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Abstract 

We present a simple entity-relationship-oriented 
model, which essentially includes the notion of class, 
together with different types of relations among classes, 
such as is-a, part-of, and disjointness. We define the 
semantics of the model in terms of first order logic, and 
present a sound, complete, and efficient inference algorithm 
for such a model. We argue that our model and the 
associated inference capabilities provide a suitable formal 

. basis for designing an effective environment supporting 
conceptual modcling. 

1 Introduction 

Recent works on data base modeling show a growing 
interest in the object-oriented paradigm (see, for instance, 
[U187]). One of the basic motivations for such an interest 
comes from the need of embedding several types of 
abstraction capabilities into the existing data models. 
Object-oriented data models provide many concepts which 
seem particularly suited for such a requirement. Perhaps, 
the most important one is inheritance, which represents a 
powerful mechanism for explicitely stating that the 
properties of a class propagate over other related classes. 

It is interesting to note that the above objectives were 
already present in the research on semantic data models (see 
[HKS’I]), which has addressed many problems related to the 
semantic aspects of data description, with the specifii goals 
of defining the basic modeling primitives needed in a data 
base formalism, and studying their characteristics. We 
believe that one novelty of the investigation on object- 
orientation is the concern on the deductive capabilities of 
the data model, especially those related to inheritance. 

Rcccnt works (see [AM86], [MZ86], [AS871, &%7al, 
[Lc87b]) have carried out an investigation on the basic 
modcling primitives of object-oriented data models. 
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All of these works deal with simple representational 
mechani-ms, which essentially include the notion of class 
(an absu action for a set of objects) and various forms of 
containment assertions on classes, with the main goals of 
investigating on the inherent complexity of reasoning 
about these assertions, and providing algorithms for the 
inference problem. For example, Arisawa and Miura 
[AM861 consider assertions of the form: (A and B and C is- 
a D and E), which states that the intersection of the (set of 
instances of the) classes A,B and C is contained in the 
intersection of D and E, and propose a polynomial timd 
algorithm for computing inferences on these assertions. 
Aggregation relations on classes, allowing for representing 
a class as a property of another class, as well as other 
features of object-oriented data models, related to the 
definition of operations on classes, are not taken into 
account in these works. 

The goal of this paper is to go one step further in the 
above direction, by considering aggregation relations 
among classes. In particular, we present a simple object- 
oriented data model, called ERL, which allows one to deal 
with enti’.ies (simple classes) and relationships (aggregated 
classes), lnd provides several assertional mechanisms for 
describirg how such classes relate to each other. Both 
positive assertions (stating that a certain relation holds 
among classes) and negative assertions (stating that a 
relation does not hold) are expressible in this language. 

Four types of basic semantic relations are taken into 
account, namely subsetting, disjointness, typing, and 
mandatory participation of an entity in a given, 
relationship. For example, we can assert in ERL that the 
set of instances of a given class A is included in the set of 
instances of another class B (subsetting), or that classes A 
and B cannot have common instances (disjointness). As an 
example of negative assertion, we can state that A and B 
are not disjoint, i.e. there is at least one object that is both 
an instance of A and an instance of B. Typing allows for 
asserting that objects participating in a given relationship 
B are instances of an entity A. Conversely, we can state 
that every instance of A participates in at least one instance 
of B (mandatory participation). 

Our modeling language is formally defined in terms of 
first or& r logic. Besides providing the formal tool for 
expressit g the semantics of the language, logic allows us 
to devise sound and complete inference procedmes for ERL. 
In fact, We present a sound, complete, and polynomial time 
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algorithm for computing inferences on a set of ERL 
assertions. 

It is our opinion that the resulting inference technique 
may constitute the formal basis for building a sound and 
effective environment for conceptual modeling. During the 
past years, many efforts have been devoted to provide the 
data base dcsigncr with useful methodologies and tools 
supporting her/his activities. Many of these works are 
based on the entity-relationship data model (see, for 
example, [Ce83], [BLNS6], [TYI%6]). These proposals are 
often based on pragmatical criteria for achieving “good” 
qualities of the conccpmal schema, such as consistency, 
clarity, and minimality. In our approach, a formal 
dclinition of such concepts is provided, based on the precise 
definition of the semantics of the language. Moreover, the 
inference techniques associated with the language can be 
directly used to build a system which is able to 
automatically check the representation against several 
correctness and minimality criteria, and to support the 
designer in all the activities requiring reasoning about the 
description, and exploring different modeling choices. 

The paper is organised as follows. In Section 2 we 
informally define the language, and briefly discuss its 
expressive power. In Section 3. we present the formal 
definition of the language. In Section 4, we describe our 
mclhod for performing inference on a set of assertions 
expressed in the language. In Section 5, we briefly discuss 
the use of the infcrcnce technique in the definition of an 
environment supporting entity-relationship modeling. 
Finally, in Section 6 we present the conclusions and 
outline future developments of our research. 

In the remainder of the paper, we assume that the 
reader is familiar with the basic notions of first order logic 
(at the level of [Me64]). In this extended abstract, the 
proofs of the theorems are omitted (the interested reader is 
referred to [DL89] for the full paper). 

2 An Entity-Relationship-based modeling 
language 

In this section we informally discuss the basic 
characteristics of a simple ER-based modeling language, 
called ERL (Entity Relationship Language), which can be 
used to define entities and relationships and to state several 
types of assertions on how they relate to each other. The 
formal definition of ERL appears in section 3. 

In ERL, Ihe universe of discourse is partitioned into 
two lcvcls, called extensional and intensional. 

In the extensional level, both individual objects, and 
tuplcs of individual objects are represented. An individual 
object is an atomic object, identifiable through a unique 
name, whcrcas a tuple is an aggregation of individual 
objects. The number of objects which are components of a 
tuplc is called the arity of the tuple. Each component is 
rcfcrcnccd by its position in Ihe luple: for example, the 
individual objects a,b and c are said to be Ihe l-component, 
2-component and 3-component of the tuple <a,b,o, 

respectively. 
The objects belonging to the intensional level 

represent classes of either individual objects, or tuples. 
Classes are distinguished into entities and relationships. 

An entity class (simply entity in the following) is a 
class of individual objects, whereas a relationship class 
(relationship) is a class of tuples of the same arity, which 
is called the arity of the relationship. The objects 
belonging to a given class constitute the set of instances of 
that class. 

Note that, for the sake of simplicity, we do not 
explicitely deal with attributes, which are usually 
consider&l in the ER model. However, it is easy to see that 
what follows applies with minor changes to a language 
incorporating attributes. 

In order to represent meaningful properties of entities 
and relationships, ERL provides the modeler with several 
types of assertions, which are discussed in the following. 

Typing: Individual objects which are components of 
the tuples belonging to a given relationship, can be 
asserted to belong to a certain entity. For example, if 
Tutoring is a relationship of arity 2, we can assert lhat for 
each instance t of Tutoring, the l-component of t is an 
instance of the entity Person, and the Ii-component of t is 
an instance of the entity Course. In the classical ER model, 
typing corresponds to the fact that relationships are defined 
on a fixed collection of entities. Conversely, in ERL there 
is no limitation on the number of typing assertions for a 
given relationship: for example, the i-component of the 
tuples belonging to the relationship R, can be asserted to 
bebothoftypeAandoftypeB. 

Subsetting: One class can be asserted to be a subset of 
another class: in this case, every instance of the former, is 
also an instance of the latter. For each assertion of this 
type, we require the two classes to be either both entities, 
or both relationships of the same a&y. For example, if 
Person and Student are entities, Tutoring an4 
Summer-Tutoring are relationships of arity 2, we can 
assert Professor is subset of Person and Summer-Tutoring 
is subset of Tutoring. Notice that, in the literature, the 
subset relationship is often referred to as is-a relationship. 

Disjoinrness: Two types of disjointness assertions can 
be expressed in ERL. Assertions of the first type are used 
to state that the extensions of two classes are disjoint. In 
this case, we require the two classes to be either both 
entities or both relationships of the same arity. For 
example we can state that the two entities 
Graduate-Student and Undergraduate_Student are disjoint. 
The second type of disjointness assertion can be used to 
state tba the set of objects that are i-components of the 
tuples br longing to a given relationship is disjoint from 
the set ci instances of a certain entity. Assertions of this 
type are used to represent the fact that an entity cannot 
participate in a given relationship in a specified role. For 
example, we can state that the instances of 
Undergraduate-Student cannot participate in the 
relationship Tutoring as l-components. 

Existence: The instances of a given entity can be 
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asserted to mandatorily participate in a certain relationship 
for a specified role. In other words, every instance of the 
entity must be the i-component of at least one instance of 
the relationship. For example, we can assert that the 
instances of the entity Teacher mandatorily participate in 
the relationship Course. 

Negation: All the above assertions can appear in a 
negative form, in order to represent that a certain property 
does not hold. For example, we can assert that entity A is 
not related to B by means of the subset relationship, i.e. 
that there is at least one object which is included in the 
extension of A, but not in the extension of B. Another 
example of negative assertion is the one stating that A and 
B are not disjoint, i.e. there always exists one object that is 
in the extension of both classes. Notice that negative 
assertions are not usually considered in semantic data 
models. 

’ In Section 3, we provide the formal definition of ERL 
syntax and semantics, whereas in Section 4 we address the 
problem of computing inference on ERL assertions. Such a 
problem consists of checking whether a set C of ERL 
assertions implies a single assertion cr. i.e. whether the fact 
that all the assertions in Z hold, implies that Q holds as 
well. In Section 4, a polynomial time algorithm for this 
problem is presented. 

Assertions of the type considered in ERL, have been 
taken into account in several recent works both on data 
bases, and knowledge representation. We already mentioned 
in Section 1 a number of works dealing with the problem 
of performing inference on containment assertions on 
classes. As we said before, such works do not consider 
aggregation relationships among classes. 

The interaction of containment assertions with 
aggregation relationships has been considered in the context 
of the relational data base theory. We are referring, in 
particular, to those papers investigating the so-called 
inclusion dependencies. An inclusion dependency is. a 
statement of the form: R(AI, . . ..Am) 2 S(Bl,...,Bm), 
where R and S are two relation schemes, and 
Al, . . . . Am,Bl,..., Bm are attributes. Such a dependency 
holds in a relational database D, if each of the tuples in the 
projection of s over B1, . . . Bm, is also in the projection of 
r over Al,..., Am, where r and s are the relations in D 
corresponding to the relation schemes R and S, 
respectively. 

In [CFP84], it is shown that the inference problem for 
inclusion dependencies is P-space complete in the general 
case. However, the problem can be solved in linear time if 
the dcpcndencics are unary (m=l). This fact is exploited in 
[CaVi83], where the inference problem is studied for a 
language including a restricted form of inclusion and 
exclusion dependencies. 

Notice that ERL do not limit its expressive power to 
unary dcpcndcncies. Indeed, it allows both the subset, and 
the disjointncss relationship to be established both betweep 
entities, and between relationships. Moreover, ERL allows 

typing, existence, and negative assertions, to be expressed 
without any limitation. Nevertheless, the results reported 
in this paper show that the inference problem for ERL is 
tractable. 

Inclusion dependencies have also been studied in their 
interaction with functional dependencies. Chandra and Vardi 
[CV851 have shown that the inference problem for a 
language including both dependencies, is undecidable; 
Kannellakis, Cosmadakis, and Vardi [KCV83], have shown 
that a polynomial time solution exists, if inclusion 
dependencies are restricted to be unary. Note that no 
construct is currently provided by ERL for expressing 
functional dependencies. 

3 Logical formulation 

In this section, we give a formal account of ERL in 
terms of first order logic. We rely on a first order language 
that includes constants, variable and predicate symbols, 
Constants and constant tuples correspond to individual and 
aggregated objects, respectively; 1 -place and n-places (~1) 
predicate symbols correspond to entities and relationships, 
respectively. Finally, the assertions discussed in Section 2 
are expressed by means of sentences in the first order 
language. 

Before delving into details, some remarks on the 
notation are in order. We shall use several metasymbols 
(possibly with subscripts), whose meaning is as follows: 
greek upper case letters for predicate symbols; x, y, z for 
variable symbols, and x, y, z for variable tuples; c, d for 
constant symbols, and c.d for constant tuples; w for 
constant or variable symbols, and w for tup1e.s whose each 
component is either a constant or a variable; wi for the i- 
th component of the tuple w. Finally, we write 3x instead 
of3x I,...Jxn and VX instead of VXls...,VXn (where 
X=<Xl,...,X+). 

Formally, a set of ERL assertions is simply a fust 
order theory (i.e., a first order language, plus a set of 
sentences in that language), as specified by the following 
definition. 

Definition 1 An ERL-theory is a first order theory 
<L,A>, where L is a first order language consisting of a set 
of constant, variable and predicate symbols, and A, the 
axioms of the theory, is a set of formulas of L, with the 
constraint that each element of A has one of the following 
forms: 

Vx ( -, al(x) v @2(y) ) where y is a subtuple of x; 
Vz(, @l(X) v 1 @2(y) ) where x and y are 

subtuples of z; 
Vx 3y ( 7 al(x) v @2(z) ) where z contains x and 

all the variables in r; 
3x ( al(x) A Y 02(y) ) where y is a subtuple of x; 
3~ ( O1(x) A 02(y) ) where x and y are subtuples 
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of 2; 
3x vy ( @l(X) A 1 Q*(z) ) ) where z contains x 

and all the variables in y; 

It is well known that the notion of interpretation is 
used for assigning semantics to any logical formula (see 
[Me79]). As far as ERL-theories are concerned, the notion 
of interpretation specialises as follows. 

Definition 2 An interpretation for an ERL-theory T 
is a pair cDOM,EXT>, where DOM is a finite set, called 
the domain of the interpretation, and EXT is a mapping 
assigning an element of DOM to each constant symbol of 
T, and a subset of DOMn to each predicate symbol P of T 
(n is the arity of P). 

Taking into account the semantics of the axioms 
expressible in ERL-theories, we now show how they are 
used to express typing, subsetting, disjointness, existence, 
and negative assertions. 

Axioms of the type: 
vx ( --l @*(Jo ” @269 1. 

can be used to express both typing and subsetting. In 
particular, if @2 is a l-place predicate symbol representing 
an entity (lyl = 1). a1 is a n-place predicate symbol 
representing a relationship, and xi = y, then the above 
axiom specifies that every i-component of @1 instances, is 
an instance of 02, i.e. that the i-components of the 
relationship UQ are typed with entity Qp For example, the 
relationship Tutoring can be typed with entities Person and 
course as follows: 

V xl, x2 (7 Tutoring(xl, xi> v Person( 
V x1, x2 (7 Tutoring(xl, x2) v Course(x$). 

Observe that the above axiom allows a more general 
form of typing than the one discussed in Section 2. Indeed, 
the cardinality of y needs not to be 1 and, therefore, the 
axiom may express a dependency between two 
relationships. 

If x = y, then the axiom expresses subsetting, on 
cithcr entities (Ix1 = 1). or relationships (1x1 > 1). For 
example, in order to express the subset relationship 
between entities Professor and Person, and between 
relationships Summer-Tutoring and Tutoring, we can use 
the following axioms: 

V x1 ( 7 Profcssor(xI) v Person(x 
V xl, x2 (-, Summcr_Tutoring(xl, x2) v 

Tutoring(xI, x2)). 
Axioms of the type: 

arc disjointncss axioms. If z = x = y, then the axiom 
expresses the disjointness relationship between either two 
entities (1x1 = l), or two relationships (1x1 > 1). For 
example, disjointness between the entities 

Graduate-Student and Undergraduate~Student, and between 
the relationships Tutoring and Attends, is expressed as: 

V x1 (1 Graduate-Student(xl) v 
1 Undergraduate~Student(xl)) 

V x1, x2 (7 Tutoring(xl, xi> v 
7 Attends(xl , x2)). 

Disjointness relationships between entities and 
relationships can be expressed by imposing lxl = 1, and z = 
y. For example the disjointness relationship between 
Undergraduate-Student and Tutoring in the l-component, 
is expressed by means of the following axiom: 

V XI, x2 (7 Undergraduate~Student(xI) v 
1 Tutoring(x~, x2)). 

Axicms of the type: 
v’x 3Y ( 1 @l(X) ” @2(z) 1. 

express existence assertions, where @I represents an 
entity (1x1 = 1) and 02 represents a relationship (lzl > 1). 
For example, the mandatory participation of the entity 
Course in the relationship Teaching as l-component, is 
expressed by: 

Vx 3y ( 7 Course(x) v Teaching (x,y) ). 
Up to now, we have discussed the frrst three forms of 

allowable axioms in ERL-theory. With ragard to negative 
assertions, it is easy to see that they correspond to the last 
three forms reported in definition 1. As an example, the 
fact that it is not true that Tutoring is typed with the entity 
Professor as l-component, can be expressed by the 
following axiom: 

3x3~ ( Tutoring(x,y) A -Professor(y) ). 

After the formal definition of ERL, we are now ready 
to address the main point of this paper, which is the 
problem of computing inference on ERL-theories. Such a 
problem is dealt with in the next section, in which we 
present a sound and complete inference algorithm for ERL- 
theories. 

4 Checking ERL-theories for satisfiability 

Our method for computing inference on ERL-theories 
exploits the notion of satistiability in logic. Recall that a 
theory is said to be satisfiable, if it admits at least one 
model (i.e. an interpretation which satisfies all the axioms 
of the theory). A theory which is not satisfiable is said to 
be unsatisfiable. Logical implication is the problem of 
determining whether a given sentence r is true in every 
model of a theory T. Such a problem can be reduced to the 
one of checking a theory for unsatistiability: T logically 
implies 7, just in case there cannot be models of T which 
satisfy 17, i.e. Tu (75) is unsatisfiable. Notice that if T is 
an ERL-theory, and ‘F is any formula which has the form of 
an admia ible axiom for T, then Tu (7-t) is an ERL-theory 
as well. 

The goal of this section is to present an efficient 
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algorithm for checking an ERL-theory for satisfiability. 
The above considerations show that such an algorithm can 
be used to perform inference on ERL-theories. 

4.1 Clausal form for ERL-theories 

The method we present requires an ERL-theory to be 
transformed into a set of clauses, which are in turn 
represented by means of a graph. A clause is simply a 
disjunction of literals. each literal being either an atomic 
formula (i.e. a predicate symbol with the corresponding 
arguments, called positive literal), or the negation of an 
atomic formula (negative literal). A negative (positive) 
clause is a clause constituted by negative (positive) literals. 
All the variables appearing in a clause are implicitely 
universally quanlificd. Well known results in first order 
logic ensure us that any set of formulas can be transformed 
into a set of clauses which is satisfiable if and only if the 
original set is satisfiable. 

Table 1 shows the rules for obtaining a set of clauses 
from the axioms of an ERL-theory (axioms are on the left 
and the corresponding clauses on the right). 

vx (1 q(x) ” @2(Y) 1 1 @l(X) ” 4969 
v’z (1 -@l(X) ” 145(Y) 1 1 w4 ” -@269 
v’x 3Y ( --I Al ” 49(z) ) 1 q(x) ” @2(v) 
3x ( @l(X) * -49(Y) ) @l(c). 1@2@) 
32 ( @l(X) A qY) 1 @l(c). @2(d) 
3x VY ( @l(X) * -@2(z) 1) @l(C), l%(W) 

Table 1 

The first two axiom forms are easily translated into 
clauses. Due Lo the presence of existential quantifiers, the 
remaining four forms require the introduction of Skolem 
symbols (consllmts and functions). In the third clause form, 
v indicates a tuple that is obtained from z by leaving 
uqchangcd the x variables, and substituting each y1 with 
fiJ(x), where fij is a Skolem function and j is a number 
identifying the original axiom (we are assuming that the 
axioms of the ERL-theory are numbered). Concerning the 
fourth and fifth axiom forms, each of them is transformed 
into two clauses forms, that are simply obtained by 
substituting x and y with tuples of Skolem constants, c 
and d, of the same arity. Finally, in the sixth form, c is a 
tuple of Skolcm constants of the same arity of x, and w is 
obtained from z by substituting the x variables with the 
coresponding conslants of c. 

Example 1 We show how to transform a simple 
ERL-theory into tic corresponding set of clauses: 

Vx ( lProfcssor(x) v Person(x) ) 
Vx (4tudcnt(x) v Person(x) ) 

VxVy ( 4Jndergraduate_Student(x) v TTutoring(x,y) ) 
3x3~ ( Tutoring(x,y) A -Professor(y) ) 
Vx3y (-Course(x) v Tutoring(x,y) ) 

-Srofessor(x) v Person(x) 
4tudent(x) v Person(x) 
4Jndergraduate_studenudent(x) v yTutoring(x,y) 
Tutoring(dl,di) 
4rofessor(d2) 
Xourse(x) v Tutoring(x,f&x)). 

In what follows, we call ERL-clause any clause 
obtained from an axiom of an ERL-theory by means of the 
above transformation. Notice that ERL-clauses are Horn 
clauses, i.e. they contain at most one positive literal. 
Moreover, due to the presence of function symbols, the 
Herbrand universe of a set of ERL-clauses is infinite. 

The following lemma allows us to transform a set of 
ERL-clauses into another set, in which every Skolem 
function is replaced by a constant symbol. Obviously, the 
Herbrand universe of the resulting set is finite. 

Lemma 1 Let C he a set of ERLclauses, and c’ the 
se,t of ERLclauses obtained from C by sul$ituting each 
fiJ(x) with a new constant symbol ZiJ. Then C is 
satisftible if and only if c’ is satisfiable. 

In the following, we take advantage of Lemma 1, and 
consider only ERL-clauses in which Skolem functions 
have been eliminated. 

4.2 The algorithm for satisfiability 
checking 

Our algorithm for satisfiability checking is based on a 
variant of the resolution. Resolution is an inference rule 
that has been shown to be sound and complete for the 
clausal form of logic (see [C$,$9]): a resolution refutation 
(i.e. a derivation of the empty clause obtained by repeated 
applications of resolution steps) exists for a set of clauses 
if and only if such a set is unsatisfiable. Positive unit 
resolution (see [CL73]) is a special form of resolution, 
requiring every step to be applied to at least one positive 
unit clause, i.e. a clause containing just one positive 
literal. For example, a positive unit resolution step can be 
applied t:, A(c) and (-IA(X) v B(x)), yielding the positive 
clause B(c). 

Definition 3 Let C be a set of ERLclauses. A 
positive derivation chain (or simply a chain) of C from 
P(c) to Q(d) is a sequence <Gls...BUn> of literals, wilh 
UiMj for i#j, where ~1 is P(C), an is Q(d), and for each i 
(i=2,...,n), Qi is obtained by positive unit resolution from 
a clause of C of the form (+(wl) v Oz(w2)) and from 
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oi-1; n is called the length of the chain <ol,...q,>. 

The following theorem establishes an important 
property of ERL-clauses. namely that we can check any set 
C of ERL-clauses for unsatisfiability, by looking for 
particular positive derivation chains of C. 

Theorem 2 A set C of ERL-clauses is unsatisfiable 
if and only if it includes a negative clause F = (+(wl) v 
+p2(w2)) of C such that there is a chain of C from 
wl(cl) to @l(dl), and a chain of C from y2(c2) to 
02(d2), where wl(c1) and ~2(cz) are positive unit clauses 
of C, and (+Bl(dl) v -&2(d2)) is a ground instance of F. 

We are now in a position to define the concept of 
graph associated with a set of ERL-clauses, which is used 
by our algorithm for satisfiability checking. 

Definition 4 Given a set of ERL-clauses C, we 
associate with it a directed graph G(P,D,I,A), called ERL- 
graph, labeled on nodes and arcs. The set of nodes is 
partitioned into three subsets, called P, D, and I; A is the 
set of arcs. P-nodes, I-nodes, and D-nodes are called 
predicate nodes, implication nodes, and disjointness nodes, 
respectively. The ERL-graph G(P,D,I,A) is defined 
according to the following rules: 

1. for each predicate Q of C define a P-node, labeled 
with Q; 

2. for each clause of the form (Y@(W)), define a D- 
node d and an arc e=&,d>, labeled with u=<l,..., n>, 
where n=lwl; 

3. for each clause of the form (-r@l(x) v -@2(y)), 
define a D-node d and arcs el=<Ol,&, and e2=+,a>, the 
label u of el, and the label v of e.2 are defined as follows: 
u is constituted by all the variables of x that appear in y, 
whereas v is such that Ivl = lul, and for each i, vi = j, 
where j is the integer such that yi = xk, where k=ui. 

4. for each clause of the form (101(x) v 02(y)), 
define an I-node m and arcs <Ol,m>, labeled with II, and 
<m,@2>, labeled with v; u and v are defined as follows: 

u= cl ,...,n>, where n = ixl; 
v= <VI , . . . . VP>, where p = lyl, and, for each i: 

vi = 
j ifyi=xj; 

zhk if yi =Zhk. 

Example 2 The ERL-graph associated with the set of 
clauses of example 1 is shown in figure 1. 

For an arc e, head(e) denotes the reaching node of e; 
for example, if e=cn,m>, then head(e)=m. 

We now present an algorithm whose purpose is to 
store the information about the derivation chains of C 
(where C is a set of ERL-clauses) from a given literal P(c). 

9 Student@ Course 

+ Cl> 

Figure 1 

We assume that associated with each P-node Q of an 
ERL-graph, there is a set of tuples, denoted by 
TERM:SET(Q). The goal of the algorithm is to insert the 
tuple d rcto TERM-SET(Q) whenever there is a chain of C 
from P(c) to Q(d). The algorithm makes use of a function 
selecr which, given a constant tuple c, and an arc e. with 
label(e) = u, returns a new constant tuple r of the same 
arity as u, according to the following rule; select(c.e) = r 
Where: 

ri = 
d if ui=j (j integer) 

d if ui is a constant 

Algorithm chain(G,c,P) 
Input an El&graph G corresponding to a set C of 

ERkl8USeS. 8 fUnCtiOII TERM-SET, 8 

constant tuple c, and 8 node P of G 
Output the algorithm inserts d in TERM SET(Q), 

foreach dandQsuchth8tthere~acham 
of C from P(c) to Q(d) 

begir 
ij P is 8 P-node and de TERM-SET(P) 
then begin 

insert c into TERM-SET(P) 
for each outgoing 8rc e of P 
do chain(G, select&e), head(e)) 

erki 
else if P is 8n I-node with outgoing 8rc e 

then chain(G, select(c,e), head(e)) 
end 

Theorem 3 shows that algorithm chain is correct. 

Theorem 3 Let C be 8 set of ERL-clauses, G the 
associated graph, and P,Q two of its P-nodes. During the 
execution of chain(G,c,P), d is inserted into 
TERM-SET(Q), if and only if there is 8 chain of C from 
P(c) to Q(d). 
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The algorithm chain is the basis of our method for 
checking a set C of ERL-clauses for unsatisfiability. Given 
the ERL-graph G, we set TERM-SET(P) to empty, for 
each P-node of G. Then we execute the algorithm chain for 
each c and P such that P(c) is a clause of C. Finally, we 
check a special condition on the D-nodes of G, as specified 
by the following algorithm. 

Algorilhm Unsatisfiable?(C) 
Input a set C of ERL-clauses 
Oulput true, if C is unsatisfiable, false otherwise 
begin 

construct the ERL-graph G associated with C 
for each P-node P do set TERM-SET(P) to ( ) 
for each positive clause (P(c)) in C do chain(G,c,P) 
if there is a D-node D of G, with ingoing arcs 

el=cQl,D> and ez=<Qz,D> such that there is a 
hl in TERMJET and a h2 in 
TERMJET such that 
selcct(hl,el) = select(h2,e2) 
or 
there is a D-node D of G, associated with ~Q(w), 
with one ingoing arc e=<Q,D> such that there is 
a h in TERM-SET(Q) such that select(h.e)=w’, 
where w’ is a ground instance of w 

then return (true) 
else return (false) 

end 

Theorem 4 Let C be a set of ERL-clauses. Then 
Unsatisfiable?(C) returns true if and only if C is 
unsatisfiable. 

As far as the computational complexity of our method 
is concerned, the next theorem shows that algorithm 
Unsatisfiable? is polynomial in the size of the graph. 

Theorem 5 Let C be a set of ERL-clauses. 
Algorithm Unsatisfiable? takes O(E l K -N - log(K*N)) 
time, where E is the number of clauses of C, K is the 
number of constants of C, and N is the number of 
predicates of C. 

5. An environment for conceptual modeling 

The purpose of this section is to demonstrate that, 
using the language presented in Section 3 and the 
algorithm presented in Section 4, one can define an 
effective environment supporting conceptual modeling. The 
basic observation is that our method for satisfiability 
checking can be directly used to perform inferences on 
ERL-thcorics. Therefore, we can easily devise a deductive 
environment which allows the designer to check wether a 
given sentence is logically implied by an ERL-theory. 

In what follows, we shall consider several crucial 

problems in conceptual modeling, and analyse the features 
provided by our approach in order to deal with these 
problems. 

5.1 Consistency 

All the methodologies and tools for conceptual 
modeling insist on the need for checking the consistency of 
the conceptual schema. However, such a concept is often 
defined using informal arguments, and the methodologies 
provide only some intuitive guidelines for achieving the 
consistency of the representation. In our approach, 
consistency can be naturally defined in terms of 
satisfiability. In particular, if we allow the ERL-theory to 
be built incrementally, the consistency of the schema can 
be automatically checked as follows: every time a new 
axiom a is added to an ERL-theory T, the system 
automatically checks TU (a) for satisfiability, and the 
axiom is rejected if TU (a) is unsatisfiable. Notice that in 
this case the system is also able to provide the designer 
with useful information about the contradictory axioms, in 
particular using the positive chains which lead to the 
contradiction (see [DL89]). In this case, the algorithm 
Unsatisfiable? is used for ensuring the global consistency 
of the representation. 

Besides the global consistency, other consistency 
checks can be performed by the system. For example, an 
entity-relationship schema which is satisfiable may suffer 
from another anomaly, called class unsatisfiability 
([LN87]). A class S (either an entity or a relationship) is 
said to be unsatisfiable in an ERL-theory T, if S has no 
instances in all the models of T. For example, in the 
following ERL-theory: 

‘ix Zy ( 7 A(x) v R(x,y) ) 
V x, Y ( 1 B(x) v 1 W Y)) 
V x ( 7 S(x) v A(x)) 
V x (7 S(x) v B(x)) 

the object class S is unsatisfiable, although the theory is 
satisfiable. In general, we can check if a class S is 
usatisfiable in T as follows: if C is the set of clauses 
corresponding to T, and z is a constant symbol not 
appearing in C, then S is unsatisfiable in T if and only if 
CU (S(z)) is unsatisfiable. Notice that CU (S(z)) is a set of 
ERL-clauses. 

Finally, our environment can support prototyping 
facilities, which are very important for allowing the 
designer to directly test and verify tbe schema. To this end, 
it is easy to extend ERL with axioms of the type: a(c) 
and 7 CD(c), where c is a constant tuple. Such axioms 
assert that c (does not) belongs to an entity (relationship) 
cb. Clearly the resulting set of clauses is still a set of ERL- 
clauses, and the method presented in section 4 can be used 
to perfor n inference on such a set. 

In summary, the designer can incrementally build an 
ERL-theory, insert instances into classes, assert that an 
object is not an instance of a class, and pose queries to the 
system anytime she/he needs to know whether a certain 
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sentence logically follows from the defined ERL-theory. 

5.2 Minimality 

Another important quality of object descriptions is 
minimality. In our approach minimality can be formally 
defined in terms of derivability of axioms. An ERL-theory 
C is minimal if no axiom a of C can be derived from Z- 
(a). Thus, it is possible to test if an ERL-theory C is 
minimal by simply testing if for all axioms aeC, C- 
(a) U (+a)) is satisfiable. 

Example 3 Consider the fragment of entity 
relationship schema shown in figure 2, and suppose that 
the following properties hold for such a schema: 

- the Scientiflc~Faculty~Enrollment relationship is a 
subset of the Enrollment relationship (represented by an 
arrow in the figure); 

- Mandatot=-Tutoring is a subset of Tutoring; 
- relationship Tutoring is typed with 

Scientific-Faculty-Student in l-component; 
- Suspended-Student cannot participate in the 

relationship Enrollment; 
- Scientific,Faculty-Student must participate in the 

relationship Sctentific-Faculty-Enrollment (minimum 
cardinality equal to 1); 

- Scientific~Faculty~PhD~Student must participate in 
the relationship Mandatory~Tutoring. 

Faculty 
Enrollment 

m(l,n)& 

Mandatory 
Tutoring 

Figure 2 

The schema and the above properties can be represented 
by the following ERL-theory T: 

V xl, x2 ( 7 Scicntific~Faculty~Enrollment(x~, x2) v 
Enrollmcnt(x1, x2)) 

v x1. x2 (- Mandatory-Tutoring(xl, x2) v 
Tutoring(x 1, xz)) 

V x1, x2 (-I Tutoring(xl, x2) v 
Scientilic-Faculty-Studem( 

v Xl* x2 (1 Suspended-Student(x2) v 
yEnrollment(x1, ~2)) 

v’x, 3x2 ( 7 Scientific-FacultyJtudent(x2) v 
Scientilic~Faculty~Enrollment(x1Jc~ ) 

Vxl 3x2 ( 7 Scientific-Faculty-PhD-Student(x1) v 
Mandatory Tutoring(x1 ,x2) ). 

Now, suppose we want to assert that the two entities 
Suspended-Student and Scientific-Faculty-PhD-Student 
are disjoint, i.e. we want to add to the theory the axiom : 

V xl (-, Scientific-Faculty-PhD-Student (xl) v 
Guspended-Student(x,)). 

In order to maintain the theory minimal we have to 
check if such an assertion is already implied by the theory 
T, that is done by adding its negation to T, and checking 
the resulting theory T’ for unsatisliability. The negation of 
the above axiom is: 

3x1 ( Scientific-Faculty-PhD-Student(x1) A 
Suspend&S tudent(x 1) ). 

which in clausal form yields: 
Scientilic-Faculty_PhD_Student(cl), and 
Suspended~Student(cl). 
The ERL-graph corresponding to T is shown in figure 

3. Algorithm chain propagates the Skolem constant cl to 
the nodes Suspended-Student and Enrollment, which are 
connected to the diqointness node D. Therefore, the 
algorithm Unsatisfiable? returns true as result. Hence, we 
can conclude that the above disjointness axiom is impled 
by T. 

Other types of minimality of the description can be 
considered by using ERL. For example, one may want to 
obtain the minimal set of subset relations which is implied 
by an ERL-theory T. In this case, we can first compute the 
set of all the subset relations implied by T, and then 
compute the transitive reduction of such a set. Again, this 
can be done by using the deductive capabilities of the 
system. 

A further example of how minimality can be dealt 
with in ERL. concerns the existence of equivalent entities 
or relationships in the schema. Two classes A and B are 
said to be equivalent in T if they have the same set of 
instances in all the models of T. This condition can be 
checked by testing if both V x ( 7 B(x) v A(x)) and 
V x ( 7 A(x) v B(x)) are derivable from T. 

6 Conclusions and further research 

We have presented ERL, a simple object modeling 
language that allows one to express positive and negative 
assertions concerning several semantic relations among 
object classes. 
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Figure 3 

The semantics of such a language has been defined in 
terms of first order logic. A polynomial time algorithm has 
been provided for computing inference in ERL, which has 
been proven to be sound and complete with respect to the 
semantics. Our work extends previous results on 
containment inference in object-based models, by 
considering aggregation relations among classes. Moreover, 
we have shown how ERL and the associated inference 
capabilities can be used as a kernel for a well-founded 
environment for conceptual modeling. 

In the future, we aim at extending the expressive 
power of ERL by allowing different levels of aggregation 
among classes, and by considering other meaningful 
semantic relations, with the constraint that such 
extensions do not affect the computational tractability of 
the inference problem. 
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