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Abstract

An enumeration of individual objects is not always the
best means of information exchange. This paper concerns
the problem of providing aggregate responses to database
queries. An aggregate response is an expression whose
terms are quantified concepts. The tradeoff between the

conciseness and preciseness of an aggregate response is -

studied. Conciseness is measured by the length (the
number of terms) of an expression, and preciseness is
measured by the entropy or the amount of uncertainty as-
sociated with the expression. For a given length, an ex-
pression with the minimum amount of entropy is called
optimal. Under a one-level taxonomy with the same cardi-
nalities for all leaf concepts, the problem of finding an op-
timal expression can be solved inexpensively. An efficient
heuristic is also proposed for the general one-level taxono-
my. For a taxonomy of more than one level, an efficient
heuristic is suggested which experiments indicate yields
good solutions.

1. Introduction

Conventional responses in database systems, usually
given as lists of atomic objects, although sufficient to serve
the purpose of conveying information, do not necessarily
provide efficient and effective communications between a
user and the system. This argument is particularly true
when the number of entities or objects which satisfy the
query is very large. Consider the personnel database of a
large corporation and the query

"Who earns more than 30,000?"

If there is a large number of employees whose salaries are
more than 30,000, and if it turns out that all engineers and
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all managers are in the response, then it seems reasonable
for the system to let the user know of the situation. Re-
cently, new notions of answers to queries have been re-
ceiving more research interest. For example, in {1}, an
answer t0 a query is expressed in terms of both atomic
facts and general rules; in [2,3,4], intentional descriptions
or concepts are being used as part of an answer.

In [4], expressions for answers are given in terms of
concepts and individuals. Exceptions within individual
concepts are allowed. Thus responses like

"all engineers except John Smith" or
"all engineers except electrical engineers"

can be expressed where engineers and electrical engineers
are concepts and John Smith is an individual. One of the
motivations behind such forms of answers is their concise-
ness. Instead of a list of names of, say 99 out of 100 en-
gineers, we can give a short and easily comprehensible
answer. However, we see an immediate drawback if, say
40 out of 100 engineers, satisfy the query. No longer are
we able to express our answer concisely. A possible "solu-
tion" to this problem is to sacrifice preciseness for concise-
ness. In fact, this is not an unreasonable tradeoff. Imagine
how often one hears a request like

"Tell me in a few words ... "

Apparently, the questioner is aware of the fact that a pre-
cise answer may be a long one and it may not be easy to
comprehend, and, therefore, is willing to make the tra-
deoff. We want to make it clear that by sacrificing precise-
ness, we do not want to do away with soundness. An
answer is sound [5] if every listed entity satisfies the query
conditions. Thus, we cannot just say "engineers” when ob-
viously some of the engineers do not belong to the answer.
On the other hand, we also do not want to list only, say 10
engineers, when we know that 40 of them satisfy the
query. That is, we still want our answer to be complete (5]
in the sense described above. Let us consider the follow-
ing form of response:
oo Engineers”.

The impreciseness of such an answer derives from the fact
that we cannot pinpoint the qualified individuals even



though we know who the engineers are. But still it is
"sound” and "complete” in a certain sense. In this paper,
we are interested in answers of this type and will refer to
them as aggregate responses.

Aggregate responses are, in fact, very common in
statistical databases (databases that are mainly used for
statistical analysis). Summary tables, tabular representa-
tions of aggregate data, are so important in statistical data-
bases that almost all systems provide some form of limited
summary table output formatting capabilities [6]. Our ag-
gregate responses, in essence, correspond to a special type
of summary table with percentages as the aggregate out-
put.

Here we will study quantitatively the impreciseness
of aggregate responses. We will follow an information-
theoretic approach. In Section 2, we introduce the form of
expressions which will be used as answers to queries
throughout the paper. An entropy measure for the infor-
mation content of an expression will be defined in Section
3. Then we consider the criteria for measuring the good-
ness of such expressions and attempt to find efficient algo-
rithms for generating "good” expressions. Section 5 sug-
gests other applications for the entropy measure, We sum-
marize our work in Section 6.

2. Definitions and Notation

We consider a finite domain D of individuals, and
concepts relative to D. A concept is a unary predicate C(*)
defined over D, where C, with possible subscripts, is the
label of the concept. For convenience, we will also denote
the extension of the predicate {x | C(x)} by C. The con-
text should suffice to disambiguate. A concept C, is said
to be subsumed by another concept C, if and only if
C;1 ¢ C,. We shall use both set terminology (union, inter-
section, complementation, set inclusion, difference) and
logic terminology (disjunction, conjunction, negation, sub-
sumption) when referring to concepts. Further, we denote
the cardinality of a concept C as IC|. The extensional
answer A 10 a query is simply a subset of D whose ele-
ments satisfy the query conditions. The problem is to
describe query responses concisely in terms of some pre-
defined concepts.

We are not dealing with an arbitrary collection of
concepts; instead, we are interested in a taxonomy of con-
cepts.

Definition 2.1 A taxonomy is a finite tree whose nodes
are labeled by concepts. Any node other than the leaf

node has two or more successors, The successor con-
cept of each node is subsumed by its parent concept.
The union of all successor concepts of any non-leaf
node is equal to the parent concept. A taxonomy is
called strict if all sibling concepts are mutually ex-
clusive.

Since we will be working mostly with strict taxonomies,
the word taxonomy will simply be used to refer to a strict
taxonomy unless otherwise stated. An extensional answer
A to a query is related to a taxonomy by the following
definition.
Definition 2.2 A set of individuals A is classifiable by a
taxonomy T iff the root concept of T contains A. We
also refer to the individuals of A as qualified individu-
als.

- Next we look at how to describe an extensional answer A
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in terms of concepts from a taxonomy T given that A is
classifiable by T. To this end, we need the notion of an
expression.

‘Definition 2.3 The alphabet of an expression defined
over a taxonomy T is composed of the following:
1. Concepts: Cy,Ca,***,
Each concept is a label of a node in T.
2. Rational Numbers.ry,ra, ",
Each rational number must be between 0 and 1.
3. Concatenation Operators:. +.

Next we introduce the notioﬁ of a term, followed by the
syntax of an expression.

Definition 2.4 Let r be rational number and C be a con-
cept. A term is a couple <r,C> and is simply denoted as
rC with no confusion. We sometimes refer to a term as

a quantified concept.

Definition 2.5 An expression over the taxonomy T is
defined inductively as follows:

1. A term is an expression.

2. Ife, and e, are expressions, so is e,+e,.

Expressions are introduced so that extensional answers can
be described in terms of high level concepts, though
perhaps imprecisely.
Definition 2.6 Let A be an exiensional answer to a
query classifiable by a taxonomy T. Then e is an ex-
pression for A over T if:

i.  Forall terms, r;C; of e,

IG;|
ii. A guU(C;) wherer;C;’s are terms of e.
iii. Ifr;C;and T"-C',' are terms of e, C; = C';.

=Tr;.



Condition (i) merely gives the meaning of a term in an ex-
pression. The first component r; of a term r;C; is the frac-
tion of qualified individuals within the concept C;. Since
we also intend for a term to supply to a user information
about the cardinality of its assaciated concept, r; is not re-
duced to lowest common denominator. Condmon (ii) en-
sures that every individual in A is covered by some terms
in e. It is in this sense that we consider our expression

"complete”. Condition (iii) precludes redundant terms

from an expression.

Example 1: Consider a taxonomy T of three con-
cepts with Cy = (d,,d3,d3,d4,ds) the root concept, and
let C,={dy,d;,d3} and Cy= {d4,ds} be its children.
Further, let A ={d,,d4,ds} be the extensional answer.
Then it is easy to see that the following are expressions for
AoverT:

Wl 2
3 C+ 2 C,
"3 2 L
?Co‘l'?Cz
'|3 L]
5 Co

If a user has full knowledge of T and its associated con-
cepts, the first two expressions then essentially furnish ex-
actly the same amount of information with respect to the
extensional answer A. The third expression, on the other
hand, tells somewhat less than the previous two. In the
next section, we will account for the amount of informa-
tion associated with such expressions quantitatively.,

3. Entropy Preliminaries

When we say %engineers are in the answer set A
of a query, there is a certain amount of uncertainty associ-
ated with the expression. Here we would like to quantify
this uncertainty. Informally, in the language of probability
theory, the expression can be view as describing a finite
probability space ! composed of two mutually exclusive
events E, and E, and their associated probabilities. E; is
the event that a randomly selected engineer belongs to A
and its probability p, is 140% ; whereas, E, is the event that

the engineer does not belong to A and its probability p, is

%. It is well-known [7] that Shannon entropy

1. A finite probability space is a set of mutually disjoint events
{A;} with probabilities

PUAN(SiSn pA)20; SpA)=1)
i=1
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H(py.,p2)=-(p1logp1 +p; log p3)
is a very suitable measure of the uncertainty involved; the
logarithms are taken to an arbitrary but fixed base, and we
always take p logp 0 if p=0. In general, however, we

U ST | S | I S PP
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Definition 3.1 Let S be a finite probability space com-
posed of mutually disjoint events E, E,, -- - ,E, with
probabilities py,p3, * *  ,p,. Then the Shannon entropy
of the space S is given by

H(s)=H(pl,P2n s

Pa)=—Y plogp
k=1

First, we review a number of properties this function has
and which we might expect of a reasonable measure of un-
certainty of a space.

First of all, we see immediately that
H@.p2, " .px)=0 if and only if one of the
P1.D2, * * * »Dx is one and all the others are zero. But this is
just the case where there is no uncertainty as to its out-
come. In all other cases the entropy is positive. Further-
more, for fixed n it is obvious that the space with the most
uncertainty is the one with equally likely outcomes, that is,

pk=%(k=l,2, --+n), and indeed the entropy assumes
its largest value [8]
11 1
H(py.p2,***pa)<logn= H(,l el ,n)

Next, consider along with space S (events
S;, 1<i<n), another finite space R with events
Ry, 1 <k <m. If it is known that event R, occurred, then
the events §; of the space S have the new probabilities

P(SiRe)
(8= TR »n)

instead of the previous p(S;). Correspondingly, the previ-
ous entropy of the space S

H<S)=—}i:1p(si) log p (5:)

=12,

is replaced by the new quantity
L3
Hp, (S)=-3 p,(S;) log pg,(S:),

i=l
which, naturally, we shall regard as the conditional entro-
py of the space S under the assumption that the event R;
occurred in the space R. A specific value of Hpg, (S) is as-
sociated with each of the events R, of space R, so that
Hp,(S) can be regarded as a random variable defined over



the space R. The expected value of this random variable is
the subject of the following definition.

MO 2420. 24 T e n o | - SON ORI T W T TN
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spaces with events {8) (@=12,:--,n) and (R}

b a1 ... sacmantivaley Than tha ane d200ac ot oo
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tropy of the space S averaged over the space R is
Hg(S)= Y p(Ry) Hp,(S)

k=l

This quantity indicates the average amount of uncertainty
with respect to space S, if it is known which of the events
of the space R actually occurred.

Conditional entropy is an important concept in our
study. To see this, let us 100k back at Example 1. First,
consider the third expression, = 3 Co, for answer A over the
taxonomy T. This expression can be translated into a
finite probability space S of two mutually exclusive events
S; and §,. §; is the event that an individual in C belongs

to A and its probability of outcome is % whereas. $., is

MDA R RN (S 22

the event that an individual in Co does not belong to A and

its probability of outcome is -5- Thus we define the uncer-

tainty of this single-termed expression as the entropy of
space S

Next, we turn to the expression —‘- Ci+

this expression can be mterpreted as:

i.  If an individual is in C,, then the probability that it
belongs to A is %

ii. If an individual is in C,, then the probability that it
belongs to A is %

Now we can introduced another finite probability space R

of two events Ry and R,. R, is the event that an individu-
al belongs to C, andntsm’obab;htv1.«;3 whereas, Ra is

the event that it belongs to C, and its probability is -5-.

Suppose one has full knowledge of the taxonomy T, its
" concepts and the individuals associated with each concept.
Then the uncertainty of this two-termed expression for the
answer A should correspond to the conditional entropy of
the space S averaged over

Y. £ _a PRSP gy

In faci, the expression -~ Co can be dexived from

%.g._ +%Cz together with the full knowledge of each
concept. It should be note that, however, in general [8]
Hg(S) S H(S)
What thica amn b b 200 thhne

erspaceR 'I‘heuncenmntyofaslmuoncamotbem-
creased as a result of obtaining additional information.

Notice that the concepts C, and C in the expression
above are disjoint and thus the conditional space R can be
constructed in a straightforward manner. In general, the
concepts associated with an expression for A over T are
not necessarily disjoint. For instance, it is quite natural for

an expression to have the form
" Smoiueswe L é_o_ alantesnml soenisnesmal
lm 5'56"565'-) s E CICLH LN TNXICTT 'Y

where say, the total number of engineers and
electrical engineers are 100 and 40 respectively. Obvi-
ously, electrical engineers are engineers, and thus, the two
concepts are not disjoint. But this expression can,
equivalently, be rephrase as

"-3% electrical engineers + -16-3- other engineers",

where other engineers are all engineers except electrical.
Now these two concepts are mutually disjoint. We can
form the probability space R of two events and evaluate
the uncertainty of this expression as the conditional entro-
py averaged over the space R. More formally, and more
generally, we have the following definition:

Definition 3.3 let e=r;C; + *** +r,C, bc an ex-

rwaccinn frr an ancwer A nvar a avanamu T and lat R
PIVNIUII AVUE Sl CGMIDYWA A VYVA @& mv.-llll, A GMING AWwE AN

be the root concept of T. Define

lj=(i | C; chandtheteisnor,C,,ine
suchthat C; c C, < C;)

bttt atnad P R =]
C;=C;- u(C))
J J l\ (%]

rjiC,i—Zf,-iC,i

a il
rj= =
1C;1

forj=1,2, -+ - ,m. The entropy for e is

H H(rj,1-
()= B'R' GRS

It is not difficult to see that the a',-’s are disjoint sets of in-
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dividuals and their corresponding 7;’s specify the fractions
of qualified individuals within the C;’s. With the entropy
of expressions defined, we can now compare two expres-
sions.

Definition 3.4 Two expressions e, ¢, for an answer A
over a taxonomy T are equivalent iff H(e,) = H (e,).

Notice that two equivalent expressions may involve
different concepts. The first two expressions in Example 1
illustrate such a case.

4. Expression Conciseness

We have defined alternative ways for presenting an
answer to a user, not as an exhaustive list of individuals,

but rather as an expression of quantified concepts. Such

expressions, in general, can no longer be regarded as pre-
cise answers; however, it is often possible to express them
in a concise manner. Since conciseness is one of our main
concemns here, the number of terms appearing in an ex-
pression is clearly an important criterion against which to
measure how good such an answer is. The simplest ex-
pression (one with the least number of terms) for an
answer A over a taxonomy T is, of course, a single-termed
expression with the root as its only quantified concept.
However, the amount the uncertainty introduced in such a
single-termed expression is usually very high. Clearly,
there is a tradeoff between the length (i.e. number of
terms) of an expression and its associated uncertainty.
With our entropy measure of expression uncertainty, we
can formulate the following problem.

OPTIMAL EXPRESSION

INSTANCE: An extensional answer A 10 a query
classifiable by a taxonomy T and a positive integer K.
PROBLEM: Find an expression ¢ for A over T such
that the Iength of ¢ is no more than K and for any other
expression e’ for A over T whose length is no more than
K,H(e)<H(e).

4.1 The Greedy Approach

A naive approach to the OPTIMAL EXPRESSION
problem is to form all expressions (for the extensional
answer A over the taxonomy T) of length K and identify
the one with the minimum entropy. However, such an ap-
proach quickly becomes impractical as the taxonomy T
and the allowable length K grow. In fact, it is not hard to
see that the number of expressions to check in this simple

483

algorithm increases in O (N*); where N is number of con-
cepts in the taxonomy T.

It may appear that if we do not insist on obtaining the
OPTIMAL EXPRESSION, a "greedy” algorithm will
probably lead to "good”, although perhaps not optimal
solutions. Unfortunately, we are able to show that even
for a simple one-level taxonomy, the seemingly plausible
"greedy” algorithm can result in unbounded relative error.
This can be shown by constructing instances in which it
behaves arbitrarily badly. Figure 1 shows the algorithm.
Let us consider this algorithm applied to the taxonomy T
in Figure 2.

Input: A l-level taxonomy with root R and
leaves {Ch °c 7CN}
An extensional answer A classifiable by T

Allowable length of expression k (k < N)
Output: Expression E for A over T with length £k

begin
E:= ——'A';"R' R;
while the length of E is less than k do
begin
1ANnGl
add a term '-'l—c'I'—C,- to E to form E’
such that H (E) — H (E’) is maximum;
(comment: break ties arbitrarily)
E=E’
end
end

Fig 1. Greedy Heuristic for OPTIMAL EXPRESSION

The number accompanying each concept in the figure
represents the fraction of the individuals within the con-
cept which are in the extensional answer. Suppose the
number of allowable terms for the expression is three.
Then it can easily be verified that the optimal expression is

1 0
10 Ce+ 10 Cs
First, we give an intuitive explanation for the expression
E,p. It should be obvious that any expression with less
than five terms here must include the root as a quantified
concept; otherwise, it cannot "completely” describe the ex-
tensional answer A. Next, consider the information re-
garding those concepts which are not explicitly represent-
ed in the expression, but which can be derived from the
response; the only such information is the fraction of

38
EO” = T‘E Co +



qualified individuals in the union of excluded concepts.
For example, C;, C, and C; are such concepts in the
above expression and the only information available is that
an individual belonging to any one of those concepts has a

-3%— chance of belonging to A as well. Since the uncertain-

ty associated with this quantity is relatively small, so is the
entropy (H (E,p) = 0.334).
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Fig 2. An Example One-Level Taxonomy

In the greedy algorithm, each iteration adds a term to
the expression which results in the maximum decrease in
entropy. Since all of the individuals in C, belong to A,
and C, also has a relatively large cardinality, intuitively,
the term &C 1 has the most information and, indeed, ad-

ding it to the expression results in the maximum decrease
in uncertainty. Similarly, the term - C s is included in the

next step. Now the resulting exprwsnon has the form

E,,,:—Co+ 20049 1o Cs

and its entropy H (E,,) = 0.485. Not only is E,, not op-
timal, but by scaling up the cardinalities of the concepts
and adjusting the number of qualified individuals within
each concept appropriately, the relative error on the entro-
py can be made arbitrarily large. Figure 3 shows such a
construction. By similar intitive arguments, it is not
difficult to see that the optimal expression and the expres-
sion resulting from the greedy algorithm will have the fol-
lowing forms

4m -2
Eope= "=

4m -
6m

By Definition 3.3, we obtain their entropies as

0
Co+-'—:;C4+;-C5

Ed. 2Co+—g—Cl+%C5
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Fig 3. Unbounded Relative Error for Greedy Algorithm

4m 3 1

=)

HEp)= SH(EZ2,1 - 2023

TH(L -

(2m -2 2m—2)

H(Ealg) = Im

,1—
Obviously, as m increases, H(E,,)~>0; whereas,
H(Eq,) — 0.459. Thus, the relative error can grow un-
bounded.

4.2 A Restricted Problem

If we consider a one-level taxonomy in which the
cardinalities of the all leaf concepts are the same, the OP-
TIMAL EXPRESSION problem becomes much simpler to
solve. Although the problem may now look too restricted
to have practical value, there is an important property as-
sociated with the solution which, we will show, leads to a
useful heuristic for approaching the general problem. In
this subsection, we establish this important property and
see how a simple algorithm for the restricted OPTIMAL
EXPRESSION problem falls out naturally as a result.

Let us begin with a simple case. Consider a one-
level taxonomy T with root concept Ro and leaf concepts
{Cy,-++.Cn} where IC,1= -+ =I1Cyl. For conveni-
ence, we also assume, throughout the rest of our discus-
sion, that for any two terms 7,C; and r;C; (1<i,j SN), if

i <j, r; <r;. Of course, each r; = where A is
J i

1
1C; |
the extensional answer. Now suppose we want an optimal
expression for A over T with length N-1. Since the
number of leaf concepts is N, they cannot all be included
in the expression. For "completeness”, the root must be in-
cluded. Now the remaining task involves picking two leaf
concepts to be excluded from the expression. We claim
that for the expression to be optimal, the two excluded

concepts must have the following property.



Lemma 4.1 Let r;C; and r;C; be the two terms to
be excluded from the optimal expression and i < j.
Then j =i+ 1; that is, the two excluded terms are con-
secutive in the ranking by 7;.

Proof: As mentioned before, the information regard-
ing the excluded terms is only an aggregated fraction of
qualified individuals. In this case, the quantity is 1‘—‘;2
since the cardinalities of C; and C; are the same. Define
r,+r, 1- r,+r,)

2
_FH("" -n)- —H(r,. -7

as the gain in entropy as a result of excluding 7,C; and
r;C;. Minimizing G is therefore equivalent to minimiz-
ing the response expression.

=—H(

Assuming that 7;C; is not in the optimal expression, we '

want to find r;C;. Assume r; is continuous for the mo-
ment, and differentiate G with respect to r;

dG

r+r, l_r+r,

jd;;‘NH( )——H(fj. ;)
?, d H(') . ’ . .
where H'(*) = . Since H’(+) is a decreasing func-
tion (Figure 4), % is always positive for r; <r;. So

]
the closer 7 is to r;, the smaller is the entropy of the ex-
pression and, thus, the lemma follows.
O

With a simple modification, the constraint 1C;| = IC;l
can be relaxed from the proof of Lemma 4.1. Let us re-
state the Lemma in a slightly more general form which
will be useful in establishing the next theorem.

Lemma 4.2 Let r;C; and r,C; be the two terms ex-
cluded from the optimal expression (| C;| not necessari-
ly equal to IC;1) and i < j. If there exists a term 7,C,,
suchthati <k <jand IC,| < IC;l, then j=k.

Proof: Similar to the proof of Lemma 4.1. Refer to
{9] for details.
(m]

We now return to the restriction that IC; 1 = -+ = ICyl.
Consider the problem of finding an optimal expression for
A over T with length K (K < N). Again the root has to be
included for "completeness”, and the problem amounts to
choosing k (= N-K+1) terms to be excluded from the ex-
pression. The property for the two excluded terms in Lem-
ma 4.1 is now extended to the case in which k terms are to
be excluded.
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Fig 4a. Entropy Plot
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Fig 4b. Entropy Derivative Plot

Theorem 4.1 (below) basically says that the excluded
terms 7;C;.’s have to be consecunve in the ordenng by

value of r;. That is, if Cl. Cz. Cg. C4

l%c, are terms, and 1fthree terms are to be excluded,
then they must be one of the following

1 3 5 3 5 7
0102703 {Tb'cz’ﬁc” 10 C‘}’

5 7 9
EC 3.‘ﬁc4,—lacs
in order for the expression to be optimal. Now it should be
obvious that an algorithm for the restricted OPTIMAL
EXPRESSION problem only requires checking N-K+1
expressions; where N is total number of concepts and X is
the allowable length of the expression.



Theorem 41  Let { r,C;, -5, C;, } be the k
terms to be excluded from the optimal expressxon and
for lSp,qSk, ip <l.' ifp <4q. Then ij+l =il+ 1 for
1<j<k-1. (That is, the excluded terms must be con-
secutive in the ranking by r;.)

Proof: Assume the contrary, that is, there exists a term
ryC, such thati, <x <i, andr; C; ,r; C, are terms ex-
cluded from the optimal expresslon. while r,C, is in-
cluded.

Now consider the aggregate quantity r, for the set of ex-
cluded terms. There are two cases:

(i) Supposer, <r,.

Define another aggregate quantity 7’ for the set of
excluded terms minus the term r; C; . We claim
that 7’y < r,. The simple proof is omitted.

Now treat r’,C’y as a pseudo term. By Lemma
4.2, the expression with {r’,C’,,r,C,} excluded
has a lower entropy than the one with
{r’y C',,r,-' G, }. Contradiction.
(i) The case with r, > r, can be proven similarly.

a

Next we give an intuitive explanation for the
theorem. Consider concepts of the same cardinality. If the
fraction of qualified individuals within a concept is greater
than -% then the more qualified individuals the concept
has, the more information it contains. As an example, for
1000 individuals with groups of 100 each, saying that 90
in a particular group belong to the answer set is certainly
more informative than saying that 60 in another group be-
long to the answer. The reverse is true if the fraction of
qualified individuals within a concept is less than -;— Thus
for an optimal expression, the included concepts must con-
tain the most and/or the least qualified individuals, leaving
the excluded concepts as described by Theorem 4.1.

Note that it is this property of the solution which al-
lows us to significantly reduce the search space for the op-
timal expression. In the next subsection, we adapt this
property as a heuristic in the more general case in which
the cardinalities of the leaf concepts are not all the same.
This then leads to an approach to the general OPTIMAL
EXPRESSION problem.

4.3 The Heuristic

We still assume a one-level taxonomy T, But we no
longer require the cardinalities of the leaf concepts to be
equal. Consider the problem of finding an optimal expres-
sion for an extensional answer A over T with length K.
Without the cardinality restriction, Theorem 4.1 no longer
holds. We can demonstrate this by the example in Figure
5.

1L
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100
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100 10
Fig 5. Counter Example for Theorem 4.1

It can easily be verified that ::;(I)Co+ 9C.,isanop-

timal expression of length two. To see this. we first note
the following fact. If the cardinalities of two concepts are
of the same order, say, 100 and 200, and there is a big
difference between the fractions of quahﬁed individuals

1
within each concept, for instance, —— ™ and —- 200 ~—=, then the

fraction of quahﬁed individuals within the aggregate of the
two concepts 300 , Tepresents a significant loss of informa-

tion. Now the concept C,4, with a relatively large fraction

% of qualified individuals, if excluded from the

response, can only have its information approximated by
an aggregated fraction which also involves other concepts
such as, C,, C, and/or C,. These latter concepts contain
only a small fraction of qualified individuals. Thus, their
aggregation with C, results in a relanvely large loss of in-
formation. Excluding the term C 5, on the other hand, is
not nearly as bad because its cardmahty is much smaller.
With —C4 in the optimal expression, the excluded terms

are not consecuuve and, therefore, Theorem 4.1 is not al-
ways true. However, in place of Theorem 4.1, we can
prove a somewhat similar result.
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When the cardinalities of concepts are not all the
same, for an expression to be optimal, the excluded terms
must satisfy the following condition.

Theorem 42  Let ,C; and r;C; be any two terms
excluded from the optimal expression. If there exists a
term r,C; such that IC; | < 1C;| and 1G] < IC;l, and
i < k < j, then r,C; must also be excluded.

Proof: Similar to Theorem 4.1,
a

Consider a simple example. If ogc” Cz, C3,
3—0‘:)c4, 2-Cs are terms, and if —-C and C4are

excluded from an optimal expressxon, then, accordmg to
Theorem 4.2, -llo-Cz must also be excluded. Unfortunate-

ly, unlike Theorem 4.1, this theorem does not lead 10 a

simple algorithm for obtaining the optimal expression. In
fact, under some rare cases, the condition from Theorem
4.2 does not help in reducing the search space for the op-
timal expression at all. These happen when the expres-
sions for the extensional answer over the taxonomy has the
following property: for any three non-rooted terms, ;C;,
erj’ r,,Cg such that i <rj<n, either |Cj| > IC,I or
ICj1 > 1C 1.

Nevertheless, we claim, on the average, the condition
from Theorem 4.2 does significantly reduce the search
space for the optimal expression. We argue, informally,
that if the number of concepts N in a one-level taxonomy
is large, the number of expressions satisfying Theorem 4.2
only increases slowly with N. First, we assume that the
cardinality of a concept, in general, is not related to the
fraction of qualified individuals within that concept, and
thus, is not related to our assumed ordering of concepts.
Suppose two leaf concepts have to be excluded from an
optimal expression. If Theorem 4.2 is to be satisfied, it is
very unlikely that the two excluded concepts, say, C; and
C; (i < j), are very far apart; that is, j~i is large. For large
N, it is not hard to see that j—i is almost independent of N,
and the number of expressions satisfying the constraint in-
creases almost linearly as N. Similar arguments hold for
the general case of k excluded concepts. So far this dis-
cussion has been concerned with the case in which a few
concepts are excluded from the expression. Next, we give
intuitive arguments for the case where an optimal expres-
sion of a few terms is desired, and thus requiring exclusion
of a large number of concepts. Consider picking a concept
C; to be included in the expression from a large number of
leaf concepts. In order for Theorem 4.2 to be satisfied, it is
conceivable that i should either be close to 1 or N. This

remains valid as N increases and thus, the number of satis-
fying expressions only increases slowly with N. Table 1
gives some idea of how good the heuristic is. We generate
taxonomies of N leaf concepts. The cardinalities of the
leaf concepts C;'s are selected at random. The third
column in the table shows the average number of expres-
sions satisfying Theorem 4.2 when an expression with
N—4 terms is desired. Similarly, column four shows the
case when a six-term expression is desired.

No.of | Arbitrarily Using Heuristic
Leaf Choose §
Concepts | outof N Exclude § Include §
™ Leaf Leaf Concepts | Leaf Concepts
Concepts | from Expression | in Expression
8 56 18.15 23.02
10 252 46.68 46.68
15 3003 19645 124.08
20 15504 467.88 212.70
25 53150 865.44 31041
30 142506 1401.02 411.57
35 324632 2039.81 503.87

Table 1. Performance Exposition for the Heuristic

4.4 The General Problem

The heuristic described for the one-level taxonomy
does not immediately extend to the OPTIMAL EXPRES-
SION problem in general. A simple two-level taxonomy is
enough to illustrate the difficuity. Suppose that there are ¢
subtrees under the root of a two-level taxonomy, and the
number of allowable terms is k (¢t < k). If we know that
the root is not going to be included in the optimal expres-
sion, and we are also given the optimal allocation of the
number of terms in each subtree, then we can easily in-
voke our one-level heuristic over each subtree and obtain
the optimal solution. Unfortunately, it is not obvious at all
how to decide the optimal number of terms to use in each
subtree and exhaustively trying all possibilities quickly be-
comes prohibitive as the complexity grows as O (t*).

Here we propose an algorithm which is not always
optimal, but which avoids the combinatorial explosion
problem and leads to reasonably good solutions. The algo-
rithm can be viewed as a postorder traversal of the taxono-
my, obtaining expressions for subtrees and merging them
as the taxonomy is traversed.
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First, we describe the data structures used by the al-
gorithm. For each node N, we construct a table 7By with
Iy entries, where ly is the number of leaves of the subtree
Ty rooted at node N. Each entry TBy(k) (k=1, -+ ly)is
a tuple (exp , etp) such that exp is a k-term expression over
Ty and etp is the entropy of exp weighted by the cardinali-
ty of N. When the algorithm terminates, a k-term
optimal/near optimal expression is stored in the table entry
TBg(k) where R is the root of the taxonomy. Thus, the
construction of the tables TBy's constitutes the essence of
the algorithm. ‘

For the simple case in which N is a leaf node, TBy
has only one entry (N , H(r, 1-r)*IN|) and r is the frac-
tion of qualified individuals within N, Now suppose N is a
non-leaf node and N has p children S, - - -,S,. The table
TBy is constructed through the use the children’s tables
TBg,, - - - .IBs,, as well as the heuristic we developed for
the one-level taxonomy in the previous section. More pre-
cisely, we utilize the heuristic in the following function

(exp , etp) = opt_one_level (T ,k)
where exp is an optimal k-term expression over the one-
level taxonomy T and etp is the entropy of exp weighted
by the cardinality of the root of 7. The table TBy for each

node N, is filled in two phases. A concise description of
the algorithm is given, followed by an example.

1. Initialization

Define sub-expressions &; (i = 1, * * - ,p), one for each
subtree Ts‘.
Fori=1,---,p,
set & =TBgs (Is,).cxp.
Form a one-level taxonomy TX as follows:
i.  Make N the root node of TX.

ii. Make each concept C in §; a child of N. (In
fact, all the leaves of Ty become the leaves of
X)

P
Fork=1,---,% s,
m=1
TBy(k) = opt_one_level (TX k).
2.  Amelioration

Foreach&; (i=1,---,p)suchthat |1 > 1,
gain; = TBs,(1&;1-1).etp — TBg, (1€, 1).etp.
Pick j such that gain; = min {gain;).
Set é,- = TBSI(léj I—l).e:qv.
p
Set &= Y &.

m=]
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Form a one-level taxonomy TX as follows:
i.  Create N as the root of TX.
ii. For each concept C in § such that C ¢ C’ for all
C’ing, R
Obtain C and 7 according to Definition 3.3.
Make C achild of N,
For each concept C in TX,
Remove the corresponding term rC from .
Let I be the number of leaf nodes of TX.
Fork=1,:--,ly
Set &'=E.
(sub_expy, , sub_etp,) = opt_one_level (TX k)
For each concept C in sub_exp,,
Add the term rCto &',
If HE)*INI STBy(IE'|).etp then
IBN(1E' D) =", HE)*INI)

Repeat 2. until 1&;1 =1foralli(i=1,--,p).

We illustrate the algorithm by giving an example of
one application of the amelioration step. Consider the por-
tion of a taxonomy shown in Figure 6. The shaded nodes
correspond to concepts appearing in the current expression
E.

Fig 6. Portion of a Taxonomy

Let the &; expressions at this iteration be

Ei=riCr+ "

E2=ruCyn+rpCp+ -

E3=73C3 +7r3Ca+r3Ca+ * -
Note that the "..." in these expressions indicate that other
terms corresponding to concepts deeper in the subtrees
may be present. Now suppose that expression &; can be
reduced by one term with the minimum increase in entropy
and suppose that the new &,, &5 is:



E3=r3C3+rpCun+ - -

The situation is illustrated in Figure 7.

Fig 7. Expression Reduced by one term

Now the one-level taxonomy created in this instance of
step 2 will contain concept N and C; for each concept in a
cut through the tree involving concepts in Ty which are "as
high in the taxonomy as possible”. In this case these are
C,,C3,Cx and C3. The idea is to find an optimal/near
optimal alternative expression for this portion of the
response set corresponding to C,, C,, Ca2, C4 and re-
place this portion of £ if a better expression is found. In-
tuitively, this allows the algorithm on each iteration to
recvaluate the portion of the expression dealing with the
higher level concepts.

We have experimented with taxonomies of two/three
levels and up to 40 concepts. The cardinality and the
number of qualified individuals within each leaf concept
were generated at random. Of the SO examples we tried on
the two-level taxonomy, in 43 cases the heuristic generated
an optimal expression. For the others, the entropies were
no more than four percent higher than the optimal expres-
sions. Another study of 35 cases on a three-level taxono-
my, shows a little more than half of the heuristic expres-
sions are optimal and the entropies of the heuristic expres-
sions do not exceed the optimal ones by more than. two
percent.

5. Other Potential Applications

Aggregate responses, although concise in nature, do
provide considerable information to a user. Consider,
again, the query

"Who earns more than 30,000?"
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and suppose the aggregate response is
L] 3 so "
To00 C8ineer + Somanager”.

Since the query has no reference to job categories, classi-
fying employees according to their jobs is an extra piece of
information. Since job category is probably only one of
the many possible characterizations of employees, this im-
mediately raises the question of which characterization
should be chosen. In fact, under a simple entiry-
relationship model [10), each attribute can be used as a
characterization for the set of entities or individuals. The
issue of relevance, an active area of research [11] in Na-
tural Language Processing, has also been receiving much
attention with regard to man-machine interfaces for data-
base systems. Here we suggest the use of the entropy
measure discussed in this paper as a criterion to select the
appropriate characterization, For an extensional answer
classifiable by a taxonomy, the lower the entropy is, the
better it characterizes the set of qualified individuals and,
hence, the more relevant it is to the answer.

In our formulation of the OPTIMAL EXPRSSION
probiem, entropy is used as a quantitative measure of the
preciseness of an aggregate response (o a query, but cer-
tainly it also has its role in information abstraction. Sup-
pose we have a table describing the male population of
different age groups in a city (Table 2a). Now instead of a
10-entry table, we want a summary table of five entries. If
we arbitrarily combine pairs of entries from the original
table, the result can become quite misleading. Table 2b
shows the ratio of male to female population of age group
1-20 is balance; while the truth is that male is dominant in
age group 1-10 and female is dominant in age group 11-
20. If we evaluate the gain in entropy as a result of com-
bining entries, and choose the one with a minimum gain,
we avoid the above discrepancy and obtain a more infor-
mative summary table (Table 2c). Once again, we demon-
strate the usefulness of our entropy measure,

6. Conclusions

We have considered the problem of providing aggre-
gate responses to database queries. Responses are given in
terms of expressions of quantified concepts. The collec-
tion of concepts is not arbitrary; instead, it forms a taxono-
my. The tradeoff between conciseness and preciseness is
studied under a formal information-theoretic framework.
Conciseness is measured by the length of an expression,
while preciseness is measured by the entropy of the ex-
pression. We call an expression of a certain length optimal



Age Group Population Male
1-10 100,000 60,000
11-20 120,000 50,000
21-30 150,000 76,000
31-40 170,000 86,000
41-50 160,000 81,000
51-60 120,000 59,000
61-70 70,000 33,000
71-80 30,000 14,000
81-90 5,000 2,300

91- 500 200

Table 2a. Male Population of Different Age Groups.

Age Group Population Male
1-20 220,000 110,000
21-40 320,000 162,000
41-60 280,000 140,000
61-80 100,000 47,000
81- 5,500 2,500

Table 2b. Arbitrary Summary of Table 2a.

Age Group Population Male
1-10 100,000 60,000
11-20 120,000 50,000
21-50 480,000 243,000
51-60 120,000 59,000
61- 105,500 49,500

Table 2¢c. Informative Summary of Table 2a.

if its associated entropy is the lowest for that length. Ob-
taining an optimal expression efficiently turns out to be a
challenging task. We show that a seemingly plausible
"greedy” algorithm can have unbounded relative error.
Under a one-level taxonomy with the same cardinalities
for all leaf concepts, the problem can be solved efficiently.
An efficient heuristic is also available for the general one-
level taxonomy. We also suggest an algorithm for the gen-
eral OPTIMAL EXPRESSION. Although it is does not al-
ways result in an optimal expression, it avoids the com-
binatorial explosion problem and appears to lead to rea-
sonable solutions.
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