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ABSTRACT 
In this paper. we utilize intervals for unknown values in 

incomplete relational databases. We use tables to represent unk- 
nown relations. First, we define three partial tuple types in a 
table to specify incompleteness relationships among tuples of 
the same table. For tuples of different tables, we distinguish 
between the cases where incompleteness are introduced at the 
relation level, tuple level or attribute-value level. And, based on 
these relationships among tuples in different tables, we present 
a family of incomplete relational database models. 

tuples in the set of cubes (also called d-rectangles) are called 
candidate tuples for the tmknown tuple t, and exactly one of 
the points is the tmknown tuple. This approach allows database 
operations to be. transformed into operations in Computational 
Geometry, leading to efficient operator evaluations [OlaO 88a]. 

Following [ImiL 841 we use the terminology that a table 
in the incomplete database enviromnent represents a relation 
some tuples of which are unknown. Tables contain partial 
tupks (i.e., tuples with incomplete components) as well as total 
tuples (i.e., tuples whose components are all known). 

For each of the models, the query evaluation is sound 
(i.e., no incorrect results are derivable). None of the models is 
complete (i.e., all valid conclusions are derivable). We briefly 
compare two of the models in the family with other 
approaches. 

Considering each table tuple as a set of d-dimensional 
cubes, each model in the family of models presented in this 
paper can be considered as a geometric database model. We are 
presently implementing a version of one of the models. We 
briefly summarize the geometric operations and the primitive 
update semantics being utilii in the implementation. 

Figure 1. Geometric View of Partial Tuples 

1. Introduction 
Null values and incomplete information in databases 

have received much attention in recent years, for instance see 
[Codd 79, Vass 79. Lips 79. Gran 79. Gran 80, Bisk 81, Bisk 
83, ImiL 84, Zani 84, AbKG 871. Partial information in data- 
bases in the form of Possible values is allowed in [Lips 791 and 
[Gran 801. Imilienski and Lipski (Imii 841 give conditions that 
ensure soundness and completeness of query evaluation in a 
certain sense, as opposed to the correctness of individual opera- 
tOL5. 
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Figure 2. Semantics of Tuple Types 

In this paper, we introduce a family of incomplete infor- 
mation models for the relational model. The main characteristic 
of all the models in this family is that the partial knowledge 
about an unknown value is specified as possible values in a set 
of intervals rather than an arbitrary set. For example, the unk- 
nown tuple t=(5, 9) is represented by the tuple, say, ([l.lO], 9). 
in which the fust component is the interval [l.lO] containing 
the unknown value 5 in tuple t. Figure 1 illustrates tuples 
p1=([3,51, [8,101. 13.51) ad p2=WJ21, W3.WPWl). 
[8.10]) of table U with scheme U(A1. Az. As). The points or 

We now define new tuple types. A partial tuple consists 
of two or more tuples, exactly one of which is the unknown 
tuple. Let a table ZJ represent a relation r. then the following 
tuple types are allowed in U. 
(a) a type 0 total tuple is the usual relation tuple without ti- 
nown values. 
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(b) a type I partial tuple in V represents an unknown tuple t 
which tists, and no other tuple in U represents t. 
(c) a trpe 2 partial tuple p in U represents an unknown tuple t 
of r which is known to exist. However, another tuple p’ of U, 
physically distinct than p, may also represent t. That is, p may 
represent a tuple in r which is already represented by some 
other tuple in U. 
(d) a type 3 pmial tuple p in U represents an unknown tuple 
in r that may exist (i.e., a maybe tuple); the set of possible 
tuples for p includes the null tuple (a special tuple 0 denoting 
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the nonexistent tuple). 
Figure 2 summatixes the different tuple types. We give an 
example. 

Example 1: Let us consider relation r in figure 3, consisting of 
four tuples tl. t2, t3 and t4. If the last digits of the second com- 
ponents in tl, t2 and t4 are unknown then I is represented by 
table U. The partial tuples in U are type 1 because they 
represent tuples which are known to be distinct. Table V is the 
projectiononaMibuteA2ofU.Thetuplesp;andp;aretype 
1 in the projection because the unknown tuples represented by 
p1 and p2 of U must have distinct As values. Tuple ~3’ ia of 
type 2 because the A2 value of the unknown tuple represented 
by p3 may be the same as that of tuple t 1. Table W k the 
result of applying a selection formula A2 > 55 to table V; both 
tuples pl’ and pi have a chance of satisfying the formula. and 
are therefore included in W as ty-pe 3. 
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Figure 3. Relation r, Table U, and Operations on Tables. 

Clearly, as the type of a table tuple increases from 0 to 
3, it becomes less informative. For example, a type 1 tuple k 
more informative than a type 3 tuple. In a priutical environ- 
ment, users may perhaps be interested in only type 0 and type 
1 tuples. However, even if the base tables in a relational data- 
base contains only type 0 and type 1 tuples, the relational alge- 
bra operators introduce type 2 and type 3 tuples. 

The semantic difference between type 2 and type 3 
tuplcs is as follows. Consider a type 1 tuple p of a table U. 
When a set union of U with another table is performed, p in 
the resulting table may represent the same unknown relation 
tuple (i.e., p becomes type 2); but p will not become a type 3 
(i.e., a maybe) tuple. On the other hand, as illustrated in exam- 
ple 1, when a selection on U is performed, the unknown tuple 
represented by p may or may not be selected in which case p 
becomes a type 3 (i.e., a maybe) tuple. Also. n number of type 
2 tuples in a table represent at least one tuple in the 
correspondmg unknown relation whereas n number of type 3 
tuples may not represent any tuples in the correspondmg rela- 
tiOlL 

By taking into consideration the known relationships 
among tuples from different tables of the database one can 
derive more information in query responses. Such relationships 
vary from one environment to the other. In this paper, we iden- 
tify various assumptions about relationships among tuples in 

different tables. Then, a family of extended modek (M-I. M-2. 
M-3, and M4) based on these assumptions is inuoduced. Thk 
approach we believe, k practical because we are able to put at 
the users’ disposal the variety of modek. one of which possibly 
meets the users’ assumptions. We now describe the family of 
modek. 

In model M-Z, we model an envinmment where errors or 
incompleteness are introduced at the relation level meaning 
that the same unknown tuple may be represented by different 
tuples in different tables. Thus, within the database, different 
errors may occur in different occunarces of 8 given tuple in 
different relations. 

Basic Assumption in Model M-l (Rchtiun Led): 
Consider two tuples z 1 and 22 ocxxlhlg Ill diffenmt tables. If 
thecandidatemplesofzlandz2&notintersectthenz~elds, 
represent different (relation) tuples. otherwise they may 
represent the same (relation) tuple. 

Example 2: In figure 4, relation ra with tuple tt contains no 
errors, and k represented “as-is” as a table (with the addition of 
the TYPE cob). On the other hand, the first digit of the 
second componed of tupk tl of rl is unknown, and rI is 
repmse&dbytableU. Tuplettofrrkmpresentedbythe 
partial tuple p1 in U. But the occmmm~ of Cl In 12 k total. 
The inference we can make k that two tuples from diffacnt 
tablesdonotrepresentthesamenkti~hlpleifat~toneof 
their tuple components do not intersect. 

Figure 4. Table Intexpretatbns in Model M-1 

M-2 models an environment where errors or incomplete- 
ness are introduced at the level of attribute values at a source, 
before the tuples are inserted into different tables in the data- 
base. Hence the same identi6er can be attached to the same 
mlcnown value wherever it occurs in the database. 

Basic Assumption in Model M-2 (Attribute Value Level): 
An unknown value has a unique identitier. Different 
otxurrences of the same unknown value in the database have 
the same identifier and the same range value. If two identitiers 
for two unknown values Tl and %r are the same then rl = 76 
otherwise ‘Tr may or may not be equal to Q. 

In M-2, we have the advantage that duplicate unknown 
tuples can be identified in base tables using identifiers, resulting 
in inexpensive Union and Difference operations. Clearly, in 
such an enviromnent, the base tables of the database contain 
only total and type 1 tuples. 

In M-3, errors are introduced at the attribute-value level 
as in M-2, but any two different identifiers are known to 
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represent different values. 

Basic Assumption in Model M-3 (Attribute Value L.evel): 
Two identifiers for two unknown values r1 and ra are the same 
iff rr = ra. 

M-4 models an environment where errors are introduced 
at the tuple level before tuple insertions are made into the vari- 
ous tables of the database. A given tuple with unknown values 
is represented across the database by the same partial tuple. 
However, identifiers are not attached to unknown attribute 
values appearing in relations with different schemes. Rather, 
identifiers are attached to tuples. 

Basic Assumption in Model M-4 (Tuple L,evel): 
Two table tuples in different tables represent the same unknown 
(relation) tuple iff they have the same identifiers. 

In each of the models, we extend the five basic relational 
algebra (RA) operators. As a rule, we retain the semantics of 
the regular RA operators for total tuples, and extend them for 
partial tuples. All of the extended operators in our models are 
faithjid [Maie 831 in the sense that they reduce to the usual RA 
operators when the tables consist of only total tuples. We 
show for each of the models that our extension is sound (i.e., 
no incorrect results are derivable when an RA expression is 
evaluated) in the Imilienski-Lipski sense [ImiL 841. However, 
query evaluation is not always complete; that is, some valid 
conclusions may not be derivable. In [OlaO 88b]. we present a 
version of the model M-2 in which RA operators are restricted 
to the cases where the query evaluation is sound and complete. 

The rest of the paper is arranged as follows. Section 2 
gives the terminology and definitions. Section 3 diicusses the 
correctness notions for the extended models. In section 4, 
models M-1 and M-2 are presented. In section 5, we compare 
models M-Z and M-2 in our family of models with other 
approaches. Section 6 discusses the common geometric opera- 
tions needed in RA operator implementations of all the modeb 
in the family. We are presently implementing a version of 
model M-l in a main-memory database system [OlaO 88a. She 
881. Section 7 briefly discusses the parameters being measured 
in the implementation. 

2. Terminology and Definitions 

Let tupfes(p) denote the set of total tuples contained in a 
partial tuple p, and tp be the unknown tuple represented by p. 

tpi represented by a type 1 tuple pi is different from any total 

tuple or t 
Pi’ 

i#j. for pi in the same table. Relational algebra 

operators for tables (as opposed to relations) are superscripted 
by *. 

Tables are denoted as uj’s, and relations are denoted as 
rj’s. The letters t and p, with or without subscripts, denote total 
and partial tuples, respectively. The letter 2 is used to refer to 
either total or partial tuples. And the predicate that the tuple 2 
is in table U is written as TU(z), T1’(z), T2’(z) or T3’(z) 
when z is total, type 1, type 2 or type 3. respectively. UT, 

‘T1* ‘T; *T,’ respectively, denote the collection of total, 

type 1, type 2 or type 3 tuples in table U. Different 

combinations of the numbers 0, 1, 2 and 3 as subscripts of T 
refer to a combination of tuple types; for instance, V 

TV23 
denotes total, or type 2 or type 3 tuples in U. 

‘T1’ *Tz’ T V 3 are multisets (i.e., sets with duplicates). 

Therefore, we use the predicate that two tuples z1 and z2 in a 
table U with possibly identical tuple components are both “phy- 
sically” kept in U. written as z1 +, z2. The usual equality 
predicate, =, holds (does not hold) between any two distinct 
tuples with identical (nonidentical) tuple components. 

z[~,theprojectionofatypelortype2tuplezonaset 
of attributes Y, is total, written as T(z[Yl), if there are no unk- 
nown values in the Y-values of z. However, z[y1 for a type 3 
tuple z is always type 3. 

The intersection of hvo tuples z1 and zI written as z1 n 
~2, consists of those tuples occurring in both tuples(zl) and 
tupk (~2). z1 and z2 are said to intersect if z1 n z2 z 0. 
Given a type 1 tuple p1 in U, the candidate tquks for t 

sists of tuples in tuples (p J that are not in VT. 
Pl 

con- 

Given tables U and V. the effective intersection, written 
aspriTp*betweenarypeltupleplinU 
(a) and a type 1 tuple p2 in V is the intersection of the candi- 
date tuples of p 1 and p 2, 
(b) and a type 2 or type 3 tuple p2 in V consists of the tuples 
in tupfes(pl) n tuples(p2) that are not in VT, 

(c) and a total tuple t in V is t if t E tuples(pl) and t is not in 
VT, otherwise the effective intersection is empty. 
The effective intersection of tuples z1 and z2 has the effect of 
eliminating from the intersection (z,nzJ those tuples that can 
not possibly be tzl or t 

22. 

The ilJormation content of a table is defined [ImiL 841 
by the mapping rep which maps a table U to rep(u), the set of 
possible relations for the unknown relation represented by U. 
An example of the rep mapping for the model M-l is given in 
example 4. Notions similar to rep me also used in [Gran 801 
and [Bisk 831. Let r be a relation in rep(U) of table U; a tuple 
z in U has a corresponding tuple, denoted as (t,)r, in r. We calf 
(tz)r the representative tuple of z in r. or z is said to be 
mappedinrtotZ. 

3. Correctness Notion 

For each of the models in section 4. the soundness and 
completeness of a query is examined using revised versions of 
concepts fmn [ImiL 841. 

Definition 1 : Let VI and (I2 be two tables. Let a and 8 be 
unary and binary operators, respectively, i.e., a E (1~. a) and 8 
E (-, u, M). Let a* and 8* be the extended versions of a and 
8. respectively. 
(a) An extended model is sound if, for every relation r in 
(rep(U1) 0 rep(Uz)) or a (rep((IJ), there is a relation s in 
rep(V1 6* VJ or rep( a* (VI)), respectively, such that s c r. 
(b) An extended model is complete if, for every relation s in 
rep (VI 8* CJz) or rep ( a* (VI)), there is a relation r in 
(rep(U1) 0 rep(U3) or a (rep(U1)). respectively, such that r 
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E s. 
red 8 rep(Vz) is mdexstood to be (rl 0 r2 I rl E rep(VJ 
and r2 E rep(Uz)), while a(rq(U)) = (a(r) I r E rep(U)). 

Clearly, in degnition 1, rep(Vr O* Vr) is the “imper- 
fect” representation that attempts to capture the “ideal” 
repre.sentation rep(V1) 8 rep(Vz). One may also think of 
alternative somdncss criteria. Let us look at one. 

Definition 2 : An extended model is sound* if, for every rela- 
tion s in rqO!J1 8* CrJ or rep (a*(VJ), there is a relation r 
in (rep (VI) 8 rep (Vd) or a (rep (VI)). respectively, such that 
s c r. 

Defmition 2, however, is not acceptable. We give an example. 
Example 3: Let a given a and a* be such that a(rep(U)) and 
rep(a*(U)) consist of the relation sets (rl. r2) and (sr, sr, ss) 
in figure 5 and figure 6, respectively. 

‘2 

Figure 5. An Example atrep UJ)) 

Figure 6. An Example rep (a*(U)) 

The a (rep (U)) and rep ( a* (U)) definitions in figures 5 and 6 
do satisfy definition 2. One can also observe that when the unk- 
nown relation represented by U is rr, all three “imperfect” rela- 
tions sir ~2. and ss are contained in the unknown relation rl. 
which is desirable. However, when the unknown relation 
represented by U is rb thfm none of sl. sa and ss is contained 
in r% and definition 2 does not detect this problem. In contrast, 
the soundness criteria of definition 1 is violated in this exam- 
ple. 

The condition (a) in definition 1 when considered 
separately from (b) ensures the soundness of query evaluation. 
However, consider the case in which rep(Vl 8* Vz) or rep( 
a* (U)) contain an empty relation (This may occur, for exam- 
ple, in a set difference operation). In such a case, the sourul- 
ness criterion of definition 1 will be trivially satisfied. Thus, 
whenever condition (a) is satisfied for a given extended opera- 
tor, we have to see to it that the operator definition ensures a 
nontrivial soundhess. Therefore, in the rest of the paper, we 
use the following definition of soundness. 

Definition 3: An extended model is sound if, for every relation 
r in (rep(V1) 8 rep(Vd or a (rep(Vl)), there is arelation s in 
rep(Vl W VJ or rep( a* (V,)), respectively, such that s = r. 
That is, rep (a*(U)) 2 a(rep (U)) and rep(Vl Cl* VJ 2 

An operation a* that satisfies &!inition 3 is said to be 
u&pure for a [Maie 831. Therefore, if each of the exterxled 
operator of a given model is adequate, we have a nontrivial 
sotmdness (for the query). Thus, we wouki like every extended 
operator in our models to be adequate. We can also observe 
that de6nition 3 implies condition (a) of definition 1. Let us 
denote the condition (b) of definition 1 by rep (V,) 8 rep (Vz) 
r) rep(V1 e* V& 

In the next section, for each binary opemtor 8 , we 
examine the relationship that holds between rep(V1 8+ V,) and 
rep(V1) 8 rep ((13 with respect to definition 3 and condition 
(b) of definition 1. Similarly, for each unary operator a, the 
relationship between rep (a*(U)) and a(rep (U)) is exam&d. 

4. Family of Extended Models 

Based on the basic assumptions, we now define the 
extended model M-I. Due to space considerations, we briefly 
describe M-2, and omit the discussions of models M-3 and M- 
4. The basic assumptions define the rep mapping; the map- 
pings in models M-I and M-2 are denoted as rql and reps 
respectively. In dching a rep, we use the following version of 
Reiter’s [Reit 781 Cfo~ed World Asswnprion in [Bisk 831: If a 
totalhrpletismtinVTandthereisw~tupkpinU 

andrelationrinrep(U)rmchthat(t,)r=t,thentisnotinthe 
unknown relation represented by U. 

4.1. The Model M-l 

In model M-Z we can not always recognize different 
occurrences of the same tuple in different tables. The relation- 
ship between any two tuples is defined solely by the intersec- 
tion of their candidate toples. 

Definition (rep in M-I): 

replfJJ) = (r I &TV(t) + t E r) 

A (%Crs’(p) + <3rrX(tr E tvples(p) A tr E r) 

V (11 = 0 A tl CT)))) 

rep#J) for a table U is defined independent of other 
tables in the database. Also, repI consists of a fmite 
number of relations because (a) the set of candidate tuples for 
an unknown tuple is finite, and (b) the Closed World Assump 
tion is used. 

Example 4: In figure 7. repl(U) = (rl, r2, r3). In both rela- 
tions rl and r3, the type 3 tuple in U is mapped either to the 
null tuple or to tuple (1 , 2). 

ln order to define the Union and Difference operators of 
the extended relational algebra, we have to answer the question 
of when a tuple in one table is a duplicate in another one. The 
following type-bared membership rules are used for that 
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Figure 7. Illustration of rept(U) 

pw=. 

Rule 1: Given a table U. a total tuple t in table V is 
(a) a duplicate in U if there is a t’ in UT such that t=t’. 

(b) not a duplicare in U if there is no tuple z in U such that 
znt=t. 
(c) may be a duplicate in U if (a) and (b) do not hold. 
Rule 2: Given a table U and a type 1 tuple p in table V, the 
unknown tuple tp represented by p is 
(a) a duplicate in U if ah the candidates for rp are total tuples 
in u. 
(b) not u duplicate in U if for all tuples z in U. p i5 z = 0, 
(c) may be a duplicafe in U if (a) and (b) do not hold 
Rule 3: Given a table U and a (type 2 or type 3) tuple p in V. 
the unknown tuple $ represented by p is 
(a) u dupZicate in U if all the tuples in tuples (p) are in either 
UT or VT, 
(b) may be a duplicate in U if there is a tuple in tupfes(p) that 
is not a total tuple in either U or V. 

We now discuss the extended versions of the relational algebra 
operators in the model M-l. Formal definitions are given in 
[OlaO 88b]. 

A. Union 

The union of two tables U and V. denoted as U U* V. 
consists of 
(a) the set of total tuples in either V or U. 
(b) type 1 tuples p such that 
(i) TIu@) holds, and tp is not u duplicate in V, or 

(ii) TIv@) holds, and $ is ti a duplicute in U, 

(c) T 2 tuples p such that 
(i) T1 (p) or Tzu@) hold, and tp may be a duplicate in V. 

(ii) TIv@) or Tz’(p) hold, and t 
pv 

muy be a dupficafe in U, 

(d) type 3 tuples p such that T3 (p) or TsV(p) hold, and $ 
may be a duplicate in V or U, respectively. 

Please note that the union operator in M-l does not migrate 
tuples into the type 3 class. That is, if a tuple of U or V is not 
type 3 then it will not be converted into a type 3 tuple in the 
union. 

Example 5: Figure 8 illustrates the union operation. In the 
union, each of the three partial tuples in U and V is changed to 

a type 2 tuple because we can not express the fact that 1 
p3 may 

be equal to either t or t 
Pl p2 

but not both. This information loss 

is one source of incompleteness in query evaluation in model 
M-l. 

U 

Pl 

9 

uev 

A, A, 

2 1 [1Sl 

p3 

Figure 8. The Extended Union 

Remark: There exist tables U and V such that repI u 
repI &* repr(U u* V). 
Proof: Using the tables in figure 8, relation s is in repr(U u* 
V). but there are no relations rl E repr(U) and ra E rep2(V) 
such that s ;1 rr u r2 because there are at least three tuples in 
any r E repI( QED. 

Union fails to satisfy the completeness because we can 
not identify those type 1 tuples that originate from the same 
table and are changed to type 2 in the union. 

B. Difference 

The difference of tables U and V, denoted as U -* V. 
consists of 
(a) the set of total tuples t in U such that t is not a dupficate in 
V. 
(b) type 1 tuples p such that Tt’(p) holds, and $ is naf u 
duplicate in V. 
(c) type 2 tuples p such that Ta’(p) holds, and, for all tuples z 
inV,znp=0. 
(d) type 3 tuples z such that T”om(z) holds, and ts may be a 
duplicate in V. 
Please note that some tuples of U that are not type 3 may 
become type 3 in the difference. That is, difference operation 
may create a migration of tupks into the type 3 class of tuplea. 

Example 6: Figure 9 illustrates the difference. Again, we do 
not have any way of specifying that at most one of the two 
type 1 tuples in U can represent the same unknown mple as the 
type 1 tuple in V. Hence both type 1 tuples in U are changed 
to type 3 in the difference. This example also illustrates the 
semantic difference between type 2 and type 3 tuples: the type 
3 tuples in the difference may not exist; thus, they cBnnOt pos- 
sibly be type 2 tuples in the difference. 

Remark: There exist tables U and V such that repI - 
rep l(V) &*rep r(U -* V). 
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Figure 9. The Extended Difference 

C. Projection 
The tables in figure 10 illustrate the projection operation. 

Figure 10. The Extended Projection 

p[A& the projection of a type 1 tuple p in table U remains as 
~lm~*(U)ifp[Az]nz[Az]=0forallthetupkszinU 
or whenever ^a [Az]nz[AJ z 0, p and z have equal nonnull Al 
values. In figure 10, only the tuple (5 , [4,7]) satisfies this con- 
dition. The intervals [4.7] and [5.8] intersect, but the unknown 
tuples represented by tuples (5 , [4.7]) and (5 , [5.8]) -if they 
exist- can only have Al value of 5, and thus different AZ 
values. Projection on type 2 and type 3 tuples remain as the 
same type. We now formalize these observations. 

Let R(Z) be the scheme for table U such that ,X c Z. 
We say that two tuples z1 and z2 are X-indistinguishable if 
tupks(zJX]) = tupks(zZ[X]) and tupks(z,[X]) has a cardinal- 
ity of 1. 

Please note that a tuple z1 and a type 3 tuple z2 can be 
X-indistinguishable even though za[x] is a type 3 tuple (not a 
total tuple). Also please note that z[Y], the projection of tuple 
z on the Y attributes, is total (written as T(z[Yl)) if z is either 
t&l. type 1 or type 2, and z[y1 does not contain unknown 
values. However, a projection on a type 3 tuple cannot be 
total. 

Let X = (Attributes of U - Y), then the extended projec- 
tion of U on Y, denoted as n;(U), consists of 
(a) total tuples z[y1 such that T(z[Yj) holds - z can be total, 
type 1 or type 2, 
(b) type 1 tuples z[y1 such that Tt ’ (z) holds and whenever 
z,[Yjnz[Yl # 0. z1 E U, z and zt are X-indistinguishable. 
(c) type 2 types z[y1 such that 

(i) Tt’(z) holds, z[Y]nzJYl # 0. and z and z, are not X- 
indistinguishable, for a tuple zt in U. or 

(ii) Tz’(z) holds, and there is a tuple in z[y1 which is not in 
qwr, - 
(d) type 3 tuples z[yl such that Ts’(z) holds, and there is a 
tuple in z[y1 which is not in (rr*,(~)+. . 

Remark: There exists a table U such that rept(Qrry b;* 
rep I@~(IJ>>, where rep ,(U)sry 
and r = rtz(rt)). 

= (r I rl is a relation in repI 

The information loss in the projection operation of M-l 
occurs because the combinatorial implications arising from hav- 
ing finite candidate values for an unknown value are too expen- 
sive to be incorporated into the definition of projection opera- 
tion. 

D. Equi-join 

The equi-join is illustrated in figure 11. 

U A, A, TYPE 

3 K-51 t 
2 2 0 

16.91 6 2 

V A, A, TYPE 

2 I2.41 1 

6 V.61 2 

2 6 0 

Y 
Figure 11. The Extended Equi-Join 

In general, let R t(XY) and Rz(XZ). XnY=0 and Xr-60, be 
the schemes for tables U and V, respectively. For any (IWO 
tuples zt in U and za in V such that T(zt[X]) and zt[X]=zfi] 
hold, the equi-join U l# V contains z1 concatenated by z2. 
And whenever zJX]nz2[X]#0 and at least one of zt[x] and 
zz[X] is partial, there is a possibility that t 

able”. 
Zl 

and t 
Z2 

are “join- 

(iii) type 2 if either of zt or za is type 2. 
(b) If at least one of zl[X] and z2IX] is partial (i.e., contains an 
unknown value) and zl[xlnz#C]#O; the resulting tuple of the 
equi-join is type 3. 

Let zl be in U and za be in V. The equi-join of U and 
V, denoted as VW V. is defmed using zt and za as follows: 
(a) If T(zr[X]) holds and zl[X]=zdX]. a concatenation of z1 
and z2 is ma&; the resulting tuple of the equi-join is 
(i) total if both zt and z2 are total, 
(ii) type 1 if one of z t and zz is type 1. and the other is total or 
type 1; 

Remark: There exist tables U and V such that rept(U) w 
.rep I(V) P* rep DJ w* VI. 
Proof: In figure 11. relation s is in rept(Uw V). but there are 
no relations rl E repI and rz E rqr(V) such that rr w ra s 
s. Q.ED. 
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E. Selection 

The resulting table when a selection formula F is applied 
to a table U. denoted as cr* (U), consists of 
(a) total tuples t such that Tp” (t)holds. and F(t) holds, 
(b) type 1 tuples p such that Tt’@) holds, and all the candi- 
date tuples of p satisfy F, 
(c) type 2 tuples p such that Ta”(p) holds, and all the tuples in 
tupfes@) satisfy F, 
(d) type 3 tuples p such that TtvU@)holds, and at least one tr. 
t 1 E tuples (p). satisfies F. and there is a ta E tupZe.r(p) that 
does not satisfy F. 
Figure 12 illustrates the extended selection operation. 

U SA A 

ffl 

1 3 

2 3 

Figure 12. The Extended Selection 

Remark: There exists a table U such that a,(rept(U)) &* 
rep do* (UN. 
Proof: R figure 12, relation s is in repr(o*,(U)). and there is 
no relation r in rep t(U) such that aF(r) E s. QSD. 

l Correctness of Query Evfluation in M-l 

Lemma 1: Let U and V be two tables, and a and 0 be any 
wary and binary RA operators, respectively, i.e., u E (n, a) 
and 8 E (-, U. w). Let a* and O* be the extended versions of 
a and 8 in M-l, respectively. 

(a) vMJ 0* VI 2 repl(U) 8 repdv). ad 

(b)repd a* (UN 2 a (wMJ)) 

Theorem 1: Query evaluation in the extended model M-l is 
sound. 
Proof: Follows from lemma 1, and a straightforward induction 
on the number of operators of an RA expression. 

4.2 The Model M-2 
In M-2, the base tables of the database contain only total 

and type 1 tuples. However, the projection operation intro- 
duces type 2 tuples in model M-2. In other words, tuples can 
not be uniquely identified in intermediate tables resulting from 
a projection operation (on a base or intermediate table). Selec- 
tion is defined as in M-l; hence type 3 tuples are also intro- 
duced in model M-2. 

The idendjer of Q tuple z in a table with scheme U(A r, 
A2. . . . . 4). denoted by id(z), is the tuple (ir, . . . . id) where ij is 
Z[Aj] if z[Aj] is a known value, otherwise ij is the identifier for 
the unknown value Z[Aj]. 

rep2, the rep mapping for M-2, is similar to rep, except 
that the same unknown-value identifier, wherever it occurs in 

the database. must be mapped to the same value. Hence 
rep2(U) is defined relative to the other tables in the database D 
of tables. Please note that a partial tuple can appear in inter- 
mediate tables as a different type tuple; when this is the case, a 
type 3 tuple in an intermediate relation obtained from a type 1 
tuple, for instance, can be mapped to the null tuple. D 
represents the database of tables. 

Definition (rep in M-2): 

rep2(U)/D = (r I (r E repl(U) A 

(%X%X% ,X%XWle D A rl E rep l(U1) 

A ~reUr A ZEU A id(rt[A;]) = id(z[Aj])) 

The RA operators of M-2 are similar to the RA operators 
of M-l, except that we now recognize tuples of any type with 
the same identifier, and keep only one copy of such tuples in 
the resulting table. Definitions of the RA operators of M-2 are 
in [OlaO 88b]. 

After substituting “M-2” for “M-l”, lemma 1 and 
theorem 1 still hold. That is, similar to M-2. query evuZuution 
in M-2 is sound, but not complete. A special case of M-2 for. 
which query evaluation is sound and complete is given in 
[OlaO 88b]. 

5. Comparison of Models M-l and M-2 with Other Models 

M-l is unique in the sense that it models incomplete data 
environments that can not be handled by models based on Codd 
tables [Codd 79 and Bisk 831 where unknown values are 
denoted by a special null symbol, or the models based on V- 
tables [ImiL 841 where unknown values are represented by 
variables. 

Let us consider relation r in figure 13. In M-I, r is 
represented as table U if the last digit of the A2 value of the 
tuples in r are unknown. 

Figure 13. Duplicate Partial Tuples in [Gran SO] 

The incomplete relation would be represented in [Codd 79 and 
Bisk 831 by table R in figure 14, where “STATUS=d” denotes 
definite tuples. and or is the null symbol. Only one occurrence 
of tuple (4 , 0) is stored because one stored tuple represents 
several, but unspecified, number of model (unknown) tuples. 
In R, we are not able to represent the fact that there are exactly 
four unknown tuples. This has significant implications, espe- 
cially when the COUNT of the tuples satisfying a given query 
is important. In M-1, using the tuple types, we are able to pro- 
vide a tighter range for COUNT. 
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R A, A STATUS u A A s A 
4 0 d 4 a 4 50 

18 EliI 

5 (D d 4 5 42 

3 0, d 5 x 3 42 

3 x 

Figure 14. V-Tables and Codd Tables 

[Gran 801 allows duplicate partial tupies as in M-I. 
Thus, the inampiete relation r in figure 13 is represented by 
table U as in M-I. However, in [Gran 801, the relationship 
among the tuples of an intermediate table can not be specified. 
For example, in figure 13. table V represents the projection of 
U on attribute AZ in [Gran 801. There is no way of stating the 
fact that the two occurrences of tuple ([50.59]) represent 
different unlmown values. while the two occurrences of tuple 
([40.49]) may denote the same value. 

The model M-2 is similar to the model based on V- 
tables in @iL 841, where unknown values are represented by 
distinct variables which take values from infinite domains. In 
comparison, in M-2, the range of an unknown value is linite 
and the tuple types (in a projection, for instance) distinguish 
variables that are known to take different values (type l’s) and 
those that may t&e the ssme value (type Zs). 

Both Codd tables and V-tables can be used to model the 
M-2 environment. Using Codd tables. every u&own value is 
denoted by a null symbol; but, as stated above, duplicate partial 
tupies are not allowed. In V-tables, the unknown values are 
represented by variables. An unknown value takes the same 
variable name wherever it occurs in the database. For instance. 
the incomplete relation in figure 13 is represented by the V- 
table U in figure 14. However, a V-table is not quite the same 
as a table in M-2. The interpretation of a V-table is such that a 
variable may take any value from an appropriate domain, 
different variables may take the same value. For example, reia- 
tion s in figure 14, consisting of only three tuples, is in the set 
of relations represented by the V-table U. 

6. Geometric Operations on d-rectangles 

We now briefly discuss the geometric operations needed 
to implement the RA operators of model M-l (and, also, the 
models M-2, M-3 and M-4). 

A d-dimensional rectilinearly-oriented rectangle (d- 
rectangle) is the cartesian product of d closed intervals. one on 
each coordinate axis. A partial tupk p in a table of degree d is 
a set of disjoint d-rectangles in d-space. The candid&e tuples 
of p is the set of total tuples contained in p. 

Efficient manipulation of d-rectangles in the geometric 
model is ceneal to the query evaluation process. Geometric 
operations that have to be performed include 
(a) Finding the intersection of d-rectangles (used in all the five 
basic RA operations). 
(b) Finding the complement of a set of d-rectangles (used in the 
projection operation). 
(c) Testing for the containment of a d-rectangle in a union of 
d-rectangles (used in the selection operation). 

Below we discuss these operations. 

6.1. Intersection of d-rectangles 

The intersection of two partial tupies is obtained by 
intersecting the comesponding d ordered sets (one per tupie 
component). each of which may have up to f intends. Since 
the intersection of two ordered sets of intervals can be deter- 
mined by comparing the two sets sequentially in O(f) time. the 
intersection of two partial tupies is performed in O(df ) time. 

Given a partial tupie p. hdmg all partial tupies of a 
table U which intersect with p is also needed in all five RA 
operators. The most straightforward approach is to intersect p 
sequentially with each partial tupie of U, which takes O(df) 
time. Using the following result from [EdeM 81, Edei 831, one 
can give a different time complexity for this task as 
O(f logdnf + kf) where k is the number of partial tupies of U 
that intersect with p. 
Let S be an art&q c&z&on of n d-redangles. ‘Ihen. them exists a 
data S~NC~UIE which rqxxts in O(log‘+n + k) time the. k d-rectangles 
intersecting a given d-rectangle. The data structure is a combination of 
segment trees and range trew( i.e, a tree-of-trees st~clure). ll~ am- 
st~ction of the data st~cture requires O(niogd-‘n) space and O(nlogdn) 
time. An insertion and deletion of a d-nxtangle from S can be accun- 
plished in O(logdn). 

The disadvantage of the approach in [JZdeM 81, Edei 831 
is that a complex tree-of-trees structure has to be constructed 
and maintained separately, which is expensive. 

Another question that arises in union, difference and pro- 
jection operations is to find whether any of the total tuples of a 
relation (or the candidate tupies of a partial tupie) intersects 
with (i.e. are contained in) a given partial tuple. The following 
lemma gives the complexity of such a task. 

Lemma 2: Whether there is a total tuple in a d-degree relation 
of size n. sorted on an attribute Ai, that intersects with k of a 
partial tuple p = kIxk,x . . . Xkd can be deemlined in qf iogn) 
comparisons, where f is the degree of fragmentation. 

The RA operator evalvtions also utilize the counting 
problem of finding the number of candidate tuples of a partial 
tupie that intersect with the total tuples of a table. This opera- 
tion can be implemented using the intersection operation of 
lemma 2. 

6.2. Finding the Complement of a d-rectangle 

We define the complement C’ of a given rectangle C as 
the set of rectangles that contains all the points in @AI, D,Q 

. . . . DAd) except those in C. The complement C,’ of the region 
detined by a partial tuple p can in general result in a set with 
disjoint (2f +ly - fd d-rectangles. However. lemma 3 states 

that C,,’ can be represented by at most (f+l)d d-rectangles. 

Lemma 3: Given a partial tupie represented by a set of d- 
rectangles C,, , the complement C,’ of C,, can be represented by 
the union of at most (f+l)d d-rectangles which are not neces- 
sarily disjoint. 

6.3. Testing for Containment 
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In order to determine if a partial tuple p satisfies a selec- 
tion formula Q, we test for the containment of Cp, the region 
defined by p, in C,, the query region defined by Q. For thii 
test, one can use the concept of d-measure [Guy 771. The d- 
measure of a single rectangle is a numerical value of the pro- 
duct of its intervals. For d=2 and d=3, this corresponds to area 
and volume, respectively. In finding the measure of a union of 
rectangles. points appearing in two or more rectangles are 
“counted” once. Thus, C, =C,, nC,,andhenceC, CC, 
b.olds only if the measure of C, is the same as the measure of 
C,, n C,. However. the query region of Q. and consequently 
C, n C,. may consist of a union of arbitrary d-rectangles. 
Finding the measure of n d-rectangles may take up to O(nd-‘) 
time [LeeW 811; this is quite expensive for large d. 

For tables with large degrees, Q may be transformed into 
the Conjunctive Normal Form, and p may be tested iteratively 
against every conjunct. The details of this approach are in 
[OlaO 881. 

7. Implementation Effort 

There are two parameters that directly effect the perfor- 
mance of any of the gemetric incomplete database models 
given in this paper. The first is the degree of fragmentation f, 
i.e., the maximum number of intervals allowed in a tuple com- 
ponent. Clearly, there is a tradeoff between the number of 
intervals for an unknown value and the cost of operator evahta- 
tion. The second parameter is the percentage of partial tuples 
In tables. 

In [OlaO88a]. for each of the extended operators, an 
evaluation algorithm is given. The worst-case time costs of the 
algorithms are analyzed in contrast with the costs of evaluating 
the usual RA operators in a particular DBMS. For more accu- 
rate time cost estimates, the distribution of nulls in partial 
tuples and the degree of f&mentation must be taken into con- 
sideration. We have come to the conclusion that a prototype 
development is needed to provide a better understanding of the 
feasibility of the models proposed in this paper. 

As a 8rst step in evaluating the performance of the 
models in this paper, we are implementing a version of model 
M-l within a main-memory-only DBMS [She 881. In our 
implementation, we are using the basic assumption of model 
M-l, and its type 0 and 1 tuple types. Type 2 and type 3 
tuples of M-l are merged into a single tuple type of type 2’. 
This change simplifies the RA operator defmitions of M-l 
significantly, and allows for a more efficient implementation. 
The goals of the implementation are 
(a) to obtain empirical information about the effects of the 
parameters 

(i) the degree of fragmentation, and 
(ii) the proportion of partial tuples in tables, on the perfor- 

mance of the system, and 
(b) to evaluate the feasibility of the models proposed in this 
paper- 
We directly use in the implementation the geometric operations 
of section 6. 
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