
Optimization and Datafiow Algorithms
for Nested Tree Queries

M. Muralikrishna
murali@cookie.dec.com

Digital Equipment Corporation
1175 Chapel Hills Drive

Colorado Springs, CO 80920

Keywords: unnesting, optimization, SQL, dataflow, the COUNT bug, outer join, anti-join, correlation predicate.

1. Abstract

The SQL language allows useIs to express queries
that have nested subqueries in them. Optimization of
nested queries has received considerable attention over
the last few years. Most of the previous optimization
work has assumed that at most one block is nested within
any given block. The solutions presented iu the literature
for the general case (where an arbitrary number of blocks
are nested within a block) have either been incorrect or
have dealt with a restricted sub& of queries. The two
main contributions of this paper are:. (1) optimization
strategies for queries that have an arbitrary number of
blocks nested within any given block, and (2) a new
dataflow algoritbm for the execution of nested queries,
involving one or more outer joins, in a multi-processor
environment such as the one found in GAMMA. The
new algorithm cuts down on message and CPU costs
over conventional datiow algorithms.

2. lIltrodnction

Traditionally, database systems have executed
nested SQL [Astrahan75] queries using Tuple Iteration
Semantics (TIS). It was analytically shown in [Kim821
that executing queries by TIS can be very inefficient. It
was first pointed out in [Kim821 that nested queries can
be evaluated very efficiently using relational algebra
operators or set-oriented operations. The process of
obtaining set-oriented operations to evaluate nested

Permission to copy without fee ail OT part of this material is
granted provided that the copies OTT not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is

given that copying is by permission of the Very LaTge Data Base
Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

queries is known as u~esting.

It was later pointed out in [Kiessliug84] and [Gan-
ski871 that the unnesting techniques presented in [Kim821
do not always yield the conect results for nested queries
that have non equi-join conelation predicates or for
queries that have the COUNT function between nested
blocks. Unnesting solutions for these types of queries
were provided in [Ganski87]. These solutions were
further refined and extended in [Dayal87].

In this paper, we will focus our attention on
unnesting Join-Aggregate (JA) [Kim821 type queries.
These queries have conelation join predicates and an
aggregate function (AVG, SUM, MIN, MAX, or
COUNT) between the nested blocks. The reason for
focusing on JA type queries is that many other nesting
predicates (such as EXISTS, NOT EXISTS, ALL, ANY)
can be reduced to JA rype queries [Ganski87, Dayal871.
An example of a JA type query is:
SELECT R,.a
PROM R1
WHERE Rl.b =

(SELECT COUNT &.b)
PROM R2
WHERE R1.c > R2.c)

TIE predicate (R,.c > Rz.c) is the conelation join
predicate. We will explain the meaning of these types of
queries in the next section.

We introduce a couple of definitions here:

Definition 1: A (Nested) Linear Query is a JA
type query in which at most one block is nested within
any block.

Definition 2: A (Nested) Tree Query is a JA type
query in which there is at least one block which has two

or more blocks nested within it at the same level.

Amsterdam, 1989

- 77 -

It is worth pointing out that the unnesting solution
presented in [Ganski87] for a linear query with more
than two blocks is incorrect (see Section 4). payal
does not discuss tree queries.

The rest of the paper is organized as follows: In
Section 3, we introduce the notation that we will use for
JA type queries and explain the meaning of these queries
using TIS. In Section 4 we will briefly summarize the
results presented in [Dayal87] that enable us to unnest
nested linear queries. We will present our solution for
tree queries in Section 5. Section 6 discusses a new
dataflow algorithm for nested queries in a multi-processor
environment (such as the one found in GAMMA
[Dewitt86], [Gerber86]). The new dataflow algorithm
reduces processing and message costs. Finally, we will
present an algorithm that takes a tree query as input and
generates an execution tree that can be routed using our
new &tallow algorithm.

3. Interpreting JA Type Queries

The easiest way to understand a general nested
query is by means of Tuple Iteration Semantics (TIS).
TIS provide an algorithm, albeit inefficient, for obtaining
the result of a nested query. It is instructive, however, to
interpret a nested query using TIS. In order to explain
the meaning of JA type queries, we iirst define a notation
which we will use in this paper to represent such queries.

3.1. Notation

A JA type query may be represented as a tree.
Each node in the tree corresponds to a SQL query block.
Query blocks that are nested within a parent block am
represented as child nodes of the node corresponding to
the parent block. For ease of explanation, we shall
assume that each block has one relation in its FROM
clause. By definition, a node is also its own ancestor. A
predicate clause in a given block may reference a rela-
tion associated with any ancestor block. Predicate
clauses may either be selection or join predicates.

The relation associated with block (or node) i is
represented by Ri (i > 0). Lower case letters (a, b, etc.)
represent attribute names. A ‘*’ is used to ¬e all the
attributes of a relation. Ri.# is some unique key of Ri.
4, ri’, ri” are each used to denote a tuple of relation Ri.
OP, (n > 0) is any one of the following operators (=, f,
<, 5, >, 2). F&) represents a selection predicate in the

ith block on R. To simplify the notation, we will
assume that all join predicates am binary’. A join pmdi-
cate in the ith block is then represented as Fi(Rjl Rk),
wherej,k>Oandj+k. Ifapredicateintheithblock
does not reference Ri, then it is called an outer predicate.
In this paper we will assume that there are no outer
predicates in our queries. Outer predicates can be han-
dled as shown in fDayal871.

3.2. Interpretation using TIS

Consider the following linear JA type Query.
Example 1: A Two Block Linear Query
SELECT R,.a
FROM R,
WHERE WV
AND Rt.b OP1

(SELECT COUNT (IQ.*)
FROM R2
WHERE F2@2) AND F2(R2, RI))

Fr(Ri) and F2(Rz) ate selection predicates on Ri
and R2 respectively, while F2&, Ri) is a correlation join
predicate between R1 and R2.

A run time system that would execute the above
query using TIS would proceed as follows: A tuple rl
from R, would be fetched If F,(R) is false for rlr tuple
rl will not be present in the result. Assuming Fr(Rt) is
true, the values of the relevant attributes of rl would be
substituted into predicates at deeper levels (F2(R2, R,)).
The two block query now becomes a single block query

SELECT COUNT (R2.*)
FROM R2

WHERE F2’@2)

F2’&) is a predicate on R2 and is equivalent to
F2(R2) AND F2(R2, R,) after values of ri’s attributes have
been substituted in Fs(Rs, RI).

Let the COUNT value returned by this block be C
(C >= 0). C represents the number of tuples of Rs that
satisfy F2’(Rz). If (ri.b OPi C) is true, rl will be in the
result. Notice that each tuple of Rt can occur in the
result at most once. Using TIS, the system executes a
query on R2 (the inner relation) for every tuple of RI (the
outer relation) leading to a very inefficient execution

hry join predicates can be easily incoxporated into the

sohltions presented in this paper:

- 78 -

strategy Kin-1821.

One can easily interpret SQL queries with multiple
levels of nesting using TIS. For example, consider the
three block linear query shown in Example 2.

Example 2: A Three Block Linear Query
SELECT Rr.a
FROM RI
WHERE FdRJ
AND Rl.b OP,

(SELECT COUNT (R2.*)
FROM R2

WHERJZ WW AND Mb, RI)
AND R2.c OP,

(SELECT (couNT(R3.*)
FROM R3
WHERE WRd .QJD WR3, R2)

AND F3@3r RI)))

After reducing the above query to a two block
query, one would substitute values from each tuple of RI
and R2 that satisfied Fr(Rr) AND F2(R2) AND F2(R2, RJ
into the thud block and evaluate COUNT(R3.*). Those
tuples of R2 that satisfy Ra.c OP, COUNT(R,.*) will be
returned as part of the two block query. Notice that a
COUNT(R2.*) is associated with every relevant tuple of
RI (satisfying Fr(Rr)) and a COUNT(R3.*) is associated
with every relevant pair of tuples of R, and R2. This
implies that the system would have to execute a query on
R3 for every relevant pair of tuples from RI and R2. Pic-
torially this can be represented as shown in Figure 1.

The edges at level 1 in this tree represent all the
tuples of R, that satisfy F,(Rr). Only those tuples of RI
will be present in the result for which (RI.b OP1
COUNT(R2.*)) is also true. Under each tuple of RI, are
those tuples of Ra for which Fz(Ri) AND F2(R2, R,) is
true. Only those tuples of R2 that also satisfy (R2.c OP,
COUNT(R3.*)) will contribute to COUNT(R2.*). Simi-
larly, the tuples of Rs under each relevant pair of tuples
of Rr and R2 represent tuples that satisfy F3(R3) AND
F3(R31 W AND F3O-b. RI).

4. From TIS to Set-Oriented Semantics

In this section, we briefly summarize the general
solution presented in [Dayal and show how it can be
applied to mutest linear queries. For reasons of space
constraints, we do not discuss the more spectic solutions

Figure 1: Pictorial Representation of the

Three Block Query of Example 2

c
R2

.

R3

that are based on the strategies presented in [Kim82].
Besides, the solutions in iJGrn82] are not general and
hence can be applied only in special cases (as pointed
out in Section 2). However, as pointed out in Dayal87],
the unnesting solutions presented in [Kim821 (when
applicable) may yield a more efficient execution strategy
than the general solution.

Let us now return to the Query of Example 1 in
Section 3.2. A naive unnesting algorithm would join RI
and R2 using predicate Fz(R2, RI) (after performing the
respective selections first). The algorithm would then

group the result by Rr.# (some unique key of Rr2) and
compute COUNT(R2.*) for each group and select only
those groups associated with each tuple of RI that satisfy
(Rr.b OPr COUNT&.*)).

‘he naive algorithm gives rise to the COUNT bug
[KiesslingM, Ganski871. The COUNT bug arises if there
are no joining tuples in R2 for a particular tuple rl in Rr.
rl would then be lost after the join. However, the
COUNT associated with rl is 0 and if (r,.b OPr 0) is
.inte, tuple rl should appear in the result. In order to

2A unique key is required in order to avoid the problem
with duplicates in RI [Ganski87].

- 79 -

preserve tuples in RI that have no joining tuples in Rs,

an outer join3 (OJ) is performed when the COUNT func-
tion is present between two blocks [Ganski87].

A linear query with multiple blocks will give rise
to a ‘linear J/OJ expression’ where each instance of an
operator is either a join or an outer join. A general
linear J/OJ expression would look like:

RI J/OJ R2 J/OJ R3 J/OJ . . . J/OJ R,,

Relation R, is associated with the outermost block,
relation R, with the next inner block and so on. An
outer join is required if there is a COUNT between the
respective blocks. In all other cases (AVG, MAX, MIN,
SUM), we need perform only a join. The joins and outer
joins am evaluated using the appropriate predicates.
Since joins and outer joins do not commute with each
othefl, a legal order may be obtained by computing all
the joins first and then computing the outer joins in a left
to right order (top to bottom if you like) [Dayal87].
Thus, the expression RI OJ Rs J R3 J & OJ R5 J & can
be legally evaluated as ((RI OJ (R2 J R3 J h)) OJ (Rs J
FtJ). Since we can evaluate joins in any order, we can
choose the cheapest join order to join Rs, R3, and R4.

It is worth pointing out here that the solution
presented in Section 9 of [Ganski87] for multiple level
queries was incomplete in the sense that it does not dis-
cuss legal orderings when joins and outer joins are
present in the same expression.

After all the joins and outer joins have been
evaluated, the aggregate functions am evaluated in a
bottom-up order after grouping the result by the appropri-
ate unique keys. This is best illustrated with an example.

Consider the three block linear query of Example 2
in Section 3.2. The corresponding linear expression is Rt
OJ Rs OJ Rs and hence a legal order is (RI OJ Rs) OJ

‘When we talk about outer joins, we implicitly mean left
outer joins.

‘Dayal proposed the notion of generalized joins (G-Joins)
to make joins and outer joins commutable but the equation
given in the paper was incorrect. Without repeating the nota-
tion used in defining G-Join and the formal de&&ion of G-Join,
we simply state that the following equation was given in [Day-
al87]: G-Join (R, G-Join@, T; 0; J2); R*; Jl) = G-loin(G-
Join(R, S; R.*; Jl), T, R.*; J2). However, it can be shown that
this equation does not hold for the query in Figure 4.1 on page
202 in Dayal’s paper.

R3. The predicate for RI OJ R2 is F,(R,, R,) and the
predicate for the outer join with R3 is F3(R3, R2) AND
F3@3r Rd.

We now show how the query of Example 2 can be
evaluated using set-oriented operations. The result is
obtained by executing more than one query. The result
from one query may be pipelined to the next query. The
two queries in this case am (not in strict SQL syntax!):
Query A: SELECT INTO TEMP

Rr.#, R,.a, RI.b, R,.*
FFwM RI, R2. R3

WHERE& OJRs)OJR3
GROUP BY Rt.#, Rz.#
HAVING Rs.c OP2 COUNT(R3.*)

Query B: SELECT Rt.a
FROM TEMP
GROUP BY Rr.#
HAVING R,.b OP, COUNT(R2.*)

The results from Query A are fed into Query B.
Even though the selection predicates (F@i), i = 1, 2, 3)
have not been shown in Query A, they are applied to the
respective relations before they participate in the outer
joins. The outer join predicates are also implicit in
Query A

4.1. A Few Subtleties

Query A has a few subtleties that were not men-
tioned in [Dayal and deserve to be highlighted. These
subtleties will lead us to the development of the new
dataflow algorithm (described in Section 6). The outer
join between RI and Rs results in two sets of tuples, viz.,
(R,- X NULL)5 and R,R2. RlR2 denotes the set {(rt, rz>:
FAW AND F2&, RJ AND FdWJ, where the rl tuple
E RI and the r2 tuple E R2. Let RI+ denote the set of
tuples of RI present in RrRs (tuples of RI that partici-
pated in the join with Rd. RI- denotes the set RI - (RI+)
(the tuples of RI in the anti-join).

Similarly, let R1R2R3 denote the set {(rr, r2, r3):
b(R3) AND F3(R3, R2) AND F3oR3, RI) AND F20

AND F2(R2, R,) AND F@I)]. Let the set of (rl. rz)
tuples in RlR2 that joined with at least one tuple of R3 be
denoted by R,R2+. The set of (rI, r;> tuples that did not
join with any tuple of R3 is denoted by RtRs- and is

*X represents the cartesian product operation.

- so -

equal to R,R, - (RtR,+). Thus, the outer join with R3
may yield up to three distinct sets of tuples, viz., (Rr- X
NULL X NULL), (R,Rz- X NULL), and R1R2R3 respec-
tively.

The (GROUP BY . . . HAVING) operation in Query
A has special semantics associated with it. For a given
group of (rt.#, r2.#), if (rz.c OPz COUNT(R3.*)) is true,
the (r,.#, r2.#) group is passed along to Query B. How-
ever, if (r2.c OP, COUNT(R3.*)) is false, the (r,.#, r2.#)
group cannot be discarded. If the (r,.#, rz.#) is discarded
and if this is the only group in which r1 was present,
COUNT(Rz.*) associated with the rl tuple is 0 and hence
should be preserved. If (rt.b OP, 0) is true, rl will be
part of the result. The (r,, r2) tuple that does not satisfy
(r2.c OPz COUNT(R3.*)) should be passed along to
Query B as (rr, NULL). Similarly, for tuples in the set
(R,- X NULL X NULL), the GROUP BY . . . HAVING
operation passes them as (Rt- X NULL) to Query B
because the predicate (r2.c OPz COUNT(R3.*)) is false as
(NULL OP 0) is false.

5. Tree Expressions or Non Linear Expressions

So far we have restricted our discussion to linear
queries only. If we permit more than one block to be
nested within a given block at the same level (nested tree
queries), we can get J/OJ expressions that am arbitrary
trees. In this section, we will extend Dayal’s solution to
tree queries. A simple extension, albeit inefficient, to
evaluate a tree expression would be the following:
Choose an arbitrary path (perhaps the least expensive
one) from the root to a leaf and evaluate the linear
expression specified by this path as outlined in the previ-
ous section. This will yield a subset Rr’ of the tuples of
the root relation Rt. Using tuples in Rr’, another path is
evaluated yielding RI”, a subset of Rr’. This is repeated
until all paths are exhausted and the f&l set of result
tuples am obtained.

Figure 2: Tree Expression for the Query
in Example 3

The above scheme is inefficient because relations
that belong to two or more paths will be accessed more
than once. For example, consider the tree query shown
in Example 3 whose tree expression is shown in Figure
2. ‘Ihe edges in Figure 2 am labeled either by a J
(denoting a join) or by an OJ (denoting an outer join).

Assume that the first path chosen is RI--RT-R3.
After evaluating the expression (Rt OJ R?) OJ R3 and
computing the respective aggregates bottom up, we will

get a subset Rr’ of tuples. Using these tuples, we take
the other path. The J/OJ expression along this path is
Rt’ OJ (R2 J R4). Thus, the relation R2 is accessed
again. It would be ideal if each relation is accessed only
once. After evaluating a J/OJ expression along one path,
we would like to compute the aggregates bottom up only
up to the point where a new branch begins. The i&a is

- 81 -

Example 3: A Tree Query
SELECT Rr.a
FROM R1
WHERE WV
AND R,.b OP,

(SELECT COUNT (Rz.*)
FROM Rz
WI-JERE F,(R,) AND F2oR2, RI)
AND RFc

AND R2.d

op2

(SELECI (COUNT&.*)
FROM R3

(SBLECI (AVG(%.d)
FROM R4
WHERE F4(R4) AND F4CR4r W
AND F4UL RI)))

Rl

OJ

to use the tuples obtained thus far to evaluate the
remainder of the J/OJ expression along the new path.
However, this cannot be accomplished in a straight for-
ward manner. Two kinds of anomalies may occur. We
will illustrate these using the tree expression of Figure 2.

After evaluating (R, OJ Ra) OJ R3 and the aggre-
gate COUNT&*). them are two distinct sets of tuples.
Tuples in the first set are of the form (r,, NULL) and,
tuples in the second set are of the fonn (rr, r2) where rl
E R, and r2 E R2.

Anomaly 1: Consider a tuple (rr’, NULL) from the
fist set. If rl’ is not present in the second set,
COUNT(R2.*) associated with rl’ is 0 and will be part of
the result if (rl’.b OP1 0) is true. However, if (rl’,
NULL) is joined with R4 when the second path is taken,
rl’ will be lost (because F.&, Rz) is false since the R2
fields ate NULL).

Anomaly 2: Consider a tuple (rl”, r2’) loom the
second set. If there is no tuple of R4 such that F4(R4, R1)
is true, then the rl” tuple will be lost after the join is
computed. However, if the second path (Rr--R2--R4) was
taken fkst, we would have got (rr”, NULL, NULL) after
evaluating R, OJ (R2 J R4). In this case, we do not lose
r,“. When the other path (RI--R2--RJ) is taken, r,” will
not be lost as there is already an outer join between the
R2 and R3 blocks.

The two anomalies demonstrate that tuples will be
lost if a join is performed after evaluating an outer join.
These tuples can be saved if the join between the R2 and
R, blocks is performed as an outer join. This leads to
the following lemma.

Lemma: Let RI--R2--...--R;--...--R, and Rr--R2--...-
-Ri-J-Rj--... --Rq be two paths from the root Rr to the
leaves R, and R, respectively in a tree expression. Let
there be at least one outer join in the shared path RI--
R2--...-- Ri. Assuming we chose the RI--Ra--...--Rr path
first and there is a join between Ri and Rj, we can obtain
the CO~IIM result by treating the join between Ri and Rj
as an outer join.

Note tit ~IIY joins below Rj a.~ not affected as
they will be evaluated before the outer join between the
Ri and Rj blocks.

The proof for the lemma can be obtained by fol-
lowing the train of thought of the previous paragraphs
and is omitte4i here. In summary, any join that comes

after an outer join in a path must be evaluated as an
outer join. Then each relation need be accessed only
once.

6. An Improved Dataflow Algorithm

In this section, we will discuss a new dataflow
algorithm for nested queries with COUNTS (and hence
outer joins) in a multi-processor environment such as the
one found in the GAMMA database machine [DeWitt86].
The new dataflow algorithm reduces message and pro-
cessing costs over the conventional dataflow algorithm.
The GAMMA database machine is a dataflow database
machine that uses hash-partitioned algorithms for com-
puting joins. A query with multiple joins can be routed
very efficiently in GAMMA. The result of one join is
pipelined to the next join operation. Details of the
dataflow and scheduling algorithms of GAMMA can be
found in [Dewitt861 and [Gerber86].

We will illustrate how GAMMA would have
routed the three block query presented in Example 2,
using the conventional dataflow algorithm. The

Flgure 3: The Routing Method in GAMMA

result/&pies

group by Rl .#

(Rl- X NULL)
having

Rl .b OPl COUNT(W)
(Rl’ X NULL)

Rl R2’ r group by (Rl .#, R2.#)
having

R2.c OP2 COUNTIR3.7 \ ,
(Rl- X NULL X NULL)

3, R2) AND F3(R3, Rl)

restriction restriction
Fl (Rl) F2(R2)

- 82 -

optimizer in GAMMA sends the scheduler an optimized
execution tree. The execution tree for the query in
Example 2 is shown in Figure 3. The nodes in the exe..
cution tree represent operations (resttiction/join/gmup by
etc.), while the directed arcs represent information flow.
Tuples always flow in an upward direction. In Figure 3,
it is important to notice that the conventional datatlow
algorithm sends the joining tuples as well as the anti-join
tuples to the immediate higher (parent) node. The sets
that are propagated between the operators of the execu-
tion tree of Figure 3 are shown along the respective
edges (using the notation of Section 4.1).

The set R1R2’ is derived from those tuples in
R1RZR3 and (R1R2- X NULL) that satisfy the predicate
(R2.c OPa COUNT(R3.*)), while the set (R,’ X NULL) is
derived from those tuples in R1R2R3 and (R1R2- X
NULL) that don’t satisfy the above predicate. Notice
that the attributes of R, have been replaced by NULL for
these tuples.

In the presence of outer joins, a better execution
tree may be obtained by sending the anti-join tuples to a
node possibly higher than the parent node in the execu-
tion tree. This will result in savings in message and pro-
cessing (CPU) costs. The new execution tree is shown in
Figure 4.

Figure 4: The Improved Routing Method

result/luples

restriction restriction
Fl (Rl) F2(R2)

kinds of nodes in an execution tree, each representing a
different kind ‘of operation. They are:

1. Restriction nodes (R nodes): These am leaf
nodes in the execution tree and represent the restriction
operation on the base relations.

2. Group By . . . Aggregate nodes (GBA nodes):
These nodes group the input tuples by the unique keys of
the relevant relations and compute the aggregate for each
group. Tuples that satisfy the aggregate predicate are
sent to the immediate higher node and, if needed, tuples
that do not satisfy the aggregate predicate are sent only
to a GBA node that is possibly much higher in the exe-
cution tiee (after milling appropriate fields).

3, Join nodes (J nodes): The output of a join is fed
to the immediate higher node in the execution tree.

4. Outer join nodes (OJ nodes): The joining tuples

In the first execution tree (Figure 3), we are ship-
ping the (Rr- X NULL X NULL) tuples (from the second
outer join node to the first group by node) and the (R,- X
NULL) tuples (from the first group by node to the second
group by node) unnecessarily. By doing so, we also incur
the cost of processing them. In the second execution tree
(Figure 4). the (Rt- X NULL) tuples are shipped directly
from the first outer join node to the second group by
node.

As the depth of nesting increases, the savings in
message and processing costs will increase if the anti-
join tuples are sent to a (possibly) higher node than the
parent no&. In the next section we will use the idea
presented in Section 4.1 to send tuples that do not satisfy
an aggregate predicate to a possibly higher node.

6.1. From JlOJ Tree Expressions to Execution
TreeS

are sent to the immediate higher node, but the anti-join
tuples (if needed) are sent only to a GBA node that is
possibly much higher in the execution tree.

We now describe how an execution tree is derived
from a J/OJ expression tree. There are four different

The outdegree of R and J nodes is one while the
outdegree of remaining kinds of nodes is at least one and

- 83 -

at most two. The indegree of R nodes is 0, while the
indegree of J and OJ nodes is two. The indegree of the
GBA nodes is at least one. A GBA node can receive
input from many internal nodes in the execution tree.

The number of leaf nodes in the execution tree is
equal to the number of base relations in the query (or
blocks in the query assuming that each block has exactly
one relation associated with it). The number of internal
nodes in the execution tree is equal to twice the number
of edges in the J/OJ expression tree. Half of these nodes
are J or OJ nodes while the other half are GBA nodes.
This is because each edge in the J/OJ expression tree can
be associated with a join/outer join and an aggregate
operation.

Having determined the nodes in the execution tree,
we need to define how the arcs are constructed. Each arc
can be determined by its end nodes. The key is to also
classify the nodes in terms of the structure of input tuples
they expect and output tuples they produce. A directed
arc will then be present between a node that produces a
certain kind of output tuples and a node that expects that
same kind of tuples as input.

6.2. Input/Output Classification of Execution Tree
Nodes

1. R nodes: These leaf nodes only produce output.
The output tuples from these nodes are qualifying single
relation tuples. Attributes (from output at ail nodes) not
required for future operations are projected out.

2. J nodes: If relations Ri and Rj are joined at a J
node, Ri and Rj tuples form the input. Output tuples
have the form (ri, rj) where ri E Ri and rj E Rj. Ri and
Rj could be base relations or composite relations.

3. OJ nodes: If relations Ri (composed of relations
RI, R2, RJ and Rj ~PZ outer joined at an OJ node, Ri
and Rj tuples form the input. Joining output tuples have
the form (ri, rj) rhea r; E Ri (ri = (rl, r2, rn)) and rj E
Rj. One would expect the anti-join tuples to have the
form (ri, NULL). This need not always be the csc

Consider the case when a J node is transformed to
an OJ node. The anti-join tuple (rl, r2, r,.,, NULL) can
be discarded if there is no outer join in the path from R,
to &. However, if the last outer join in the path from R1
to R,, occurred between Rk and Rk+], 0 c k < n, the anti-
join niple (rlv 4, -.., rk, rk+l, r,, NULL) is sent as (r,,

$, rkr NULL) to the GBA node computing the
cow Of hlpkS Of Rk+,. The com(Rk+l.*) aSSOCi-

ated with the group (r,, r2, rk) may be 0 and hence
must be preserved.

We could have sent the tuple (rl, r2, r,, NIJLL)
to a much lower GBA node in the execution tree. How-
ever, since the aggregate at this GBA node is not a
COUNT, the (rl, ra, +..rkr r”) tuple would not satisfy
the aggregate predicate because of the presence of
NULL. Hence the tuple will be passed to the next higher
node w (rl, r2, ,.., rk, . . . rPl, NULL). However, we need
only to preserve (rl, r2, rk) and hence we can send (ri,
r2, rk, m) tuple directly to the corresponding GBA
node.

4. GBA nodes: Assume that this GBA operation
occurs between R,l and R, in the path from R1 to R”.
If the aggregate operation at this node was a non
COUNT function, then the input to this node is of the
fom trh r2, .-., r,.+ rJ. If the aggregate fur&on was a
COUNT function tuples of the form (rl, r2, r,i,
NULL) will also be included in the input. The output
formats of a GBA node are exactly similar to those of OJ
nodes.

6.3. An Example

We will iIlustrate the above concepts in deriving au
execution tree for the J/OJ expression in Figure 2. The
execution tree will have four leaf nodes (R nodes) in the
execution tree corresponding to the four base relations.
There will be three pairs of J/OJ nodes and GBA nodes
corresponding to the thtee edges. Assuming that we
again take the left path (Ri--R2--Rs) in Figure 2 first, the
execution tree will be as shown in Figure 5. The nodes
are labeled for ease of reference. Each arc is labeled
with the format of tuples flowing along that arc. Notice
that the ‘anti-join’ tuples of node OJs are of the form (ri,
NULL) rather than of the form (r,, r2, NULL). As per
the Lemma, the join at this node was converted to au
outer join. It would not be useful to send tuples of the
form (ri, r2, NULL) to node GBA2. Node GBA2 would
simply pass on these tuples to node GBA, as (r,, NULL).
Instead, one saves processing and message costs by send-
ing (rlr NULL) tuples directly from node OJs to node
GBA3. It turns out that the operation at node OJ, is a G-
Join [Dayal87]. Table 1 summarizes the savings realized
in message costs.

- 84 -

Table 1.
,

Description I Size Conventional New
i (in Bytes)

Savings in Message
Routing Path Routing Path Costs (in Bytes)

anti-join tuples OJ,-OJz-GBA,-OJ,-
from node OJ, Ml GBA2-GBA, OJI-GBA3 4*M1

tuples not satisfying
aggregate comparison) M2 GBAI-OJ,-GBA2-GBA, GBA,-GBA, 2*M2

at node GBAl /
anti-join tuples
from node 03, j M3 OJa-GBAz-CBA3 OJa-GBAa M3

Table 1 shows that for this example, the new
datiow algorithm rest&s in a savings cjf (4*M1 + 2*M2
+ M,) bytes in message costs over the conventional
dataflow algorithm. Further, a proportional savings is
realized in processing costs.

Figure 5: Execution Tree for J/OJ
Expression of Figure 2

/
result uples

/’

RI R2

- GBA3

V1~ r
(rl, N W !

rl, NULL)

GBA2
rl, r2, r4)

(rl, NULL) OJ3

NU-L) & (rl r-2) . r4

.R4
GBAl

(rl, Q, r

7. Conclusions and Future Work

In this paper, we have presented a scheme for
evaluating nested tree queries. We also described a new
data&w algorithm for such queries.

We are in the process of developing an efficient
scheduling algoritbrn to go with our new dataflow algo-
rithm. Our scheduling algorithm will be more complex

than that of GAMMA’s as we may to have to activate
many operators in the execution tree sinmhaneously.

In this paper. we have assumed that blocks nested
within a block at the same level are separated only by
AND’s. We am investigating optimization techniques for
queries that have OR’s between blocks that are nested at
the same level.

8. Acknowledgments

The author wishes to thank Bob Gerber, Goetz
Graefe. Krishna Kulkami. Shirish Puranik Jim Reuter,
Mateen Siddiqui, Lynn Still, and Wai-Sze Tarn for care-
fully reviewing earlier versions of this paper. Their
efforts have considerably improved the quality of the
paper

9. References
[Asnahan75] M. Astrahan, and D. Chamberiin, “Imple-
mentation of a structured English query language,”
Comm. of&e ACM, Vol. 18, No. 10, (October 1975).
payai87] U. Dayal, “Of Nests and Trees: A Unified
Approach to Processing Queries That Contain Nested
Subqueries, Aggregates, and Quantifiers,” Proc. VLDB
Cod, pp.197-202, (September 1987).
[Dewitt861 D. Dewitt, R. Gerber, G. Graefe, M.
Heytens. K. Kurnar, and M. Murahkrishna, “GAMMA: A
High Performance Dataflow Database Machine,” hoc.
VLDB Conf.. pp.228-237, (August 1986).
[Ganski87] Richard A. Ganski and Hany K. T. Long,
“Optimization of nested SQL Queries Revisited”, Proc.
SIGMOD Conf., pp. 23-33, (May 1987).
[Gerber861 R. Gerber, “Dataflow Query Processing Using
Multiprocessor Hash-Partitioned Algorithms,” PhD
Thesis, Univ. of Wisconsin at Madison, (October 1986).
[KiesslingM] W. Kiessling, “SQL-like and Quel-like
correlation queries with aggregates revisited”, UCB/ERL
Memo 84/‘75, Univ. of California at Berkeley, (Sept.
1984).
[Kim821 W. Kim, “On Optimizing an SQLlike Nested
Query”, Trans. on Database Systems, Vol 9, No. 3,
(1982).

- 85 -

- 86 -

