
Effective Resource Utilization for Multiprocessor Join Execution*

Marguerite C. Murphy+
Doron Rotem

Computer Science Research Dept.
Lawrence Berkeley Laboratory

Berkeley, CA 94720’

Abstract
Conventional approaches to execution of database

queries on general purpose multiprocessors attempt to
maximize system throughput using inter-query parallelism
with a fixed number of processors. Standard uniprocessor
optimization techniques are used to minimize execution
time of individual queries, Our approach is to increase
performance by utilizing intra-query parallelism as well as
minimizing overall resource requirements. Specifically,
processor and tio bandwidth requirements are minimized
by coordinating the order in which data pages are read into
memory and page joins assigned to available processors.
We present a scheduling strategy based on join indices and
prove lower and upper bounds on its resource requirements.
We then describe a heuristic for estimating the number of
processors required to complete join execution in minimal
time. Our simulation results indicate that these techniques
are effective with respect to processor utilization and buffer
requirements.

1. Introduction
Multiprocessors have recently entered the marketplace

as a cost effective high performance alternative to high-end
mainframe uniprocessors. Multiprocessor architectures
exploit current microprocessor technology by integrating a
variable number of processors into a single system with all
processors sharing a single main memory and input/output
subsystem. High performance is achieved primarily via
parallelism and to a lesser extent by sharing of information

* Issued as tech report LBL-26601. This work is supported
by the Applied Mathematical Sciences Research Program of
the Office of Energy Research, U.S. Department of Energy
under Contract DE-ACO3-76SFOOO98. Authors’ electronic
mail addresses: rotem@csam.lbl.gov, murphy@lbl-
csamarpa

$ Also with Computer Science Department, San Francisco
State University.

Permission to copy without fee all or part of this material is
granted provided that the copier are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permirsion of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

in main memory. With coarse grained parallelism (i.e. at
the process level) existing applications can be executed
concurrently without modification by simply assigning each
process to a separate processor (assuming the use of system-
call compatible operating systems). For example, any of the
major UNIX based relational DBMS (Ingres, Oracle,
Informix, Unify) can be executed with minimal
modifications on a SEQUENT multiprocessor [SEQUSS].
Inter-query parallelism is achieved by running multiple
(independent) queries in parallel on multiple processors,
using standard uniprocessor algorithms and optimization
techniques.’

Although impressive increases in system throughput
can be achieved with coarse grained parallelism, it does not
take advantage of the potential concurrency within the
individual processes themselves. There are two types of
parallelism that might be realized: parallel execution of
CPU operations on multiple processors and overlap of CPU
and I/O operations. Since the degree of CPU parahelism is
potentially unbounded, system performance rapidly
becomes limited by the i/o bandwidth--the rate at which data
can be. transferred to and from the stable storage devices into
main memory for computation. In this paper we continue
our investigation [MURP89] into new algorithms for
parallel execution of relational join operations within the
limits imposed by the i/o subsystem bandwidth.

Our approach is based on a decomposition of relational
join processing into a collection of page reads and page
joins (with dependencies introduced by the requirement that
data pages be read into memory before participating in any
page joins). We asstmte that data on secondary storage is
organixed into fiied size pages with an indexing scheme
that allows construction of a “page connectivity graph”-- a
bipartite graph with one node corresponding to each page of
each relation and one edge connecting each pair of pages
which contain at least one matching join attribute value
[MERRSl]. Page connectivity graphs can be easily
constructed from join indices [VALD87], Bc trees
[GOYA88] or intermediate results computed during index
join processing [BLAS76]. The granularity of processor
scheduling is the individual page join and the granularity of
i/o scheduling the individual page read.

Given a page connectivity graph describiig the page
joins to be performed, we first determine how many
processors to allocate to the computation, then schedule the
order in which data pages are read into memory from disk
and finally schedule each join for execution on a processor.
Initially we assume that sufficient memory is available to
buffer pages until joining pages and processors are

Amsterdam, 1989

- 67 -

available, implying that a page never needs to be read into
memory more than once. In [MUBP891 we presented a
family of practical read scheduling algorithms to use with
FIFO processor scheduling.

In [MuRp89] we also present lower bounds on the join
execution time as well as bounds on the number of
processors required to complete processing in minimum
time. These bounds assumed page join processing times
were constant and equal to the page read time. In this paper
we relax this assumption and present analogous bounds for
arbitrary constant page join times as well as a more detailed
stochastic performance model which includes both constant
and exponentially distributed page join times. In addition,
we present, a heuristic for estimating the actual number of
processors to allocate to a particular join graph and
introduce a modified scheduling algorithm to be used in an
environment with a bounded buffer pool size.

To summarize, the major contributions of this paper
are: (1) a heuristic for estimating the optimal number of
processors for a particular join graph, (2) a modified
scheduling algorithm to be used in environments with a
bounded buffer pool size, (3) bounds on execution time and
number of processors assuming constant page join times, (4)
extensive simulation results corroborating algorithms,
bounds and heuristics.

This paper is organized as follows. The next section
summarizes our join processing strategy and the following
section our improved bounds on resource requirements.
Section four presents a performance model based on
queueing theory and the simulation model we implemented.
Section five summarizes the results of a series of
experiments designed to evaluate the effectiveness of our
strategy. In the fmal section we present our conclusions and
recommendations for practical implementation.

2. Join Processing Strategy
In this section we present a condensed review of

material presented in lMURP891. We do this in or&r to
more clearly explain the extensions introduced in this paper
as well as to make this paper self-contained. After
describing our basic scheduling algorithm, we present a
heuristic extension for use in environments with a bounded
number of buffers available for join processing.

2.1 Multiprocessor Architecture
We assume a multiprocessor architecture with a flexible

number of processors, one main memory and a single
shanxi i/o subsystem. Each processor executes instructions
independently of the other processors and can be
individually scheduled. Data is stored and transferred in
fmed sized units, referred to as blocks on secondary storage,
buffers in main memory or simply pages of data. Data is
transferred between the i/o subsystem and memory over a
channel which has a concurrency of one (that is, at most one
i/o operation can be in progress at any time). Once a data
page is resident in a buffer, it can be accessed by any
number of processors simultaneously. Note that we do not
require simultaneous access to individual addressable units
of main memory.

The following figure summarizes the basic system
architecture, which is typical of that found in existing
commercial multiprocessors, i.e. [SEQvSSb].

Maln Memory
Buffer Pool

4b Secondary
Storage

b’ P

Processors

I

26 Preliminaries
The following standard definitions and notations from

graph theory are used in the remainder of this paper. A
bipartite graph B(V,E) consists of a vertex set V = Vl u V2
andVlnV2=0andedgesetDsVIxV2,i.e.edgesam
pairs of the form (x,y) where x E Vl and y e V2. A
complete bipartite graph is a bipartite graph with the
maximum number of edges, i.e., lEl = IV II * IV2l.

For a vertex in V, we denote by d(v) its degree, which is
equal to the number of edges incident on it. A connected
component C of B is a subgraph of B such that a path exists
between every pair of vertices of C and no path exists
between a vertex in B-C and a vertex in C. We can find all
the connected components of a graph B in O(IVI + lEl) time
using a depth-first search algorithm [Aho74].
23 Read & Processor Scheduling

We summa&e here the scheduling algorithm presented
in lMUBP891. The algorithm takes a bipartite graph B(V,E)
as its input and produces a schedule S for p processors from
it. For expository reasons we divide the process of
producing a schedule into four stages. A schedule consists
of a read schedule and a join schedule. ‘Ihe first three stages
are directed towards producing an efficient read schedule.
In the final step we perform the join schedule.

In stage 1, we decompose the graph into its connected
components. In stage 2, for each component Ci we derive
independently an ordering of its page reads. In stage 3, we
compute for each component Ci with m edges and n vertices
the function f(Ci) = m / p - n. We then concatenate the read
schedules of all the components in decreasing order of f(Ci).

At this point we have a read schedule for the whole
graph. It now remains to schedule the page joins at each
step. This is done in stage 4 in a simple manner. We
maintain a queue of unprocessed joins as follows. Initially
the queue is empty. Let us assume that vertex v is
scheduled to be read at time step i. We remove from the
queue the first p edges and schedule their corresponding
page joins on processors 12,...,p respectively. If the queue
contains less than p edges then some (or all) of the
processors remain idle at this step. We then insert into the

- 68 -

end of the queue all the edges incident on v which have their
other endpoint memory resident. By our definitions there
are A(v) such edges.

As stages 1,3 and 4 are relatively simple we only give
here a more formal description of stage 2, which is
presented as Algorithm 1.
Algorithm 1:

Input: Component C with vertex set V and edge set E.
Output: A read schedule S for C. We build S by

concatenating a new vertex to it each time the loop is
processed. the variable A(v) keeps track of the actual work
for each node. The degree of node v is denoted by d(v).

Step 1: (Initialize) For all v E V, set A(v) := 0 and S := 0;
Step 2: (First Vertex) Choose a vertex vx such that d(vx) =

max (d(v) where v E V), ties may be broken
arbitrarily.

Step 3: (Add chosen vertex to S) Set lust := vx, append lust
tOS.

Step 4: (Update actual): for all v E V-S, where v is
adjacent to Zusr set A(v) := A(v) + 1;

While V-S f 0 do
BEGIN

Step 5: (Choose all vertices with maximum A(v))Let
MAX be the set of all vertices not in S with
maximum A(v).
MAX := (v E V-S I A(v) = max (A(v) and v E
V-S))

Step 6: (Maximize potential) Set lust :=w where w E
MAX with the value of d(w) as large as possible
(break ties arbitrarily). Append lust to S.

Step 7: (Update actual) For all v E V-S update actual
work as in Step 4.

2.4 Restrictions on the Number of Buffers
In case the number of available buffers is restricted to

some constant K, we may be forced to replace pages in
memory before all their associated joins are completed.
Such pages will have to be read again (at least once) to ”
complete the execution of all their joins. We are interested
in identifying join graphs which may force such a
replacement. For such graphs it is not possible to complete
the join execution using only IVI input operations.

In the next theorem we show a connection between the
structure of the join graph, the constant K, and page
replacements. The following definitions are used in the
theorem. A vertex subgraph of a bipartite graph
B(Vl,V2,E), is itself a bipartite graph B’(Vl’,V2’,E’) where
Vi’ is a subset of Vi (t1.2) and E consists of all edges in E
with both endpoints in Vi. For a graph X, we denote by
min(X) the value of the smallest degree of a vertex in X.
Theorem 1: Given a join graph B with IV1 vertices, a join
execution for B requires at least IVI +l read operations under

a restriction of K buffers, if B contains a vertex subgraph B
such that min(B’) 2 K.
Proori Let us assume that B contains a subgraph B’ with
min(B’) 2 K and IVI = r. We observe that r 2 2K. We will
&rive a contradiction by assuming that it is possible to
complete the join of B with no page replacements.

Let US label the nodes of B’ as vl,v2,...,vr such that vi is
the ith node of B’ read by the schedule. When vr, the last
vertex of B’ is read in, it must join with at least K other
nodes from B’ by our assumption on min(B’). Since there
are at most K-l available buffers, at least one of these
neighbors is not currently present in memory. This means
that at least one additional node of B’ must be read in
contradicting the fact that vr is the last node of B’ read by
the schedule. 0

The above theorem is of ,theoretical interest only since
identifying such a subgraph is an NP-complete problem
[GARE791. In the next section we show how our heuristic
algorithm can be modified to operate efficiently under
buffer restrictions.

25 Modifications to the Heuristic for Buffer
Restrictions

In the presence of memory restrictions, Algorithm 1 has
to be modified so that nodes can be replaced in memory and
then read again. In this section we describe informally how
ouy scheduling can be dynamically adapted to an
environment with only K buffers. In this case, some
changes must be made to the read schedule when it cannot
simply read a new node in because all K buffers contain
nodes which must still participate in more joins. At this
point we have to make a choice between two alternatives:
(a) In the next step no node will be read in and only joins

among memory resident nodes will be performed;
(b) Choose a node in memory (the “victim”) and replace it

by an input node. The “victim” node will be reread at
some later point in order to complete its joins.
Our strategy, as before, is to attempt at maximizing the

amount of work in the system by “greedy” decisions. For
each node v we keep track of its actual and potential work
when it is read in using the counters A(v) and P(v)
respectively. We subtract one from each of these counters
with each join performed which involves node v. A node
for which P(v) becomes zero can be replaced by a new node
without any rereads.

As in Algorithm 1, we read in the next node for which
A(v) is maximum as long as we have free buffers. Let us
assume that the next input node according to our read
schedule is x, and there are no free buffers, i.e., the cmnt
set of nodes in’ memory is M where IMI = K and no member
v of M has P(v) = 0. We compute the value of the total
maximum actual work over all nodes in M and compare it
with the total actual work which can be achieved in the
system by replacing a node in M with x. If the former value
is larger, we simply proceed with alternative (a). Othe&se
we choose a node y in memory for which the total actual

- 69 -

work in the system (computed after replacement of y with x)
is the largest possible. We then read node x into the buffer
currently occupied by node y.

The following adjustments must be made:
* All joins involving node y must be removed from the

work queue.
* The value of A(v) must be decremented for all

neighbors of node y.
* The node y is placed in the queue of unread nodes

with its current value of A(y) and P(y) and will be scheduled
for reading according to our usual criteria.

*Asbefore,afternodexisreadin,weneedtoupdate
the values of A(v) for all nodes in the system which are
neighbors of x (increase by 1) and add all joins involving x
and a memory resident node into the work queue.

3. Bounds Assuming Constant Page Join
Processing Time

In this section we assume that the join graph B(V,E) is a
bipartite connected graph where V = Vl U V2. The bounds
we derive here are based on knowledge of some simple
parameters of the graph such as the cardinalities of the edge
and vertex set or the size of the largest degree in the graph.
Of course it is possible to derive tighter bounds if we have
more information about the graph. Bounds are important
since they give us some ideal measures against which we
can compare our algorithms. We consider in this section
bounds on the number of processors required to complete
the join in optimal time. In the next section we deal with
bounds on the time required to complete the join with a
given fixed number of processors.

We denote by Topt(B) the optimal time to complete a
join represented by the graph B, i.e. the minimum number of
time steps with an unbounded number of processors where
the join time is a constant C.
Lemma 1:

Topt(B)=IVI+C.
Proofz Let S be an optimal time schedule for the graph

B. At each time step we-can read exactly one vertex of the
graph. Let us denote by vn the last vertex read by the
schedule S. The processing of all edges incident on vn can
be completed only after vn has been read. Since the graph is
connected, there will be at least one edge incident on vn and
therefore at least C additional time units are needed after all
the vertices have been read in order to complete the
execution.

In the following theorems we compute an upper and a
lower bound on Pop(B), the number of processors required
to complete the join in optimal time Top@). We derive a
bound which assumes that all we know about the graph is
WI and lEl.
Lemma 2: The maximum number of page joins a schedule
can complete during the first i + C time units (with
unbounded number of processors) is

1
-2
I- for i even
4

(i-l)(i+l)
A

for i odd
Pro& Let us denote by%i(S) the subgraph of B read by a
schedule S during its first i steps. This subgraph consists of
the set of i vertices read by the schedule and all +ges of B
with both endpoints in this set. Let Vi1 and Vqt be the
vertices of Bi(S) which belong to Vl and V2 respectively.
At step i+l, the schedule S can perform all joins such that
their corresponding edges are in Bi(S). It is easy to see that
for any schedule S, the number of edges in Bi(S) is
maximized when this graph is a complete bipartite graph
with lVill = l&l = i/2 when i is even and lVill = (i-1)/2 and
l&l = (i+1)/2 for i odd. The expression in the statement of
the lemma represents the number of edges in the graph
corresponding to each of these cases. 0
Theorem 2: The number of processors required to
complete the join in optimal time on the graph B(V,E)
satisfies 1 \

P,,,(B)~CxMAX(l~.I~l-~l~l~-~~I) + ’ 3
wheret=IVI+C-2. ’ L

A I

Proof: We first prove that the number of processors needed
is larger than the first term in the curly brackets. Let us
assume that schedule S completes the join in optimal
execution time with Pop@) processors. We observe that
there are t time units in which processors must complete all
lEl joins because no join can take place during the fast two
time units. Since a single processor can complete at most

joins during thi; pericxl;;yv c

opt t
We now prove that the number of processors needed is

also larger than the second term in the curly brackets. We
denote by c(i) the number of page joins performed by S
during its first i+C time units. Then in order for S to
complete the join in optimal time, it has to perform the
additional &c(i) joins during the remaining time which is

I I
IV!- i

IVI - i. Since each nrocessor can comnlete at most C
joinsduring this pe;iod, we have

P,t(B)TCx

By Lemma 2, for 1 I i 5 IVI
:2

c (i) < 2

From which we conclude that for 1 ii 5 IVI

In order to make the bound as tight as possible we will find
the value of i for which the right hand side achieves its

- 70 -

maximum. We use elementary calculus to find that the right
hand side achieves its maximum when the value of i is the
closest integer to

PI-dFEEi
By substituting this value of i into the right hand side we
obtain

p~~l~B~21VI-~~V12-41EI
2

as clailned.~
In the next theorem we exploit more information about

the graph to derive an upper bound on Popt(B). We assume
that IEI, IVII, IV21 are given. Without loss of generality let
IV11 s IV*I.
Theorem 3: The optimal number of YrEssors ytisfies

-I-
whereM=rC]ifC>landM=)hIifC<l.

LL-J

Proofi We exhibit a simple schedule S’ which completes
the join in optimal time using no more than the above
number of processors. The schedule S’ is characterized by
the following rules: Let us call a step in which a vertex of
VIisreadatypeIstepandallotherstepsarecalledtypeII
steps.
3.1 The vertices of V2 are sorted in non-increasing order of

their degrees and relabelled vI,v2,...,vn such that VI is
the vertex with the maximum degree and vn has the
minimum degree.
The schedule performs its reads in n+l rounds each
consisting of a type II step followed by zero or more
type I steps in the following way:

3.2 In the first time step of round i (i<n+l) vi is read, this is
followed by reading in all the vertices of VI connected
to it which have not yet been read. Round n+l consists
of the final join.

3.3 All page joins are scheduled to take place as early as
possible, i.e. as soon as the two endpoints of an edge
have been read in and there is a free processor to
perform the join.

The number of new potential joins introduced at the end of
round i is at most equal to d(vi), the degree of vi. For
simplicity, from now on we will assume that page joins are
performed only on the first step of each round (from round 2
onwards), i.e. on the first step of round i+l we will attempt
to perform all remaining page joins involving Vi. (this is
possible as all endpoints of edges involved have been read).
The proof of the theorem has two parts, in Part I we prove

that it is sufficient to complete at each round A = 11 E
n joins

in order to obtain optimal execution time. We then show in
Part II that A x M processors are sufficient to achieve this
&wl.
Part I:

Intuitively, this result holds since there are lEl joins
which must be performed over n rounds and therefore A is
roughly the average number of joins per round. More
precisely, at the beginning of round i+l (for icn) there are at
most d(vi) new joins to be performed. In case only A are
performed during this round, there are up to d(q)- A
potential joins which may have to be deferred to some future
rolmd.

Note that the value of A is the ceiling of the average
degree of vertices in the set V2, so that there must be a first
index j such that d(vj, < A. At the beginning of round j, the
total number of page joins deferred from all previous rounds
is at most

i=j-1

i=

On the other hand, by thidecreasing order of degrees, there
willbeatotalofatleast

i (A-d(d)
i=j

available processors to complete these deferred joins during
rounds j+lj+2,...,n+l. Since as we noted before A is equal
or larger than the average degree in the set V* we have

i=n a-
A 2 fi 2 d.Cvi)

i=
from which it follows that 1

i (A - d(vi)) 2 i =i ’ (d(vi) - A)
i=j i= 1

and the number of available processors is sufficient to
complete all the page joins.
Part II:
Given a join time of C we will now show how the
processors can be scheduled during each round. If C < 1

each processor can complete c joins in one time unit. LJ
1..

Therefore A x M processors are sufficient to complete A
joins in each round. In the case C > 1, we can use a group
of A processors at the beginning of each round. Since a
group of processors is utilized for at most C time units we
can reuse it every [Cl steps. In this way we will be using at
most A x M processors at any given step.0

4. Discrete Event Simulation
The dynamic behavior of our algorithm can be modeled

by a simple multi-server queueing model. At each step of
the read schedule a data page is mad into memory. After the
read is complete, one or more joins to other memory
resident data pages may be enabled. As soon as a join is
enabled, it may be assigned to a processo r for execution. If
all processors are busy, the enabled joins are queued until

- 71 -

they can be processed. The following diagram summarizes
this behavior:

Read pages
into memory

+ Enable + , , , , , , , k
Jobs

Lo n
Process
Jolns

In order to evaluate our algorithms and heuristics, we
implemented a stochastic simulation model. Input
parameters are summarized in the following table:

The first step of our simulation is to generate a random
graph by partitioning the nodes into two subsets. If the
number of nodes in the first subset is not specified, a
random partition is performed. Next the number of edges is
determined as the product of alpha and the maximum
number of edges possible. We randomly select this number
of edges (without replacement) from all possible edges and
construct a bipartite graph. This graph represents a page
connectivity graph. The page connectivity graph is then
used as input to our scheduling algorithm to produce a page
read schedule giving the order in which pages (nodes)
should be mad into memory. This schedule is augmented by
a list of joins (edges) ordered by the times at which they
become enabled.

This join list is then input into a discrete event
simulation [LAWKSZ] of a multiprocessor with n
processors. Each processor has a join processing time
(service time) described by a random variable. The random
variable has either a constant or exponential distribution
with a fixed mean. Throughout the simulation, random
numbers are generated using techniques described in
[pARK883. If the number of processors is not specified, the
simulation will estimate the number of processors required
to complete processing in optimal time (Popt) and use this
number during simulation of join execution.

The following table lists the output parameters of our
simulation:

4.1 Optimal Number of Processors
The optimal number of processors is estimated by

assuming that the page join times are constant and equal to
the page read times. In [MuRet391 we presented lower
bounds on the execution time in terms of the total number of
nodes (IVI), the number of edges (81) and the number of
processors (p):

Executiontime2max IV!+ 1,2p+ 1+
In initial experiments we observed that the simulated

execution time was almost always equal to the lower bound.
Intuitively this should be the case when the processor
utilization is sufficiently low that joins rarely need to wait to
be processed. We then estimate the optimal number of
processors as the value of p for which r _

IvI+l=zp+l+l* I I
In the following experiments we e&h&e the use of this

estimate when the page join times are constant, but not
necessarily equal to the page read time. Intuitively, if the
page join times are close to the page read times, the
estimated optimal number of processors should be close to
the true optimal value.

5. Simulation Experiments and Results
In this section we present the results of an extensive

series of simulation experiments designed to verify our
algorithms, bounds and heuristics. ‘Ihe charts displayed in
this paper are representitive of the results we obtained.
5.1 Comparison with Random Schedule

In this experiment we compared the execution time
produced by the read schedule of Algorithm 1 with a
random read schedule for three typical graphs. As we can
see in Charts 1 and 2, Algorithm 1 is consistently better (by
roughly 20%) when the number of processors is less than
the optimal. As expected, increasing the number of
processors above Popt has little effect on the execution time
since no additional improvement is possible.
5.2 Execution Time and Popt

This experiment measured the execution time produced
by Algorithm 1 for a wide range of typical join graphs. The
parameters of these graphs are given in the two tables
below. The trends in Charts 3 and 4 are consistent with our
predictions, i.e. the execution time decreases with the
number of processors and increases with the number of
edges. The charts level off at the optimal execution time

- 72 -

slightly before we use Popt processors, i.e. no fur
improvements in execution time occur after that point.

5.3 Buffers and Popt
Our simulation model assumes that a buffer is freed

whenever all joins associated with the node have been
completed. In this experiment we measure the maximum
number of buffers used by Algorithm 1 under this
assumption. We observe a few interesting trends in these
Charts (5 and 6):

(1) The relative sizes of the relations and densities of
the graphs is significant, i.e. graphs which are more evenly
split and/or denser require more buffers.

(2) Adding more processors helps to reduce the number
of required buffers as joins have to wait less time for
execution. If the number of processors is less than Popt, the
number of buffers required increases sharply.
5.4 Join Time and Popt

In the following series of experiments we vary the page
join times between 0.1 and 2.0 (the units are fraction of the
time required for a page read). In this experiment we
measured the execution time (Charts 7 and 9) and processor
utilization (Charts 8 and 10) for the optimal number of
processors (popt), the optimal number of processors plus a
constant one (Popt +I) and the optimal number of
processors less one (Popt -1). We observe that the two
metrics are highly correlated with the number of processors.
The execution time is constant (and bounded by the optimal
time) until the processors “saturate” (i.e. utilization
approaches one), at which point the execution time increases
roughly linearly with the page join time.

55 Exponential vs Constant Join Times
These experiments were designed to examine the

effects on processor utilization and total execution time of
stochastic variations in the page join times (Charts
11,12,13,14). We compared the performance of two typical
join graphs assuming exponentially distributed join times
with the performance using constant page join times having
the same means. We did not find significant differences in
execution time or processor utilization, indicating that our
bounds based on an assumption of constant page joins times

are reasonable approximations to the situation of
exponentially distributed page join times.

6. Conclusions and Future Work
In this paper we studied the problem of optimizing join

execution on multiprocessors from both the theoretical and
practical point of view. We derived lower bounds on the
execution time and optimal number of processors based on
the structure of the join graph. We then devised a heuristic
scheduling algorithm which produces an or&r of reading in
the pages on the relations and scheduling the joins on the
processors. We identified several parameters which might
significantly affect the resource utilization requirements of a
join plan. These include: size of the graph, density of
edges, relative sizes of relations, distribution of join time
and number of processors. We conducted a large number of
experiments with our heuristic in order to examine the effect
of all these variables on the resource requirements and their
interdependencies.

Our results indicate that the heuristic performs well
under a wide range of conditions and the resource utilization
achieved by it matches quite closely the theoretical lower
bounds.

Future work in this area includes examining more join
strategies and also algorithms for additional relational
operators. In the near future we plan to integrate buffer
restrictions and heuristic strategies into our simulation
models. In addition, we plan to implement our algorithms
and obtain performance measurements on a commercial
multiprocessor such as Sequent.

We believe that in the future query optimizers for
databases which run on multiprocessors will have to be
enhanced in order to take full advantage of the parallelism
offered by such a system. Such optimizers will need to
incorporate cost functions based on accurate predictions of
resource requirements and execution time in order to
correctly evaluate the costs associated with different join
plans. The research presented here is a first step in this
direction.

7. References
[Ah0741 Aho, A. V., J. E. Hopcroft and J. D. Ullman.

(1974). The v of a
&&hm.s. Reading, Mass, Addison-Wesley.

[BLAS76] Blasgen, M. W. and K. P. Eswaran. (1976). Qu . . of 0-m Base
hnical Report #RJ1745 (#25553)

Computer Science (April 81976).
[GARE79] Garey, M. and D. Johnson. (1979). Computers . . w . San Francisco, W.H. Freeman

and Company.
[GOYA88] Goyal, P., H. F. Li, E. Regener and F. Sadri.

(1988).“Scheduling of Page Fetches in Join
Operations Using Bc-Trees.” Proceedings of 4th
International Conference on Data Engineering,Los
Angeles, CA,IEEE.

- 73 -

A. M. *and W. D. Kelton. (1982).
MV . New York,

McGraw Hill.
[MERRSl] Merrett, T., Y. Kambayashi and H. Yasuura.

(1981).“Scheduling of Page-fetches in Join
Operations.” Proceedings 7th International
Conference on Very Large Data BasesCannes,
France.

-91 Murphy, M. C. and D. Rotem. (1989).“Processor
Scheduling for Multiprocessor Joins.” Fifth
International Conference on Data Engineering,Los
Angeles, CAJEEE.

PARK881 Park, S. K. and K. W. Miller. (1988). ‘Random
Number Generators: Good ones are Hard to Find.”
CACM. 31(10).

[SEQUSS] Sequent Computer and Codd L Date Associates.
(1988). Combining the Benefits of Relational

Technical Seminar, San Francisco, CA, September
28,1988.

[SEQU88b] Sequent Computer Systems. (1988). &&mg
Ove. Product Description, Sequent Computer,
Beaverton, ORE.

[vALD87] Valduriez, P. (June 1987). “‘Join Indices,” ACM
Transactions on Database Systems. 12(2): 218246.

Chart 1:

Execution
Time

75 Nodes

19+56 Nodes

2 3 4 5 6 7 8
Number of Processors

Chart 2:
Execution

Time
25 Nodes

7+18 Nodes

I 2 3 4 5 6
Number of PrOCeSSOrS

Chart 3:
Execution

Time
lOOOr

75 Nodes

1 2 3 4 5 6 7 8 9 1011 12
Number of Processors

Chart 4:
Execution

Time
25 Nodes

OJ I
Chart’ 2 3 4 5 6 5:

Number of Processors

Buffers
75 Nodes

-w-w-m-m--m-m--m-m

1 2 3 4 5 6 7 8 9 10 11 12
Number of Processors

Chart 6:
25 Nodes

Buffers

5

0
1 2 3 4 5 6 7

Number of Processors

- 74 -

Chart 7:

Alpha = .4

12OT

0'
0.1 0.5 1.0 1.5 2.0

Page Join Time

Chart 8: Chart 12:

0.10.51 .01.52.0
Page Join Time

Proc.
Util.

Alpha = .4 Alpha = .4

1

0.8

0.6

0.4

0.2

0
.l .5 . 1.0 ‘1.5 2.0

Chart 9: Page Join lime Chart 13:
Alpha = .l Alpha = .l

1401
120
100 /=

Execution
Time

8 0 t /’
60. -/t,& 401

0.1 0.5 1.0 1.5 2.0
Page Join Time

Chart 10:
Proc.
Util.

Alpha = .l

.l .5 1.0 1.5 2.0
Page Join Time

-a- Popt f 0 1 -o- Popt + 1

.m- Popt - 1

Chart 11:

Alpha = .4

(30 + 20 Nodes)

*+ Popt + 0

.c- Popt + 1

+ Popt - 1 1

Processor
Utilization

+ Popt + 0

-c- Popt + 1

*R- Popt - 1

(30 + 20 Nodes)

0.8

0.6

0.4

0.2

-0.1 0.51.01.52.0
Page Join Time

, (30 + 20 Nodes)

(30 + 20 Nodes)

Chart 14:

Page Join Time

Alpha = .l

1

0.8

Processor O-6
Utilization 0.4

0.2

o- (30 + 20 Nodes)
0.1 0.51.01.52.0

Page Join Time

- 75 -

- 76 -

