
Managing Complex Objects in an Extensible Relational DBMS

Abstract 1. Inlrodu~

Georges GARDARIN(i), J-Pierre CHEINEY(ii), Gerald KIERNAN(i).
Dominique PASIRE@), Her& STORA@)

This paper presents the management of complex
objects in an extensible relational database management
system. Complex objects are built using the list
constructor. Complex object types are defined as relation
domains encapsulated within methods written in LISP or
C. User-defined domains may be &scribed using a “IS-A”
hierarchy, which makes possible the inheritance of methoak
among domains. The domain methods are directly used in
the external data manipulation language, which is an
extended version of SQL with object orientedfeatures (i.e.,
structured complex objects, methods and inheritance).
When executing a query, the system selects the correct
methods to apply on complex objects according to all
parameter types given in method calls. With the specific
LISP interpreter embedded in the DBMS, errors in
functions on complex objects are detected at run time.
Thus, the DBMS is protected from errors arising in user
programs. Methods can also be programmed in C code and
dynamically loaded when C programs are referenced in
queries. Relations can be clustered according to the result
of user-defined methods applied to basic or user-defined
domains. Graphical interface procedures are available to
input and display non-standard data. A fully running
version of the system is commercially available for SUN
UNIX workstations.

(i) Institut National de Recherche en Informatique et
Automatique

(ii) Ecole Nationale Supbieure des T&!communkations
(iii) Eurosofr
(iv) Infosys

This work has been partly supported by the ESPRlT project
ISIDE (1133) and by CNET contract no 857.B077 and
867.B078.

Permission to copy without fee all 01 part of this material is
granted provided that the copies am not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appea?, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

The appeal of relational database systems for standard
applications is due to the simplicity of the relational
model. However, relational systems fail to cater to new
applications such as office automation, CAD/CAM, CASE
or geographical applications, which are characterized by
complex data types and operations. For such applications,
relational database systems may serve as storage systems
on which are built the application software. A first
approach to extend relational systems consists in adding an
interface layer over an existing relational database system.
The interface simulates the extended model by converting
schemas and queries into their relational counterpart. This
is the approach used in GEM [Tsur84], [Zaniolo83,85]
which offers an entity-relationship database interface. The
attractiveness of such an approach lies in its inexpensive
implementation using reliable existing technology.
However, the shortfall is performances. The greater the
difference between the end-user model and the database
model, the more complex is the translation process leading
to eventual inefficiency.

Recent publications point out the need to include
user-defined data types within the relational systems
[Gardarin89]. User-defined data types allow the users of
relational systems to tailor the database system to the needs
of their specific applications [Ong84], [Osbom86],
[Stonbraker83,86]. User-defmed domains are operationaly
defined, that is, the semantics of new data-types are the
operations which can be performed over them. The
programs which manipulate these new data types are
registered within the DBMS system and dynamically linked
at DBMS run-time. Other attempts to extend relational
systems have been done using non first normal form data
models. Complex objects retain more of their semantics
by using richer data models which permit to capture for
example the hierarchical quality of data Pancilhon861,
[Schek86], Werso861, [Zaniolo853.

The approach proposed in this paper extends the
notion of domain to support complex objects. In most
implementations of relational systems, available domains

Proceedings of the Fifteenth International
Conference on Very Large Data Bases Amsterdam, 1989

- 55 -

are limited to integers, real number and character strings.
Certain extensions have added date and money. In Codd’s
relational model [Codd70,79], the notion of domain is
defined by a set of values. No restriction is made on the
types of values which can be represented as domains.
Extending relational domains to include user-defined
domains has been initially presented in [Stonebraker83,86l,
[Ong84], for the INGRES database system and in
[Osborn86] for the RAD database system. In both these
systems, the relational model is extended to include
user-defined domains with their associated methods. The
external query languages of these systems are extended to
include user-defined methods within relational expressions.
User-defined methods can appear in any clause standard
operators appear (projection, restriction, . ..). The user
programs methods in a programming language which can
be compiled or interpreted. Other aspects of the database
system have also to be reconsidered. Efficiency is
maintained by clustering relations with frequently applied
methods [Cheiney88], [Wilms88] and also by cost
evaluations for query optimization [Schwartz861,
[Q=Y%l.

Different implementations of Userdefmed Data Types
(UDT) can vary according to the following points :
(i) The possibility of defining new functions only on

user-defined domains or both on UDT and on basic
domains ;

(ii) The choice of programming language in which to
implement user-defined operations ;

(iii) The possibility to use existing code to implement
new operations ;

(iv) The existence of an “IS-A” hierarchy among domains
to establish operation inheritance ;

(v) The execution of operations : dynamically linked or
interpreted ;

(vi) The presence of clustering methods for UDT.
Based on these criteria, our approach :

(i) allows to define new methods (i.e., functions attached
to objects) on basic or complex domains ;

(ii) uses an object oriented version of LISP for UDT
programming ;

(iii) allows to reuse any method or code which is registered
within the DBMS to build new UDT ;

(iv) defines UDT using an “IS-A” hierarchy to apply
method inheritance among domains ;

(v) is based on a special implementation of a LISP
interpreter. Although, UDT operations can be
programmed in C source code and compiled into
object code which is linked dynamically at run-time.
LISP code can be interfaced with the C code. Errors
arising in C programs are not as easily managed as
those in LISP.

(vi) allows a complex object clustering method based on
predicatetrees.

Using these principles, we extend an existing
relational DBMS named SABRINA, developed at INRIA in
the beginning of the 80s [Gardarin87]. In the extended
system, a UDT is defined as a method which is used to
create and validate the occurrences of the domain, and
methods that are applicable to this domain. The name of
the method which is used to create and validate the
occurrences of the domain is also used as the name of the
domain. The declaration of a generalization hierarchy for
each complex domain allows dynamic inheritance; a
method is selected according to its parameters types. This
provides greater flexibility and consistency than having
each method attached to a unique domain type. When
methods are programmed in LISP, the run-time is
interpreted, this allows managing programming errors.
However, it is also possible to dynamicalIy link and run C
object code. This feature provides better performances than
interpreting LISP code. However, if no C code is used, no
external files need to be managed, the method code and
relative information are stored within the database system
and hold in one relation. To maintain performances with
LISP, an appropriate design of LISP has been
implemented. This design differs from standard LISP
implementations in error handling and garbage collection.
No global environment variables are permitted thus
simplifying and optimizing the garbage collection process.

This article presents the manipulation of complex
objects in an extended relational DBMS. Complex objects
are integrated as user-defined data types (UDT) at the
domain level, which makes the system extensible. The
extensible system is currently available as a product
(SABRINA, version 7). Apart from this introduction,
section 2 details the definition of UDTs using an object
oriented version of the LISP language based on a subset of
the LeLisp syntax [Chailloux86]. Section 3 describes the
extensions to the external SQL interface for manipulating
UDTs. The overall system architecture is described in
section 4 with special emphasis on the alterations brought
to the system for UDT manipulation. The next section
describes the partitioning of relations on disk for optimal
retrieval of relations containing UDT. This is done using a
clustering strategy based on predicate trees and partitioning
relations on the results of frequently applied methods.
Section 6 deals with further strategies for optimizing query
processing in the UDT framework. Section 7 discusses
special interface methods for managing graphical
information. The conclusion terminates the paper.

- 56 -

2. Userdefmed Data Types : Concepts and Language

2.1. J&er Data Tm and Metho&

The basic domain types commonly available in
commercial relational systems (integers, real numbers and
character strings) are insufficient to represent the types of
data manipulated by new and diverse applications (graphical
data types, lists, etc.). Each data type should be
manipulated with a set of appropriate methods which may
or may not be limited in number. Because of the diversity
of types required by the new applications, it is insufficient
to extend the database system to include a specific and
limited set of data types. For this reason, the object
oriented approach allows the user to define methods on
objects in an incremental way. Our approach is similar in
the sense that it lets the user define the data types and
methods which are specific to the application. area.
Geographical applications may require geometric data types
such as polygons. These can be built from simpler types
such as Cartesian coordinates (points). A polygon can be
represented as a list of points. Geographical districts can
then be described as a specific form (or specialization) of
polygon. Specialized methods for geographical districts can
then be defined, for example, the surface method returns in
acres the surface area of a district. If districts are described
as a specialization of polygons, then all methods applicable
to polygons are also applicable to districts.

While the implementation remains altogether
relational, this extends the relational system to cater to a
wider variety of application areas. It also integrate in the
relational system a few concepts of the object oriented
approach, namely complex objects, methods, messages
inheritance and extensibility. The LISP language was
chosen as a basis to build a UDT programming
environment for the following reasons : i) LISP is a
powerful language for manipulating complex structured
objects built with the list constructor; structures such as
lists, sets and trees are easily manipulated in LISpi because
LISP is a weakly typed language, UDT could be defined
operationaly instead of structuraly; ii) the functional
approach seemed appropriate for UDT methods; new
methods can be built from existing ones; iii) domain
hierarchies and inheritance can be handled by LISP, iv) user
programming errors could be easily managed by specific
controls over basic LISP functions; v) the programming
environment could be completely integrated within the
database environment having function code retrieved from
the database selectively; vi) specialized LISP functions
could be easily added to manipulate IJDT, for example, for
storing and modifying UDT contained in the database. The
LISP interpreter is an entry point from which UDT are

updated and registered within the database system
ljCieman87].

2.2. ComDlex Domain Definition

To create a new UDT, the user writes an initial
method that creates and validates instances of the new
domain. This method will be used automatically by the
integrity mechanisms either when instances are inserted or
modified. The name of this method is used as the name of
the domain. Once a domain name is defined, additional
methods can be declared with references to these domains as
parameter types. Each method parameter must be typed
using a basic domain (integer, real or text) or a complex
domain declared in the inheritance hierarchy of complex
domains whose root is denoted # (complex object). In this
way, method inheritance can be applied. For example, the
surface method can be inherited from rectangle to square.
The complex domain hierarchy is represented using the
notion of package found in the LeLisp language
[Chailloux86]. Thus, a domain is a path name from the
root (labeled as #) to a terminal name in the hierarchy. For
example, the square domain is described as a specialization
of rectangles as follows : #:rectangle:square.

Hence, registering a new domain requires defining the
domain integrity in the form of a validation method and
specifying the place of the domain in the generalization
hierarchy. A UDT is described as a LISP function and
comprises the domain name, the generic domain names,
and the validation function body definition. All methods
applicable to a generic domain are also applicable to the
domain itself unless it has been redefined at that level. ‘Ihe
dd function is used to define new UDT. The syntax of the
dd function is as follows :

(dd <domain name> (<pammeteD) <function body>)

For example, the following function defines the
RECTANGLE domain :

(dd #:RECTANGLE (x)
(and aim 4

(numberp t= 41

According to this function, for an object x to be a
rectangle, it has to be a list of two elements where both
elements are numbers. The fast element is the height of
the rectangle, the second is the width.

- 57 -

2.3. Method Definition

A UDT method is defined also as a LISP function.
The de and the df functions are used to define UDT
methods. These two functions are standard in current
implementations of LISP. The general syntax of these
functions is :

(deunethod name> @parameter list>&method body>)

The method name is the name of the UDT method being
defined. The list of parameters are the arguments to which
method values will be bound to at method run-time. The
method body implements the method. Other UDT can be
referenced in the method body. The method name is
composed of a name which is preceded by a list of domain
types, one per parameter in the parameter list; thus
identifying each parameter’s type. For example, the
LENGTH method which is applicable to RECTANGLES
will be named #:(#:RECTANGLE):LENGTH. This
notation insures that all parameter types are taken into
consideration when selecting a method. Hence, methods
may be overloaded according to all parameter types.

The following methods are defined for
RECTANGLES :

(de #:(#:RECTANGLE):HEIGHT (x) (car x))

(de #k(#:RECTANGLE):WIDTH (x) (car (cdr x)))

(de #:(##:RECTANGLE):SURFACE (x) (* (:width
x)(:height x)))

(de #:(#:RECTANGLE #:RECTANGLE):HIGHEST
6 Y)
(if (> (:height x)(:height y)) x y))

The HEIGHT method extracts the fust number in the two
element list as the height of the rectangle. The WIDTH
method does the same for the second element. The
SURFACE method multiplies the height by the width to
obtain the surface. The HIGHEST method returns the
rectangle with the greatest height. Methods can also be
programmed in C source code, compiled and dynamically
linked with the DBMS program at run-time. For example,
the surface method may defined as follows :

(dc #:‘(#:RECTANGLE):SURFACE (x)
“/usr/mydir/surface.o”)

The dc function tells the interpreter that the SURFACE
method is programmed in C. LISP and C function can be
mixed. Programming errors occurring in C functions may

cause the DBMS program to terminate abnormally while
error occurring in LISP functions are controlled by the
interpreter. Although C code runs faster than LISP code,
there is a non negligible amount of time required by the
loader to load and link object code to the DBMS run-time.

To define new UDTs. the user obtains the general
UDT programming environment from within the external
SQL language by typing the LISP command. An example
of a UDT programming session follows. In this session, a
new UDT method named BIGGEST is defined for
RECTANGLES. The BIGGEST method accepts two
arguments of type RECTANGLE and returns as result, the
RECTANGLE with the greatest surface value. Once the
method is defined, it is tested on trial data and then
registered within the DBMS system. The SAVE function
serves this purpose. The SAVE function takes two
arguments: the name of the UDT and the type of result
returned by the UDT. The result type is needed by the
DBMS to manage coherency in relational expressions.
END terminates the session and control is returned to SQL.
At which point the user can include the BIGGEST method
in appropriate relational expressions.

> LISP ;

? (de #:(#:RECTANGLE #:RECI’ANGLE):BIGGEST
(x Y)
? (if (> (:SURFACE x) (:SURFACE y)) x y))

= #:(#:RECTANGLE #:RECTANGLE):BIGGEST

? (:BIGGEST ‘(4 5) ‘(2 3))
= (4 5)

? (save #:(#:RECTANGLE
#:RECTANGLE):BIGGEST #RECTANGLE)
= #:(#:RECTANGLE #:RECTANGLE):BIGGEST I)

?END
II

3. OBJECT-Sf&:TheExternal~eInterface

3.1. Comnlex Ql&ct Cr&

The relational DBMS implements an SQL interface
which is based on the SQL norm. The language has been
extended to manipulate UDT. OBJECT-SQL is the name of
this extended language interface. The database administrator
extends the DBMS by defining new UDT which are then
made available for use in the external language. In this
section, the various extensions brought to SQL to include
UDT are considered.

- 58-

Relations are created using the CREATE TABLE
command. For example, the RECTANGLES relation is
created in the following:

CREATE TABLE RECTANGLES (
R# integer,
COLOR text,
SIDES ~tangle) ;

This relation contains three attributes where the first two
are of standard domains and the last one is a complex
domain. The SIDES attribute takes its values from the
RECTANGLE domain which has been defined as a list of
two numbers. Once the rectangles relation has been
created, values may be inserted into the relation using the
INSERT command. For example,

Example 2 : UDT methods are used in a restriction clause.
This query selects those rectangles with a height greater
than their width.

SELECT *
FROM RECTANGLES
WHERE HEIGHT (SIDES) > WIDTH (SIDES) ;

Example 3 : A UDT method is used in a join expression.
This query selects rectangles with different surface values
and displays the greatest of the two values.

SELECT *, BIG (Rl.SIDES, RIL.SIDES)
FROM RECTANGLES AS Rl, RECTANGLES
AS R2
WHERE SURFACE (Rl.SIDES) <> SURFACE
(R2.SIDES) ;

INSERT INTO RECTANGLES VALUES (1, BLEU,
(4 5)) ;

4. The System Architecture
When new values are inserted into relations, the UDT
method which implements domain integrity constraints
validation are run over the new values to determine if the
values qualify as occurrences of the domain. The same
check applies when UDT values are updated. Here, the
value (4 5) qualifies as an occurrence of the rectangle
domain. Note that the system does not implement object
identity. However, it could be possible to identify complex
objects within the validation function; that would make
possible referential sharing among complex objects (i.e.,
complex domain values). This is left for further research.

3.2. QJ.@ex Object Selection

A UDT method can be used in any clause of a
relational expression (projection, restriction, aggregation,
sort) and is applicable to one or more attributes. A UDT
method F applied to a number n of arguments is written as
F(Pl..Pn). The parameters Pi can be constants, attributes
or UDT methods applied to other parameters. The F
function will be selected according to all the parameter
types. Methods may also appear according to their
complete name (as in their declaration) and thereby
bypassing the inheritance based selection mechanism. The
following examples demonstrate the various possibilities:

Example 1: A UDT method appears in the projection
clause. The query selects all attributes in the relation in
addition to the surface value of the sides attribute.

SELECT *, SURFACE (SIDES)
FROM RECTANGLES ;

The system which implements the ideas described in
this paper is version 7 of the SABRINA relational DBMS
[Gardarin87]. In this section, the general system
architecture is detailed. Then, the modifications which
have been introduced to manipulate UDTs will be
highlighted. The architecture is a three layered architecture
which spans from the external user interfaces to the disk
storage system :

(1) The interface machine comprises the outer layer of the
system. It is responsible for allowing different end-users to
interact with the system. These processes transform
queries into an internal representation called Data
Manipulation Protocol (DMP). Different types of
interfaces are available in the system.

(2) The assertional machine is the intermediary layer of
the system. This layer is responsible for transforming the
operations of relational calculus in an optimized extended
relational algebra tree. for managing data security and
integrity, and for managing views.

(3) The algebraic machine is the internal layer of the
system. This layer performs the operations of relational
algebra. To maintain performances, access methods are
used, cache memory is managed and efficient join and
selection algorithms are implemented. Moreover, the
algebraic machine manages concurrency and reliability.

Each of these machines comprises a number of
functional processors. The global architecture was not
modified by the integration of UDT. However, a new

- 59 -

processor was added to manage UDT at the algebraic
machine level. The meta-base which describes the relations,
attributes and integrity constraints was extended to describe
complex objects and manage domain types which are not
base types. Figure 1 describes the overall system
architecture. Note that several external languages are
available on top of the system, including PROLOG and a
specific rule language called RDLl [Maindreville88]. Rules
are interpreted at the level of the assertional machine.

Figure 1: Functional System Architecture

A LISP language processor is available at the
interface level to allow the definition of new UDT. All

information pertaining to UDT is stored in a me&base
relation. No external files need be used with only one
exception: source and object files for C code. The relation
which is used to manage UDT has four attributes : i) the
method name defines the name of the UDT, ii) the result
type defines the domain type of result returned by the
function, iii) the function type describes whether the
function implements a domain or a method, iv) the
function text is the source code which implements the
method. A sample of this relation is given in Figure 2. A
UDT processor is associated to the algebraic machine to
evaluate UDT in relational expressions. This processor is
called by the filter when method evaluation against
relations is required. The processor is also called when
clustering relations on UDT.

lVN)NcIIoN_NAME

#POINT

wolNTMcmB

RLWJLTJYPE~fWCTDNTTPE~ FUNCTIONJEXT
I I

Figure 2 : A sample of the UDT relation

5. Clustering Using UDT

5.1. &&ioles and state of the art

A crucial problem in introducing UDT for managing
complex objects in a relational system is maintaining
performances at a reasonable level. While main memory
storage is increasing in size, disk I/O remains the
bottleneck for such systems. New applications need to
manage a large number of objects where individual objects
can be big in size. Applications such as geographic
applications employ graphics and consume important
amounts of memory and processing time. Considering the
important cost of disk I/O, appropriate clustering methods
are essential.

INGRES [Stonebraker86] implements several
clustering methods (B-trees, hashing). and allows adding
appropriate clustering methods for complex objects. Thus,
it is possible to add clustering methods designed for spatial
objects such as R-trees [Gutman and k-d-trees
[Bentley75]. This approach allows the user to integrate
complex and appropriate clustering for UDT, however a
programming error is hard to avoid and can cause the
DBMS program to terminate abnormally.

In [Valduriez86], two techniques for clustering
hierarchical objects are presented. An initial approach for

- 60 -

storing objects consists in physically clustering object and
sub-object. The method favors access to entire objects over
access to sub-objects. The storage model is referred to as
the Direct Storage Model (DSM). A second approach
called Normalized Storage Model (NW), stores atomic
objects in flat relations, The method favors access to
sub-objects which can be clustered according to one or
more attribute values. Accessing entire objects requires
rebuilding the object with nested join operations.
However, rebuilding objects can be accelerated by
maintaining join indices. These join indices join tuples on
predetermined attribute values. This approach is appealing
in that it does not require any special clustering method and
in that it is easy to implement.

The-se procedures do not allow to define clustering of
tuples in terms of general selection criteria. They allow
clustering directly on attribute values but not on the result
of methods frequently applied to complex attributes.
Graphical applications seldom require acces&ng entire
objects but more often require the result of a method
applied to an object. Therefore, access to such objects is
functional. For example, in the relation Rectangles (R#,
Color, Sides), the sides attribute is of the rectangle domain
which is a UDT. Users can require accessing rectangles
based on the surface value of attribute Sides. This query
will result in applying the surface method against the
values of the Sides attribute. It is therefore important that
clustering be also functional. That is, that tuples be
grouped according to the surface value of Sides. Thus,
tuples must be clustered according to the most frequently
used methods in queries.

5.2. me usine UDT metho&

The SABRINA relational DBMS implements a
me&method for clustering tuples that allows describing
clusters using a Predicate Tree (PT) [Gardarin84],
[ValduriezMl. Tuples qualifying a same criteria are
clustered in the same branch of the PT. Each level of the
PT divides the relation into a set of disjoint relations. The
depth traversal of the PI’ allows partitioning the relation
into finer and finer clusters dividing the sub-relation itself
into a set of disjoint relations. A leaf of the PT
corresponds to the set of tuples that qualify the conjunction
of criteria from the root of the PT to that leaf. A catalogue
manages the relationship between a leaf of the PT and
physical disk blocks. The catalogue allows logical and
physical independence between the PT and corresponding
disk blocks.

When dealiig with UDT, clustering has to be done on
tuples qualifying a method result. Selecting rectangles
according to Side =‘(4 5)’ can be optimized by clustering

directly on the attribute’s values. However, if rectangles
are selected with surface value equal to 12, then clustering
must be done based on the result of the surface method
applied to Sides.

The extended version of SABRINA allows the user to
cluster tuples according to results obtained from frequently
applied methods defined as LISP or C functions. An
appropriate partitioning of tuples using method results
reduces the number of disk blocks needed to be scanned and
thus the time required to process queries. This approach
doesn’t require implementing specific access methods for
UDT. It allows multi-dimensional clustering on simple
values and on UDT method results. The same methods
used in queries can be used for clustering. Furthermore, in
the case of LISP written methods, errors are managed by
the interpreter thereby protecting the DBMS from abnormal
termination.

Each level of the PI partitions the relation according
to a specific value. The clustering predicates are of the
form f (Aitri) op value where f is a function, Attri is an
attribute of the relation, op is a comparison operator
among (=, O, <,<=, >, >=). The f function must be
known to the system, that is, it has been previously coded
and registered with the DBMS as a complex object method.

Different possibilities to partition a relation follow.
The example will be based on the Rectangles @#, Color,
Sides) relation. Figure 3 illustrates a four level partitioning
of the Rectangles relation. The first level partitions the
relation by applying a hashing function on the rectangle
number. The second level partitions the relation by again
applying a hashing function but to the result of the surface
method applied to the SIDES attribute. The third level
uses a ranking function to partition the relation according
to a list of predicates. of the form Attri = value. The forth
level again uses the ranking function but at this level, the
list of predicates includes UDT methods.

J&B& : Example of a Predicate Tree manipulating
UDT methods

- 61-

Branch 0 at level 3 constitutes the ‘other’ branch reserved
for tuples qualifying none of the predicates in the list of
predicates. The ‘other’ branch of level 4 is never used
because the union of both predicates at this level coincide
with all values included in this domain, The external
language command which is used to define the clustering of
a relation is the following :

CLUSTER RECTANGLES ACCORDING To

~@Sides) si
(Color =RED =GREEN =BLUE)
(Length(Sides) <=4 9)

The FT is stored in a me&base relation called CLUSTER.

5.3. Determinine the location of a tJapk;

When a tuple is inserted, it is necessary to determine
to which cluster belongs the tuple. For each level of the
PT, the branch to which to the tuple belongs is
established. At a certain level, the tuple can only belong
to a single branch since predicates create disjoint sets of
tuples. The branch to which a tuple belongs can be
obtained with the following procedure :

0 a standard hashing function (modulo, folding, etc.) is
applied to the result of a UDT method.

ii) the rank of the predicate to which the tuple qualified
indicates the branch to which the tuple belongs.

The ranking procedure makes it possible to directly
enumerate values or intervals. However, an ‘other’ branch
is imperative because a tuple may not qualify any of the
predicates at that level. For one level, clustering is
determined according to a single attribute. The branch to
which a tuple belongs is determined by successively
applying each predicate to the tuple to determine the
corresponding branch. When the tuple qualifies the
predicate, the process is finished for that level and it
resumes for the next level until the full depth of the PT is
reached.

5.4. Selection Akorithm

The selection algorithm ’ divided into two steps.
The fust is an optimization that ;alifies usable predicates.
The second step determines brar I J numbers corresponding
to the optimized PT. An ;. ial .$mplification consists in
eliminating those predic s Qij which do not refer to a
clustering attribute by re, icing them with the value ‘true’.
Then, the following rules are applied : the predicates Qij
and ‘true’ am replaced by Qij. the predicates Qij or ‘true’ are

replaced by ‘true’. This simplification is independent of the
functions used in the query or in the PT.

Each selection predicate is then considered
successively. For each level of the tree, the predicates
which can be qualified are determined along with those
which are contradictory with the selection predicate.
Determining the non-contradiction of two predicates is a
complex problem. Only two predicates of the form f
(Ah) op value will be considered. The general form of
the predicates is the following :

Selection predicate : SP: fl (Attri) opl value1 when
enumerating values or intervals, the clustering predicate has
the following form :

Clustering predicate : BPi : f2 (Attri) op2 value2

If a standard hashing function is used (F is a hashing by
division, interpolation or digital), then F(f2 (Attri)) defines
the set of tuples at that level. If the clustering predicate is
not atomic (as in the case of an interval), then the
evaluation will be done on each basic predicate. For
example, 10 < R# c 20 will be evaluated by R# > 10 and
R# > 20.

To eliminate clusters which do not participate in the
result of a query, selection predicates and clustering
predicates must be comparable. For example, the query :

SELECT *
FROM RECTANGLES
WHERE COLOR = “RED”

SURFACE (SIDES) = 12 ;

uses level 2 and 3 of the PT in figure 2 and not level 4.
Su@.uce (Sides) = 12 qualifies branch 00 at the second level
with ML04 (12) = 0. The selection predicate Color
= “RED” determines branch 01 at level 3 of the PT.
However, no information on kngth(Sides) can be drawn
from Surface (Sides) = 12. The Length and Surface
methods are independent.

At a given level in the PT. evaluating which branches
qualify a selection predicate is done by applying hashing
functions or by running the SelectBranch function which
returns the list of possible branches where results may be
found. When the equality operator is used in the selection
predicate, then only one branch contains results. If the
selection function is the identity function and clustering at
a level is organized around a method applied to that
attribute, then clusters can be qualified. The EL function is
applied to elements to which are applied the identity
function. Then, clusters can be established using the

- 62 -

function result. For example, a level clustering on the
result of the method Surface (Sides) is useful in a query
selecting tuples based on the Surface method applied to the
Sides attribute: fl and f2 are the Surface method and op is
equality. Now consider for example that selection is done
on identity as for Sides = (3 4). To use a cluster based on
Surface (Sides), the Surface method is first applied to the
constant (3 4) to obtain the result. With this result,
clusters may be determined. The simplified SelectBranch
algorithm is given in Figure 4.

function SelectBranch (SP, BPi) : Ri

(SP is the selection predicate)
(BPi is the list of predicates at a level)
(Ri is the result, i.e., a list of possible

branches)

begin
if fl = identity then calculate f2 (Attri) and

substitute SP ;
if fl <> f2 then select all branches
else for each branch i do

if Sp qualifies BPi then select branch i ;
end;

Figure 4 : The branch selection algorithm

The number of calls to the LISP interpreter by the
clustering process must be limited as much as possible.
The proposed algorithm reduces the number of calls when
f2 is a LISP function and fl is the identity function. All
calls to the interpreter are avoided when fl = f2. Although
the clustering method is complex, little processing time is
reqti when dgdata.

6. Opthiig the evaluation of LISP functions

6.1. Functionevaluation

Methods on complex objects are interpreted by a
specific LISP interpreter embedded in the algebraic machine
of the relational DBMS. The processing of expressions
(i.e., complex objects structured as lists) by a LISP
interpreter must be reconsidered for the database context
where performances need to be maintained. In this section,
modifications and simplifications brought to Lisp
procedures are presented. The purpose for these alterations
is to lessen the overhead of expression evaluation.

In this implementation of the interpreter, values
contained in tuples are considered to be non symbolic.
Atoms which would normally be considered symbolic are
treated as plain text. This avoid having to manage the
dictionary when expressions in tuples are compiled by the
READ procedure. Once the expression has been compiled,
the EVAL procedure decomposes the UDT methods into
simpler operations which are the basic LISP functions.
The cost of evaluating an expression is directly
proportional to its complexity.

Once the evaluation cycle has finished, control is
transferred to the PRINT procedure which transforms
S-expr from their internal representation into an external
readable format. The cost of printing a structure is directly
proportional to its complexity. However, simple values
like real numbers, integers or character strings are returned
in their actual representation so no conversion operation
takes place. The PRINT procedure is the least costly of the
four basic procedures.

6.2. w collectipn

Once the result has been printed, the garbage
collection procedure is run to trace unused memory
fragments (in certain implementations of LISP, this
processdoesnotn ecessady occur after the print procedure).
The GC process is also responsible for the important
processing overhead of LISP.

A simplification brought to the interpreter is to allow
only local variables in functions and no property lists.
Therefore, only function code persists between evaluation
cycles. Since the interpreter is essentially a UDT method
evaluator and no user environment needs to be maintained
between evaluation cycles, this restriction is not
cumbersome to the. UDT programmer. These two
restrictions greatly simplify the task of identifying garbage
in this implementation. Function code is marked as non
garbage and thus valid for the lifetime of the transaction.
All memory consumed during a cycle can be reused during
the next cycle. The memory allocation procedure has been
altered to allocate old memory fragments until those
fragments have been depleted. At which point, basic
system calls are run to allocate new memory. Indexes
provide quick access to memory elements. So garbage
collection does not hinder the performances in this context.

7. End-user high-level interface

Standard relational language interfaces offer end-users
the responses to their queries in tabular form. This view of
data is well adapted to the relational model and to the needs

- 63 -

of most applications. However, the flat representation of
tabular forms do not capture graphical data in a signilicant
way.

The approach used to extend the SABRINA relational
DBMS does not alter the relational view of data. The
results are thus naturally expresses in the form of tables.
Moreover, complex data are stored in character strings
where the hierarchical quality of data is displayed with
parenthesis, thus directly appreciable by the end-user.
Nevertheless, users should be able to enter and display data
in a manner which is appropriate with their view of it. A
domain is composed of instances and methods (which can
be inherited from other domains) which are user-defined.
Among the set of methods applicable to an object, a user
can defined methods to display and enter data in a way
appropriate to human understanding.

Graphical results are represented in tabular form.
These are portrayed as icons. To display the contents of
such a result, the particular icon to display is pointed to
with the help of a mouse. Clicking the icon displays the
contents of the data in graphical form. More than one
object may be displayed and superimposed on the same
window. Figure 5 illustrates this possibility.

3

ltEcrANclLE

Figure 5 : Displaying graphical data

8. concluslorl

This article has described an extension to the
SABRINA relational DBMS to manage User defined Data
Types (UDT), which encapsulate a complex object within a

set of methods. The current implementation has been
described and along with the main strategies used to
maintain performances. UDT are represented and
programmed as LISP structures. The integrated LISP
environment allows simple manipulation and
implementation of UDTs. Queries can be optimized by a
clustering method which allows clustering tuples according
to frequently applied methods. Special methods can be
defined to enter and display data in a manner appropriate to
each domain type. While the interpreted environment
insures protection against run-time errors in user programs,
it is possible to implement UDT in C language code and
dynamically link C ‘object code to the DBMS system at
run-time. C procedures are indeed called by the LISP
interpreter.

To further optimize the interpretation cycle, work is
being done to speed up the READ and also the PRINT
phase of the evaluation cycle. At present, memory
management has been simplified and the complex problem
of garbage collection during method evaluation is avoided.
Moreover, expressions coding complex objects in the
tuples of relations are considered to be non symbolic which
reduces the overhead of the system by having otherwise to
manage a symbol dictionary.

In summary, UDT extends the possibilities of a
relational DBMS beyond standard applications. In
particular, new applications that manipulate graphical data
are sought. A fully commercial version of the system is
operational on SUN UNIX machines.

9. References

[AIDA87] “Arda Reference Manual”, Version 1.1. ILOG.
July 1987.

[Bancilhon86] BANCILHON F., KHOSHAFIAN S. ,
“ACalculus for Complex Objects”. hoc. of ACM
PODS, Boston, March 1986.

[Bsrbedette86] BARBEDE’ITE G.. et RICHARD P.. “VOOD :
The VERSO Oriented Object Data Model”, INRIA.
Research Report No. 580, Nov. 86

[Bentley751 BENTLEY J.L. , “Multidimentional Binary
Trees Used for Associative Searching” Communications
of the ACM, N“9, Vol 18, 1975.

[Carey861 CAREY M. et al., “The Architecture of the
EXODUS Extensible DBMS”, Proc. of the International
Workshop on Object-Oriented Database Systems, Sept
1986. Pacific Grove. California, ~~52-65.

[Chailloux86] CHAILLOUX J.. “Le Lisp Version 15.2
Reference Manual”, Ed. INRIA, Niy 86,3rd edition.

[Cheiney88] CHEINEY J.P.. KIERNAN G., “A Functional
Clustering Method For Optimal Access To Complex
Domaims In A Relational DBMS”. F’roc. 4th Int. Conf.
on Data Engineering, Los Angeles, feb. 1988.

- 64 -

[CoddW CODD E.F., “A Relational Model for large
Shared Data Bunks”, CACM, Vol 13. N06, June
1970.

[CoddW CODD E.F., “Extending the Relational Model to
Capture More Meaning”, ACM Transactions on
Database System, Vol 4. N04. Dee 1979.

]GardarinMl GARDARIN G., VALDURIEZ P.,
VIEMONT Y. , “Predicates Trees: A Way For
Optimizing Relational Queries”, Proceedings of the
IEEE Computer Engineering Conference, Los Angeles,
1984.

[Gardarin871 GARDARIN G.. JEAN-NOEL M.. KERHERVE
B.. PASQUER F., PASTRE D.. SIMON E.. VALDURIEZ
P., VIEMONT Y., VERLAINE L., ‘Subrina, u
relational database system developed in a research
environment”, Technologiy and Sciences of
Informatics, AFCET-Gauthier Villard-John Willey &
Sons Ltd. 1987.

[Gardarin89] GARDARIN G., VALDURIEZ P., “Relational
Databases and Knowledge Bases”, Book, Addison
Wesley, Reading. Mass., January 1989, 448 pages.

[Gutman84] GUTMAN A., “R-Trees; A Dynamic Index
Structure for Spatial Searching” hoc. of ACM
SIGMOD Conf. on Management of Data, Boston.
Juin 1984.

[Kieman87] KIERNAN G., LE MAOULT R.. PASQUER F.,
“Support of Complex Domains in SABRINADBMS : An
Approach Using A Lisp Interpretor “, 3bme Journ6es
Bases de DonnQes AvancLes, Port-Barcar& France,
May 1987.

[Maindreville88] de MAINDREVILLE C., SIMON E. :
“Modelllng Queries und Updates in Deductive
Dotabuses.“. Proc of 14th VLDB, Los Angeles, Sept.
1988.

[Ong84] ONG J. et al., “Implementation of Data
Abstraction in the Relational Data Base System
INGRES”, SIGMOD. rec. 14, PPl-14, 1984

[Osbom86] OSBORN S. et HEAVEN T., ‘The Design of
a Relational Database System with Abstract Data
Types for Domuins”, ACM Transactions of Database
Systems, Vol. 11, No. 3, Sept. 86, pp. 357-373.

[Schwarz86] SCHWARZ P.. et al., “Extensibility in the
Starburst Database System”, Proc. of the International
Workshop on Object-Oriented Database Systems,
Sept. 1986, Pacific Grove, California, pp. 85-93

[Schek86] SCHEK H.J., SCHOLL M.H.. “The Relutional
Model with Relation-Valued Attributes”, Information
Systems, Vll. N2. 1986.

[Stonebraker83] STONEBRAKER M et. al., ‘Application
of Abstract Data Types and Abstact Indices to CA.D
Data Buses”, Proc. Engineering Design Applications
of ACM IEEE Database Week, San Jose, 1983.

[Stonebraker861 STONEBRAKER M.. “Inclusion of New
Types in Relational Data Base Systems”, Proc. of the
2nd Conf. On Data Engineering, Los Angeles, 1986.

[Tsur84] TSUR S. et ZANIOLO C., “An Implementation
of GEM: supporting u semanticdata model on a
relational back-end”, Proc. ACM-SIGMOD
Conference on Management of DATA, Boston, 1984.

[Valduriez84] VALDURIEZ P., VIEMONT Y., “A Multikey
Hushing Schema Using Predicate Trees”, ACM SIGMOD
Conference on Management of DATA, Boston, 1984.

[Valduriez86] VALDURIEZ P.. KHOSHAFIAN S..
COPELAND G., “Implementation Techniques of
Complex Objects”, Proc of the 12th Int. Conf. On
VLDB, Kyoto. 1986

[Verso86] VERSO, “A Database Machine based on Non
INF relations” reseach Report INRIA no 523. May
1986.

[Wilms88] WILMS P.F., SCHWARZ P.M., SCHEKH.J.,
HAAS L.M., “Incorporating Data Types in an
Extensible Database Architecture”, IBM Research
Report N” RJ6405. Aug. 1988.

[Zaniolo83] ZANIOLO C., ‘The Database Language GEM”“,
Proc. of ACM SIGMOD, Conf. on Management of
Data, San Jose, 1983.

[Zaniolo851 ZANIOLO C ., “The Representation and
Deductive Retrieval of Complex Objects”, Proc. of
the 11th Int. Conf. on VLDB, Stockholm, 1985.

- 65 -

- 66 -

