
Pasta-3’s Graphical Query Language: 
Direct Manipulation, Cooperative Queries, Full Expressive Power 

Michel Kuntz and Rainer Melchert 

ECRC, Arabellastrasse 17.8000 Munich 81, West Germany 

Abstract 
Graphical Direct Manipulation (GrDM) query lan- 

guages are characterized and positioned with respect to 
traditional textual query languages. After a brief survey of 
the current state of the art, the Pasta-3 GrDM query lan- 
guage is presented, with emphasis on three features that 
make significant new contributions to this field: (1) its 
GrDM basis (query editing through clicking and dragging 
of an iconic representation of the query expression), (2) its 
cooperative environment (handy values, automatic path 
completion, edit-and-reevaluate loop), and (3) its expres- 
sive power (arbitrarily complex conditions, recursive 
queries, logical variables and quantification, subqueries, 
mixing in Prolog code). Several examples taken directly 
from the nearly complete implementation are discussed in 
detail. 

1. Introduction 
Query languages as a data base research topic need no 

introduction -- nor any justification. Until recently query 
languages were linear textual languages: of the three usual 
levels of linguistic analysis -- semantic, syntactic, lexical -- 
only the first one was considered important. The other two 
were routine: syntax was relegated to a BNl? grammar in an 
appendix, and the lexical level was merely a matter of 
character strings, not worth mentioning as such. Besides 
this, language design was the main research activity, since 
implementation of such languages posed few problems 
(optimisation excepted) thanks to the maturity of compila- 
tion techniques. Thirdly, using such languages was no mat- 
ter for discussion: there was little to discuss -- you simply 
typed in statements. 

This one-sided approach was inevitable as long as a 
small number of professional programmers were the only 
target user group and the only I/O devices widely available 
were alpha-numeric terminals and keyboards. Today this is 
no longer the case, and there is good reason to ask if the 
triple imbalance just described should not be corrected. 

A shift towards a better balance has in fact already 
begun with the emergence of graphical query languages. 
Work in this specific area has been motivated by two fac- 
tors: 

Permiaaion to copy without fee all OT part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice ;J 

given that copying is by permission of the Very Large Data Base 
Endowment. TO copy otherwise, OT to republish, Tepuires a fee 
and/or special permission from the Endowment. 

Proceedings of the Fifteenth International 
Conference on Very Large Data Bases 

l the realisation that query languages are not 
only pure mathematical objects but also part of 
interfaces intended for actual practical use, and 

. the technical and economic availability of 
hardware (%igh resolution, bit mapped screens 
and pointing devices such as mice) and 
software (window managers and graphics 
packages) supporting graphical interaction. 

The graphical Direct Manipulation (GrDM) interaction 
paradigm’usually involves selection of items from pop-up 
menus and use of icons that can be clicked on and dragged: 
visible graphical objects both represent the current state of 
the interface and can be acted upon by “direct” physical 
actions: moving the tracking symbol over the screen and 
pressing mouse buttons. GrDM was fast used commer- 
cially in the Xerox Star and Apple Lisa systems. It has 
already contributed to the success of software such as 
spreadsheets, WYSIWIG text editors, CAD systems, etc. 

Graphical querying facilities have become an active 
research area since the mid 1980s. However the old ten- 
dency to privilege semantics and design and to ignore ac- 
tual use is still alive and well: quite recent work in this area 
[Campbell 87, Catarci 88, Cruz 87, Dart 881 focusses on 
abstract definitions of new languages and says very little 
about how they actually look on the screen or how some 
one would go about using them. On the other hand, some 
research [Bryce 86, Goldman 85, Kim 881 has helped to 
restore the balance and place emphasis on the previously 
neglected aspects of graphical querying. The work 
reported in this paper, Pasta-3, is a further step in this direc- 
tion. 

The basic approach adopted here is not to define a new 
formal language but to provide a sophisticated GrDM edit- 
ing capability for the original formal linguistic objects 
(already well-defined semantically in the back-end DBMS: 
see Section 2.2). Put another way, it is the same semantics 
associated with a GrDM (rather than a textual) syntax. 

The Pasta-3 interface includes GrDM capabilities for 
all types of DBMS manipulation activities.’ However, the 
purpose of this paper is only to present certain important 
features of the Pasta-3 query language: 

’ [Shnei 831 and [Hutch 861 arc just two of the many publications that 
provide more complete discussions of GrDM. 

?See [Kuntz 89a, Kuntz 89b, Kuntz 89~1 for the other aspects of 
Pasta-3. 

Amsterdam, 1989 

- 97 - 



l its GrDM basis: query editing through click- 
ing and dragging of an iconic representation of 
the query expression (Section 3), 

l its cooperative environment: handy values, 
automatic path completion, edit-and-reevaluate 
loop (Section 4), 

l its expressive power: arbitrarily complex con- 
ditions, recursive queries, logical variables and 
quantification, subqueries, mixing in Prolog 
code (Section 5). 

All three aspects make significant new contributions to the 
area of GrDM query facilities. 

But before these main topics can bc properly explained, 
three items of background information need to be supplied. 
Since Pasta-3 is not alone in its field, a short survey of 
related work to date will help to clarify relative positions 
(2.1). A query language is difficult to understand without 
reference to the DBMS it is meant to work with - the KB2 
System in this case (2.2). Finally, Pasta-3’s query language 
is part of a complete, integrated interface and can only be 
understood in this context (2.3). 

A note on the implementation and the conclusion make 
up the last section (6). 

2. Background 

2.1. State of the Art 

Non application domain specific research3has produced 
at least 20 published results: [Bryce 861, [Campb 871, 
[Catarci 881, [Cruz 871. [Dart 881, [Du 881, [Elmas 851, 
[Gimn 881, [Goldm 853, [Kim 883, [King 841, [McDon 751, 
[Melch 871, [Metro 883, [Teskey 841, [Udaga 821, [vrspr 

831, lwong 821, lWu 861, [Zhang 831. 

Analysing them individually and in detail would be the 
subject matter for another whole paper.40nly a few general 
observations can be made here. 

The term “graphical” is ambiguous. One sense is 
abstract and general: pictorial or diagrammatic (as opposed 
to textual). Another is concrete and restricted: pertaining to 
raster operations on bitmaps. A third is mathematical: per- 
taining to graphs. The literature applies an inclusive OR 
over all three meanings when speaking of query facilities. 
All results mentioned above are graphical in the first sense, 
but in the second and third, some are and some are not. 

The major contribution of graphical querying has 
been to reduce the cognitive load on users in several ways: 

3Appkation domain specific work such as [Hemt 80. Chcn 87, Egenh 
881 is not considered here. 

‘and extending the field of comparison to include graphical (or “visual”) 
programming (cf. [Raeder 851. [Myers 861, meiser 881) and graphical 
interfaces for other logical constructs such as inference rules (e.g. [Lewis 
831. [Poltr 861) is also rcgmfully excluded 

lack of typing skill is no longer a significant handicap, 
formal syntactical conventions are largely replaced by in- 
tuitive GrDM operations, and active memorized knowledge 
of the DB is rarely required since schema components are 
already visible on the screen and need only be passively 
recogllized. 

All the results cited above are combinations of 
graphics and text -- rather than purely graphical systems. 
In some cases [Catarci 88, Dart 88, Elrnasri 85, Ursprung 
83, Wong 82, Wu 86, Zhang 831 graphics are used essen- 
tially for schema visualisation, and query formulation relies 
mainly on form-filling or typed-in expressions. 

Some graphical query facilities [Goldman 85, King 84, 
Teskey 84, Wong 82, Zhang 831 do not rely on any explicit 
graphical language at all. They are defmed procedurally, 
in terms of the operations needed to input a query - in this 
case operations other than typing characters. There is no 
well-defined area of the screen the appearance of which 
completely expresses the query. One cannot simply “read 
some configuration of shapes and text to know what was 
indeed the intent of the preceding sequence of operations. 

On the other hand, some query facilities [Campbell 87, 
Catarci 88, Cruz 87, Dart 88, Udagawa 821 offer only a 
naked language, with no accompanying environment (in 
the usual sense: a well-integrated set of facilities that sup- 
port / enhance actual use of the (query) language). Ex- 
perience in software engineering has demonstrated the im- 
portance of good environments for programming languages 
-- the same holds true for query languages. 

There tends to be a trade-off between expressive power 
and ease of implementation: powerful graphical languages 
have sometimes not been implemented, and many effec- 
tively running graphical query facilities support only very 
simple queries. 

This situation indicates that the three main points where 
progress needs to be made involve: 

1. extending expressive power to handle com- 
plex queries, while 

2. taking better advantage of the GrDM style of 
querying, and 

3. combining the benefits of a language and an 
environment. 

2.2. The IU32 System 
Pasta-3 is an interface to KB2 [walla 861, a knowledge 

base system embedded in Prolog -- or more exactly -- in 
EDUCE [Bocca 861, a logic programming data base system 
that supports both a loose coupling and a tight integration 
of Prolog and a relational DBMS. KB2 uses the Entity / 
Relationship data model, extended with inheritance and 
deductive rules. It was developed at ECRC by Mark Wal- 
lace and other members of the Knowledge Base Group. 

KB2 provides facilities for structured information 
storage on disk. Queries and updates expressed in terms of 

- 98 - 



its extended E-R model are mapped down to their relational 
equivalents. Both schema and data can be modified at any 
time. However, all updates are checked for consistency 
with a set of integrity constraints. The information 
represented with KB2 includes both basic facts and deduc- 
tion rules, Enforcing the integrity constraints just men- 
tioned ensures that all information -- what is deducible as 
well as data stored as such -- is always consistent. 

KB2 extends traditional data bases in two main direc- 
tions: 

l it supports general information through deduc- 
tion rules and integrity constraints, and 

l it allows applications to have a completely 
dynamic knowledge structure. 

This dynamic character means that, throughout the life 
of an application, new Entities and Relationships can be 
created, the inheritance lattices extended, and properties of 
E-R items added or deleted. 

KB2 supports complex logical queries, including 
quantification, limited recursion, and mathematical func- 
tions, expressed as predicate calculus formulae, which are 
mapped onto Prolog goals and clauses. The fact that KB2 
offers its users a manipulation language of this power has 
important implications for Pasta-3: if its GrDM query lan- 
guage is not equally expressive, end-users would be reluc- 
tant to accept a trade-off of more ease of use against loss of 
expressiveness. 

2.3. Overview of Pasta-3 
This section provides general background information 

on Pasta-3 and gives some brief notes on its top-level ar- 
chitecture. 

Figure 1 shows a partial view of one possible screen 
with several different types of windows. 

Figure 1: Partial view of screen (one possible layout) 

On the left are two graphical schema manipulation win- 
dows (E-R schema and Entity inheritance lattice). They 
provide both schema creation and schema browsing 
functionality. Two tabular data display windows are 
visible towards the lower right: they could be the result of 
browsing or querying. In the upper right quadrant one can 
see a (still empty) querying workspace. 

Figure 2 shows Pasta-3’s intermediate position between 
the workstation and the back-end DBMS, KB2. 

Pasta 

/j 
logical aiizl 

Figure 2: Top-level architecture of the Pasta-3 interface 

Pasta-3 is composed of two main parts: Pasta Logical 
and Pasta Graphical. The latter is “nearest” to the user 
and is directly responsible for dealing with all I/O that 
passes through the interface. In the input direction it trans- 
lates user activity manifested by means of mouse and 
keyboard into expressions of the language used as an inter- 
nal communication protocol connecting to the other main 
component, Pasta Logical. In the output direction, Pasta 
Graphical takes character-strings containing information 
generated at lower levels of the overall system and 
produces the appropriate visual representation on the 
screen. The jobs of Pasta Logical are to construct KB2 
expressions from the protocol language commands, to in- 
voke KB2 processing, and to collect arbitrary numbers of 
variable instantiations returned from KB2 into a single 
result list, suitable for transmission up to Pasta Graphical. 

3. Basic GrDM Characteristics 
Pasta-3’s querying capability has been designed to sup- 

port all queries that are expressible in KB2’s linear lan- 
guage (which is logical rather than navigational). The 
query specification process takes place in an instance of a 
dedicated window type (a “workspace”) and results in ex- 
actly one expression in Pasta-3’s two-dimensional lan- 
guage. The steps composing this process can be carried out 
in whatever order the user prefers. 

For presentation purposes, it is helpful to distinguish 
the core language elements from relatively sophisticated 
aspects. The basic representations and operations used in 
querying are illustrated with a rudimentary example having 
only one Entity in the workspace and a compound selection 
consisting of one conjunction of selections all with the 
comparator “=“. At this point three of Pasta-3’s coopera- 
tive features can be explained (Section 4). Next (in 5.1) 
certain more advanced aspects will be discussed together 
from the starting point of a query involving several Entities 
and Relationships in the workspace, possible use of ag- 
gregate functions, and a selection consisting of an ar- 
bitrarily complex tree of compound selections (AND, OR, 
NOT) containing selections using various comparators. 
Finally (5.2) we move on to other powerful options il- 
lustrated by four final examples. 

- 99 - 



3.1. Graphical Representation 
The first example query is “name and location of the 

Xeroxes ?” Fig. 3 below shows three related windows: the 
large one is the query workspace containing an elementary 
query expression, the small one on the left shows the query 
translated into the RI32 language, and the third one is a data 
display window. This strictly tabular way of expressing 
elementary queries originated with QBE [aloof 773 and 
was previously adopted for HIQUEL [vrspr 831, GLAD 
[wu 861, and Pasta-II [Melch 871. 

Figure 3: Query workspace, Kl32 translation, and answer 

The double-bordered rectangle in the lower-left comer 
of the workspace represents the Entity “machines”. Three 
of its properties (“hostname”, “machinetype”, and 
“location”) are already available for further work The 
“??I’ projection symbol in the boxes below “hostname” 
and “location” indicates that results (i.e. data) for these 
properties are to be displayed. The string “Xerox” boxed 
below “machinetype” represents a selection, the I’=” com- 
parator being implicit here by convention (as the conjunc- 
tion would be if there were several selections). 

Display of the linear syntax translation is normally en- 
tirely optional: it is necessary only in conjunction with the 

’ “Mix in Prolog” capability (see 5.2 below). 

3.2. Query Building Operations 
How did this very simple query expression come into 

existence ? 

Once a new workspace has been created (via the 
Pasta-3 main menu), the first step in using it is to indicate 
which Entities and/or Relationships the query involves. To 
do this, users have two possibilities: if they have been 
browsing, they can copy into the workspace E-R items al- 
ready displayed in other windows (cf. Fig. 1); if they have 
opted for querying directly, the attached menu at the top of 
the query workspace window provides the required 
functionality: two of its items are “Ems” and “Rels”. Click- 
ing on these pops up lists of Entities and Relationships 
from which the ones of interest can be chosen. Either 
possibility produces the same effects: an icon representing 
the E-R item in question appears in the workspace and the 
corresponding icon in the schema graph windows (cf. Fig. 
1) is highlighted. In the example, the user has chosen the 
“machines” Entity. 

Clicking the “Properties” item in the pop-up menu for 
“machines” (leftmost in Fig. 4) displays the list of this 
Entity’s properties from which the user can choose one or 
more for further work. In Figure 3 above, the user has 
tidy chosen three properties: “hostname”, 
“machinetype”, and “location”. 

To indicate that they want results for the “hostname” 
property to be displayed, users pop up the command menu 
for properties (second in Fig. 4) by clicking on “hostname” 
in the workspace in Fig. 3 and choose the “Display” item. 
This immediately causes the display of the “??” projection 
symbol in the box below “hostname”. They do the same 
for “location”. 

m 
;* 

n 

< h <. k -h 

Figure 4: Menus: ER items, properties, conditions, camps 

Specifying the selection will complete the query. Two 
of the selection’s three parts -- the property name and the 
comparator -- are aheady available: the former is visible on 
the screen and the latter is implicit (in this case - for other 
comparators, see below). Specification of the value 
“xerox” can be done in any of three possible ways, ex- 
plained in Section 4.1 below. 

Clicking on the “Answer” option in the attached menu 
of the workspace window invokes query evaluation and 
displays the answer in a separate data display window. 

4. Cooperative Querying 
GrDM contributes to ease of use in a non-application- 

specific way. There are also specific ways in which a 
query language environment can make life easier for its 
users. We have grouped three of them together in this 
section. 

4.1. Handy Values 
Most queries - no matter what the language -- contain 

constant values as part of the specification of the selection. 
Indicating such values is a very frequent operation in query 
formulation and one that is particularly error-prone when it 
involves typing and memory recall. Making it easier would 
be a big gain for any query interface. Pasta-3 provides 
three ways to do it. 

The easiest one to use is choosing the desired value 
from the menu displayed in response to a click on the 
“Values menu” item in the properties pop-up menu (Fig. 4). 
This item is present in the menu only for those properties 
that have no more than 15 different possible values.%is is 
shown in Fig. 5. 

%n empirical and somewhat arbitrary limit: users have no difficulty in 
imemting with a menu of 15 items in this context, but a larger or smalkr 
number of values could be Used. 

-lOO- 



Figure 5: Choosing a value from a menu of possibilities 

This method of indicating a value contributes to 
cooperative querying by anticipating and avoiding some of 
the problems addressed by work on “cooperative answers” 
[Kaplan 82, Wahls 851. Instead of having to compute an 

explanation of the result “No data found” caused by the use 
of an unknown value in a restriction, the system encourages 
(but does not force) users not to enter any such values, 
thus eliminating the empty answer and the need to explain 
it.6 

Use of such value menus has its price in interface com- 
plexity and computational cost. Cost is mostly incurred 
once when Pasta-3 is first set-up for a given DB: at that 
time all the data has to be counted, values collected for 
properties with less than 15 (or n) different values, and 
menus built. With the toy DB we have been using for 
demos this takes about five minutes. With very large DBs 
the cost might be prohibitive. Interface complexity derives 
from the fact that whenever updates are performed, Pasta-3 
must build, destroy, and/or modify menus dynamically (but 
this entails no user-perceptible performance overhead). 

A more serious problem will arise when multiple users 
access the same DB: in this case updates occur without the 
interface knowing of them. This problem is more general 
than just handy vahtes menus -- it raises fundamental ques- 
tions about the relationship between interfaces and back- 
ends, since the only solution available seems to be modify- 
ing the DBMS itself so that: it remembers updates that 
happened since the last login of user X and informs X’s 
current session with Pasta-3 of these changes, and it does 
mutual “tipping 0fY of updates among concurrently run- 
ning sessions. 

The second possibility is to use the “Copy In value” 
command. This can be invoked when values are already on 
display elsewhere on the screen in data display tables (as a 
result of data browsing or as the answer to some previous 
query) . In this case also, user typing errors are obviously 
excluded. However, one cannot guarantee that empty 
answers will be avoided, since there are no constraints on 
which values can be copied from where to where. 

The third possibility is the traditional one: entering a 
character string from the keyboard. 

4.2. Automatic Path Completion 

6except possibly in queries incorporating open (i.e. set) subqueries 

Many complex queries involve several Entities and 
Relationships. The most frequent case that we have en- 
countered (and the simplest one) concerns two Entities -- 
that users select correctly -- and one Relationship -- that 
users forget to select -- even though their intention was that 
the two Entities should be considered connected. In less 
simple cases the missing connection can include several 
Entities and Relationships and be ambiguous (i.e. be a sub- 
graph instead of a path). The difficulties involved here 
have already been studied [Maier 83, Zhang 83, Pahwa 851. 
Traditionally users have a semantic problem to solve in 
navigating the right connection and syntactic one in build- 
ing the linear textual expression that corresponds to the 
chosen connection. Since getting it wrong is easy, helping 
users to get it right is again an important advantage for any 
interface. 

Pasta-3 is cooperative in this respect thanks to its ability 
to compute missing connections automatically: if the 
workspace contains E-R items that are connectable but not 
yet directly connected, and evaluation is invoked, the sys- 
tem will find the missing items and either offer to add them 
in (if exactly one connecting path exists) or propose a 
choice (if ambiguous possibilities exist). Doing these com- 
putations is one of the major functions of the logical sub- 
system of Pasta-3. 

4.3. Edit-and-Reevaluate Loop 
As soon as a query has been built and evaluated’, 

results are displayed. On seeing them, users often realize 
that the query did not in fact express what they had wanted. 
In other cases, the query was indeed faithful, but they want 
to see results for a slightly different query and compare 
them to the previous ones. Any interface that does not 
provide convenient means to support these two querying 
behaviours’is not cooperative. Pasta-3 does and is. 

The query expression in a workspace can be modified, 
using the same GrDM techniques as in the building phase, 
and reevaluated, with the new answer data appearing in 
another display window, as many times as the end user 
wishes. Support for such an “edit-and-reuse” way of work- 
ing constitutes an essential factor contributing to. good 
productivity. 

5. Extended Expressiveness 
As so far presented, the Pasta-3 query language is very 

convenient to use but has very little expressive power. One 
must retain this ease of use (i.e. not revert to typing in 
statements of a textual language) while greatly extending 
expressiveness. This section gives some idea of how 
Pasta-3 solves this problem. However space constraints 

‘KB2 as such supports lazy evaluation, but for the time being Pasta-3 
only uses immediate evaluation. 

*also termed “retrieval by reformulation” in other interfaces (e.g. RAB- 
BIT [Willi 841 and KARMA [Bose 861) 

- 101 - 



make it impossible to include in the discussion of examples 
explanations of the processing done by the logical subsys- 
tem of Pasta-3 -- it must nonetheless be pointed out that 
much of the overall power of the interface derives from the 
logical subsystem’s flexible internal representation of 
queries and the sophisticated transformations it carries out. 

5.1. Complex Selections 
The second example query can be paraphrased in 

English as: “How many researchers between the ages of 20 
and 30 not in rooms 120,220, or 320 belong to the HCI 
group ?” Fig. 6 shows the Pasta-3 formulation. 

Figure 6: A second example query expression 

Aside from the introduction of the count aggregation 
function (CNT), this example differs from the first one 
mainly in two ways: 

l several E-R items are involved, and 

l the selection is complex. 

Users can bring Entities and Relationships into the 
workspace in the ways described for the previous example. 
Building a complex selection expression proceeds as fol- 
lows. The user starts by constructing a single “atomic 
condition”. This process begins with clicking on the “AC” 
item in the attached menu and leads to the state where an 
empty atomic condition icon has been created at the right 
of the workspace, ready to be instantiated. 

To express that the “age” property is to be the left 
operand of this condition, the user brings up a menu of the 
properties of E-R items currently in the workspace and 
chooses “age”. To specify the desired comparator, the user 
clicks in the middle box of the condition, pops up the com- 
parator menu (rightmost in Fig.4), and opts for “>=“. 
Specifying the right operand can in general be done in the 
three ways mentioned in Section 4.1 (menu selection, copy, 
type in). 

The user now clicks on “AC” again to create a second 
empty condition box and fills it in analogously to the first. 
To add the conjunction connecting these two conditions, 
the user selects all the conditions to be connected by click- 
ing in the small black squares at the top left comer of each 
condition. The “AND” connector can be obtained by click- 
ing on the black square of the last condition to be chosen, 
getting the third pop-up menu in Fig. 4 and selecting 
“Insert AND”. An AND logical operator icon is then put in 
place automatically by Pasta-3. 

It is important to point out -- but impossible to show on 
paper -- that the structure of the condition tree can be 
modified at will by dragging the icons composing it, If an 
atomic condition or a logical operator icon is clicked, it 
(plus its entire subtree in the case of a logical operator) can 
be pulled away from its location in the tree and dropped 
elsewhere. Moving it away detaches it. Dropping it on a 
logical operator attaches it as the last operand of that 
operator. Dropping it in the background simply leaves it 
unattached at top level. In all cases, the graphical condition 
tree is automatically reshaped and redisplayed to take into 
account the changes in its logical structure. This GrDM 
capability provides an easy way to build up very complex 
logical conditions and thus removes one of the major dif- 
ficulties encountered in using traditional, linear query lan- 
guages: users get lost in the syntax of complex expressions 
before they manage to formulate the condition that they had 
in mind. 

The user builds the rest of the query with similar opera- 
tions. 

5.2. Recursion, Quantification, Subqueries, 
Prolog 

Four advanced features can now be presented, but not 
in detail. 

Certain recursive queriesgcan be expressed through use 
of the “Duplicate” menu item, which adds another icon for 
the same Entity into the workspace and notes that there am 
multiple occurrences to be handled. Fig. 7 shows how to 
formulate the query “Which projects follow up the Outils 
project ?‘I. 

I” * M; 

nr-rbp 
L&l 

J 

Figure 7: An example of a recursive query 

In the schema used here, the “follows_up” Relationship 
is defined by means of a recursive rule, and the same En- 
tity, “projects”, is linked to it twice: once as the 
“predecessor” role and once as the “successor” role. This 
entity thus appears in the workspace twice, and the iden- 
tical variable names (“PI’ in one case and “S” in the other) 
indicate which occurrence fills which role. 

Logical Variables and Quantification: variable 
names can be typed in as property values, thus retaining an 
essential feature of the KB2 linear language. This pos- 

gSce [Cm2 871 for a graphical query language spechlizing in recursion. 

- 102 - 



sibility is also used in Fig. 7 where P and S are such vari- 
ables. Quantification is always implicitly existential if not 

Mixing in Prolog -- creating an expression that con- 

indicated otherwise. Explicit quantification is dealt with by 
tains both KB2 statements and Prolog predicates -- is done 

means of the menu items, “universalQ” and “existentialQ”. 
by using the “MixP” option in the attached menu. This 

Choosing either displays the appropriate symbol at the left 
pops up an editing window into which Prolog can be typed. 

side of the E-R item icon. Scope is expressed by relative 
The code thus entered is either prepended or appended to 

spatial position: the left-to-right ordering of quantifiers in 
the KB2 translation of the query expression. Choice of 

the corresponding textual formulae is expressed by the top- 
appropriate variable names (thus enabling sharing between 

to-bottom arrangement in the workspace of the icons 
the two parts of the final query expression) is the user’s 

representing the entities and relationships. Icons can be 
responsibility. Variables instantiated during evaluation am 

moved to wherever desired in the workspace simply by 
treated like property names, and values for them are dis- 

dragging them. Fig. 8 shows two queries (in two 
played along with other results. Fig. 10 includes three 

a KB2 translation window 
workspace fragments). On the left: “Is there a Sun that is 

windows: a workspace, 

used by all employees ?” (i.e. the same Sun is used by 
(corresponding to only the graphical part of the query), and 

everyone); on the right “Do all employees use a Sun ?” 
an editing window for typing in Prolog. The complete 

(i.e. each employee may or may not have his/her own in- 
query can be paraphrased as “How old would ecrc 

dividual Sun). The only difference between the two 
employees be if they aged by 10 % ?‘I, A mix-in capability 

queries lies in the relatives scopes of the quantifiers they 
of this kind gives PastaS’s query language a significant 

contain. 
degree of on-the-fly extensibility which expert users can 
exploit to great advantage. 

Figure 8: An example with two quantified queries 

Subqueried’can be derived from workspaces by 
shrinking them to icons. With the “SubQ” command from 
the attached menu, icons so created can be copied into a 
query workspace and used as operands in both atomic and 
composite conditions, however correctness is checked only 
at evaluation and not on insertion. Fig. 9 shows an ex- 
ample. It supposes that there already existed an iconised 
query workspace called “KB-surnames” whose value is the 
set of the surnames of the members of the KB Group. The 
example expression asks “What are the ages of the resear- 
chers in the KB Group ?‘I. 

Figure 9: An example of a query containing a subquery 

loin the same sense as for SQL 

Figure 10: How Prolog code can be mixed in 

6. Implementation and Conclusion 
We built a throw-away prototype of a subset of the 

Pasta-3 query language in spring 1988, with the graphical 
subsystem running on Xerox 1108 hardware and the logical 
subsystem and the KB2 KBMS installed on a Sun 3-140 
(the two subsystems being linked by a TCP connection 
over the local Ethernet). This version was extensively used 
for demos and gave rise to many critical observations and 
comments from people who had been users of KB2’s tex- 
tual language and from software ergonomists from ECRC 
shareholder companies. 

A full-scale implementation begun in summer 1988 is 
nearing completion. On the graphical subsystem side, all 
functionality mentioned in this paper is up and running, 
except Prolog mix-in. The main implementation tool used 
is the TUBE User Interface Development Environment 
[Herrm 89, Hill 891. On the logical subsystem side, coded 

in Prolog, the core functionalities are finished, however 
quantification and Prolog mix-in are not yet supported, and 
the implemented path completion algorithm is not as 
sophisticated as possible and not yet integrated with the 
other functionality. 

We conclude by summarizing the most important 
aspects of the work described in this paper. The Pasta-3 
query language is based on the graphical Direct 
Manipulation (GrDM) interaction paradigm, which relies 

- 103 - 



on a bit-mapped, multi-window screen and a mouse to im- 
plement clickable, draggable icons as the main represen- 
tation of the query expression. Its purpose is not to invent 
an nth formal language, but rather to provide a new, sophis- 
ticated GrDM editing capability for the already existing 
formal constructs of the KB2 language. Cooperative 
querying is supported through: handy values, automatic 
path completion, and the edit-and-reevaluate loop. 
Expressive power is obtained by allowing: arbitrarily com- 
plex selections, recursive queries, logical variables and 
quantification, subqueries, and mixing in Prolog code. 

These features of the Pasta-3 query language thus con- 
tribute to progress on the aspects of graphical querying 
where it was most needed. However a major open problem 
(already mentioned in Section 4.1) is the relationship be- 
tween GrDM interfaces and DBMS back-ends: to what ex- 
tent can DBMSs continue to be designed and developed 
without taking into consideration from the very beginning 
the requirements of GrDM interfaces ? 

7. Acknowledgements 
We thank our colleagues Johann Christoph Freytag, 

Herve Gallaire, Rainer Manthey, and Mark Wallace for 
their valuable comments on an earlier draft of this paper. 

8. References 

lBocca 863 Bocca, J.; Decker, H.; Nicolas, J.-M.; Vieille, 
L.; Wallace, M. Some Steps Towards a 

DBMS Based KBMS. In Kugler H.-J. (editor), Information 
Processing ‘86 - IFIP Congress Series. IFIF’, 1986. 

[Bose 861 Bose, P.; Rajinikanth, M. An Intelligent Assis- 
tant to a Database System. Texas Instruments Engineering 
Journal 4(1):163-169, Jan/Feb., 1986. 

[Bryce 861 Bryce, D.; Hull, R. SNAP: A Graphics-based 
Schema Manager. In Proc. of the IEEE 2nd Int. Conf. in 
Data Engineering, Los Angeles, pages 151-164. 1986. 

[Campb 871 Campbell, D. M.; Embley, D. W.; Czejdo, B. 
Graphical Query Formulation for an Entity-Relationship 
Model. Data & Knowledge Engineering (2):89-121,1987. 

[Catarci 881 Catarci, T.; Santucci, G. Query By Diagram: 
A Graphic Query System. In Proc. of the 7th Int. Conf of 
Entity Relationship Approach, Rome, Italy. The ER In- 
stitute, 1988. 

[Chen 871 Chen,Tao; Wu, Jian-Kang. QPF -- A Versatile 
Query Language Based on ADTS. In 1987 Workshop on 
Visual Languages, pages 199-205. Linkoeping University, 
August, 1987. 

[Cruz 871 Cruz,Isabel;Mendelzon+Alberto;Wood,Peter. 
A Graphical Query Language Supporting Recursion. In 
1987 SIGMOD Conference, pages 323-330. ACM, May, 
1987. 

dart 881 Dart,Philip;Zobel,Justin. Conceptual Schemas 
Applied to Deductive Databases. Information Systems 
13(3):273-287.1988. 

[Du 881 Du, H.; Manoochehr, A. GQL: A Graphical 
Database Language Using Pattern Images. In Proc. of the 
Computer Graphics Int. Co&, Geneva, May. 1988. 

[Egenh 881 Egenhofer, M.J.; Frank, A.U. Towards a Spa- 
tial Query Language: User Interface Considerations. In 
Proceedings of the 14th Cant on Very Large Data Bases 
(VWB’88), Los Angeles, California, pages 124-133. 1988. 

lElmas 853 Elmasri, R.; Larson, J. A. A User-Friendly 
Interface for Specifying Hierarchichal Queries on an ER 
Graph Database . In Proc. @the 4th Int. Conference on 
the Entity-Relationship Approach, Chicago, pages 236-245. 
IEEE, October 28-30,1985. 

[Gimn 883 Gimnich, R. Implementing Direct Manipula- 
tion Query Languages Using an Adequate Data Model. In 
Proc. of the 7th Interdisciplinary Workshop ‘Informatics 
and Psychology’: Visualization in Human-Computer Inter- 
action, Schaerding, Austria, May 24-27. Austrian Com- 
puter Society, 1988. 

[Goldm 851 Goldman, K. J.; Goldman, S. A.; Kane&&, 
P. C.; Zdonik, S. B. ISIS: Interface for a 

Semantic Information System. In Proceedings of ACM- 
SIGMOD 1985 Int. Co@. of Management of Data, Austin, 
Texas, pages 328-342. May, 1985. 

lI-Ierot 803 Herot, C. F. Spatial Management of Data. 
ACM Transactions on Database Systems 5(4):493-514, 
December, 1980. 

[Herrm 891 Herrmann, M.; Hill, R. D. Abstraction and 
Declarativeness in User Interface Development -- The 
Methodological Basis of the Composite Object Architec- 
ture. In IFIP Congress ‘89. IFIP, 1989. 

[Hill 891 Hill, R. D.; Herrman n, M. The Structure of 
TUBE -- A Tool for Implementing Advanced User Inter- 
faces. In EUROGRAPHICS ‘89. 1989. 

[Hutch 861 Hutchins, E.; Hollan, J.; Norman, D. Direct 
Manipulation Interfaces. User Centered System Design. 
Lawrence Erlbaum Associates, 1986. 

[Kaplan 821 Kaplan, S.J. Cooperative Responses from a 
Portable Natural Language Query System. Artjticiul 
Intelligence 19:165-187.1982. 

[Kim 883 Kim, H.-J.; Korth, H. F.; Silberschatz, A. 
PICASSO: A Graphical Query Language. 
Software-Practice and Experience 18(3):169-203, March, 
1988. 

[King 841 King, R.; Melville, S. SKI: A Semantics- 
Knowledgeable Interface. In Proc. of the Tenth Internat. 
Conf. on Very Large Databases (VLDB), Singapore, pages 
30-33. August, 1984. 

- 104 - 



[Kuntz 89a] Kuntz, Michel; Melchert, Rainer. Pasta-3: a 
Complete, Integrated Graphical Direct Manipulation Inter- 
face for Knowledge Base Management Systems. In to up- 
pear in: Proc. 11th World Computer Congress, pages . 
IFB’, August, 1989. 

[Kuntz 89b] Kuntz, Michel; Melchert, Rainer. Pasta-3’s 
Requirements, Design, and Implementation: A Case Study 
in Building a Large, Complex Direct Manipulation Inter- 
face. In to appear in: Proc. Engineering for Human- 
Computer Interaction, pages . IFIP, August, 1989. 

[Kuntz 89~1 Kuntz, Michel; Melchert, Rainer. Ergonomic 
Schema Design, Browsing with More Semantics, and a 
Graphical Direct Manipulation Query Language: the 
Pasta-3 End User Interface for E-R DBMSs. In submitted 
to: 8th E-R Conf, pages . E-R Institute, October, 1989. 

[Lewis 831 Lewis, J. W. An Effective Graphics User In- 
terface for Rules and Inference Mechanisms. In Proc. of 
the CHI’83, pages 139-143. December, 1983. 

[Maier 831 Maier, D.; Ullman, J.D. Maximal Objects and 
the Semantics of Universal Relation Databases. ACM 
Transactions on Database Systems 8(1):1-14, March, 1983. 

[McDon 75]McDonald, N.; Stonebraker, M. CUPID - The 
Friendly Query Language. In Proc. of the 1975 ACM 
PACIFIC, San Francisco, pages 127-131. ACM, April, 
1975. 

[Melch 871 Melchert, Rainer. Graphische Unterstuetzung 
beim Umgang mit Wissensbanken. In Proceedings of 
Datenbanksysteme in Buero, Technik und Wissenschaft, 
pages. BTN 87, April, 1987. 

[Metro 883 Motro, Amihai; D’Atri, Alessandro; Tarantino, 
Laura. The Design of KIVIEW: An Object-Oriented 
Browser. In Proceedings of the 2nd Int. Conf. on Expert 
Database Systems, pages 17-31. George Mason Univer- 
sity, April, 1988. 

[Myers 861 Myers, Brad. Visual Programming, Program- 
ming by Example, and Program Visualization: A 
Taxonomy. In CHI 86 Conference Proceedings, pages 
59-66. ACM SIGGRAPH, April, 1986. 

lPahwa 851 Pahwa, A.; Arora, A. K. Automatic Database 
Navigation: Towards a High Level User Interface. In Proc. 
of the 4th Internat. Co& on Entity-Relationship Approach, 
Chicago, Ill., pages 36-43. IEEE, 28-30 October, 1985. 

[poltr 861 Poltrock, S. E.; Steiner, D. D.; Tarlton, P. N. 
Graphic Interfaces for Knowledge-Based System Develop- 
ment. In Proceedings of the CHI’86, pages 9-14. ACM 
SIGCHI, April, 1986. 

lRaeder 851 Raeder,Georg. A Survey of Current Graphical 
Programming Techniques. IEEE Computer 18(8): 1 l-25, 
August, 1985. 

[Reiser 881 Reiser,Brian et al. Visual Programming, Pro- 
gramming by Example, and Program Visualization: A 
Taxonomy. In CHI 88 Conference Proceedings, pages 
39-44. ACM SIGGRAPH, May, 1988. 

[Shnei 831 Shneiderman, B. Direct Manipulation: A Step 
Beyond Programming Languages. IEEE Computers 
(16):57-69, 1983. 

[Teskey 841 Teskey, F. N.; Dixon, N.; Holden, S. C. 
Graphical Interfaces for Binary Relationship Data Bases. 
Information Systems 3(2):67-77, April, 1984. 

lUdaga 821 Udagawa, Y.; Oshuga, S. Novel Technique to 
Interact with Relational Databases by Using a Graphics 
Display. Journal of Information Processing 5(4):256-264, 
1982. 

lUrspr 831 Ursprung, P.; Zehnder, C.A. An Interactive 
Query Language to Define and Use Hierarchies. 
Entity-Relationship Approach to Software Engineering. El- 
sevier Science Publishers B.V. (North Holland), 1983. 

[Wahls 851 Wahlster, W. Cooperative Access Systems. In 
Proc. of the Int. Conf on Fifth Generation Computer Sys- 
tems 1985, pages Vol.l/ pp.103-111. 1985. 

[Walla 863 Wallace, M. KB2: A Knowledge Base System 
Embedded in Prolog. Technical Report KB-12, ECRC 
GmbH, Munich, W. Germany, 1986. 

[willi 841 Williams, M. D. What makes RABBIT run ? 
Int. Journal of Man-Machine Studies 21:333-352, 1984. 

lWong 821 Wong, H. K. T.; Kuo, I. GUIDE: Graphic 
User Interface for Database Exploration. In Proc. of the 
8th Very Large Databases Conf., Mexico , pages 22-32. 
1982. 

Wu861 Wu, C. T. A New Graphics User Interface for 
Accessing a Database. Advanced Computer Graphics. 
Springer-Verlag, Berlin, Heidelberg, New York, 1986. 

[Zhang 831 Zhang, Z.-Q.; Mendelzon, A.O. A Graphical 
Query Language for Entity-Relationship Databases. 
Entity-Relationship Approach to Sofnvare Engineering. El- 
sevier Science Publishers B.V. (North Holland), 1983. 

[Zloof 773 Zloof, M. M. Query-by-Example: a data base 
language. IBM Systems Journal (4):324-343,1977. 

- 105 - 



- 106 - 


