
A Formal Model of Trade-off between Optimization and
Execution Costa in Semantic Query Optimization

AELSTRACT

Conventional query optimizers

Shaahi Shekhar
Jaideep Srioastava

Soumitra Dutta

Computer Science Division,
University of California,

Berkeley, CA 94720.

assume that
the cost of optimization is negligible. This assump
tion does not hold for much larger search spaces (of
possible execution plans) such as those encountered
during semantic query optimization. In particular,
the optimization cost can become comparable to
the execution cost, and thus a significant fraction of
the response time for interactive queries[l]. This
paper discusses the tradeoff between the two costs
in the context of semantic query optimization, and
reports a heuristic search algorithm which minim-
izes a weighted sum of both the costs. A detailed
analysis of an experiment is presented to strengthen
the claim. The paper also contributes a practical
model of semant.ic query optimization, and a discus-
sion of its search ordering and termination prob-
lems.

1. Introduction

Conventional query optimization is based on syntactic
rearrangements [2], query decomposition 131, and optimal
usage of indices, join algorithms and database statistics [4].
Several query execution plans are examined to select the
minimum cost plan. These methods are not flexible enough to
generalize to new applications, extensible databases, and also
there is no mechanism to use application specific knowledge
for optimization. For example, user-defined data-types make
it difficult for an optimizer to reason about the uoluc range of
data-items in a relation. Also current optimizers are unable to
handle user defined types, operators and access methods, as it
is difficult to estimate the cost of computing operotors in
different ways, since optimizer doesn’t know the details of the

Pcnnission to copy without fee all or m of this material is granted
provided that the copies are not made or distributed for direct corn-
menial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otbcrwisc, or to mpublish. requires a fee and/or special permission
from the Endowment.

access methods. Similarly, it is difficult to optimize procedure
valued fields in a tuple using convent,ional techniques.

Some of these difficulties can be alleviated by Semantic
Query Optimirotion (SQO). SQO uses semantic information
about the database, eg. semantic integrity constraints and
functional dependencies, for optimization. The original query
is transformed into syntactically different, but semantically
equivalent t queries, which may possibly yield a more efficient
execution plan[S]. Semantic query optimization also provides
the flexibility to add new information and optimization
methods to an existing optimizer. A modular arrangement of
optimization methods makes it possible to add, delete and
modify individual methods, without affecting the rest. This
provides an extensible system for maintaining and managing
optimization strategies, as it. is implemented as a rule-based
system. Semantic query optimization is well motivated in the
literature[6,5,7], as a new dimension to conventional query
optimization.

However, semantic optimization increases the search
space of possible plans by an order of magnitude, and very
ellicient searching techniques are needed to keep .the cost’of
optimization within reasonable limits. Moreover, as the
semantic information about the database (and thus the
corresponding space of semantically equivalent queries)
increases, the optimization cost becomes comparable to the
cost of query execution plan, and cannot be ignored. The tra-
deoff between optimization time and the quality of query exe-
cution plans, becomes a major issue in minimizing the total
cost of query processing.

There has been little research in controlling the search-
ing costs, and trading optimization time with the quality of
the execution plan. Simple schemes to locate relevant
integrity constraints have been proposed[g], but those neither
use good algorithms for searching in the space of possible
plans, nor consider the tradeoff between optimization and exe-
cution costs. As far as we know this paper is the first attempt
towards (i) presenting efficient heuristic algorithms for reduce
searching during semantic query optimization, and (ii) for-
malizing the trade-off between the optimization cost incurred
and the quality of execution plan obtained.

The total cost of query euoluotion has two parts: (a)

optimization cost to select the query execution plan, and (b)

t Semantically equivalent queries produce the same ~)nswer
for all database instances that satisfy the integrity
constraints and functional dependencies.

Proceedin s of the 14th VLDB Conference
Los Ame es. Califomia 1988 P 457

ezeculion coet to run the execution plan. Conventional query
optimizers assume that the first part is negligible compared to
the second, and they try to minimize only the execution cost
instead of the total query evaluation cost. Ignoring optimiza-
tion cost is no longer reasonable if the space of all possible
execution plans is very large as those encountered in SQO[S]
as well as in optimization of queries with a large number of
joins. The optimization cost becomes comparable to query
execution cost, and minimizing execution cost alone would not
minimize the total cost of query evaluation, as illustrated in
Fig 1.1.

Total
Evaluation

Cofft
,.I

,:’
Optimization

Cost

Execution
.. ‘._-..- cost

Optimization Exhort

Fig. 1.1 Trading optimization coat with ezecution cost

Outline of the paper: The problem is formally defined in
section 2, and the notation for subsequent discussion is intro-
duced. Section 3 presents a brief survey of heuristic searching
techniques from Artificial Intelligence. Section 4 describes the
issues Of generating semantically equivalent queries, selecting
the best candidate for exploration, and search termination cri-
teria. The near-optimal searching algorithm for trading the
optimization cost with the execut,ion cost, is presented in sub-
section 4.3. In section 5 we present the results of an experi-
ment to validate the algorithm.
2. Problem Definition

This section summarizes the notation used in this paper
and provides a formal definition of the problem. The notation
is summarized in Table 2.f.

We present below formal definitions of Conventional
Query Optimization and Semantic Query Optimization, both
to differentiate between the two precisely and to make the
discussion of the latter more concrete.

Conventional Query Optimization (CQO): This is
the problem of finding the minimum cost query execution
plan from the set of all possible plans for the query as posed
6y the u8er.

Given: Query Q.
Required:

Find the least cost plan, qp(O,b), for query o,, such
that C&O,b) 5 C,(O,j) for j 21.

SP(i)

min
CE

apace of queries already ezphcd
upto and including &(

lcasf eslimated ezecutim coat

80 far, C.P = i pIjz,,C&)

)I.) C&i C&(i) + &ii

Table 2.1. Summary of Notation Used.

Semantic Query Optimization (SQO): This is the
problem of finding the minimum cost query execution plan
from the set of all possible plans for all the queries that are
eemanticalfy equivalent $ to the we* ‘e query.

Given: Query &,,
Required:

Find least cost plan, qp(a), for query Q. such that
C,(a) 5 C,(i) for all 41’9.

Integrated Semantic Query Optimization (ISQO):
This is the problem of searching the space of all possible
query execution plans for all the semantically equivalent
queries, hut stopping the search when the total query evalua-
tion time (i.e. optimization cost so far + execution cost) is
minimum.

Given: Query QO

Required:
Find plan qp(a) for query &, such that

C C&j) + &~(a) < C C,(j) + d,(i) for aII Ql’s*
QJ-74 Qpsqi)

t Conventional query optimiaers like R’
do not perform any kind of semantic query optimization.

t A set of queries is defined to be remanfically
equivotmt w.r.t. to a set of logical constraints. The set of
constraints we are considering sre the semantic integrity
constraints of the databe.

f Query evaluation cost is s weighted sum of the optimizstion cost
and the execution cost, i.e. Co + aCE. When
a= 1, query ev alustion wst is the same as the query
response time (ignoring queuing delays).

458

The problem, as stated above, is extremely di5cult.
Thus, the approach we take is to reduce the complexity of the
problem by settling for a near-optimal solution instead of the
optimal one. This can be done by limiting the search to most
Q,‘s instead of all &i’s

3. The Search Space & Searching Techniquw

This section first describes the nature of the space of
query execution plans that the semantic query optimizer has
to search. It then discusses various search algorithms.

3.1. The Search Space

Conventional query optimizers select the optimal query
execution plan by searching through QP(0) only, the space of
query plans corresponding to the original user query, Q,,. In
contrast, semantic query optimizers search the much larger
space of execution plans, &Ptoc, where,

’ QPtot = QP(O) U QP(l) U . . U QP(n)

One conceptual way to model the search space is in
terms of the following two levels:

[l] ,G~vcl 1: The space of semantically equivalent but syntac-
tically different queries, QO, Qr, . . . Q,.

[2] Lcvcl 2: The spaces QP(O), QP(l), QP(n), which are
the spaces of the query plans of the queries
QO, Qr, . . . Q,, respectively.

These two levels of the search space are illustrated in
Fig. 9.1. The solid lines represents the edges at level- 1 search
space, and the dotted triangles together constitute the level-2
search space.

,I’ ‘i,

Fig. 3.1 Conventional Vs. Semantic Query Optimization.

Such a two level model of the search space is useful as it
enables easy visualization of the search problem facing the
semantic optimizer. At level 1, the semantic optimizer
searches for Q,, the semantically equivalent version of the ori-
ginal query Q. which leads to the optimal query execution
plan.

Research in conventional optimization has developed
e5cient algorithms for searching in each of the spaces, &J’(i),
of Level 2. Our aim is to design an algorithm for the search in
Level 1 which, when at a node Q, of Level 1, calls a standard
Level 2 search algorithm as a subroutine to search the space
QP(i). We later indicate improvements to this basic scheme.

3.2. Searching Techniquea

Semantic query optimization can be viewed as the search
for the minimum cost query execution plan in the space of all
possible execution plans of the various semantically equivalent
hut syntactically ditferent versions of the original query. The
need for a suitable search strategy to guide the search
through the space of semantically equivalent queries was
addressed earlier. Search techniques have been studied exten-
sively in the field of artificial intelligence [S,lO] and can be
divided into two broad classes, as described below.

Blind Searching: This class of search techniques does
not utilize any specific knowledge or properties about the
search space. It requires the ability to recognize a solution to
enable the search to be stopped. Traversing the entire search
space t guarantees the discovery of the optimal solution. This
generality makes it powerful enough to be applied to a very

broad class of problems, but at the same time makes it a very
expensive and ine5cient way of searching since no domain
knowledge about the problem instance is used. Depth Firat
Search (DFS) and Breadth First Scorch (BFS) are examples
of this class. DFS may take very long to execute if it does
not traverse the search space in the right direction. BFS has
prohibitive storage requirements for its execution. Recently a
hybrid scheme Depth Firet Iterative Deepening (DFZD) [ll]
has been proposed, which avoids the pitfalls of both DFS and
BFS.

Heurirtic Marching: These search techniques utilize
problem specific information as heuristics for guiding the
traversal of the search space. For general or complex prob
lem spaces, such heuristic based search techniques are almost
always more e5cient and certainly more interesting. Best first
searches are a subset of heuristic search techniques which are
very popular in artificial intelligence. The A’ algorithm
[12,13] is a well known example of a best first search tech-
nique . Best hrst searches involve traversing the most promis-
ing path at any node in the search space. An appropriate
heuristic function is used to compute the promise of a path.
Best first searches combine the advantages of heuristics with
other blind search techniques like DFS and BFS $. If the goal

t for finite search spacar
$ &t first fiche csns.s some depth first search at the most

promising node and if a solution is not found, thii node soon
becomes less promising zu compared to 8ome other aa yet
unexplored node which is then expanded and subsequently explored.

459

(optimal solution) is defined precisely and its distance from
the current step can be characterized by an appropriate
heuristic function, A’ guarantees the discovery of the optimal
solution.

3.3. Searching Technique for Semantic Query
Optimisation

For a semantic query optimizer, each node of the first
level of the search space(see Fig 3.1) corresponds to a semant
ically equivalent version of the original query. The promise
of a node is the cost of the most efficient execution plan
(obtained from a conventional query optimizer) for the query
corresponding to that node. At each step, the most promie-
ing node among those generated so far is selected for expan-
sion. From the chosen node, various other nodes(semantically
equivalent queries) are generated by applying the various pos-
sible semantic transformations on the query corresponding to
the current node.

It is important to note that in viewing semantic query
optimization as a search for the optimal query plan (i.e., the
plan with the least total execution cost), we do not have a
priori knowledge about the goal, i.e. the optimal query plan.
Hence, at any step of the search, the distance to the goal (i.e.
the estimated cost of reaching the goal) cannot be character-
ized accurately . This makes it difficult to use heuristic baaed
search algorithms like A*. Blind search techniques like DFS
and BFS can still be applied since they are basically exhaus-
tive enumeration methods. However, the enormously large
size of the search space of possible query plans makes it
impractical to do so.

Having ruled out the possibility of achieving the
minimum total cost execution plan either by heuristics
(required information not available) or by blind searching
(very large size of search space), we focus our attention on
execution plans that are near-optimal. There can be many
ways of defining a near-optimal query execution plan. Our
approach is to maintain a balance between the total cost of
query optimization and the cost of the best execution plan, at
any time and to stop the search when certain stopping condi-
tions hold. This integrated approach, which considers both
query optimization and query execution costs, is based on the
following observations.
[l] The search space is far too large for exhaustive enumera

tion, and the knowledge required for heuristics that
guarantee optimality is not present. There needs to be
some criterion to stop the search after a certain time.

[2] Currently optimization cost is very small compared to
execution cost of the query plan obtained. With an order
of magnitude increase in the size of the space of query
plans, and thus the enormous potential for further
optimization, the effort spent in doing so should be a
fraction of the cost of best execution plan. This is espe-
cially helpful for compile-and-etorc queries.

3.4. Termination Criteria

A search algorithm usually terminates by reaching its
goal node, which satisfies the objectives. Our goal of semantic
query optimization is to minimize the total query evaluation

460

coet, Since the goal cannot he characterized in terms of the
available information from partial search, it is not possible to
stop the search at the goal node. However, we can character-
ize a set of nodes which are su5ciently close to the goal node
and stop the search on reaching one of them.

It is possible to characterize the goal under some utility
theoretic assumptions like diminishing marginal return[l4].
We can define stopping criteria to minimize the total query
evaluation cost under these assumptions about the search
space. However, it seems very di5cult to do so for general
search spaces.

4. Trsverring the Search Space

At any step in the search, the set Boundary-Node8 con-
tains the nodes from which the next one to be visited is
selected. Search space traversal has to address three prob-
lems. The 6rst problem is to compute, at any step of the algo-
rithm, the promise of all the child+ nodes. The second problem
is to select the meet promising node, from amongst the boun-
dary nodes, as the one to be visited next. The third problem
is of deciding when to terminate the search space traversal.
This section discusses these problems and some solutions for
them.

4.1. Estimating the Promire of Child Nodes

The promise of a node is the potential reduction in the
estimated query processing cost achievable by considering the
semantically equivalent query corresponding to it. At any
time during the search there exists a set of nodes that have
been visited and a set of nodes that haven’t been. Let Q, be
the node currently being visited, as shown in Fig. /.I, and

Qt,s Qi, . ’ * QC be its children. These semantically equivalent
queries are created by using the rules applicable to Qi, each
being generated by applying exactly one rule.

4.1.1. Coat Estimation by Running Conventional
Optimiser

Assume the search has reached node Qi, as shown in Fig.
1.1. The promise of child nodes, Qc,, 1 5 j < k, is obtained
by generating each one using the relevant rule to Q,, and then
running the conventional query optimizer on it. The costs for
doing so are,

Co(i,) = C&(i,) + C&(i,) 1 5 j 5 k

This approach gives very accurate estimates of
CE(if), 1 5 j 5 k, since the conventional optimizer has a very
good cost model of the database, and explores all possible exe-
cution plans. However, the actual cost of running the
optimizer k times may be quite high.

4.1.2. Algebraic Estimation of Cz(ij) from C,(i)

Instead of running the conventional query optimizer on
each child node, a simpler version of the cost model of a con-
ventional query optimizer (eg. R*) may be used directly to
obtain rough estimates for guiding the search. Each child
node, QV 1 5 j Sk, is compared with the Q,. The nature of

+ l-he unv&ted nodes that have edges connecting them k~ the
,,ode currently being visited me child m&@.

Improvement I CE(8eled) - Cp

\

Old Bouodsry~Nodn

-._- New Bounduy-Nodes

Fig. 4.1 Selecting the Most fiomiaing Node.

the transformation required to obtain each from Qi yields an
estimate of the former’s execution cost, which can be quite
accurate in certain cases. This strategy is ill&rated by an
example.

Ezample:
Assume,

l EMP = (id#, name, rank, age, salary) be an
employee relation.
. (EMP..rank = ‘manager’) => (EMP.age >-
45) be an

integrity constraint satisfied by this relation.
l the attribute age have a clustered index of depth
3.
l the relation have P data pages.
l tuples are uniformly distributed over age between
20 and 60.
l retrieve (EMP.name, EMP.age, EMP.aalary)

where (EMP.rank = ‘manager ‘)
is a query, say QW

Assuming a single disk I/O to be the unit of cost, it costs
P to execute QW However, ,Q,, can be transformed into
another semantically equivalent version, say Q,, by
applying the integrity constraint shown above.
Now,

l retrieve (EMP.name, EMP.age, EMP.aalary)
where (EMP,rank = ‘manager ‘) and (EMP.age
>= 45)

is &*.
Q,, and Q1 are semantically equivalent since they produce
the same result under all instances of the relation that
satisfy the integrity constraint. The clustered index on
age can be used to execute Q, efficiently, the cost of

which would be (g+J+3 P&P+3

Such an analysis is limited in its applicability, since it
often requires knowledge about the details of the database
organization. However, we include it here since it, is a very

Powerful tooi when applicable, especially since estimating the
promise of child nodes costs less since the optimizer does not
have to be run on each of the child nodes (queries). This
approach provides a rough-and-ready rule of thumb.

4.1.3. Simultsneoua Query Optimiration

A third approach for estimating the promise of the vari-
ous child nodes of Qc is to use simultaneous query optimira-
Con. This requires enhancing the query optimizer to handle
the simultaneous optimication of a set of similar queries. The
set of queries, Qije 1 5 j 5 k, which are child queries reach-
able from Q;, are all input to the optimizer at the same time
and optimized together. Since these queries resemble each
other very closely, in fact differ from Qi by exactly one clause
each, their simultaneous optimization will lead to substantial
savings. As was observed in our experiments, many semanti-
cally equivalent queries that differed only slightly produced
many execution plans that were the identical, and had to be
produced once for each query since each was optimized
separately. The approach of simultaneous query optimization
will lead to each such plan being generated exactly once for
all the queries optimized together. The existing optimizers,
eg. 8yEtem-R 141, ZNGRES [:<I, R’ 1151, etc. need to be
enhanced to allow this. Research in the areas of global query
optimization [M, 171, and common EUbezpre88iOn analfleie
(181 can be use.d for this purpose.

4.3. Choice of the Most Promiring Candidate Node

Once the promise of each candidate node has been
obtained, by one of the methods described above or some

= 0.375P + 3 units.

461

other method, they are compared to select the meet promia-
ing one. There can be many ways of doing this, depending on
how the promises are compared. Described below is a we))
known strategy.

Moving from query Q, to Q, change the estimated best
query execution cost, as shown is Fig. 4.1. The change can be
an increase or decrease, leading to a more efficient semanti-
cally equivalent query or a less efficient one. The next node
to visit, QIcbcl, is determined as follows,

Qaskd-Qj such that CE(j) = -*x-w 1)

This approach is called the First-order Be82 Fir8t
Search strategy, in which the most promising node is the one
that has the potential of maximum cost reduction. The node
QIQel is removed from Boundary_Nodcs and its child nodes,
Q,,, Q,# . . + Q,, are added to it.

Thus,
Boundary_Nodcs:==

Boundary-Nodes - {Q&t) (J {O,,, Q,, . * . Q,k}

This is a First-Order strat.egy because in evaluating the
promise of a direction to move in, only the first node in that
path is examined. A generalized method may look at some k
nodes on a path before taking a step. In our case the first-
order strategy yielded quite satisfactory results.

4.3. Terminating the Search

Searching theory in Artificial Intelligence (Al) usually
ignores the cost of searching and concentrates only on the
quality of the solution, i.e. how it compares with the optimal
one. For SQO, we have to consider the trade-off between the
cost of optimization and solution quality (i.e. query execution
time). There are two reasons for this: (i) the time required for
exhaustive search of the space of query plans for the entire set
of semantically equivalent queries can be prohibitively large,
and (ii) the response time for interactive queries depends on
both the query execution time and the query optimization
time.t

As stated earlier there does not exist an 4 priori charac-
terization of the query, in the set of semantically equivalent
queries, that leads to the optimal (i.e. minimum cost) query
plan. Thus we have to use some stopping criteria to ter-
minate the search after a reasonable amount of effort has
been spent.

4.3.1. Criterion Cl: Balancing Optimisstion Coat
with Execution Coat

An intuitively appealing stopping rule is based on
balancing the total optimization cost incurred at any step of
the search, with the estimated execution cost of the best
query plan found so far. Searching stops after the step in
which the total optimization cost incurred so far reaches a
certain fraction of execution cost of the best query plan yet
discovered. Surprisingly enough, this simple rule gives us a
good bound on the response time of the query, as shown by

462

t In reality, Rerponre_Time - Optimtotirm-Time +
~e~tiwl’he + Queuing Deloy~. We do not consider the last component here.

Theorem 1. A point to note is that parameter for optimiza-
tion (minimization in our case) is the rceponec time (7 + t)
and not czccution time (t) alone. It is entirely possible that
the point at which the response time is minimized may be
different from the one that minimizes the execution time. This

fact is illustrated in Fig. 1.1. We introduce some notation in
Tdc 4.1 which is used in the proof below.

II
a compile-and-store query

is executed
II

Table 4.1 Searching Related Notation.

Theorem 1: If the following search terminating cri-
terion (CI) is used,

i.e. 7(i) 2 +$,

the following upper bound on m(i) is obtained.

Proof: Supposing the search terminates after examining
&c. There are following two cases,

[a] Qopt E SP(i) i.e. Qwt has been visited.

[b] Qopc 4 SP(i) i.e. Q,t hasn’t been visited.

C48C IO/:

r(i) + t(i) m(ij - -
Wept) _, \ +Jpt) + t(opt

w x +t(i)+6

= dopt) + tlootl
t(i)

since 44 = T + 6

A positive quantity b is adhdd’to the numerator.to make the
equality hold. It satisfies the condition 0 5 6 -< Opt cost in

current step.
*

=, RT(i) < X + t(i)+6
J%w) - t (opt)

since r(opt) 1 0

(i+ l)t(opt) + 6

I x
t(oPt)

because Qqt E WI) => t(i) 5 t(opt) 1

t Note that t (opt) is the estimated query execution cost
corresponding to the query that gives RT(opt), and not the
least estimated query execution cost. See Fig. f A.

w1+$ Opt cost in current step

Case /It)
RTi

+ Rlyopt =
i +ti ~#&+

qip+ h7(:
0 t) + t(opt)

ji pi) QM

r(i) 1 F

t(oPt) 2 0

I+ SW) => +Pt) 1 6)

Combining the results of the cases above we have,

5 maz(1 + x, 1 + +,

The bound provided by the above theorem is not very
tight, and the termination criterion performs much better in
practice. This was observed when we ran an experiment,
details of which are discussed in section 5.

The choice of X depends on the size of the search space,
and the time of query optimization. For a small search space,
we would usually expect Case [a] to occur when the search
terminates, i.e. Qqc E SP(i). Thus,

Small Space m> Case [a]
=> choose large X for tight bound
=> less optimization is good for response time

For a large search space, we would usually expect Caee //to
occur when the search terminates, i.e. Q,t 4 V(i). Thus,

Large Space my> Case [b]
=> choose small X for tight bound
=> more optimization is good for response time

Rule of Thumb for choosing X:.Above analysis shows
that the thumb-rule is to choose a large X if the search space
is small and vice veraa. It is not a certain rule because of the
approximate implications (M>) shown above.

Corollary 1: If the query Q. is the compile-and-&ore
type, and is expected to be executed a times, the above bound
changes to, - .

RT(i)
mopt 1

5 moz(1 + ox, 1 + $1 t

Proof: Identical to that of Theorem 1.

4.3.2. Criterion C2: Diminishing Marginal Returns

Searching strategies like bccrt-firet usually have diminish-
ing marginal returns as the search progresses. This is illus-
trated in the example discussed in Section 5. Database access
paths are tailored to suit the frequently occurring queries, and
semantic transformation based on integrity constraints can
not keep improving the execution cost for a long time. The
optimal query Qh f has a finite positive cost, and as we
approach it during the search, the chances of substantial
improvement in query execution cost keep diminishing. At the
same time the optimization cost remains approximately the

t RT() = 7(i) + at(i), and represents za integrated cost.
$ this assumption ia justikd by most conventional query
optimizers, and is thus not unrea@tic.

fQ* P QIauch that C,(i) 5 C,(j), j # i, j = 0, 1, . . u

463

same for every step of searching in the space of queries. Thus,
net improvement in query execution cost keeps diminishing.

A termination criterion based on diminishing marginal
returns considers t,he net benefit obtained from the last step.
The space of semantically equivalent queries is explored till no
transformation causes a decrease in total cost, i.e. m(i).
Search stops when the optimization cost in last step dom-
inates the improvement in query execution cost. Thus the ter-
mination criterion C2 is,

I ees~~Ho.,CE(d~ - cE(i) 5 &ii)

This termination criterion leads to the optimal solution
only if the law of diminishing marginal utility holds. However,
even if this is not true, the criterion is still useful for small
search spaces characteristic of most queries posed to the data-
base. The searching process may be terminated at a local
minima of the query execution cost, C,(i). This can be par-
tially overcome by using probabilistic search guiding stra-
tegies, eg. eimulated anncahg(19,20].

6. A Detailed Example

This section discusses an experiment to test our search
algorithm. Semantic query optimization of a rather elaborate
query was carried out. The query optimizer of R’[15], was
used for estimating the promise of queries.

6.1. Parameters of the Experiment

A shipping database of six relations reported in[B] was
used. The database schema, the relation sizes, and the various
indexes available are shown in Table 5.1.

Fig. 5.1 gives the rules that define a subset of the seman-
tic integrity constraints satisfied by the database, applicable
to the example query Q,,.

The unique logical access paths among the relations are
specified. The implicit joins that underlie the logical access
paths are listed in Fig. 5.L

~1
CARGOESInsurance - pDLICIES.Policy

Fig. 5.2 Unique Join fiedicatee.

Finally, the query, expressed in a Prolog like syntax, is,
Qo: (DeadWt > 400) and (DollarValue > @oo):

(?Decltination)

In running our experiment on R* we did not create the
entire database. Instead we simulated its presence by inserting
appropriate parameters in the sycltem catalog, which is the
source of information for the optimizer.

5.2. Space of Semantically Equivalent Queries

The first step in our experiment was to generate the
entire space of semantically equivalent queries. This was done
manually by applying rules R1 through Rs to Q,,. Actually

Attribute for -Attributes for kelation Size
Relation Attributes

“~~~~+~ex s”c~~f:~~~~” (in tuples)

ShipName, Owner, ShipType, ShipType, Owner,
SHIPS Draft, DesdWt, Capacity, ShipName DeadWt 20,000

Registry

PORTS
PortName, Country, Depth

PortName ___
FacilitvTv- I,(@0

Ship, Destination, Shipper
XRGOES Car&oType, Quantity, Ship kstination, Insurance 25,000

DollarValue. Insurance

OWNERS
OwnerName, Location,

kssets. Business
OwnerName Business 1,000

Policy, Issuer.
Coverage Policy ISSUW 25,000

NSURERS
Insurer, InsCountry,

. . . Insurer

Table 6.1 The Shipping Databaee.

Fig. 6.1 Semantic Integrity Constraints.

\15?.6
---J ---__

I --IN

,’ RZ

. ..--

/Ri /

- / \
\ \

\Rl \

Fig. 6.3 Space of Semantically Eguivaknt Queries.

only rules R,, RP, Re and R, were applicable, giving rise to
queries Qt through Q,s, which were all semantically

The transitions between nodes in Fig. 5.8 represent the

equivalent to Qc,
transformations carried out, by rule applications. TWO basic
inference rules, called clause introduction (CI) and clauec

Fig. 5.8 shows the entire space generated, in which each elimination (CE) are used to carry out the transformations.
node represents a semantically equivalent but syntactically
distinct query. The clauses CI through Cs are as follows, Let,

C,: (DeadWt > 400) A,B be distinct clauses,

Cp: (ShipType = ‘SuperTanker ‘) and, (A -> B) be a rule.

CI: (DollarValue > 4000) Now,
C,: (FacilityType = ‘OffShore ‘) (cI): (A) and (A -> B) E (A) and (B) and (A -> B)

C,: (Busineee = ‘Leaeing ‘) (CE): (A) and (B) and (A -> B) = (A) and (A -> B)

Ca: (Zneurer = ‘Lloyde’)

464

powduro Semantic,Seorch;
begia ‘/ initialization /’

loop l / termlnrk H Boundary,Nodcr is empty /’
adt 11 Bmmdary,Nodes = 0;

‘/ choose most promising node from Boundary,Nodes /’
0d.d = {Qj I (Cd < 0.4))) j # I, Qj, Qt e BoundawJode8;
*/ if better plan found then update Cp /’
if Cp > CE(seled) then
Cp:= C,(eelect);

Boundary-N&n /’
y: Boundary_Nodes:=- Bowsdary_Nodea U {Qo,t Qrg ’ ’ . Qe,);

l / estimate the promise of the newly added nodes /’
for i:= u,, ds, * . . sc do

2: Run s conventional optimizer to evaluate C,(i);
-*Pi

end;

Fig. 6.4 The Scorch Algorithm /or SQO.

Rules like (A --> B) are integrity constraints of the system
are all always true. Thus we are only interested in the clauses
A, B, A and B, etc.

6.3. Data Collection

Each of the queries Qs through QIs was entered into the
system in an interactive manner using SQL, and optimized by
the I?* optimizer. The optimizer generates a number of query
execution strategies (called query plans) and then attaches an
estimated cost with each by using a cost model based on the
the expected number of CPU instructions and page fetches. A
detailed discussion of the cost model is given in[15]. The exe-
cution cost estimates provided by the optimizer are dependent
on the system configuration and thus we do not give any
units. An elaborate description of the configuration and
parameters assumed can be found in[15]. However, for our
present purpose only their relative values are important. The
data collected is shown in Table 5.2.

Table 6.2 Stotieticcr from the Query Optimizer.

6.4. Description of the Search Algorithm

A description of our search algorithm is given below.
9,‘s are used interchangeably for queries/ nodes.

A further optimization is possible at statement 2 of Fig.
5.4 above. All the different possible semantic transforms possi-
ble from a given node will not necessarily lead to query plans
with lower execution costs. It is often possible to identify with

the help of a few heuristics, those semantic transformations
which may lead to reductions in query execution time. By
only utilizing the uecful semantic transforms at a given node,
the computational efficiency of procedure ecmnntic search
can be improved. This process of pruning the search space is
termed as semantic pruning.

6.6. Execution of the Search Algorithm

The search algorithm described previously was hand-
simulated on the graph shown in Fig. 5.8. The execution trace
is shown in Table 5.3. An iteration of the algorithm is com-
pleted when the condition in statement X of Fig. 5.1 is tested.
Row i of the table corresponds to the state of the search algo-
rithm after iteration i has just been completed. The costs
included in Table 5.3 are only of the statements Y and 2 of
Fig. 5.4, since other steps of the algorithm have negligible
cost.

All costs shown are in the same units, say milliseconds.
The parameters p and r are defined as follows.

p: Average cost of a single plan evaluation by the
optimizer.
r: Average cost of traversing an arc in Fig. 5.3, via an
application of rule CA or CE.

The values assigned to these parameters were p = 1 ma
and r P 5 ma, assuming a 10 MIPS machine. A simple calcu-
lation shows that this corresponds to 10,000 m/c instructions
for evaluation of an average‘ plan, and 50,000 m/c instructions
for an average arc traversal (logical inference). The derivation
of the value of r also assumes that there are 100 rules in the
database, which corresponds to 500 instructions on the aver-
age for checking each rule, which involves patterns matching
and some other work. These assumptions are quite reasonable
according to current technology.

Two criteria for stopping the search algorithm were dis-
cussed above. We illustrate those in the context of the exam-
ple, in following subsections.

465

Table 6.6. Execution o/Search Algorithm.

6.6.1. Termination Critarion Cl

The 6rst stopping rule terminates the search when the
following condition becomes true.

I(i) > y

The stopping rule was examined for the values X = 2, 1, and

f. The results are presented in Z’abIc 5.1.

II Iteration x=2 X=1
1 I ,i)=Cp

i)+t(i), i)+t i ,
A=+

III==
i)+l(i

1 10 605.7 615.7 AIS’I RIS 7

II 3 i--i
__. ._

188 127.0 I

---.. V.“..

---- 224.8 224.8
It I i & i __. 127 ._ n , 315.0 816.0 315.0

1 486.0 486.0 4.3&o --_ .-
127.0

Table 6.4 Perjormancc of Criterion Cl.

X = 2: The search stops after iteration 2 as shown in

Table 5.1, since Cl evaluates to (76)(l) + (3)(s) > T =>

91 > 63.9, which is true. The optimization cost and best exe-
cution cost estimate are,

r(i) = 91 md; t(i) = 127.8 ms

The bound of Theorem 1 is satisfied since,
i +ti ’ =$+3

+Pt) + +Pt) .
- max(1 + 2,1+ $)

X = 1: The search stops after iteration 3, since Cl evalu-
ates to (163)(l) + (S)(5) > 127.0 => 188 > 127.0, which is
true. The optimization cost and best execution cost estimate
we,

r(i) = 188 ma; t(i) = 127.0 mu

The bound of Theorem 1 is satisfied since,

X = +: The search stops after iteration 4, since Cl

evaluates to (324)(l) + (7)(5) > s => 359 > 254.0, which

is true. The optimization cost and best execution cost esti-
mate are,

I(i) = 359 ms; t(i) = 127.0 md

The bound of Theorem 1 is satisfied since,
i +li) z&3C

r(opt) + t(oPf)
l1+ I)

.
max(1 + T

G
Thus we can see that stopping rule 1 is quite effective.

Especially notable is the fact that even though we attempt to
minimize a weighted sum of r(i) and t(i), and not t(i) alone,

the value of t(i) obtained is actually quite close to the
minimum. We believe a more careful analysis of the algorithm
is required to explain this.

6.62. Termination Criterion CB

The second stopping rule terminates the search when the
following condition is satisfied at any step,

Reduction in t(i) < Optimization Coet
At step 1 we have,

Reduction in t(i) in step 1

= 00 - 605.7 = 00 m.3
Optimization Coat in step 1
= (10)(l) = 10 md

At step 2,
Reduction in t(i) in etep 2
= 605.7 - 127.8 = 477.9 md
Optimization Cost in step .8
= (66)(l) + (3)(S) = 81 ma

At step 3,
Reduction in t(i) in etep 3
= 127.8 - 127.0 = 0.8 ms
Optimization Coet in step 8
= (87)(l) + (2)(5) = 97 ma

Thus, the search stops after step 3, having incurred a
total optimization cost of 188 me, and having generated a
query execution plan with an estimated cost of 127.0 ma. The
above analysis shows that stopping rule 2 is effective, since
even for an interactive query (i.e. execute only once) the sav-
ings obtained are 605.7 - (188.0 + 127.0) = 605.7 - 315.0
~290.7 ma. If the query is to be executed many times the
saving are even greater.
6. Conclusiona

The search space of execution plans for queries involving
a many relations becomes large enough to make the optimiza-
tion cost comparable to the execution cost. This problem is
exacerbated during semantic query optimization, an approach
to query optimization which is gaining popularity due to its
potential for improvements beyond conventional methods. For
interactive queries especially, the objective function to minim-
ize is no more the execution time, but rather the response
time, i.e. the sum of optimization and execution times. Since
there exists no characterization for the optimal solution, clas-
sical heuristic search techniques are inapplicable. We have
presented a best-first heuristic search algorithm with termina-
tion criteria based on utility theory, and derived an upper
bound on the quality of solution it produces. Experimental
evidence shows that in reality the algorithm does quite well.

466

Many issues and problems need to be resolved. Our
bound for near-optimality of the tradeoff between semantic
optimization quality of execution plan is not tight. In practice
our stopping criteria seem to perform much better, and we
believe that the bound can be improved. It is non-trivial to
design an optimal search algorithm to minimize total query
evaluation cost, without exploring the entire search space. It
would be interesting to characterize special cases of the search
space, for which optimal search algorithms are possible.
Finally, performance of heuristic search based semantic query
optimization needs to be evaluated in a real database environ-
ment.

There are other ways of improving performance of query
optimizers, and research efforts also need to be directed
towards better modeling of random events, underlying data-
base organization and compile time events[ll].

7. Acknowledgementu

We wish to thank Dr. Guy Lohman for his help with the
R’ optimizer, which was used for experimental validation.
We’d also like to thank to Prof. Mike Stonebraker for sug-
gesting this problem, and to Prof. Richard Korf for fruitful
discussion about utility theory. We also thank IBM for for let
ting us use ‘their facilities at Almaden Research Center for
experimental work.

Referencea

1.

2.

3.

4.

5.

Stonebraker, M., Private Communications, Summer
1987.

Smith and Chang, “Optimizing the performance of a
relational algebra database interface,” CACM, vol.
18:10, 1975.

Wong,E. and Youseffi,K., “Decomposition - A strategy
for query optimization,” ACM TODS, Sept. 1976.

P.Selinger, “Access path selection in a Relational Data-
base Management System,” RJ 288.9, IBM San Jose,
1979.

Hammer and Zdonik, “Knowledge Based query process-
ing,” Roe. 6th Con/. on VLDB , 1980.

8.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

King,J.J, “QUIST : A system for semantic query optimi-
zation in relational databases,” Roe. 7th VLDB Con/.,
1981.

S.T.Shenoy and Z.M.Ozsoyoglu, “A System for Semantic
Query Optimization,” Roe. ACM-SIGMOD , pp. 181-
195, 1987.

U.S.Chakravarthy, et& “Semantic query optimization
in expert systems and database systems,” Roe. Ezpert
Database Syetems Con/., pp. 328341, 1984.

E. Rich, Artificial Inlelligence, McGraw-Hill, New
York, 1983.

N. J. Nilsson, Rineiplee o/ Artificial Intelligence,

Tioga, Palo Alto, CA, 1980.

Richard E. Korf, “Depth-First Iterative Deepening : An
Optimal Admissible Tree Search,” Artificial Intelli-
gence, vol. 27, pp. 97-109, North-Holland, 1985.

P.E. Hart, N. J. Nilsson, and B. Raphael, “A formal
basis for the heuristic determination of minimum cost
paths,” IEEE Zkans. Syeteme Sci. Cybernet., vol. 4(2),
pp. 100-107, 1968.

R. Detcher and J. Pearl, Generalized beet-firet etra-

tegiee and the optima& o/ A’, UCLA-ENG-8219,
University of California, Los Angeles, 1983.

W. Jacobs and M. Kiefer, “Robot Decisions based on
Maximizing Utility,” fioc. o/ 3rd IJCAI, 1973.

L. F. Mackert and G.M.Lohman, “RI Optimizer Valida-
tion and Performance Evaluation for Local Queries,”
Roe. ACM-SIGMOD, pp. 84-95, ACM, 1986.

T.SeIlis, “Global Query Optimization,” Rot. ACM-
SIGMOD Conf., 1986.
J. Park, “Multiple Query Optimization be-
publication),” Graduate School o/ Bus. Adm., Univ. of
Cal., Berkeley, 1987.

S.Finkelstein, “Common Expression Analysis in Data-
base Applications,” Roe. ACM-SIGMOD , 1982.

Ioannidis, Y.E. and Wong,E., “Query Optimization by
Simulated Annealing,” Rot. SIGMOD, 1987.

Kirkpatrick, S. et.al., Optimization by Simulated
Annealing, 220, pp. 071-680, May 1983.

G.M.Lohman, “Panel Discussion on Semantic Query
Optimization,” Roe. Data Engineering Conf., 1985.

467

