
A Deductive Method for Entity-Relationship Modeling
(Extended Abstract)

Giuseppe Di Battista and MaurizidLenzerini

Dipartimento di Informatica e Sistemistica, Universita degli Studi di Roma “La Sapienza”
Via Buonarroti 12,00185 Roma, Italia

Abstract

We present a simple entity-relationship-oriented
model, which essentially includes the notion of class,
together with different types of relations among classes,
such as is-a, part-of, and disjointness. We define the
semantics of the model in terms of first order logic, and
present a sound, complete, and efficient inference algorithm
for such a model. We argue that our model and the
associated inference capabilities provide a suitable formal

. basis for designing an effective environment supporting
conceptual modcling.

1 Introduction

Recent works on data base modeling show a growing
interest in the object-oriented paradigm (see, for instance,
[U187]). One of the basic motivations for such an interest
comes from the need of embedding several types of
abstraction capabilities into the existing data models.
Object-oriented data models provide many concepts which
seem particularly suited for such a requirement. Perhaps,
the most important one is inheritance, which represents a
powerful mechanism for explicitely stating that the
properties of a class propagate over other related classes.

It is interesting to note that the above objectives were
already present in the research on semantic data models (see
[HKS’I]), which has addressed many problems related to the
semantic aspects of data description, with the specifii goals
of defining the basic modeling primitives needed in a data
base formalism, and studying their characteristics. We
believe that one novelty of the investigation on object-
orientation is the concern on the deductive capabilities of
the data model, especially those related to inheritance.

Rcccnt works (see [AM86], [MZ86], [AS871, &%7al,
[Lc87b]) have carried out an investigation on the basic
modcling primitives of object-oriented data models.

Pcrmirrion to cop9 willout fee all or part of this malerio ir
granted provided that the copier are not made or dirtributed for
direct commercial advantage, the VLDB copyright notice and
tht Lille of the publication and itr dale appear, and notice ir
given ihat copying b bq pemirrion of ihe Very Large Dafa Bare
Endowment. To copy otherwire, or to npublirh, teqrirer a fee
and/or rpecial permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

All of these works deal with simple representational
mechani-ms, which essentially include the notion of class
(an absu action for a set of objects) and various forms of
containment assertions on classes, with the main goals of
investigating on the inherent complexity of reasoning
about these assertions, and providing algorithms for the
inference problem. For example, Arisawa and Miura
[AM861 consider assertions of the form: (A and B and C is-
a D and E), which states that the intersection of the (set of
instances of the) classes A,B and C is contained in the
intersection of D and E, and propose a polynomial timd
algorithm for computing inferences on these assertions.
Aggregation relations on classes, allowing for representing
a class as a property of another class, as well as other
features of object-oriented data models, related to the
definition of operations on classes, are not taken into
account in these works.

The goal of this paper is to go one step further in the
above direction, by considering aggregation relations
among classes. In particular, we present a simple object-
oriented data model, called ERL, which allows one to deal
with enti’.ies (simple classes) and relationships (aggregated
classes), lnd provides several assertional mechanisms for
describirg how such classes relate to each other. Both
positive assertions (stating that a certain relation holds
among classes) and negative assertions (stating that a
relation does not hold) are expressible in this language.

Four types of basic semantic relations are taken into
account, namely subsetting, disjointness, typing, and
mandatory participation of an entity in a given,
relationship. For example, we can assert in ERL that the
set of instances of a given class A is included in the set of
instances of another class B (subsetting), or that classes A
and B cannot have common instances (disjointness). As an
example of negative assertion, we can state that A and B
are not disjoint, i.e. there is at least one object that is both
an instance of A and an instance of B. Typing allows for
asserting that objects participating in a given relationship
B are instances of an entity A. Conversely, we can state
that every instance of A participates in at least one instance
of B (mandatory participation).

Our modeling language is formally defined in terms of
first or& r logic. Besides providing the formal tool for
expressit g the semantics of the language, logic allows us
to devise sound and complete inference procedmes for ERL.
In fact, We present a sound, complete, and polynomial time

Amsterdam, 1989

13 -

algorithm for computing inferences on a set of ERL
assertions.

It is our opinion that the resulting inference technique
may constitute the formal basis for building a sound and
effective environment for conceptual modeling. During the
past years, many efforts have been devoted to provide the
data base dcsigncr with useful methodologies and tools
supporting her/his activities. Many of these works are
based on the entity-relationship data model (see, for
example, [Ce83], [BLNS6], [TYI%6]). These proposals are
often based on pragmatical criteria for achieving “good”
qualities of the conccpmal schema, such as consistency,
clarity, and minimality. In our approach, a formal
dclinition of such concepts is provided, based on the precise
definition of the semantics of the language. Moreover, the
inference techniques associated with the language can be
directly used to build a system which is able to
automatically check the representation against several
correctness and minimality criteria, and to support the
designer in all the activities requiring reasoning about the
description, and exploring different modeling choices.

The paper is organised as follows. In Section 2 we
informally define the language, and briefly discuss its
expressive power. In Section 3. we present the formal
definition of the language. In Section 4, we describe our
mclhod for performing inference on a set of assertions
expressed in the language. In Section 5, we briefly discuss
the use of the infcrcnce technique in the definition of an
environment supporting entity-relationship modeling.
Finally, in Section 6 we present the conclusions and
outline future developments of our research.

In the remainder of the paper, we assume that the
reader is familiar with the basic notions of first order logic
(at the level of [Me64]). In this extended abstract, the
proofs of the theorems are omitted (the interested reader is
referred to [DL89] for the full paper).

2 An Entity-Relationship-based modeling
language

In this section we informally discuss the basic
characteristics of a simple ER-based modeling language,
called ERL (Entity Relationship Language), which can be
used to define entities and relationships and to state several
types of assertions on how they relate to each other. The
formal definition of ERL appears in section 3.

In ERL, Ihe universe of discourse is partitioned into
two lcvcls, called extensional and intensional.

In the extensional level, both individual objects, and
tuplcs of individual objects are represented. An individual
object is an atomic object, identifiable through a unique
name, whcrcas a tuple is an aggregation of individual
objects. The number of objects which are components of a
tuplc is called the arity of the tuple. Each component is
rcfcrcnccd by its position in Ihe luple: for example, the
individual objects a,b and c are said to be Ihe l-component,
2-component and 3-component of the tuple <a,b,o,

respectively.
The objects belonging to the intensional level

represent classes of either individual objects, or tuples.
Classes are distinguished into entities and relationships.

An entity class (simply entity in the following) is a
class of individual objects, whereas a relationship class
(relationship) is a class of tuples of the same arity, which
is called the arity of the relationship. The objects
belonging to a given class constitute the set of instances of
that class.

Note that, for the sake of simplicity, we do not
explicitely deal with attributes, which are usually
consider&l in the ER model. However, it is easy to see that
what follows applies with minor changes to a language
incorporating attributes.

In order to represent meaningful properties of entities
and relationships, ERL provides the modeler with several
types of assertions, which are discussed in the following.

Typing: Individual objects which are components of
the tuples belonging to a given relationship, can be
asserted to belong to a certain entity. For example, if
Tutoring is a relationship of arity 2, we can assert lhat for
each instance t of Tutoring, the l-component of t is an
instance of the entity Person, and the Ii-component of t is
an instance of the entity Course. In the classical ER model,
typing corresponds to the fact that relationships are defined
on a fixed collection of entities. Conversely, in ERL there
is no limitation on the number of typing assertions for a
given relationship: for example, the i-component of the
tuples belonging to the relationship R, can be asserted to
bebothoftypeAandoftypeB.

Subsetting: One class can be asserted to be a subset of
another class: in this case, every instance of the former, is
also an instance of the latter. For each assertion of this
type, we require the two classes to be either both entities,
or both relationships of the same a&y. For example, if
Person and Student are entities, Tutoring an4
Summer-Tutoring are relationships of arity 2, we can
assert Professor is subset of Person and Summer-Tutoring
is subset of Tutoring. Notice that, in the literature, the
subset relationship is often referred to as is-a relationship.

Disjoinrness: Two types of disjointness assertions can
be expressed in ERL. Assertions of the first type are used
to state that the extensions of two classes are disjoint. In
this case, we require the two classes to be either both
entities or both relationships of the same arity. For
example we can state that the two entities
Graduate-Student and Undergraduate_Student are disjoint.
The second type of disjointness assertion can be used to
state tba the set of objects that are i-components of the
tuples br longing to a given relationship is disjoint from
the set ci instances of a certain entity. Assertions of this
type are used to represent the fact that an entity cannot
participate in a given relationship in a specified role. For
example, we can state that the instances of
Undergraduate-Student cannot participate in the
relationship Tutoring as l-components.

Existence: The instances of a given entity can be

- 14-

asserted to mandatorily participate in a certain relationship
for a specified role. In other words, every instance of the
entity must be the i-component of at least one instance of
the relationship. For example, we can assert that the
instances of the entity Teacher mandatorily participate in
the relationship Course.

Negation: All the above assertions can appear in a
negative form, in order to represent that a certain property
does not hold. For example, we can assert that entity A is
not related to B by means of the subset relationship, i.e.
that there is at least one object which is included in the
extension of A, but not in the extension of B. Another
example of negative assertion is the one stating that A and
B are not disjoint, i.e. there always exists one object that is
in the extension of both classes. Notice that negative
assertions are not usually considered in semantic data
models.

’ In Section 3, we provide the formal definition of ERL
syntax and semantics, whereas in Section 4 we address the
problem of computing inference on ERL assertions. Such a
problem consists of checking whether a set C of ERL
assertions implies a single assertion cr. i.e. whether the fact
that all the assertions in Z hold, implies that Q holds as
well. In Section 4, a polynomial time algorithm for this
problem is presented.

Assertions of the type considered in ERL, have been
taken into account in several recent works both on data
bases, and knowledge representation. We already mentioned
in Section 1 a number of works dealing with the problem
of performing inference on containment assertions on
classes. As we said before, such works do not consider
aggregation relationships among classes.

The interaction of containment assertions with
aggregation relationships has been considered in the context
of the relational data base theory. We are referring, in
particular, to those papers investigating the so-called
inclusion dependencies. An inclusion dependency is. a
statement of the form: R(AI,Am) 2 S(Bl,...,Bm),
where R and S are two relation schemes, and
Al, Am,Bl,..., Bm are attributes. Such a dependency
holds in a relational database D, if each of the tuples in the
projection of s over B1, . . . Bm, is also in the projection of
r over Al,..., Am, where r and s are the relations in D
corresponding to the relation schemes R and S,
respectively.

In [CFP84], it is shown that the inference problem for
inclusion dependencies is P-space complete in the general
case. However, the problem can be solved in linear time if
the dcpcndencics are unary (m=l). This fact is exploited in
[CaVi83], where the inference problem is studied for a
language including a restricted form of inclusion and
exclusion dependencies.

Notice that ERL do not limit its expressive power to
unary dcpcndcncies. Indeed, it allows both the subset, and
the disjointncss relationship to be established both betweep
entities, and between relationships. Moreover, ERL allows

typing, existence, and negative assertions, to be expressed
without any limitation. Nevertheless, the results reported
in this paper show that the inference problem for ERL is
tractable.

Inclusion dependencies have also been studied in their
interaction with functional dependencies. Chandra and Vardi
[CV851 have shown that the inference problem for a
language including both dependencies, is undecidable;
Kannellakis, Cosmadakis, and Vardi [KCV83], have shown
that a polynomial time solution exists, if inclusion
dependencies are restricted to be unary. Note that no
construct is currently provided by ERL for expressing
functional dependencies.

3 Logical formulation

In this section, we give a formal account of ERL in
terms of first order logic. We rely on a first order language
that includes constants, variable and predicate symbols,
Constants and constant tuples correspond to individual and
aggregated objects, respectively; 1 -place and n-places (~1)
predicate symbols correspond to entities and relationships,
respectively. Finally, the assertions discussed in Section 2
are expressed by means of sentences in the first order
language.

Before delving into details, some remarks on the
notation are in order. We shall use several metasymbols
(possibly with subscripts), whose meaning is as follows:
greek upper case letters for predicate symbols; x, y, z for
variable symbols, and x, y, z for variable tuples; c, d for
constant symbols, and c.d for constant tuples; w for
constant or variable symbols, and w for tup1e.s whose each
component is either a constant or a variable; wi for the i-
th component of the tuple w. Finally, we write 3x instead
of3x I,...Jxn and VX instead of VXls...,VXn (where
X=<Xl,...,X+).

Formally, a set of ERL assertions is simply a fust
order theory (i.e., a first order language, plus a set of
sentences in that language), as specified by the following
definition.

Definition 1 An ERL-theory is a first order theory
<L,A>, where L is a first order language consisting of a set
of constant, variable and predicate symbols, and A, the
axioms of the theory, is a set of formulas of L, with the
constraint that each element of A has one of the following
forms:

Vx (-, al(x) v @2(y)) where y is a subtuple of x;
Vz(, @l(X) v 1 @2(y)) where x and y are

subtuples of z;
Vx 3y (7 al(x) v @2(z)) where z contains x and

all the variables in r;
3x (al(x) A Y 02(y)) where y is a subtuple of x;
3~ (O1(x) A 02(y)) where x and y are subtuples

- 15-

of 2;
3x vy (@l(X) A 1 Q*(z))) where z contains x

and all the variables in y;

It is well known that the notion of interpretation is
used for assigning semantics to any logical formula (see
[Me79]). As far as ERL-theories are concerned, the notion
of interpretation specialises as follows.

Definition 2 An interpretation for an ERL-theory T
is a pair cDOM,EXT>, where DOM is a finite set, called
the domain of the interpretation, and EXT is a mapping
assigning an element of DOM to each constant symbol of
T, and a subset of DOMn to each predicate symbol P of T
(n is the arity of P).

Taking into account the semantics of the axioms
expressible in ERL-theories, we now show how they are
used to express typing, subsetting, disjointness, existence,
and negative assertions.

Axioms of the type:
vx (--l @*(Jo ” @269 1.

can be used to express both typing and subsetting. In
particular, if @2 is a l-place predicate symbol representing
an entity (lyl = 1). a1 is a n-place predicate symbol
representing a relationship, and xi = y, then the above
axiom specifies that every i-component of @1 instances, is
an instance of 02, i.e. that the i-components of the
relationship UQ are typed with entity Qp For example, the
relationship Tutoring can be typed with entities Person and
course as follows:

V xl, x2 (7 Tutoring(xl, xi> v Person(
V x1, x2 (7 Tutoring(xl, x2) v Course(x$).

Observe that the above axiom allows a more general
form of typing than the one discussed in Section 2. Indeed,
the cardinality of y needs not to be 1 and, therefore, the
axiom may express a dependency between two
relationships.

If x = y, then the axiom expresses subsetting, on
cithcr entities (Ix1 = 1). or relationships (1x1 > 1). For
example, in order to express the subset relationship
between entities Professor and Person, and between
relationships Summer-Tutoring and Tutoring, we can use
the following axioms:

V x1 (7 Profcssor(xI) v Person(x
V xl, x2 (-, Summcr_Tutoring(xl, x2) v

Tutoring(xI, x2)).
Axioms of the type:

arc disjointncss axioms. If z = x = y, then the axiom
expresses the disjointness relationship between either two
entities (1x1 = l), or two relationships (1x1 > 1). For
example, disjointness between the entities

Graduate-Student and Undergraduate~Student, and between
the relationships Tutoring and Attends, is expressed as:

V x1 (1 Graduate-Student(xl) v
1 Undergraduate~Student(xl))

V x1, x2 (7 Tutoring(xl, xi> v
7 Attends(xl , x2)).

Disjointness relationships between entities and
relationships can be expressed by imposing lxl = 1, and z =
y. For example the disjointness relationship between
Undergraduate-Student and Tutoring in the l-component,
is expressed by means of the following axiom:

V XI, x2 (7 Undergraduate~Student(xI) v
1 Tutoring(x~, x2)).

Axicms of the type:
v’x 3Y (1 @l(X) ” @2(z) 1.

express existence assertions, where @I represents an
entity (1x1 = 1) and 02 represents a relationship (lzl > 1).
For example, the mandatory participation of the entity
Course in the relationship Teaching as l-component, is
expressed by:

Vx 3y (7 Course(x) v Teaching (x,y)).
Up to now, we have discussed the frrst three forms of

allowable axioms in ERL-theory. With ragard to negative
assertions, it is easy to see that they correspond to the last
three forms reported in definition 1. As an example, the
fact that it is not true that Tutoring is typed with the entity
Professor as l-component, can be expressed by the
following axiom:

3x3~ (Tutoring(x,y) A -Professor(y)).

After the formal definition of ERL, we are now ready
to address the main point of this paper, which is the
problem of computing inference on ERL-theories. Such a
problem is dealt with in the next section, in which we
present a sound and complete inference algorithm for ERL-
theories.

4 Checking ERL-theories for satisfiability

Our method for computing inference on ERL-theories
exploits the notion of satistiability in logic. Recall that a
theory is said to be satisfiable, if it admits at least one
model (i.e. an interpretation which satisfies all the axioms
of the theory). A theory which is not satisfiable is said to
be unsatisfiable. Logical implication is the problem of
determining whether a given sentence r is true in every
model of a theory T. Such a problem can be reduced to the
one of checking a theory for unsatistiability: T logically
implies 7, just in case there cannot be models of T which
satisfy 17, i.e. Tu (75) is unsatisfiable. Notice that if T is
an ERL-theory, and ‘F is any formula which has the form of
an admia ible axiom for T, then Tu (7-t) is an ERL-theory
as well.

The goal of this section is to present an efficient

- 16-

algorithm for checking an ERL-theory for satisfiability.
The above considerations show that such an algorithm can
be used to perform inference on ERL-theories.

4.1 Clausal form for ERL-theories

The method we present requires an ERL-theory to be
transformed into a set of clauses, which are in turn
represented by means of a graph. A clause is simply a
disjunction of literals. each literal being either an atomic
formula (i.e. a predicate symbol with the corresponding
arguments, called positive literal), or the negation of an
atomic formula (negative literal). A negative (positive)
clause is a clause constituted by negative (positive) literals.
All the variables appearing in a clause are implicitely
universally quanlificd. Well known results in first order
logic ensure us that any set of formulas can be transformed
into a set of clauses which is satisfiable if and only if the
original set is satisfiable.

Table 1 shows the rules for obtaining a set of clauses
from the axioms of an ERL-theory (axioms are on the left
and the corresponding clauses on the right).

vx (1 q(x) ” @2(Y) 1 1 @l(X) ” 4969
v’z (1 -@l(X) ” 145(Y) 1 1 w4 ” -@269
v’x 3Y (--I Al ” 49(z)) 1 q(x) ” @2(v)
3x (@l(X) * -49(Y)) @l(c). 1@2@)
32 (@l(X) A qY) 1 @l(c). @2(d)
3x VY (@l(X) * -@2(z) 1) @l(C), l%(W)

Table 1

The first two axiom forms are easily translated into
clauses. Due Lo the presence of existential quantifiers, the
remaining four forms require the introduction of Skolem
symbols (consllmts and functions). In the third clause form,
v indicates a tuple that is obtained from z by leaving
uqchangcd the x variables, and substituting each y1 with
fiJ(x), where fij is a Skolem function and j is a number
identifying the original axiom (we are assuming that the
axioms of the ERL-theory are numbered). Concerning the
fourth and fifth axiom forms, each of them is transformed
into two clauses forms, that are simply obtained by
substituting x and y with tuples of Skolem constants, c
and d, of the same arity. Finally, in the sixth form, c is a
tuple of Skolcm constants of the same arity of x, and w is
obtained from z by substituting the x variables with the
coresponding conslants of c.

Example 1 We show how to transform a simple
ERL-theory into tic corresponding set of clauses:

Vx (lProfcssor(x) v Person(x))
Vx (4tudcnt(x) v Person(x))

VxVy (4Jndergraduate_Student(x) v TTutoring(x,y))
3x3~ (Tutoring(x,y) A -Professor(y))
Vx3y (-Course(x) v Tutoring(x,y))

-Srofessor(x) v Person(x)
4tudent(x) v Person(x)
4Jndergraduate_studenudent(x) v yTutoring(x,y)
Tutoring(dl,di)
4rofessor(d2)
Xourse(x) v Tutoring(x,f&x)).

In what follows, we call ERL-clause any clause
obtained from an axiom of an ERL-theory by means of the
above transformation. Notice that ERL-clauses are Horn
clauses, i.e. they contain at most one positive literal.
Moreover, due to the presence of function symbols, the
Herbrand universe of a set of ERL-clauses is infinite.

The following lemma allows us to transform a set of
ERL-clauses into another set, in which every Skolem
function is replaced by a constant symbol. Obviously, the
Herbrand universe of the resulting set is finite.

Lemma 1 Let C he a set of ERLclauses, and c’ the
se,t of ERLclauses obtained from C by sul$ituting each
fiJ(x) with a new constant symbol ZiJ. Then C is
satisftible if and only if c’ is satisfiable.

In the following, we take advantage of Lemma 1, and
consider only ERL-clauses in which Skolem functions
have been eliminated.

4.2 The algorithm for satisfiability
checking

Our algorithm for satisfiability checking is based on a
variant of the resolution. Resolution is an inference rule
that has been shown to be sound and complete for the
clausal form of logic (see [C$,$9]): a resolution refutation
(i.e. a derivation of the empty clause obtained by repeated
applications of resolution steps) exists for a set of clauses
if and only if such a set is unsatisfiable. Positive unit
resolution (see [CL73]) is a special form of resolution,
requiring every step to be applied to at least one positive
unit clause, i.e. a clause containing just one positive
literal. For example, a positive unit resolution step can be
applied t:, A(c) and (-IA(X) v B(x)), yielding the positive
clause B(c).

Definition 3 Let C be a set of ERLclauses. A
positive derivation chain (or simply a chain) of C from
P(c) to Q(d) is a sequence <Gls...BUn> of literals, wilh
UiMj for i#j, where ~1 is P(C), an is Q(d), and for each i
(i=2,...,n), Qi is obtained by positive unit resolution from
a clause of C of the form (+(wl) v Oz(w2)) and from

- 17-

oi-1; n is called the length of the chain <ol,...q,>.

The following theorem establishes an important
property of ERL-clauses. namely that we can check any set
C of ERL-clauses for unsatisfiability, by looking for
particular positive derivation chains of C.

Theorem 2 A set C of ERL-clauses is unsatisfiable
if and only if it includes a negative clause F = (+(wl) v
+p2(w2)) of C such that there is a chain of C from
wl(cl) to @l(dl), and a chain of C from y2(c2) to
02(d2), where wl(c1) and ~2(cz) are positive unit clauses
of C, and (+Bl(dl) v -&2(d2)) is a ground instance of F.

We are now in a position to define the concept of
graph associated with a set of ERL-clauses, which is used
by our algorithm for satisfiability checking.

Definition 4 Given a set of ERL-clauses C, we
associate with it a directed graph G(P,D,I,A), called ERL-
graph, labeled on nodes and arcs. The set of nodes is
partitioned into three subsets, called P, D, and I; A is the
set of arcs. P-nodes, I-nodes, and D-nodes are called
predicate nodes, implication nodes, and disjointness nodes,
respectively. The ERL-graph G(P,D,I,A) is defined
according to the following rules:

1. for each predicate Q of C define a P-node, labeled
with Q;

2. for each clause of the form (Y@(W)), define a D-
node d and an arc e=&,d>, labeled with u=<l,..., n>,
where n=lwl;

3. for each clause of the form (-r@l(x) v -@2(y)),
define a D-node d and arcs el=<Ol,&, and e2=+,a>, the
label u of el, and the label v of e.2 are defined as follows:
u is constituted by all the variables of x that appear in y,
whereas v is such that Ivl = lul, and for each i, vi = j,
where j is the integer such that yi = xk, where k=ui.

4. for each clause of the form (101(x) v 02(y)),
define an I-node m and arcs <Ol,m>, labeled with II, and
<m,@2>, labeled with v; u and v are defined as follows:

u= cl ,...,n>, where n = ixl;
v= <VI , VP>, where p = lyl, and, for each i:

vi =
j ifyi=xj;

zhk if yi =Zhk.

Example 2 The ERL-graph associated with the set of
clauses of example 1 is shown in figure 1.

For an arc e, head(e) denotes the reaching node of e;
for example, if e=cn,m>, then head(e)=m.

We now present an algorithm whose purpose is to
store the information about the derivation chains of C
(where C is a set of ERL-clauses) from a given literal P(c).

9 Student@ Course

+ Cl>

Figure 1

We assume that associated with each P-node Q of an
ERL-graph, there is a set of tuples, denoted by
TERM:SET(Q). The goal of the algorithm is to insert the
tuple d rcto TERM-SET(Q) whenever there is a chain of C
from P(c) to Q(d). The algorithm makes use of a function
selecr which, given a constant tuple c, and an arc e. with
label(e) = u, returns a new constant tuple r of the same
arity as u, according to the following rule; select(c.e) = r
Where:

ri =
d if ui=j (j integer)

d if ui is a constant

Algorithm chain(G,c,P)
Input an El&graph G corresponding to a set C of

ERkl8USeS. 8 fUnCtiOII TERM-SET, 8

constant tuple c, and 8 node P of G
Output the algorithm inserts d in TERM SET(Q),

foreach dandQsuchth8tthere~acham
of C from P(c) to Q(d)

begir
ij P is 8 P-node and de TERM-SET(P)
then begin

insert c into TERM-SET(P)
for each outgoing 8rc e of P
do chain(G, select&e), head(e))

erki
else if P is 8n I-node with outgoing 8rc e

then chain(G, select(c,e), head(e))
end

Theorem 3 shows that algorithm chain is correct.

Theorem 3 Let C be 8 set of ERL-clauses, G the
associated graph, and P,Q two of its P-nodes. During the
execution of chain(G,c,P), d is inserted into
TERM-SET(Q), if and only if there is 8 chain of C from
P(c) to Q(d).

- 18-

The algorithm chain is the basis of our method for
checking a set C of ERL-clauses for unsatisfiability. Given
the ERL-graph G, we set TERM-SET(P) to empty, for
each P-node of G. Then we execute the algorithm chain for
each c and P such that P(c) is a clause of C. Finally, we
check a special condition on the D-nodes of G, as specified
by the following algorithm.

Algorilhm Unsatisfiable?(C)
Input a set C of ERL-clauses
Oulput true, if C is unsatisfiable, false otherwise
begin

construct the ERL-graph G associated with C
for each P-node P do set TERM-SET(P) to ()
for each positive clause (P(c)) in C do chain(G,c,P)
if there is a D-node D of G, with ingoing arcs

el=cQl,D> and ez=<Qz,D> such that there is a
hl in TERMJET and a h2 in
TERMJET such that
selcct(hl,el) = select(h2,e2)
or
there is a D-node D of G, associated with ~Q(w),
with one ingoing arc e=<Q,D> such that there is
a h in TERM-SET(Q) such that select(h.e)=w’,
where w’ is a ground instance of w

then return (true)
else return (false)

end

Theorem 4 Let C be a set of ERL-clauses. Then
Unsatisfiable?(C) returns true if and only if C is
unsatisfiable.

As far as the computational complexity of our method
is concerned, the next theorem shows that algorithm
Unsatisfiable? is polynomial in the size of the graph.

Theorem 5 Let C be a set of ERL-clauses.
Algorithm Unsatisfiable? takes O(E l K -N - log(K*N))
time, where E is the number of clauses of C, K is the
number of constants of C, and N is the number of
predicates of C.

5. An environment for conceptual modeling

The purpose of this section is to demonstrate that,
using the language presented in Section 3 and the
algorithm presented in Section 4, one can define an
effective environment supporting conceptual modeling. The
basic observation is that our method for satisfiability
checking can be directly used to perform inferences on
ERL-thcorics. Therefore, we can easily devise a deductive
environment which allows the designer to check wether a
given sentence is logically implied by an ERL-theory.

In what follows, we shall consider several crucial

problems in conceptual modeling, and analyse the features
provided by our approach in order to deal with these
problems.

5.1 Consistency

All the methodologies and tools for conceptual
modeling insist on the need for checking the consistency of
the conceptual schema. However, such a concept is often
defined using informal arguments, and the methodologies
provide only some intuitive guidelines for achieving the
consistency of the representation. In our approach,
consistency can be naturally defined in terms of
satisfiability. In particular, if we allow the ERL-theory to
be built incrementally, the consistency of the schema can
be automatically checked as follows: every time a new
axiom a is added to an ERL-theory T, the system
automatically checks TU (a) for satisfiability, and the
axiom is rejected if TU (a) is unsatisfiable. Notice that in
this case the system is also able to provide the designer
with useful information about the contradictory axioms, in
particular using the positive chains which lead to the
contradiction (see [DL89]). In this case, the algorithm
Unsatisfiable? is used for ensuring the global consistency
of the representation.

Besides the global consistency, other consistency
checks can be performed by the system. For example, an
entity-relationship schema which is satisfiable may suffer
from another anomaly, called class unsatisfiability
([LN87]). A class S (either an entity or a relationship) is
said to be unsatisfiable in an ERL-theory T, if S has no
instances in all the models of T. For example, in the
following ERL-theory:

‘ix Zy (7 A(x) v R(x,y))
V x, Y (1 B(x) v 1 W Y))
V x (7 S(x) v A(x))
V x (7 S(x) v B(x))

the object class S is unsatisfiable, although the theory is
satisfiable. In general, we can check if a class S is
usatisfiable in T as follows: if C is the set of clauses
corresponding to T, and z is a constant symbol not
appearing in C, then S is unsatisfiable in T if and only if
CU (S(z)) is unsatisfiable. Notice that CU (S(z)) is a set of
ERL-clauses.

Finally, our environment can support prototyping
facilities, which are very important for allowing the
designer to directly test and verify tbe schema. To this end,
it is easy to extend ERL with axioms of the type: a(c)
and 7 CD(c), where c is a constant tuple. Such axioms
assert that c (does not) belongs to an entity (relationship)
cb. Clearly the resulting set of clauses is still a set of ERL-
clauses, and the method presented in section 4 can be used
to perfor n inference on such a set.

In summary, the designer can incrementally build an
ERL-theory, insert instances into classes, assert that an
object is not an instance of a class, and pose queries to the
system anytime she/he needs to know whether a certain

- 19-

sentence logically follows from the defined ERL-theory.

5.2 Minimality

Another important quality of object descriptions is
minimality. In our approach minimality can be formally
defined in terms of derivability of axioms. An ERL-theory
C is minimal if no axiom a of C can be derived from Z-
(a). Thus, it is possible to test if an ERL-theory C is
minimal by simply testing if for all axioms aeC, C-
(a) U (+a)) is satisfiable.

Example 3 Consider the fragment of entity
relationship schema shown in figure 2, and suppose that
the following properties hold for such a schema:

- the Scientiflc~Faculty~Enrollment relationship is a
subset of the Enrollment relationship (represented by an
arrow in the figure);

- Mandatot=-Tutoring is a subset of Tutoring;
- relationship Tutoring is typed with

Scientific-Faculty-Student in l-component;
- Suspended-Student cannot participate in the

relationship Enrollment;
- Scientific,Faculty-Student must participate in the

relationship Sctentific-Faculty-Enrollment (minimum
cardinality equal to 1);

- Scientific~Faculty~PhD~Student must participate in
the relationship Mandatory~Tutoring.

Faculty
Enrollment

m(l,n)&

Mandatory
Tutoring

Figure 2

The schema and the above properties can be represented
by the following ERL-theory T:

V xl, x2 (7 Scicntific~Faculty~Enrollment(x~, x2) v
Enrollmcnt(x1, x2))

v x1. x2 (- Mandatory-Tutoring(xl, x2) v
Tutoring(x 1, xz))

V x1, x2 (-I Tutoring(xl, x2) v
Scientilic-Faculty-Studem(

v Xl* x2 (1 Suspended-Student(x2) v
yEnrollment(x1, ~2))

v’x, 3x2 (7 Scientific-FacultyJtudent(x2) v
Scientilic~Faculty~Enrollment(x1Jc~)

Vxl 3x2 (7 Scientific-Faculty-PhD-Student(x1) v
Mandatory Tutoring(x1 ,x2)).

Now, suppose we want to assert that the two entities
Suspended-Student and Scientific-Faculty-PhD-Student
are disjoint, i.e. we want to add to the theory the axiom :

V xl (-, Scientific-Faculty-PhD-Student (xl) v
Guspended-Student(x,)).

In order to maintain the theory minimal we have to
check if such an assertion is already implied by the theory
T, that is done by adding its negation to T, and checking
the resulting theory T’ for unsatisliability. The negation of
the above axiom is:

3x1 (Scientific-Faculty-PhD-Student(x1) A
Suspend&S tudent(x 1)).

which in clausal form yields:
Scientilic-Faculty_PhD_Student(cl), and
Suspended~Student(cl).
The ERL-graph corresponding to T is shown in figure

3. Algorithm chain propagates the Skolem constant cl to
the nodes Suspended-Student and Enrollment, which are
connected to the diqointness node D. Therefore, the
algorithm Unsatisfiable? returns true as result. Hence, we
can conclude that the above disjointness axiom is impled
by T.

Other types of minimality of the description can be
considered by using ERL. For example, one may want to
obtain the minimal set of subset relations which is implied
by an ERL-theory T. In this case, we can first compute the
set of all the subset relations implied by T, and then
compute the transitive reduction of such a set. Again, this
can be done by using the deductive capabilities of the
system.

A further example of how minimality can be dealt
with in ERL. concerns the existence of equivalent entities
or relationships in the schema. Two classes A and B are
said to be equivalent in T if they have the same set of
instances in all the models of T. This condition can be
checked by testing if both V x (7 B(x) v A(x)) and
V x (7 A(x) v B(x)) are derivable from T.

6 Conclusions and further research

We have presented ERL, a simple object modeling
language that allows one to express positive and negative
assertions concerning several semantic relations among
object classes.

- 20 -

c2>

w Suspcndcd
Student

Student

Tutoring

Scientific
Faculty PhD

Student

>

Figure 3

The semantics of such a language has been defined in
terms of first order logic. A polynomial time algorithm has
been provided for computing inference in ERL, which has
been proven to be sound and complete with respect to the
semantics. Our work extends previous results on
containment inference in object-based models, by
considering aggregation relations among classes. Moreover,
we have shown how ERL and the associated inference
capabilities can be used as a kernel for a well-founded
environment for conceptual modeling.

In the future, we aim at extending the expressive
power of ERL by allowing different levels of aggregation
among classes, and by considering other meaningful
semantic relations, with the constraint that such
extensions do not affect the computational tractability of
the inference problem.

References

[AM861 Arisawa H., and Miura T., “On the Properties
of Extcndcd Inclusion Dcpcndencies”, Proc. of the Z2rh
Very Large Data Bases (VLDB) Conference, Kyoto, 1986.

[AS871 Atzeni P., and Stott Parker D., “Set

Containment Inference”, Proc. of the International
Conference on Database Theory, LNCS, N.243, Springer-
Verlag New York Inc., 1987.

[BLN86] Batini C., Lenzerini M., and Navathe S.B.,
“A Comparative Analysis of Methodologies for Database
Schema Integration”, ACM Computing Surveys, Vol. 18,
N. 4. 1986.

[CFP84] Casanova M.A., Fagin R., and
Papadimitriou C.H., “Inclusion Dependencies and Their
Interaction with Functional Dependencies”, Journal of
Computer and System Sciences, 28, 1984.

[CaVi83] Casanova M.A., and Vidal V.M.P.,
“Towards a Sound View Integration Methodology”, Proc.
of the 2nd ACM Symposium on Principles of Database
Systems, 1983.

[Ce83] Ceri S. (ed.), Methodology and Tools for
Database Design, North Holland, 1983.

[CVSS] Chandra A.K., and Vardi M.Y., “The
Implication Problem for Functional and Inclusion
Dependencies is Undecidable”, SIAM Journal on
Computing, Vol. 14, 1985.

[CL731 Chang C.L., and Lee R.C.T., Symbolic Logic
and Mechanical Theorem Proving, Academic Press, New
York, 1973.

[DL89] Di Battista G., and Lenzerini M., “A
Deductive Method for Entity-Relationship Modeling”,
Tech. Rep. Dipartimento di Informatica e Sistemisticai
Universita’ di Roma “La Sapienza”, 1989 .

[HK87] Hull R., and King R., “Semantic Database
Modeling: Survey, Applications, and Research Issues”,
ACM Computing Surveys, Vol. 19, 1987.

[KCV83] Kannellakis P.C., Cosmadakis S.S., Vardi
M.Y., “Unary Inclusion Dependencies Have Polynomial
Time Inference Problems”, Proc. of the 15th ACM
Symposium on Theory of Computer Science , 1983.

[Le87a] Lenzerini M., “Covering and Disjointness
Constraints in Type Networks”, Proc. of the 3rd IEEE
International Conference on Data Engineering, Los
Angeles, Ca, February 1987.

[Ler7b] Lenzerini M., “Class Hierarchies and their
Complexity”, Proc. of the Workshop on Database
Programming Languages, Roscoff, 1987.

[LN87] Lenzerini M., and Nobili P., “On the
Satisfiability of Dependency Constraints in Entity-
Relationship Schemata”, Proc. of the 13th Conference on
Very Large Data Bases (VLDB), Brighton, UK, 1987.

[MZ86] McAllester D., and Zabih R., “Boolean
Classes”, Proc. of ACM Object Oriented Prog. Systems,
Languages and Applicatons (OOPSLA) Conference, 1986.

[Me641 Mendelson E., Introduction to Mathematical
Logic, Van Nostrand Reinhold, New York, 1964.

[TYF86] Teorey T.J., Yang D., and Fry J.P., “A
Logical Design Methodology for Relational Databases
Using the Extended Entity-Relationship Model”, ACM
Computing Surveys, Vol. 18,2,.1986.

[Ul87] Ullman J.D., “Database Theory: Past and
Future”, Proc. of ACM Conf. on Principles of Database
Systems. 1987.

- 21-

- 22 -

