
Parallel Processing of Recursive Queries in Distributed Architectures

Guy Hulin

Philips Research Laboratory
2 avenue Van Becelaere, 1170 Brussels, Belgium

ghulin@lprlb2.uucp

Abstract

This paper presents a parallel algorithm for recursive
query processing and shows how it can be efficiently
implemented in a local computer network. The algo-
rithm relies on an interpretive approach where recur-
sive rule processing and data retrieval are merged in a
top-down computation. It employs “sideways informa-
tion passing” to restrict to relevant facts the informa-
tion extracted from the relational database. Evalua-
tion is divided into a compilation phase and a dynamic
phase. The compilation phase statically constructs a
derivation tree that expresses the decomposition of a
query into subqueries and the “sideways information
passing” strategy. In the dynamic phase, cooperative
processes are associated with subsets of “equivalent”
nodes of the derivation tree. They communicate by
message passing without sharing memory. Some opti-
mizations are discussed for a practical parallel imple-
mentation. Gains in efficiency with respect to classical
sequential algorithms are also discussed.

1 Introduction

A disiributed database [5] is a collection of data which
are distributed over different computers of a computer
network. Relations are partitioned into fragments ver-
tically and/or horizontally. The vertical hgmenlaiion
of a relation is the subdivision of its attributes into
groups; fragments are obtained by projecting the rela-
tion on each group. The horizontal jhgmentaiion of a
relation consists in partitioning its tuples into subsets.

Query evaluation in distributed databases is per-
formed in parallel through the computer network. The
existence of several cooperating processors results in
increasing performance.

Databases can be given deductive capabilities by the
addition of de&Zion rules. Rules are often restricted
to be definite Horn clauses. They define new relations
and can be recursive.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is

given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

This paper presents a parallel algorithm for evalu-
ating atomic queries in deductive databases and shows
how it can be efficiently implemented in a local com-
puter network (locality is necessary because parallelism
in the algorithm is relatively fine-grained). It sug-
gests a multi-computer architecture well-fitted for dis-
tributed deductive databases where some processors
handle fragments of the distributed database while oth-
ers are devoted to the evaluation of recursive queries.
Such an architecture is currently being developed in
the database tract of the PRISMA project (PRISMA
for PaRallel Inference and Storage MAchine) [13].

From a logical point of view, a deductive database’ is
a finite set of function-free definite clauses. It is com-
posed of an eztensional database and of an intensional
database. The extensional database is a set of ground
atomic formulas called facts. The intensional database
is a set of rules.
Example 1
Consider a directed graph with two types of arcs and
two predicates el(X,Y) and ez(X,Y) meaning that
there exists an arc, respectively of type 1 or 2, from
Node X to Node Y. Then, the following rules

P@, Y) + el(X, Y),
dx, Y) + e2(X, z), P(& T), e2K Y),

define a virtual predicate p true for couples of nodes
(X,Y) such that there exists a path from X to Y all
of whose arcs are of type 2 except the central one. l

It can be assumed, without loss of generality, that a
fact in the extensional database and an atomic formula
in the head of a rule of the intensional database are
never instances of the same predicate. The predicates
of the deductive database some of whose instances are
heads of rules of the intensional database are called
virtual predicates, the other ones are called base predi-
cates.

The semantics of a deductive database B is given by
its least Herbrand model MB which can be constructed
by fixpoint computation. A closed formula F is true in
the deductive database B if ~~~ F.

A first approach for evaluating queries in deductive
databases consists in adding to the traditional rela-
tional algebra a least fixpoint operator LFP. If p is a
virtual predicate, LFP(p) = (a 1 ~~~ p(a)}.

In Example 1, the query p(a,Y)? is translated into

‘For more details about deductive databases, see [12].

Amsterdam, 1989

- 87

CQ=,LFP(~). Unfortunately, commuting selection and
least fixpoint operator is not possible in general and
that leads, for Example 1 and the query p(u,Y)?, to
the necessity of computing the complete extension of
p. Yet, in order to answer the query, only part of the
extension of p is strictly necessary. The facts that effec-
tively contribute to the answer are said to be relevant
to the query. A good evaluation strategy should not
extract other facts from p. In general, which facts are
relevant also depends on an ordering of the predicates
in the right-hand sides of the rules [4].

Various proposals have been made to overcome this
problem [7,8,10,15,20,27] but they are restrictive in
that they are complete only for special (typically lin-
ear) types of recursion.

Another approach takes advantage of the decom-
position of queries into subqueries and of the possi-
ble constant propagation among them. This approach
seems more fruitful and has been heavily investigated
recently. In [16], an active connection graph is dy-
namically created, with rule nodes and goal nodes cor-
responding to queries and subqueries. Solutions flow
across the rule nodes to the goal nodes. However, con-
stant propagation is poor and therefore, the algorithm
is rather inefficient. Also the APEX algorithm [14]
clearly lacks an efficient propagation of constants. The
Recursive Query/Subquery (QSQR) and QoSaQ ap
proaches [24,25], the Alexander method [19], and the
generalized counting method [4] are algorithms which
compute only relevaut facts.

A uniform presentation of recursive query evaluation
methods can be found in [18]. The algorithms are clas-
sified in three classes according to their halting con-
dition. They are also compared on completeness and
efficiency criteria

Another efficiency requirement, which has received
little attention until now, is the minimiration of the
number of database accesses, It can be addressed in
two ways. First, when the same query on base predi-
cates is generated at different times, a good evaluation
process should access the database only once. Further,
the strategies mentioned above repeatedly instantiate
subsets {zil, zi,) (bin) of variables in base predi-
cate p(cl, a,), and access the extensional database
for all the facts p(ur , Zen) such that (uil, w,,) are
the values instantiating (zir, zik). It is clear that,
rather than accessing the extensional database each
time an instance is generated, a better strategy should
accumulate successive instances and make a single ac-
cess for solving all of them simultaneously.

The algorithms cited above are sequential and lit-
tle attention has been paid to parallelism until now.
Parallelism is however recognized as a very important
optimization feature for recursive query evaluation. A

few proposals exist for evaluating transitive closures
in distributed database systems [1,9,22]. More gener-
ally, several classes of logic programs, e.g., the class of
linear single rule programs, can be evaluated in par-
allel without introducing interprocess communication,
or synchronization overhead [26]. A first step towards
a parallel algorithm for general recursive queries has
been proposed in [23]. A first attempt to implement
that algorithm on top of a multi-computer system [21]
has not proved satisfactory, due to an excess of dupli-
cated work.

This paper is a continuation of [ll] where we pre-
sented a new sequential algorithm, in the same vein
as the QSQR approach, that accepts general recursion
and guarantees termination and completeness. This
paper describes a parallel version of the algorithm. The
evaluation of a query is decomposed into two parts.
The first one is static: it is a compilation of the query
into an AND/OR tree. The second one is dynamic:
cooperative processes associated with nodes of the tree
rule the flow of data traversing the tree. They commu-
nicate by message passing and do not share memory.
We also discuss possible optimiaations for a practical
parallel implementation.

The paper is organized as follows. Definitions and
notations are introduced in the following section. The
compilation phase is described in Section 3 while Sec-
tion 4 presents the parallel processes of the dynamic
phase. Section 5 discusses some possible optimizations:
choice of a selection function, minimisation of the nnm-
ber of database accesses, and increase of parallelism.
Section 6 is a conclusion.

2 Basic definitions

Variables in rules are taken in an alphabet V not con-
taining the symbol *. In addition, V* is a new set of
variables where CC* is au element of V* if-and only if 2

is an element of V.
A query scheme associated with a predicate p is

any atomic formula ~421, ..,, 2,) without constants and
whose variables are in V* or in V. Two variables 2 E V
and 2*~ V* cannot both be present in the same query
scheme. If 2* is present, 2 is called an entry vatiable of
the query scheme. The ezit variables of a query scheme
are those belonging to V.

Two query schemes associated with an n-ary predi-
cate p are said to be equivalent if they are identical up
to a renaming of their variables respecting their entry
or exit character.

An entry (resp., ezit) due for a query scheme with
n entry (resp., exit) variables is any set of n vari-
able/value pairs where each variable appears once and
only once.

- 88 -

A mechanism is assumed, provided for example by
a (distributed) DBMS, that, given a query associated
with an n-ary base predicate, computes its solution
from the extensional database. More precisely, if Q is
a query scheme associated with a base predicate, in-u
is an entry value of Q, and BE is the database, then,
ans(Q, in-V, BE) = {in-vu out-v 1 out-v is an exit value

of Q & Q[in-uU out-v] E BE}
where F[a] denotes the result of applying the substi-
tution o to the formula F.

3 The compilation phase

The result of compiling a query scheme is a derivation
tree whose nodes are labeled with query schemes.

Derivation trees are special kinds of AND/OR trees
[17]. They can be viewed as a kind of hypertree, where,
instead of arcs connecting pairs of nodes, hyperarcs
connect a parent node to an ordered lit of successor
nodes. The derivation tree of a query scheme makes
explicit its possible decompositions (derived from the
deduction rules) into subquery schemes. Like in Prc+
log, the ordering of subqueries governs the propagation
of the instantiations of the entry variables.

The compilation phase constructs the derivation tree
by recursively splitting each query scheme in as many
sequences of subquery schemes as there are deduction
rules defining the query scheme predicate in the inten-
sional database. The resulting derivation tree has the
following properties:

l when several equivalent query schemes are present
in the derivation tree, only one of them is explicitly
decomposed;

l the subquery order in a decomposition is imposed
by a selection function. Different selection func-
tions can generate different derivation trees. A good
choice of the function is important: the efficiency of
the evaluation process is very sensitive to the or-
dering. Heuristics guiding the choice of a selection
function are discussed in Section 5.1;

l a variable in a subquery scheme SQ at the extremity
of a hyperarc h is an entry variable if it is an entry
variable of the query scheme which is the origin of h
or an exit variable of a subquery scheme preceding
SQ in the extremity of h.

Example 2
For the query scheme p(X’, Y) and the database of

Example 1, the following tree is a possible derivation
tree (a hyperarc is denoted by several binary arcs joined
together by a curved line and nodes are numbered for
easier reference.):

e2(X * z)mez(T Y) * *
2 ’ 3 ’ 4 ’

Note, for example, that 2 which is an exit variable
at Node 2 becomes an entry variable at Node 3. l

Example 3
In the following database, the virtual predicates 01 and
cl are mutually recursive:

al(x,Y,Z) + b(X,Zl),al(T,Zl,Z),cl(Zl,T,Y).
cl@, Y, 2) +- 4X, G), al(G, 2, Y).
al(X,Y, 2) + 4X, Y, 2).
cl(x,Y,q + f(X,Y,Z).

The predicates b, d, e and f are base predicates.
The query scheme ul(X*,Y*, 2) leads to the possible
derivation tree:

g1(X',Y'J)

A

* $X',Y', 2)

l

Before considering the dynamic phase, some more
definitions are needed. A node n1 of the derivation tree
precedes a node n2 (or, equivalently, no follows nl) if
they are extremities of the same hyperarc and if n1 is
on the left of n2. In Example 3, Node 2 precedes Node
3 and Node 7; Node 5 precedes Node 6. A node with-
out a predecessor is called an in&a2 node (Nodes 0, 1,
2, 4 and 5) and a node without a successor a terminal
node (Nodes 0, 1, 4, 6 and 7).

The concept of father node has its usual meaning:
Node 0 is the father of Nodes 1, 2, 3, and 7.

In the derivation tree, it may happen that several
nodes are labeled with equivalent query schemes. The
first one encountered during a depth-first traversal of
the tree is called archetype node. In Example 3, Nodes
0, 1, 2, 3, 4 and 5 are archetype nodes. This concept
will be useful for the dynamic phase.

4 The dynamic phase

An atomic query is a query scheme together with an
entry value for it. It is denoted by the query scheme
where entry variables have been instantiated with the

- 89 -

entry value. The dynamic phase operates on an atomic
query and the derivation tree of its scheme, as con-
structed during the compilation phase, and produces
a set of exit values for the query scheme. This set
is computed step-by-step by repeatingly traversing the
tree.

The dynamic phase consists of the interleaving of
parallel processes. Each process executes in a dynamic
coded. A context remembers the minimal part of the
computation state necessary to carry on with the com-
putation. Active queries remember the subqueries gen-
erated during the evaluation process with their partial
solution and the contexts in which they were issued.
Contexts and active queries play an essential role in
avoiding redundant work as well as in guaranteeing
correctness and completeness. They are presented in
Section 4.1. Parallel processes are informally described
in Section 4.2 and their precise algorithms are given in
Section 4.3.

4.1 Contexts and active queries

A context of invocation of a process at a node n has
the form <n,~~~Ev,in-v-f > where

l

0

in-o-f is an entry value for n’s father node ({3 if n
is the root node),
ml-0 is (L relevant value of n, i.e., a set of vari-
able/value pairs which comprises the values of

l entry variables of nodes which follow n in the
extremity of a hyperarc provided those variables
are also entry variables of the father of n or exit
variables of nodes preceding n,

l exit variables of the tither of n which are exit
variables of nodes preceding n.

The variables in a relevant value of a node n are
called relevad variables of n. During evaluation, the
relevant value in a context of n remembers the values of
variables that are known before evaluating the current
query at n and that are still needed after its evaluation.

To illustrate these concepts, consider the following
derivation tree:
Example 4

At Nodes 0 and 1, the set of relevant variables is
empty, at Node 2, it is (X3, at Node 3, it is (X,Y),
at Node 4, (X,Y, W) and at Node 5, {Y).

At Node 4, a context comprises, besides a reference to
Node n itself:

l a relevant value (Y/cl, X/c,, W/c,). Y/cl is a part
of a possible solution of the query at Node 0 with
entry value {X/es} while X/c, and W/c, are needed
at Node 5 to find solutions for 2,

l an entry value for Node 0: {X/CO).
From this context and an exit value from Node 4,

a context and an entry value can be constructed for
Node 5. A context and an exit value of Node 5 allow
to construct an exit value of Node 0. A context of a
node remembers the minimal part of the computation
state necessary to go on in the computation when an
exit value is found at the node. l

During the evaluation process, information units,
called active queries, are associated with each node
to remember queries previously requested at the node,
their partial solution, and the contexts in which the
requests were issued. As distinct nodes may be labeled
with equivalent query schemes, it is enough to associate
active queries only with archetype nodes.
An active query at an archetype node n comprises:

l an entry value (it uniquely identifies the active
query at the node),

l a set of exit values for that entry value (this set will
be used to avoid repeating the same computation
and, in particular, to avoid cycling),

l a set of contexts of nodes whose archetype is n (this
set will be used to guarantee completeness, that is,
to guarantee that exit values are used in all the con-
texts in which they were requested).

During the evaluation process, the set of exit values
of the active queries are not necessarily complete, i.e.
do not contain all the solutions of the query. That
is why the contexts where queries are generated are
remembered: each time a new solution .is found for
an active query of a node w, it is propagated along
alI contexts remembered in that active query. This
guarantees completeness: each exit value of each active
query is propagated along each context. At the end of
evaluation, each active query has received a complete
set of exit values.

Query schemes at equivalent nodes differ by their
variables. If n and n’ are equivalent nodes and v is
an entry or exit value for n, the corresponding value
for n’ will be denoted van’. In Example 3, Nodes
0 and 7 are equivalent. An entry value of Node 7 is
<T/a, 21/b>. Then, <T/a, Zl/b>@O = < X/o,Y/b>
is an entry value of Node 0.

4.2 Parallel processes

There is one process Evaluate(n) for each archetype
node n. They interactively solve subqueries generated
during evaluation.

-9o-

To each archetype node n, we associate:

l a process Evaluate(n,) which computes and propa-
gates the answers of active queries at n,,

l a private memory Memory(n,), that is, a set of active
queries of n,,

l two buffers, if n, is a virtual node, to store messages
sent by other processes:

Request(n,), a set of Tequest messages for no,
Ansurer(a set of answer messages for n,,

l a buffer Request(n,), if ncr is a base node.

A Tequest message for n, is a pair made of an entry
value and a context for a node whose archetype is n,.
An answer message is a set of variable/value pairs for
the variables of no.

In Example 4, four processes coexist: Evaluate(%)
for i = 0, 1,2,5. A query such as s(z,Y, 2) (lower case
letters denote constants) is solved by executing:

Evaluate(no) 11 . . . 11 Evaluate(ns)

after having sent the message <{X/x),<no, (3, {3>>
to Request(no). PI 11 Pa denotes the parallel computa-
tion of PI and P2.

The reception of <(X/x),<no,{),{)>> in buffer
Request(no) initiates the computation. The process
Evaluate(w) adds to Memory(no) the active query
({X/x), {3, {<no, {3, {3>3). That query is solved by
parallel decomposition along each hyperarc issuing
from node 0 as follows:

1. A request message <(X/x),< nr, {3, (X/x)>> is
sent to Request(nl). Node ni is a base node.
The request is solved by Evaluate(ni) which com-
putes S = ans(p(X*, Y, Z), {X/x), BE) and sends
it to Answer(no). That computation is remem-
bered by adding to Memory(nl) the active query
((Xlz3, S, (<al, 0, (X/x)>)). If, later, nl is
queried again with the same entry value X/x, the
set of answers is already present in Memory(nl)
and no new access to the extensional database is
necessary.

2. A request message <{X/x),<n~,{X/x),{X/x)>>
is sent to Request(nz). Exit values {Y/y,T/t) are
computed by Ev&&e(n~) by accessing ki for
q (see 1.). For each of them, the request mes-
sage <(T/t),<ns, (X/x, Y/y), (X/x)>> is sent to
Request(no), since no is the archetype of n3.
Two situations may then arise, in general, for
Evaluate(no):

l there exists in Memory(no) an active query
Q with entry value (X/t). In that case, if
the context <na, (X/x, Y/y), {X/x)> is not
already in the set of contexts of Q, it is
added to it. For each {Y/yr, Z/z13 in the
set of exit values of Q, the request message

<(U/y13,<7h,{X/x, Y/y, W/213, {X/x3>> is
sent to Request(no)(no is the archetype of nq),
otherwise, an active query with the en-
try value {X/t), an empty set of exit val-
ues and a singleton set of contexts con-
taining <na, {X/x, Y/y), (X/x)> is added to
Memory(no). Its set of exit values is computed
by parallel decomposition as described above for
the original query s(x, Y, 2).

3. Each <{U/yl),<n4, (X/x, Y/Y, W/a), (X/x3>>
in Request(no) is also solved by parallel decomposi-
tion. Each answer {U/yi, V/v, R/r) generates a re-
quest <{W/a, R/r, X/xh<ns, {Y/Y), (X/xl>>
in Request(n5). These requests are solved by
Evaluate(ns) by accessing BE for t(zr,T,x, 2).
Each value zr of 2 resulting from that evaluation
generates an answer message {X/x, Y/y, Z/z23
sent to AnsweT(no).

Answer messages are processed in parallel with re-
quest messages. Notice that two active queries in the
private memory of a process have different entry values.
If a query is encountered more than once at equivalent
nodes, there will be, in the private memory of the pro-
cess associated with their archetype node, an active
query with several contexts to remember the different
states where the queries appeared. The contexts of a
query ((X/a), S, C) at no are of one of the form:
a. <no, O,O>,
b. <n3, (X/x, Y/Y), Wx3>,
c- <n4, {X/x, Y/y, Wlw3, (X/x3>.

During the evaluation process, the set of exit values of
the active queries are not necessarily complete, i.e. do
not contain all the solutions of the query (except for
queries on base predicates). That is why the contexts
where queries are generated are remembered: each
time a new solution is found for an active query of
Memory(R), Evaluate(w) propagates it along all con-
texts remembered in that active query. This guarantees
completeness: each exit value of each active query is
propagated along each context. At the end of evalua-
tion, each active query has received a complete set of
exit values.

Given a solution {X/a,Y/b, Z/c3 of Answer(no)
and the active query ((X/a),S,C) at Node no, if
{Y/b,Z/c) is not already in the current solution S,
it is added to S and the solution is propagated in each
context in C of the form b or c2, i.e.,

type b: <{U/b),<na, (X/x, Y/y, W/c), (X/x)>> is
sent to Request(no),

type c: <{W/w, R/c, X/x3,<~, {Y/Y), (X/x)>>
is sent to Request(ns).

2There is no propagation in the context of type a which is the
context of the initial query.

- 91 -

Termination occurs when all request and answer
buffers are empty and when all processes are waiting
for new messages.

4.3 Algorithms

Some properties of entry, exit and relevant variables
will be useful for writing the algorithms:

1. The entry and relevant variables of an initial node
are also entry variables of its father.

2. The entry and relevant variables of a node with a
predecessor are among the exit and relevant vari-

ables of the predecessor.
3. If n is terminal, then n’s relevant and output vari-

ables make up the exit variables of n’s father.
Let us call Oi”(nt(uup) those elements in a list of vari-

able/value pairs vvp whose variables are entry variables
of n and O~f(vvp) those elements whose variables are
relevant to n. With these notations, the preceding
properties write:

1. if n is an initial node and in-v-f is an entry value of
n’s father, Bin,n’(in-v-f) is an entry value of n and
Oyr(in-v-f) is a relevant value of n,

2. if n has a successor n-sue, if reLv is a relevant value
of n and out-v is an exit value of n, O~~~,,,(reZ-v U

o&v) is an entry value of n-sue and Oz’,,,,, (4-v
U out-u) is a relevant value of n+uc,

3. if n is terminal and if ml-v is a relevant value of n
and out-v is an exit value of n, rt4v U out-v is an
exit value of n’s father.

All the elements necessary to present the processes are
now gathered3.
If n, is a virtual archetype node:

Evaluate(n,):
While he do

1. if Requesi(n,) # 0, then call actionI(
2. if Answer(n,) # (1, then call actionz(n,).

actionl(n,):

*
*

1. take an element <in-v,0 (c = <n,reZ-v,in-v-f>)
out of Requesl(n,);

2. if there exists an active query Q = (in-v&,, S, C)
in Memory(n,) ,
then,
if c is not in C,

1. add c to C;
2. for each out-v in S,

call propagate(out-vOn,c)
else,

1. create the new active query
w = (in-v&l, 0, {c});

3Correctness and completeness of the corresponding scquen-
tial algorithm have been proved in [ll]. The demonstration could
easily be transformed for the parallel version.

2.
3.

add NQ to Memory(n,);
for each hyperarc h issuing from Node n4, *
let n-in be the origin of h, *

n-in, be the archetype of n-in, *

send <O~~~,,(in-v&a,), <n-in,S&(in-u@ra.),
in-v&a,>> to Requesi(n-in,,). *

actionz(n,):
1. take an element 8 out of Anewer(
2. let Q = (in-v, S, C) be the active query of

Memory(n,) such that in-v C 8
if outv = s\in-v is not in S,
then,

1. add out-v to S;
2. for each c = <n,reGv,in-v-f> in C

call propagate(out-v&c).

propagate(out-v,<n,reCv,in-v-f >):
If n is a terminal node,
then,
if n has a father n-f*,
then
send in-v-f U n&v U out-v to Answer(n-f,),

else,
let n-zuc be the successor of n,

n-sue,, be the archetype of n-auc,
send <O~~,,c(~~-v Uout-v), <n-euc,@&(do Uout-
v), in-v-f >> to Requesl(n-sue,).

The process associated with a base archetype Node
n, is similar to the one associated with a virtual node
except that the lines of Evaluate(n,) and actions(%)
marked by *‘s are respectively replaced by:

if Request(n,) # {}, then call actionl(n,).
and
3. let Q be the query scheme labeling no,

1. replace the empty set of exit values of NQ by
ans(Q,in-v&a,,, BE);

2. for each 8 in ans(Q,in-t&no, BJJ),
call propagate((sOn)\in-v,c).

As they are presented, the algorithms implement a
tuple-oriented evaluation strategy: a message only con-
tains one answer or one request. This is not inherent to
our evaluation method. Each process could also accu-
mulate the requests and answers it generates until its
own Answer and Request buffers are empty and then
only send sets of requests and answers to the other
processes. The evaluation would then be set-oriented.

Any other strategy that lies between those two ex-
tremes is also possible. The choice of an optimal strat-
egy depends on the communication costs in the dis-
tributed architecture. If they are negligible, a tuplc
oriented strategy can be preferable because, as each
request and answer are sent as soon as they are gener-
ated, the cpu utilization of the processes is optimized.

- 92-

Otherwise, a more set-oriented strategy must be cho-
sen.

4.4 Termination

In order to discuss termination, each process is as-
sumed to acknowledge each message it receives as soon
as it reads it and to maintain, in a counter, the number
of messages that it sent and has not yet been acknowl-
edged of.

Termination occurs as soon as, for every process,
- Request and Answer buffers are empty,
- there is no message currently being processed,
- the value of counter is equal to zero.

The problem in a distributed architecture is deter-
mining asynchronously when all the above conditions
are satisfied. Fortunately, that problem has well-known
solutions. Their presentations is out of the scope of this
paper and the interested reader is invited to refer to [6].
That problem is also shortly discussed in [23].

4.5 Example

We now present the trace of an example. It is short but
typical due to the symmetry of the es relation on the
couple (a, b). This symmetry is responsible for the for-
mation of an active query with two different contexts.
We have made explicit the consequences of the execu-
tion of processes. The creations and alterations of the
different active queries at the root node are indicated
in M(no) (for Memory(no)). For the sake of simplicity
and brevity, they are not shown for the base archetype
nodes. The Request and Answer buffers of a node n are
denoted R(n) and A(n). They are empty by default.
In this simple example, entry and exit values have only
one component.
The intensional database is

AX, Y) + el (X, Y)
P(& Y) + 4% z),p(Z,T), m(T, Y).

The ext;$o;al database is

48,s)
e(a,b) e(d,e)
eatha) ez(e,f)
en(c, 4 ea (9, A)

The query is p(a,Y). Nodes TQ (0 5 i 5 4) are
numbered as in Example 2. Nodes no, nl and nz are
archetype nodes.

I~tiab, R(n0) = (<(x/a},<m, 0, -(}>>}.

1. EMuate
Wno) = (((X/a3,{3,(<no,O,O>333
R(w) = (c(X/~),<m, 0, (X/03>>)
R(m) = (c.(X/~),<~a,o,(X/a3>>3

2. Evaluate(nl)]I Evaluate(ns)
R(no) = (<{Z/b),<m, 0, (X/a3>>3

3. EvaIuate(ns)
Jf(no) = {({X/Q3,09 {-9 09 {3>33,

tVlb3,Ot {-3cOB (X/o)>}))
= {<(XIb3,<nl,O,{X/b3>>3
= {<Wb3,<m, 0, Cx/b3>>3

4. Evaluate(nr) 11 Evaluate(ns)
R(no) = {<(Zla3,cm, 09 CWb3>>3

5 ~4=-,,(,‘,“(V’l~)’
n

M(no) = (i~~/~),O,{<no,~),O>,<n3,{3,{X/b)>)),
(Cxlb3, W’lc33, j-39 C3,{X/a3>3)3

R(m) = {<{T/c),<nr, {3, {X/a)>>)
6. Evaluate(ns)

Atno) = {W/a, Y/d33
7. Evaluate(n0)

M(n0) =
{({X/03, (Wd33, f-09 09 O>c<nsv 09 {V3>3),
({X/b39 {V/c339 (-390s (X/a3>3)3

R(m) = {<{T/d),<m, {3, {X/b)>>3
8. Evaluate(n,)

A(no) = {{X/b,Y/e))
9. Evahate

M(n0) = ' .
{({X/a39 IWd33, ~-0, C3vOh<n39 09 {Wb3>3h
(WP3, iO’/c3, We339 i-3,

R(na) = {<{T/ 3 < {3 {X/ ~~~f’03’3’3 evn4, , a
10. Evaluate(nz1

Atno) = (W/a, Y/f 33
11. Evaluate(no)

dd(nn\ = -\ -,
f(Wlo3, (W/d3, W/f33l (<no, O,O>,

<m, 0, W/b3>3),
(Wb3, tV/c3,W/e339 (<w 0, Wo3>3)3

R(m) = {<Plf 3,-a, C3, Wlb3>>3
12. Evahate

The computation stops here and the set of answers
is Wl4~ W/f 33.

5 Opt imizat ions

5.1 The selection function

The selection function is of great importance because
it orders the subquery schemes generated from a query
scheme. The evaluation processes follow this order
when they solve queries and propagate solutions.

In the rule o(X, Y) + b(X, Z), ~(2, Y), and for solv-
ing the query scheme 0(X*, Y), a selection of a(Z, Y)
before b(X*, 2) leads to the computation of the com-
plete relation a, which is clearly unnecessary. A good
selection function must order the subquery schemes so
that the number of relevant facts extracted from the
extensional database becomes minimum.

A simple choice reducing the size of the manipulated
relations consists of always selecting the literal with
most entry variables, making the assumption (heuris-
tic) that queries with more instantiated variables have

- 93 -

smaller set of exit values. Statistics could also be of
great help.

Another selection practice is based on recursion lev-
els. Base predicates are by convention at level 0. A
predicate p is of higher level than a predicate q if an
instance of q is in the antecedent of a rule defining p or
if there exists an r such that p is of higher level than r
and T than Q. Of course, p and q are at the same level
if p is of higher level than q and conversely.

A nxursion level is a maximal set of predicates at
the same level.

Along this line, a good selection practice is often
to prefer subqueries leading to lowest recursion levels.
Thus, we propose to select, in order of preference, the
base predicates (level 0), then the predicates of strictly
lower level than the consequent of the rule, and finally
the ones at the same level. The assumption is that
before working at a level of recursion, it is better to
have computed a m&mum of facts from lower levels
so that maximum information is available.

A more sophisticated strategy integrates the two se-
lection methods just outlined. It needs the definition
of the concept of basic determined part of a set of query
schemes [lo]. If {Zl, ZZ,. . . , In} is a set of query schemes,
li (0 < i 5 n) is basic determined if it is a base literal
and if either it has an entry variable as one of its ar-
guments or there exists a i (0 5 j 5 n) such that Zj
is basic determined and such that li shares variables
with 4. The basic determined part of a set of query
schemes is the set of basic determined query schemes.

The selection practice is then to take the entire ba-
sic determined part first. If it is empty, one among
the virtual predicates of lowest level with a maximum
number of entry variables is selected.

The basic determined part gathers together all the
base literals which could have been chosen successively
by the first simple selection methods. It is clearly more
efficient to treat them as a single conjunctive query for
accessing the extensional database instead of making
successive elementary accesses. This can dramatically
reduce the number of accesses. Moreover, conjunc-
tive queries correspond to join operations, that a good
DBMS can handle efficiently.

To accommodate this optimieation, the compilation
phase must ba slightly modified. The nodes of the
derivation tree are then either virtual query schemes
or conjunctions of base ones (in this case, they are tip
nodes).

The selection function is also discussed in [23].

5.2 Mitiimization of the number of ex-
tensional databkse accesses

The preceding prbcesses access the extensional
database whenever a new base query is generated. It
is clear that, due to the time needed by the (possibly
distributed) DBMS to answer literal queries, there is
a risk that requests pile up in the buffers Request(%)
associated with base nodes while other buffers become
empty.

A first optimiration can be to access the extensional
database with queries composed of a disjunction of lit-
eral queries. In Example 2, Request(n2) can always be
written in the form

Retpeat = u=l{< {X/ti}s < w,f}, {X/ti)>>}
u~I(<{z/~j},<nr,c},{x/2~}>>}.

Instead of answering the requests separately, the
DBMS can be accessed with the composed query
Vy=‘=, e2(2i, Y) V i/El es(zj,Y). The answers to the
query are then sorted by Evaluate(n2), added to
the set of exit values of their corresponding active
queries and propagated to Request(m) or returned to
Anawe7jw) while another composed query is being
solved by the DBMS. Thus, the number of accesses
to the DBMS decreases and their efficiency increases.

Further, a special interface process can be in charge
of managing all queries coming from processes associ-
ated with the base nodes. It could for example give a
higher priority to the composed queries which are esti-
mated to have the largest set of answers. The intuition
underlying this strategy is that it is wise to extract the
relevant information from the extensional database as
early as possible in order to make it available for com-
puting the virtual queries. Heuristics must be designed
to implement that strategy. They could be based on
statistical informations or more simply on the rough as-
sumption that the larger a disjunctive composed query,
the larger its set of answers. We will not go further in
that kind of optimisation, because it is clearly closely
dependent on the architecture of the DBMS.

5.3 Increasing parallelism

Parallelism can be increased by associating cooper-
ative processes with Request and Answer buffers in-
stead of archetype nodes. Indeed, the Evaluate(n,)
process associated with a virtual archetype node no
alternatively answers messages from Reguest(n,) and
Answe<n,). It can clearly be split into two parallel
processes separately managing the two buffers. Those
two processes would share .2ldemory(n,) and some at-
tention must be paid to their correct design.

If Nb and N,, are the numbers of archetypes nodes
labeled with query schemes and respectively associated

- 94 -

with base and virtual predicates, then, the number of
involved processes becomes Nb + (2 * N,) instead of
&+N,.

Parallelism can also be increased by a better use of
the or-parallelism of the rules. In Example 2,
l requests in buffer Bequest generate, through

Evaluate(no), requests in buffers Reqtceat(nr) and
Reque.d(na),

l requests in buffer Request(nl) generate, through
Evaluate(nl), answers in buffer Answedno),

l requests in buffer Request(n2) generate, through
Evaluate(ns), answers in buffer Anaure7(no) and re-
quests in buffer Requeai(no),

l answers in buffer Anawe<no) generate, through
Evaluate(no), requests in buffer Request(nz).

Cooperative processes could be associated with those
communication channels between buffers rather than
with archetype nodes or Requeat and Anawer buffers of
archetype nodes. This would again result in an increase
of the number of involved processes.

In Example 2, there are 3 archetype nodes, 4 Requeat
and Answer buffers, and 6 communication channels be-
tween buffers.

6 Conclusion .

Performance analysis for sequential recursive query
evaluation strategies is not easy as shown in [3] where
it has been carried out for several strategies on a set of
four queries, over a range of data.

The analysis of parallel evaluation strategies is still
more complex. For computing the answer to a query,
one must take into account the number of messages,
the size of buffers and private memories, the number
of concurrent accesses to the extensional (distributed)
database and so on. In full generality, this is not
straightforward, if not impossible. So we will content
ourselves with general considerations.

Our algorithm, in its sequential version [ll], is close
to the QSQR algorithm of [24]. In its spirit, it is also
similar to the Alexander method [19] or to the similar
Magic Sets method [2]. In the latter methods, constant
propagation is compiled into new Horn rules instead
of being interpreted. These algorithms are among the
most efficient for general recursive rules and general
data [3].

Our main contribution, besides the introduction of
parallelism and the attention devoted to minimizing
the number of database accesses, is the new concept of
contexts which remember the minimal part of the com-
putation state necessary to go on when new exit values
are found at nodes of the derivation tree. In QSQR,
evaluation of queries and subqueries is repeated from
the beginning as long as there are no more new solu-

tions. This leads to duplicated work which is avoided
with our contexts. In [2] and [19], contexts are hidden
in new predicates of rewritten rules. Albeit very ele-
gant, such a solution increases the number of virtual
predicates.

Further introducing parallelism is an undisputable
speed-up. Of course, one cannot expect to gain an
order of magnitude in the evaluation performance: the
chosen architecture is multi-computer, with a finite and
rather small number of processors. However, efficiency
is significantly enhanced for the following reasons:

l Our algorithm fits quite naturally in the framework
of a distributed database. It can take advantage
of this framework where access to the extensional
database is speeded up.

l Evaluation time heavily depends on the average num-
ber of processors in operation at any given moment.
The higher is the branching in base relations, the
higher the average number of working processors. In
the worst case, this number is close to one. This is
true for example when computing the ancestors of
an individual from a parent relation where every in-
dividual has at most one child. Then, the problem
is intrinsically sequential and no gain is obtained. In
the most favorable case of relations with high branch-
ing, most processors are working together and par-
allel computation reaches its full power with a true
improvement in execution time.

l In a sequential architecture, the time spent in access-
ing the extensional database is crucial. During these
often numerous accesses, the sequential process sus-
pends itself in a waiting state. It is a bottleneck
that can be responsible for a very bad overall perfor-
mance, as the total evaluation time is always much
larger than the total accesstime to the database. In a
parallel architecture, processors work simultaneously
with the accesses to the database, evaluation time of-
ten remains close to the total access time. Further-
more, in Section 5.2, we showed that the total access
time could be significantly decreased by gathering
related queries as single access.

Our work can hardly be compared with [1,9,22].
Those papers are dedicated to the parallel evaluation
of transitive closure of binary relations and cannot be
generalized to general datalog programs. Moreover, [l]
and [22] only can compute the complete transitive clo-
sure of a relation and thus do not focus on relevant
data.

The approach of [26] is very attractive because it
introduces parallelism without the necessity of inter-
process communication. However, it is only applicable
to a liited class of datalog programs (a superclass of
the linear single rule programs).

Our work is closely related to [23] where evaluation

- 95 -

is also divided into a compilation phase that builds a
rule/goal graph, and a top-down dynamic phase. We
have simplified the compilation phase: our derivation
graph is much more simple and less redundant than the
rule/goal graph of [23]. The dynamic phase in [23] is
very shortly and informally described. On the contrary,
we tried to be as precise as possible and to provide clear
guidelines and hints for implementation.

In conclusion, we have shown that a multi-computer
architecture is a nice framework on top of which to
implement distributed databases with deductive capa-
bilities. Recursive evaluation with the help of our al-
gorithm improves the traditional sequential methods.

ACKNOWLEDGEMENTS
This work was supported by the Commission of the Eu-
ropean Communities, under Project ESTEAM-316 of the
ESPRIT Program. We are grateful to A. Pirotte and D.
Boelants, our colleaguecl of PRLB, for their careful read-
ings of early drafts of this paper.

References
[l] Fl. Agrawal and H. V. Jagadish. Multiprocessor transi-

tive cloture algotithms. In Proccedingt of the Inttmotional
Symposium on Databorer in Ponalltl and Dittributtd Syt-
Ltmr, Austin, Texas, Dec. 1988.

[2] F. Bancilhon, D. Mayer, Y. S+v, and J. Ullman. Magic

131

141

151

PI

171

PI

191

PO1

sets and other strange nays to implement logic programs.
In Proceedings of the jijth ACM Symposium on Principles
of Dafabart Sytftmt, Mar& 1986.

F. Bancilhon and R. Ramakrishnan. Performance evahts-
tion of data inknzive logic programs. In J. Minker, editor,
Foundationt of Dtduc&w Databartt and Logic Program-
ming, pages 439-518, Morgan Ka&nann, 1988.

C. Beeri and R. Ramakrishnan. On the power of magic.
H Procttdingt of Sizth ACM SIGACT-SIGMOD &mpo-
rium on Principltt of Databatt Systems, pages 26%283,
San Diego, California, March 1987.

S. Ceri cmd G. Pelagatti. Dittributtd Databartt. Computer
Science Strict, McGraw-Hill, 1984.

M. Chandy and J. Mizra. An example of skpwize re-
flnement of distributed programz: quiescence detection.
ACM !lVanradiont on Programming Language and Syr-
ttmt, 8(3):326-343, July 1986.

C. L. Chang. On the evduation of queries containing de-
rived relations in a relational data base. In Ii. Gallaire and
J. Minker, editors, Advancer in Data Bate Theory, vol. 1,
paset 235-260, Plenum Pretr, New York, 1980.

G. Gardarin and C. de Maindreville. Evduation of database
recursive logic programs as recurrent function series. In
Proceeding8 of the ACM-SIGMOD International Conjtr-
tnct on Management of Data, pagez 177-186, Washington,
May 1986.

K. Guh and C. T. Yu. Evaluation of transitive closure in
distributed database zyzkmz. IEEE Journal on Stltcfcd
Artat in Communicationr, 7(3):39+407, Apr. 1989.

L. Hen&en and S. Naqvi. On compiling queries in r-
sive fust order databases. Journal of the ACM, 31(1):137-
147,1984.

P11

WI

[131

[141

[151

WI

1171

@I

1191

WI

r411

WI

[331

[341

1351

WI

1371

0. Hnlin. An Eficitnt Inttrprstivt Algorithm for Rtcursiut
Qutritt. Technical Report R521, Philips Retear& Labora-
tory Brussels, Jan. 1988.

G. Hulin, A. Piiotte, D. Roelantz, and M. Vauclair. Logic
and databates. In A. Thayee, editor, I+om Modal Logic to
Deductive Databattt, Wiley, 198%

M. L. Kmkn, P. M. Apas, M. A. W. Houtsma,
E. J. A. van Ku& and R. L. W. van de Weg. A dis-
tributed, main-memory database machine. In Proceedings
of the Fijth ~nttmational Workthop on Databart Machines,
pages 498-612, Karuisawa, 1987.

E. Lozinskii. E&tins queries in deductive databases by
generating. In IJCAI’86 Proceedings of the Ninth Inttma-
tional Joint Conjtrtnct on Artificial Inttlligtnct, Lot An-
g&t, USA, pages 173-177, Aug. 1985.

G. Marque-Pucheu, J. Martin-Gallausiaux, and G. Jomitr.
Inkrfacing prolog and relational data base management sys-
tans. In ICOD-L Workthop, Cambridge, England, Sep.
1983.

D. P. McKay and 5. C. Shapiro. Using active connection
graphs for reasoning with reewsive rulea. In IJCAI’81
Proceedings of the Seventh Inttmational Joint Conjtr-
tnct on Artijicial Inttlligtnct, Vancouver, B. C. Canada,
pages 388-376,198l.

N. J. Nilzzon. Principltr of Artificial Inttlligtnct. Tioga,
Palo Alto, 1980.

D. Roelank. Recurrive R&r in Logic Databarer. Technical
Report R513, Philips Research Laboratory Brussels, March
1987.

J. Rohma and R. Lescoeur. La M&hodt d’Altzandrc : Unt
tolution pour troittr let oziomtr ricurrijs danr let baser
de donnitt d(ductivtz. Research Report DRAL/IA/IS.Ol,
Centre de Recherche Bull, March 1985. (in hch).

D. Sac& and C. Zauiolo. The generalized counting method
for recursive logic queries. In Procttdingt of the Inttma-
tional Conjtrenct on Dotabort Theory, Roma, Sep. 1986.

E. Sxnagge. Dittributtd Ewaluation in Pool-T of Horn
Claurtr. PRISMA Dot. P0174, Philips Research Labora-
tories Eindhoven, Sep. 1987.

P. Valduries. Parallel recunive query proceasing in a share
nothing data server. In Qvatriamt Joumitt Battt de
DonnLtr Avon&r, pages 213-222, Benodet (F%auce), May
1988.

A. Van Gelder. A messap pazzing fimmework for lo+d
query ewduation. In Procttdingr of ACM SIGMOD Inttr-
national Conjtrenee on A4anagtmtnt of Data, ps(ler 165-
185, Wathin8ton. May 1986.

L. Vieille. Recursive axioms in deductive databases: the
Query/Subquery approach In Procttdingr of the Fir&
Inttmational Conjtrenct on Ezptrt Databatt Syrttmr,
Columbia, XC., pa8er 253-267, Columbia, SC, 1986.

L. Vieille. From QSQ towards QoSaQ: globd optimization
of x-cursive queries. In Procttdingt of the Second Inttma-
iional Conjtrenct on Ezptti Databatt Syrttmr, Warhing-
ton, D.C., pager 421-436, Wash&ton, DC, 1988.

0. Wolfson. Sharing the load of logic pro- evalu-
ation. In Procttdingt of the International Sympotium on
Databarer in Paralltl and Dirtributtd Syrttmr, pages 48-
55, Auztin, Texas, Dec. 1988.

H. Yokota and S. K. et al. An enhanced injtrtnct mtch-
anism for generating rtlational algebra quttitr. Tecbnicd
Report TR-026, ICOT, Oct. 1983.

- 96 -

