition 2 
Figure 1 

Disks 
0 0 

Processors @ @ 
. 

0 0 0 
@ @ @ 

LJ 20 Run 1 

19 Run 2 

18 Run 3 

Partition 3 

0 

Table 
Partitions 

0 Select/ 
P6 sort 

Temporary 114 
Relations ,I’ 

,’ 
, 
\ 
, 
8 
\ 
\ 
\ 
s 

I .......................... # e. ......................... ......... 
................... ‘;“’ ................. ...... 

,’ 
....... ~. ..................... 

............ ...!. 
,I ;J. 

, ........... P”’ ......... 
... i l.. ............. ......... ...................... .... ............. 

I #I 

, I! 

;“: ..... 

L 

‘. . 
.............. -~““~ 

.................. . I I /.C.’ . .... . ,., ................... I.. ......... ................ ...... I 
I’ I’ 

c.. ....... 
............ ,’ ............... ,* ............ . ..... , ....... . ... .... ....... .... .... ............ ;!. .... ..J ‘C ...... J ........ .............. ....... 

f 
,# 

f!. 
,’ ......... .; 

.......... J . ... ......................... , 
......... ...... ........ ....... ;“. ................... I ...... . ... ..L. ,* 

#’ .... <,f .......................... * 
f ............... 

,’ #O 
................. 

,’ 

#I r’ ,’ 
e- #’ 

I’ 

pro~essors~~~~~~~~~~~~~~~~~~------~~’ ~ 

Sorted 
Runs 

Percentile 
Partitioning 

Parallel 
Merge 

Figure 2 

- 144- 


