
Mixed concurrency control : Dealing with heterogeneity 

in distributed database systems 

J.F. Pons and J.F. Vilarem 
Centre de Recherche en Informatique de Montpellier 

(universite de Montpellier II / UA-CNRS) 
860, rue de Saint-Priest 

34 100 Montpellier, France 
EARN address : CRIM@FRMOPl l.BITNET 

Abstract 
A mixed concurrency control, which allows the two 
techniques - two phase locking and certification - to coexist 
together in the same distributed dambase system, proves to 
be advantageous in a number of situations : interconnected 
databases, static or dynamic heterogeneity of transactions 
or objects. In this paper we propose a method which seems 
well adapted to the majority of the forms of heterogeneity, 
by using dynamic calculation of a serialization order and 
concurrent control of all types of transactions. 

- In the case of dynamic heterogeneity, the strategy used 
by each site can vary in the course of time between a 
pessimistic technique and an optimistic one. We can 
therefore best exploit the dynamism of the system. 

1. Introduction 
The two classical concurrency control approaches are the 
pessimistic approach, based on two phase locking (2PL). 
well adapted where conflicts are quite probable, and the 
optimistic approach whose efficiency relies upon the 
scarcity of conflicts. A more recent approach, mixed or 
heterogeneous, enables the use of the benefits of the two 
previous approaches. As a result of these two classic 
methods being together in the same system, a number of 
advantages occur in different situations : 

- In the case of interconnected databases with static 
heterogeneity, a mixed control gives uniform access to 
the different parts of the system which apply distinct 
methods. 

- When the transactions are typed (long/short, 
reading/updating), we increase the parallelism by 
allocating an adapted technique to each type of 
transaction. 
- Finally, when facing the heterogeneity in terms of 
objects rather than in terms of transactions, we could 
select the right compromise between locking and 
rollback. That is, for conflicting objects we would use 
2PL, whereas an optimistic technique would be used for 
less sensitive objects. 

In the literature, mnnerous studies connected to this subject 
can be found, but to our knowledge there is no existing 
mixed method which is satisfactory in a distributed 
environment. The certification solutions proposed come up 
against the following difficulties : 

- To ensure the compatibility between heterogeneous 
local orders, which causes useless rejection. 
- The global distributed certification problem which 
leads to the lowering of parallelism. 

- All possible conflicts between different types of 
transactions are locally handled. (These types are either 
transmitted by the objects on the site, or inherited from 
transactions). 

In order to handle these problems more effectively, we 
propose in this study a general method of distributed mixed 
control, whose characteristics are as follows : 

- No local total order is imposed. The local constraints 
consistent with conflicts between transactions are taken 
into account dynamically. 

- Starting from the local orders, the method constructs a 
global order in a non centrabxed way. 
- In transferring the global order into the local 
commitment phases - executed in parallel - the set of 
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all committed transactions does not have to be 
explicitly considered~ 

This paper is organized as follows : In section 2 we present 
the three approaches to concurrency control and the 
problems caused by their distribution. Section 3 studies the 
different heterogeneous situations and proposes some 
adapted solutions. The rules of mixed concurrency control 
are stated in section 4 and are then applied in section 5. 

2. Background 

2.1. Dependency graph 
QDerations 
The transaction model we are using was taken from 
[Bernstein 811. The transaction has a private workspace. 
The operations applied to object x are as follows: 

- read( x ) returns the value of a copy of x, if it 
already exists in the workspace; otherwise it returns the 
original value retrieved from the database. 
- prewrite( x ) expresses the intention of writing an 
object x and transfers the value from the transaction’s 
workspace into secure storage. Once a prewrite is 
accepted, the corresponding write must not be rejected. 
- write( x ) effectively executes the transfer from 
secure storage into the database. A transaction which 
has finished, after a possible write phase, or commit 
phase, is said to be committed. 

From these primitive operations, semantically more 
complex operations could be constructed. 

Two transactions conflict if one tries to read (resp. 
prewrite) an object already prewritten (resp. read or 
prewritten) by the other. A conflict between two 
transactions induces a constraint upon their respective 
serialization order (SO), represented by a dependency 
relation IPapadimitrioa 791. 

Deoendencv era~h 

The execution of a set of transactions may be expressed by 
a dependency directed graph G, whose vertices are 
transactions and arcs are dependencies induced by their 
conflicts. This graph is the privileged theoretical tool for 
the study of concurrency control. Let G* be the subgraph 
of G restricted to all committed transactions with their 
dependencies. All methods try to guarantee serializability 
by keeping G* acyclic. 

2.2. Concurrency control for distributed 
databases 
Pessimistic- . 

Two phase locking [Eswaran 761 [Traiger 821 is widely 
used for historical reasons and because it is well suited to a 
distributed environment Mohan 841. It is the most typical 
pessimistic approach : loss of parallelism is only justified 
when conflicts are frequent. The 2PL method tries to 
construct a global SO, starting with the local orders ( one 
per object) induced by the locking policy. When these 
orders are inconsistent, 2PL leads to a deadlock the 
prevention of which implies the predeclaration of used 
objects, and the avoidance of which relies on the existence 
of a global timestamp order, and the detection and 
resolution of which require a search in G [Elmagarmid 
861. 

oath (or usine cert’fication) Eung 811 
aum 841 [Sinha 85; 

These methods exclude any kind of synchronization 
involving read and prewrite operations; the control is 
delayed until the certification phase, following the access 
phase and preceding a possible commit phase. As these 
methods only use backup, their efficiency depends on a low 
conflict rate, contrary to pessimistic methods. Therefore 
they are said to be optimistic: rejection is necessary only 
in the worst circumstances. The major drawback of this 
approach lies in the difficulty of its distribution. Indeed the 
increase of parallelism during the access phase may well be 
illusory if, in order to avoid inconsistencies, the method 
induces an increased wait by imposing that transaction 
certifications either be executed in mutual exclusion or in 
the same order on all sites. 

“Concurrent certification”, where several transactions are 
running their certification/commitment phase on the same 
site relies upon: 

1) Dividing the certification/commitment phase into 
three distinct a priori mutually exclusive phases, namely: 
the local certification, related to the control of the 
objects located on the site, the global certification, 
executing the global control using the local control results, 
and the local commitment-reject phase. 

2) Taking into account the locally certified (or locally 
controlled) transactions on the site, during the local 
certification phase. In [Boksenbaum 853 it is shown that 
assimilating a locally certified transaction with a 
committed one is not enough to guarantee consistency 
when local certification phases are executed in different 
orders on the sites. On the contrary, as emphasized in 
[Schlageter 821 and in bai 841, handling local certification 
phases in the same global order - used as the SO - ensures 
consistency. 
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However traditional mechanisms, based on timestamps or 
circulating tokens which ensure such a global order, tend to 
reduce parallelism. In practice, the very restrictive “same 
order” hypothesis has to be removed. Proposed solutions 
ale therefore as follows: 

- To forbid concurrent certifications by rejecting a 
transaction in its local certification as soon as there is a 
conflicting transaction previously certified on the site. 
- To act so that concurrent certifications of conflicting 
transactions, when executed in different orders, produce 
a deadlock [Ceri 823. 
- To use a dynamic technique, based on intervals of 
timestamps [Bayer 821 in order to translate 
dependencies between transactions [Boksenbaum 871. 

The aim of this recent idea is to make the previous 
approaches coexist in the same system or method. The 
different forms of this “cohabitation” are presented in the 
next section. Historically, the basic ideas have been defined 
for centralized systems in the following ways : 

- In [Boral 841 the dependency graph is effectively 
maintained in order to obtain a common “2PL- 
certification” SO. Each type of conflict (read/write or 
write/write) is resolved by one of the two techniques 
(2PL or optimistic) either during the read phase, or 
during the certification phase. 
- In [Lausen 821 locking transactions are integrated into 
the basic optimistic method of [Kung 811. 

Distributed and integrated methods are rare. The difficulties 
when adapting to a distributed environment lie in the 
following facts : 

- The use of the dependency graph presents a major 
drawback : Each site has a local knowledge of the 
graph, and a global decision produces a heavy load in 
communication between sites. 

3. Heterogeneity 
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- The distribution of Lausen’s method first requires that 
the concurrent certification problem be correctly 
answered. This is attempted in [Sheth 861; however, in 
this method, the previous problem does not seem to be 
solved : Concurrent certifications of conflicting 
transactions lead to inconsistencies when executed on 
different sites and in reverse orders. 

Integration of locking transactions in a distributed 
certification method - based on the acceptance of locking 
transactions having reached their maximum locking point - 
is covered in the method proposed in [Pans 881. 

3.1. Static heterogeneity 
We are interested in interconnected databases, which 
historically differ by their transaction management [Gligor 
853. The aim of a mixed control is therefore to allow a 
uniform access to the different sites, which each apply a 
distinct method. Within this framework, we regard a 
transaction as a collection of local subtransactions - one 
per site - scheduled by a coordinating site. The global 
control of a transaction, as in the “superdatabases” from 
[pu 871, supposes a unique protocol - such as two phase 
commit - insuring global atomicity, and an explicit local 
SO for each subtransaction. 

The question is to guarantee a global serializability of 
transactions from these local SOS. The resulting answers 
are generally unsatisfactory or even incomplete. Two 
examples are given below. 
1) Ipu 871 proposes the following certification algorithm: 
Firstly, a local phase exhibits a timestamp materializing a 
local and total SO for each subtransaction. Secondly, in a 
global and centralized certification phase, a global SO is 
constructed as the product of all the SOS of the committed 
transactions. A transaction is committed jf its tuple of 
local SOS can find a place in the global SO, otherwise it is 
rejected. The method is correct because - taking into 
account all the dependencies between the unique 
committing transaction and all the ones already committed 
- it can detect any cycle in the global graph. The method’s 
drawbacks include a) the difficulty to forget old committed 
transactions, b) a bottleneck due to the mutually exclusive 
centralized global control and c) useless rejection due to 
unnecessary local ordering of non conflicting 
subtransactions. 

2) PZlmagarmid 87 ] proposes to enhance concurrency over 
the previous algorithm, in releasing the local transactions 
from the global centralized control. However, in spite of 
this correct improvement, the method, using conflict sets, 
takes into account the only direct dependencies between the 
committing transaction and the committed ones. Thus it 
forgets to control the transitive dependencies; so it forgets 
a cycle involving the committing transaction and two or 
more committed transactions. 

In the general proposal of section 4, we present a new 
distributed and mixed concurrency control applying to 
static heterogeneity : Instead of a total SO leading to 
global useless rejection, the local phase calculates the 
strongest local constraints affecting a subtransaction ; then 
these are sent to the coordinating site. Globally, but not in 
a centralized manner, we construct a global SO from the 



local constraints. This common SO is then carried out 
upon the sites during local commitment phases. 

3.2. Dynamic heterogeneity 
In this approach, the concurrency control mechanism 
should be a part of the software able to adapt to a changing 
environment. Therefore the hypothesis of a static partition 
between optimistic and locking sites should be removed. 
As an example, in a dynamic hypothesis, if a site gets a 
heavy workload during the day then it must use a 
pessimistic algorithm ; otherwise, with decreasing activity, 
this site may change to an optimistic algorithm during the 
night. 

In general, in order to best exploit the dynamism of the 
system, each site would use a time variant strategy which 
is able to switch between pessimistic and optimistic 
mechanisms. The transition will occur on a site at a given 
instant according to the degree of transaction interference 
[Badal 841 [Sheth 861. The problem with this local 
transition concerns the non committed subtransactions 
living on the site at the switching time, as shown in the 
next example : 

switching time 

i local commitment 
; phase: ~WZA 

i local control 

* 
T i 

01 : 

Some rough solutions consist of local rejection of the 
subtransactions concerned (as TL2 or TL3 in the above 
example), or waiting until they are committed before 
starting new subtransactions on the site ( as the ToiS). A 
more flexible solution authorizes the concurrent execution 
of heterogeneous subtransactions during a transient phase. 
In this preferred solution, on the one hand a common SO 
is needed on a site in order to globally control the 
heterogeneity, on the other hand mixed conflicts have to be 
locally managed in order to correctly process the transient 
phase. In the above proposed example, in addition to the 
conflicts related to committed transactions as TLI, the 
mixed conflicts between TL2,Ta,T01 and T,2 have to be 

controlled. Such a solution therefore appears as an 
extension of the control we defined in 8 3.1. Indeed, when 
this solution is applied to dynamic heterogeneity, mixed 
conflicts are handled during the local control phase as 
follows : Optimistic subtransactions, by using additional 
control related to non committed locking subtransactions ; 
locking subtransactions, by using additional waiting related 
to locally controlled optimistic subtransactions. 

However, this time variant strategy, though dynamic, 
implies a unique type for each subtransaction to be 
executed on the same site at a given instant. This is not 
RiGStiC. 

3.3. Per transaction heterogeneity 
In a dual approach, the degree of interference is not 
measured in terms of conflict rate on the site, but in terms 
of probability of transaction conflict. Heterogeneity is then 
related to transactions, which are typed either optimistic or 
locking, according to the principles of [Lausen 821 and 
[Boral84]. For example, a long updating transaction with 
a great probability of conflicts will be processed using 
2PL, while an optimistic control is better suited for a short 
reading transaction. At its beginning, a type is allocated to 
a transaction either in a static way by using the type and 
the frequency of conflicts predicted by the transaction, or in 
a quasi dynamic way by incorporating some run-time 
parameters connected to the dynamism of the system 
[Boral841. 

Dealing with this heterogeneity, a method must ensure 
a global distributed control. and must correctly handle 
mixed conflicts between subtransactions. Moreover, 
sufficient parallelism has to be allowed by concurrently 
controlling several transactions on a site. Transaction 
heterogeneity in some way generalizes the dynamic site 
heterogeneity of 0 3.2 : Whereas in 4 3.2 mixed conflicts 
must only be processed in the transient phase, 
subtransactions of different types are now present at any 
given instant on the site. 

The principles of this mixed approach, further detailed 
in section 4, are the following : At first, existing 
applications which are based on homogeneous control, 
must behave in the same way when changing to a mixed 
control. Secondly, an optimistic transaction must not wait 
during its read phase and may be rejected in its certification 
phase. Finally, a locking transaction reaching its 
maximum locking point (mlp) must commit. Otherwise 
locking and optimism would make no sense. 

As in 0 3.2, the overhead caused by mixed conflicts 
consists of extra waiting for locking subtransactions, and 
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also of additional - possibly rejecting - control for 
optimistic subtransactions. Such a method will be useful 
in systems where the predictions of conflicts occurring on 
a site are easy, and the choice of each transaction type is 
unquestionable. 

However, in general distributed systems, such 
predictions are not easy, and errors are expensive. Thus, 
following the conclusions of [Kung 811, CLausen 821 and 
[Herlihy 863, in order to obtain the right compromise 
between waiting and rollback, 2PL or optimistic 
techniques are most likely to be useful when applied to 
individual objects rather than to transactions or entire 
systems. 

3.4. Heterogeneity of objects 
Let us first show, with an example, that efficiency of 
locking or optimistic techniques depends on the 
distribution of the conflicts in a complex manner. 
Let Tl,. . .Tn and Ul,. . .U, be transactions such that : 

Vi Ti reads or writes some objects Xik E X, then 
sequentially updates the objects y and z : 
J’ := y + 2 Xik ; Z := Z + C Xik. 

k k 

Vj Uj reads objects in X. 
It is supposed that all objects in X are “quiet” (with a low 
rate of conflicts), and that y and z are “sensitive” (with a 
high rate of conflicts). A concurrent execution of 
transactions Ti, Uj could be : 

-J-l T2 T3 Ul 

prewrite( xi ) 
=ad( x2 ) 
prewrite( x3 ) 
read( x4 ) 

r&t x5 i 
preWde( X6 ) 

=W x7 1 
r=d( x2 1 

. . . . . . 

UpdaH Y > 

. 

r=d( XI 1 
. . . . 

UpdaM Y 1 

r-N x2 1 
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rt-=-l( x3 1 
r=d( x6 ) 
commit 

. 

UpdaM z 1 

- If locking is the policy used by the whole system, 
then U1 is prevented from access to objects X~ previously 
written by non committed transactions Tl and T2. This 
causes useless waiting since Ul (in general Uj ) could 
commit before the transactions Ti, by preceding all of 
them in the SO. 

- If an optimistic method is used by the whole system, 
the concurrent processing, by the transactions Ti of y and z 
updates, leads to rejection which could be prevented 
using locks, since y and z updates are processed in the 
same order. In this example any of the optimistic 
commitment of Tl, T2 or T3 would lead to the rejection of 
the other two. 

- If locking is used for the transactions Ti, and an 
optimistic method is preferred for each Uj, then 
parallelism is reduced for the transactions Ti when having 
access to the X~ objects. In this example, T3 is blocked 
when reading xl, until Tl releases its exclusive lock. 

- Finally, if the system uses locking on objects y and z 
in order to prevent high risk conflicts, and if it uses an 
optimistic method for the objects in X in order to control 
low risk conflicts, then it exploits the efficiency of each 
technique. 

In this last case, the objects are partitioned between 
locking - L type - and optimistic - o type - objects. We 
again come across the description of static heterogeneity, 
but with a smaller granularity : an L type site (resp. an o 
type site) is here replaced by the set of objects of the same 
type on a site. Thus a subtransaction T, executing on a 
site s, is seen as a pair of subtransactions (ToS. T&. As 
the local partition is static, no mixed conflicts have to be 
handled, so the control of static heterogeneity can be 
extended here. 

From a more general point of view, objects may 
dynamically change their type. In a similar way, the 
control used in dynamic heterogeneity of sites could be 
extended to this last situation. The switching of an object 
from one type to another needs a transient phase in order to 
control all the conflicts between different components of 
subtransactions. 

4. Proposals for a distributed mixed 
method 

4.1. Transaction model 
With respect to atomicity, we model the execution of a 
transaction with two phases: During the first one, the 
transaction reads objects, announces its write intentions 
with prewrites, and controls the correctness of its 
operations upon the database. During this read/control 
phase a transaction runs using a private workspace, its 
prewrites are performed within a secure storage. The second 
commitment phase is used to make the effects of the 
transaction on the database permanent. 



f 

Before the commitment 
~conuolphase point, the transaction has no 

commitment effect on the database. 

point . After this point, the 

commitment phase 
transaction atomicity depends 
on the commitment phase 
atomicity, which is permitted 
by the use of secure storage for 
prewn’.tes. 

In order to distribute this model, the transaction has a 
coordinating site, which coordinates parallel executions of 
its subtransactions on different sites. The local read/control 
phase is divided into a read phase according to the 
subtransaction’s type, and a local control phase which 
calculates the strongest local constraints bearing on the 
subtransaction and which sends this result to the 
coordinating site. When all these messages are received a 
synchronization point is reached. It is used both to execute 
a global control phase on the coordinating site, and to 
ensure that a transaction could not appear at the same time 
already committed on a site as well as in its read/control 
phase on another site. The results of the global control are 
broadcasted to the concerned sites which then execute a 
local commitment phase. The following figure illustrates 
this transaction model: 

local control 

coordinating remote 
site sites 

D-w transaction model 

Remarks : 
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maximum 
i&king point 
. commitment 
point 

- In general a subtransaction T,, running on the site s, has 
a single type, either inherited from the transaction or 

transmitted by the site S, depending on the concerned 
heterogeneity. However, in the case of the heterogeneity of 
objects, T, is made of two components (To, , TtJ; the 
local controls of To, and TL~ and their integration are 
promsed during the same local control phase. 
- It is noted that a sequential execution of the read phase, 
needed for an interactive transaction, is a particular case for 
the parallel model presented here. 
- In the case of a local transaction which executes on a 
single site, the GC phase merges with the LC phase, thus 
releasing this kind of transaction from any global control. 

4.2. A method which is independent of the 
dependency graph 
4.2.1. Sequential control 
Definition 1 : A serialization order (SO) is a total order 
among committed transactions which is consistent with 
the dependencies induced by their conflicts. If we note 
TF + T; such a dependency, then SO verifies : 

VTf,T$ E G* TF + T; * Ti s<o Tz . 

In general, concurrency control methods apply a 
serialization criterion, which controls whether or not a 
serialization order exists. 

Theorem 1 : A serialization order exists iff G* is an 
acyclic digraph. 

We have seen in section 2.2 that it is not realistic to 
manage this graph in a distributed environment. So most 
of the traditional methods control the existence of a SO, 
which could either be a priori defined ( in times-tamp 
ordering methods) or attempted to be established during 
access ( in 2PL methods). In our method, as in 
[Boksenbaum 871, the SO is dynamically constructed 
without using the dependency graph. 

First, we present a sequential construction of the 
SO, controlling and possibly committing a single 
transaction T at a given time. Let G% be the extension of 
G* obtained in adding the vertex T and the set of arcs 
meaning Ts conflicts with committed transactions. Let SO 
be the total order constructed by the method and related to 
the acyclic G*. 

Definition 2 : An extension of SO induced by T is a 
total order SOT defined on G$ and verifying: 

V$,T;E G*: 
(restriction) Tf & Tz - Tlsc+ 2 * < T* 

(new arcs) Ti+T+Ti &T 

T+T;-T&T;. 



Proposition 2 : If SOf exists then G$- is an acyclic 
digraph. 

The aim of this sufficient condition is to allow the SO to 
be incrementally consrructed, without searching for any 
cycle in G$ while controlling a transaction T. This 
construction consists in inserting T in SO, if possible. To 
do so, we express the strongest constraints bearing on T. 
The resulting serialization criterion comes from the 
following theorem: 

Theorem 3 : Let T’ = sups0 ( Tr I T* + T), and 
T+ = infso ( T* I T + P). 
SOT, extension of SO exists iff T - < T+. s0 

Proof : Let SR, extension of SO, exist. Let TF, Tz E 
G* such that Tf + T and T + Tz. Suppose TT $, T;. 
Then, using definition 2 : TF & T, T $$r Tz and TT & 
Tz which leads to a contradiction. Thus V Ti ., T; E G* : 
Ti + T and T + Tz 3 Tf & T$ implies T- & 
T+. Conversely, suppose SO is a serialization order and 
T’ & T+ , then Se constructed by inserting T in SO in 
any place between T- and T+ is obviously an extension of 
SO induced by T. 0 

The advantages of the method arc: 
- It memorizes a total order, thus excluding the need of 
a global use of G*. 
- It may forget old transactions. For example, let x be 
an object written by committed transactions such that 
Ti +x T$ +x . . . * * 3 x Tn. In SO we have T1 c 
. ..c Ti, and, through a further read access from a 
transaction T, only T;“; +, T is needed. 
- Its natural distribution : when the database is 
partitioned, usually in sites, the control, is easily 
distributed. Locally, for each site s it calculates : 

Tl =supso(T*I P+x T;XE s),and 
T~=infso(T*I T+x T*;xE s). 

The global control is : supgo( T’;Z ; s E’ sites) c 
infso( c ; s E sites). It assumes that each part uses 
the same global order SO. This local knowledge is a 
result of the local commitment phases of successful 
globally controlled transactions. 
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In the next section we study a way of increasing the 
parallelism, through permitting many transactions to be 
concurrently controlled. 
4.2.2. Concurrent control 
De case of non conflicting: transactions 

Suppose there is a sequential control of two non 
conflicting transactions T1 and T2, and suppose T1 is 
committed before T2 is controlled. The sequential control 
constructs S@l, then, in order to control T2 it calculates 
infsoTl(T* I T2 -+ T*) and SUpSOTl(T* I T* 3 Tz). 
As S@l is an extension of SO, and T2 has no conflict 
with T1 we deduce that : infso(T* I T2 + T*) = 
infSoTl(T* I T2 + T*) (same applies to sup). 
Hence , a sequential control behaves like a parallel one 
when COnStrUCtiIIg S0~1T2. This parallelism applies t0 

any number of non conflicting transactions. 

The case of conflicting transactim 
If conflicting T1 and T2 are controlled in parallel, one may 
construct a total order which is incompatible with the 
dependencies induced by their conflicts, thus leading to 
inconsistency. We show in section 2 that a medium exists 
between this inapplicable parallelism and the mutual 
exclusion of a sequential control. This medium relies upon 
the notion of a locally controlled or a locally certified 
transaction, i.e. a transaction which has successfully 
checked the local criterion TH c c . Using this notion, 
the method must take into account the locally controlled 
(not yet committed) transactions. The mutually exclusive 
local phases arc executed in parallel on different sites. 

Considering this parallelism, we define the principles of 
concurrent control : 

Let T1 be a transaction running its local control on a 
site s including an object x concurrently used by a 
transaction T2 : 
- If T2 has already been committed, the sequential 
control is then applied. 
- If T2 is locally controlled, we know the results of this 
phase, namely : Tcs < T&. If the dependency is 
T1 + x T2 then we add the fictitious arc 
T1 + T;s ; otherwise we add T& + T 1. Next, 
we run the local control with this extra arc. 

Theorem 4 : Using the principles of concurrent control, 
the method is correct. 

Proof :Indeed, a successful concurrent control with two 
transactions whose dependency is T1 3x T2, constructs 
an order S@lT2 which is consistent firstly with G*, 
secondly with the arcs between T1 or T2 and committed 
transactions, and finally with either T1 + TFs or 
TL + T2 (depending on the order of the local controls 
of TI and T2 on the site s). Hence, in S@lT2, either 
T1 < TTs < T2 or T1 c TL < T2 stands, which proves 
this total order is consistent with T1 -+x T&l 



Remarks : 
- These principles apply to any number of transactions 
having any number of conflicts between them. 
- The accuracy of the concurrent method does not depend on 
the order of the local controls. This interesting result gives 
a solution to the problem of concurrent certifications we 
have seen in 8 2.2. 
- Where T1 +x T2. T1 has been locally controlled 
before T2 on the site s including x, and Tl+s does not 
exist, the method will reject T2 . During Tl ‘s local 
control, an “improvement” consists of forcing T1 to 
precede a committed transaction. This kind of “forward 
control”, as defined in [Haerder &t] is obtained by adding a 
fictitious arc, at the risk of rejecting T1 during its global 
control. Another way to avoid T2’s rejection is to suspend 
its local control until T1 be committed or rejected. 
4.2.3. Applying the method to the static 
heterogeneity of sites or objects 
In this case, no mixed conflicts have to be handled. 

- Let Ts be a locking subtransaction of T on a locking 
site s. It conflicts solely with locking subtransactions. 
Since (T* IT*+ T* ) = () when2PLisused.thelocal 
control is limited in this case to the calculation of T,. 

- Let Ts be an optimistic subtransaction of T on an 
optimistic site s. It conflicts solely with optimistic 
subtransactions. During Ts’s local control phase, the 
controued dependencies are: 
T,* + Ts or Ts + c (the latter resulting from the 
effects of the commitment of To on T,) 
Also, with respect to locally controlled P,, Ts + g or 

G + Ts are taken into account by adding the 
corresponding fictitious arcs Ts + Tis or T& + Ts, 
according to the principles of concurrent control. 
The local control calculates Ti and q . If Ti < T$ 
then To is considered as locally controlled on the site s. 
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- In the case of heterogeneity of objects, a 
subtransaction Ts is made of two heterogeneous 
subtransactions T,, and TL~ . The local control of Ts 
merges the local controls of T,, and Tb. 

The global control of a transaction T, after having received 
the results of the local controls of all its subtransactions 
calculates T- = sups& Ti ; s E sites), and e = infSo( 
T; ; s E sites). If T’ 2 T+ then T is rejected; otherwise 
a global total order is constructed, where T- < T < ?-c. 
The effects of this global phase take place during local 
commitment-rejection phases. 

4.2.4. Extending the method to mixed 
conflicts : per transaction heterogeneity 
In this case a typed transaction To (resp. TL) is made of 
subtransactions of the same type T,, (resp. Tb) running 
on different sites s. A principle of the method is to 
commit a locking transaction which has reached its mlp, 
otherwise locking would make no sense. To do so, we 
keep the following sufficient proposition invariant : 

Proposition 5 : For each committed transaction T*, and 
for each locking transaction TL which has reached its mlp : 

( Y is not conflicting with TL or T* + TL) 
ea ((T* I TL + T*) = (I). 

Consequently, TL may be inserted into the constructed SO, 
and can then commit. The additional control, due to 
keeping this property invariant, is transferred to optimistic 
subtransactions. 

. . smistic -T, 
The controlled dependencies are similar to those in section 
4.2.3 applied to conflicts with committed or locally 
controlled transactions. Nevertheless, a special treatment is 
needed to keep proposition 5 invariant : 

TL+ To or Tt + To implies the rejection of To. 

The local control on the site s calculates T,‘,, T& and (TL 
e G*ITLjXTo;x~ sites). If T& CT:. and 
( TL e G* I TL + x To ; x E site s) = () then To is 
considered as locally controlled on the site s. 

The global control calculates T,‘, ‘I;: and ( TL e G* I TL 
+ T,).IfT,‘r ?;:or(TLZ G*ITL+ T,)#() 
then To is rejected; otherwise a global total order where 
Ti < To < ‘I;: is constructed. The effects of this global 
phase take place during local commitment-rejection phases. 

ControlllnnTloclunn 
If we consider the sequential method, a transaction TL 
having reached its mlp is controlled with respect to 
committed transactions. Using the concurrent method, we 
must enforce additional control in order to consider locally 
controlled optimistic transactions. Bearing in mind that a 
locally controlled optimistic transaction could not be 
rejected, and that a locking transaction TL, which has 
reached its mlp, would not be rejected, the dependencies 
controlled on the site s are: 
- P -+ TL (a consequence of the proposition 5 and of 
lockingpropelties) 
- With respect to a locally controlled optimistic 
subtransaction P, : 

- c -+ TL : If To+s exists, as a result of the local 
control of To, then Tt -+ TL is changed into 



T& + TL according to the principles of the 
concurrent method. Otherwise, the local control of TL 
is suspended until To is committed or rejected. 
- TL + T z cannot occur. Indeed, if TL has used a 
conflicting object before the local control of T, then 
T,, would have been rejected, otherwise, if To has been 
successfully controlled on the site s, it locks each 
prewritten object, thus preventing these dependencies. 

The local control on site s is the calculation of T,. ’ 

The global control of T. is limited to the calculation of 
T- . and the construction of a SO where T’ < TL. The 
effects of TL on the database and the new SO are carried out 
during the local commitment phases. 
4.2.5. Dynamic heterogeneity of sites 
In this case T is made of subtransactions of different 
types. If the site s is in its transient phase, then the 
subtransaction is controlled according to the policy ruling 
the mixed conflicts. Otherwise, the site is in a single type 
phase, and we use the policy ruling the static 
heterogeneity. Globally we merge the different local 
controls. 

In the case of dynamic heterogeneity of objects, each 
subtransaction Ts is made of two heterogeneous 
subtransactions Tos, TL~ . First the local control of Ts 
merges the usual local controls of T,, and Tb. then the 
global control merges the different local controls. 

Conclusion : Applying the sufficient serializability 
criterion from theorem 3, we construct a total order of 
committed transactions consistent with their conflicts, thus 
guaranteeing the accuracy of the method. 

It is noted that the treatment of mixed conflicts balances 
the overload of the method between an additional waiting 
for the locking subtransactions and more rejection for the 
optimistic ones. In a previous paper [Pons 881, we 
proposed another strategy in which the additional burden 
was only born by optimistic subtransactions, which 
execute a forward control during their local phase. Locking 
transactions gained an advantage from this strategy, but a 
major drawback of this proposal was the useless rejection 
of optimistic transactions. 

5. Implementation of the method 

5.1. Timestamps and intervals 
In order to forget graph G* and its partial or&r, a global 
and total order of committed transactions which is 
consistent with G* is computed. The rank of a committed 

transaction T* materializes through a positive numerical 
timestamp t(r*), computed during the global phase. As the 
timestamp order is a SO, it verifies : 

Vfl,T$ TF3Tz * t(Ti) < t(T$). 

The serialization criterion obtained by checking the 
theorem 3 is as follows : 
sup (t (T*) I T* + T) < inf (t (T*) 1 T + T*). 

This criterion is naturally implemented by means of the 
timestamp interval technique. The global interval IG(T) 
associated with a transaction T is of the form [lower(T) ; 
upper(T)], where lower(T) = sup( t(T*) I T* + T ) and 
upper(T) = inf( t(T*) I T + T* ) represent the strongest 
constraints between T and already committed or 
concurrently controlled transactions. The serialization 
criterion then changes as follows : IG(T) must neither be 
empty nor reduced to one element, i.e. 1 IG(T) 1 > 1. Any 
timestamp in IG(T) can express T’s rank in the constructed 
SO. The distribution of the method is expressed by the 
local intervals I(T,S), each of them representing the 
strongest local constraints affecting the subtransaction of 
T on site S. The calculation of the global interval is then : 

IG(T) : = n I(T,S) 
SE sites used by T 

Local interval maintenance relies upon the principles of the 
concurrent control. Let us call “living” a not yet locally 
controlled subtransaction. Let T1 be living, Tl be locally 
controlled and Tg be committed, all of them in conflict on 
site S of x. 

-A dependency of the form T1 +x Tz 
(resp. T; +x Tt ) must be translated into : 
upper( ICrl 9 S) ) g t( T; ) 
(rem lower(I( Tl , S) ) 2 t( 6 1). 

-A dependency of the form Tt +x a 
(resp. T$ +x T1 ) must be translated into : 
upper( Ui , S) 1 s lowe.@ Q . S) 1 
(req. lower(I( T1 , S) ) 2 upper(I( TT . S) 1). 

Therefore, the local interval I(Tl ,S), initialized to 10 ;+ 4 
(no conflict), will have to be truncated to the left (resp. to 
the right) during the different phases of T1 on site S. 
Contrary to most optimistic methods this technique 
permits the presence of “old readers” such as Tt ; this is 
achieved by the handling of Tt + T; or Tt --) Ti 
dependencies. During the local commitment phase, the 
global order is carried out on the objects used, by means of 
the timestamps W(x) and R(x), from the most “recent” - in 
the SO - transactions that have written or read x. We notice 
that, in the case of a locking transaction TL having reached 

453 



its mlp. the proposition 4 stated in 9 4.2.5 implies : 
lG(TL)andVS l(TL,S)areoftheform[a,+-[. 

5.2. Detailed model 
5.2.1. Objects and transactions 
In order to simplify the notations, our model assumes that 
only one object is managed on a site, but it easily applies 
to the most general case : The set of objects managed by 
the site replaces the single x. 

Therefore, we have lG(T) = n l(T,x) 
XE objects used by T ’ 

The “object-site” model is composed of : 
- A global name x. 
- A type - locking or optimistic - which is transmitted, 
in the case of the heterogeneity of objects, to the . 
subtransaction when it first had access to the “object- 
site”. In the case of the heterogeneity of transactions, 
the subtransaction’s type is inherited from the 
transaction. 
- Data structures related to the accesses : The value of 
x, the timestamps W(x) and R(x), the shared and 
exclusive locks with their queues. 
- Data structures required by the local control phase : 
The name T, the type, the status - living or locally 
controlled -, the access type - read or write -, and its 
local interval l(T,x) are managed for each non- 
committed subtransaction which had access to the 
object. 

The transaction model we use has a coordinating site and 
several remote object-sites ; it corresponds to the integrated 
figure of 8 4.1, and is composed of the following phases : 
the local read phases LR(T,x), the local control phases 
LC(T,x), the global control phase GC(T,x), and the local 
commitment or rejection phases LM(T,x). 

LRfl.x> Dhases : The control of locking subtransactions 
is limited to the acquisition of the locks ; management of 
their intervals is not required. Concerning optimistic 
subtransactions, we will see later on that only read access 
requires an update of the local intervals. 

LC(T.x) Dhm Each phase includes : 
- Controls connected with committed transactions : 
Strongest constraints between T and committed 
transactions are handled by truncating l(T,x) to the left 
with respect to W(x) or R(x) according to T’s access. 
- Controls connected with living or locally controlled 
subtransactions : 

If optimistic T sees a locking and non committed TL 
(or Tt) such that TL + T or Tt + T, then T must 

be rejected by setting l(T,x) to the empty interval; other 
conflicts with locally controlled subtransactions are 
taken into account by truncating l(T,x). 
If locking T sees an optimistic locally controlled c 
such that p, + T, then : 

If l(l$ , x) is bounded then l(T,x) is truncated to the 
left according to upper( l(rO , x)) ; otherwise - 
upper( KC , x)1 = += - LC(T,x) is suspended until 
To is rejected or committed . Then l(T,x) may be 
truncated to the left according to t(Ta). 

At the end of this phase, if 1 l(T,x) 1 > 1 then T is 
considered as locally controlled (let us recall that x is 
locked when prewrltten by an optimistic locally controlled 
transaction). 

GCX’I? phase ; The control is processed on the coordinating 
site, after receiving all the l(T.x) from the concerned sites. 
The global decision leads to a rejection or a calculation of a 
timestamp in lG(T). This result is then broadcasted to all 
sites concerned. 

LMrT.xl Dhases ; During this phase the following actions 
take place : In case of commitment, the timestamps W(x) 
and R(x) are updated and write operations are performed, the 
intervals of old optimistic readers - T, such that 
To + T* - are truncated to the right. In any case, 
commitment or rejection, locks are released and local data 
structures related to T are deleted. 

Parallelism on the site 
Each of the LC or LM phases, as well as each read or 
prewrite operation of the LR phase is considered a priori as 
atomic. Since critical data structures are involved, each 
phase or operation of a transaction must be executed in 
mutual exclusion of any other phase or operation of a 
different transaction. We notice that a more precise study 
would allow increased parallelism on the site by dividing 
LC and LM phases. For example, a site may execute in 
parallel the LM phase of a writing transaction and the 
prewrites - in LR phases - of another one ; on the contrary, 
read operations must not interfere with an LM phase. The 
global GC phase, which only depends on a fixed set of 
intervals, and does not modify any of the critical data 
structures, may be processed in parallel with any other 
phase or operation. 
5.2.2. Conflicts and control 
In the following, each dependency is labelled with the 
related conflict. 
Write conflicts (PP or WP\ The processing of these 
conflicts is taken from pans 863 : When timestamps are 
used to express the SO, it is possible to constrain the 
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timestamped write operations, and thus the transactions, to 
conform to the SO. This is done .by forgetting a “late” 
write operation : If t( T1 ) c t( T2 ). and if Tt writes after 
T2, then Tl’s write is ignored, providing that the concerned 
read operations are involved (Thomas’ rule).Using a 
common SO for all the transactions, this permits the 
existence of “old writers” whose serialization order is 
different from their writing order in the local commitment 
phase. This application includes the conflicts between 
locking transactions. 

Implementation : The PP conflicts between living or 
locally controlled transactions are not considered. Thus. 
write locks only conflict with read locks, and no deadlock 
can result from PP conflicts. During the local certification 
of T which has prewritten x, the method considers the 
dependencies Tg wP, x T related to all the committed 
transactions which have written x, using the truncation to 
the left : I(T,x) := I(T,x) n [ W( x) ; + = [ . During the 
LM(T,x) phase, if t( T ) > W(x) then T effectively writes 
x and W(x) := t( T ) ; otherwise, the writing is ignored. 

Remark : This is not a strict application of Thomas’ 
rule. Using the strict application, the method would ignore 
the WP conflicts too. Thus it would put old transactions 
at an advantage, nevertheless it would lead to 
systematically ignoring acceptable write operations. 

Read-write conflicts IRP or WR or RWl 
- Between living transactions : The only executed control 
uses locks. It takes place during the LR phase for locking 
transactions. 
- Between a living transaction T and a committed 
transaction Tg : If T has prewritten x, Tg R_P, x T is 
considered using a truncation to the left (as in WP 
conflicts) during the LC phase; otherwise, if T has read x 
then : 

- When T is optimistic, Ti “4 x T is controlled 
using a truncation to the left during the LR phase. 
Furthermore, when a writing transaction Tk is 
committed after T has read x, the dependency 
T R*x Tg is carried back to T using the truncation to 
the right I(T,x) := I(T,x) n [ 0 ; t( Tc ) ] during the 
LM(&,X) phase. This technique controls old optimistic 
readers, without necessarily rejecting them. 
- When T is locking, the control prevents T sP,x Tc 
dependencies. If Tk is a locking transaction, such a 
conflict is prevented by the locking policy ; otherwise, 
if Tk is optimistic, this conflict CannOt occur, either 
because Tk has been rejected during its LC phase, or Tk 

has been successfully controlled, and T is blocked until 
Tk is committed or rejected (5 4.2.5). 

- Between certifying transactions : During its LC phase, a 
transaction T (noted TL or T,), which has ended its LR 
phase, sees that a transaction p (noted TL@ or Tt ) is 
already locally controlled, but not yet committed. 

- TL~!!!$ G cannot occur. 
- TL “-, Tt and Tf %!$ TL are prevented using locking 
policy. 
- Ti w+ To causes To to be rejected 
- Y0 RP, TL and ‘I;: RP, T, are controlled through a 
truncation to the left of the local interval of TL or T, 
referring to the upper boundary of I( p, , x) : 

I(T.x) := I(T,x)n[ uppert I(G,x));+=[. 
The particular case where I( V, , x) is unbounded 
leads to the rejection of T, or to the delay of the 
local control of TL until Tg is committed or 
re’ected, 

BP -To 3Tf andT, RAc are controlled through a 
truncation to the right of T,‘s local interval referring to 
the lower boundary of I( T@ , x) : 

I(T(J ,x) := I&,x)n[ 0; lower(I(T’,x))]. 

6. Conclusions 
In a distributed system, when a mixed concurrency control 
is applied, this poses a difficult problem : How to 
guarantee global serializability from a set of 
subtransactions controlled by different techniques. The 
practical solutions proposed in the literature are often 
limited : 

- On a site there is only one type of technique. This 
permits interconnection of existing databases to be 
dealt with, but this is not sufficient to manage a more 
dynamic heterogeneity. 
- Each site uses a total SO, thus leading to useless 
rejection. 
- The compatibility of the local SOS is realized during a 
global centralized control phase, thus limiting the 
parallelism. 

In order to rectify these limitations, we have proposed a 
new approach, relying on the following ideas : 

- Principles dealing with distributed concurrent 
certification. 
- Extending these principles to the local management of 
mixed conflicts, and defining a general distributed 
mixed method. 

The most significant features of the method are : 
- The global transactions do not need centralized 
control. A global - multisite - transaction certification 



involves only the concerned sites. The set of all 
committed transactions does not have to be explicitly 
considered. Therefore, the monosite transactions are 
only controlled locally. 
- An increase in parallelism obtained from the 
processing of local certification with several 
subtransactions being controlled on the same site. 
- A decrease in rejection rate obtained by replacing the 
local total order by weaker constraints. 

Finally this method supports the dynamism needed in 
general purpose distributed systems : 

- A “per transaction” heterogeneity allowing the 
applications to select, in an adaptive way, the type 
allocated to their transactions. 
- A “per site” heterogeneity, which could even be “per 
objects”, permitting either pessimistic or optimistic 
techniques to be applied, in a time variant strategy, 
depending on both when and where they will be most 
effective. 
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