
Reducing Storage for Quorum Consensus Algorithms

Divyakant Agrawal

Department of Computer Science

University of California
Santa Barbara, CA 93106

Abetrae t

In this paper, we first develop a fragmentation method

that reduces the storage overhead of replicated ob-

jects. We then present a data management protocol for

these fragmented objects, and show that this protocol

is a generalisation of quorum consensus algorithms for

replicated data in which objects are not fragmented.

Although this protocol reduces storage requirements,

it does not achieve the same level of resiliency for both

read and write operations. By integating a log-based

propagation mechanism with our protocol, we are able

to achieve the same level of resiliency for both read and

write operations as other quorum consensus protocob,

while reducing the storage cost.

1 Introduction

In a distributed database system data is replicated

to achieve fault-tolerance. One of the most im-

portant advantages of replication is that it masks

and tolerates failures in the network gracefully.

In particular, the system remains operational and

available to the users despite failures. Another

Permission to copy without fee all oc part of this mataS is
granted provided hat the copies are not ma& or dishitnlted for
direct commercial sdvmtsgc, the VIJIB copy&ht notice ud
the title of the publication and its date rppea. md notice is given
that copying is by Permission of the Vuy Large Dsts Base
Endowment To copy othawise. or to republish, requires a fee
and/or special Permission fmm the Endowment.

Pwxedings of the 14th VLDB Conference
Los Angeles, California 1988 419

Amr El Abbadi

Department of Computer Science

University of California
Santa Barbara, CA 93106

advantage is that recovery from catastrophic fail-

ures, such as a loss of storage media, becomes

possible due to the presence of redundant infor-

mation in the system. However, the increase in

fault-tolerance in a replicated database has several

underlying costs: storage and communication. In

this paper, we present an algorithm that reduces

the storage cost of replication, while achieving the

same degree of data availability as previous repli-

cated data management protocols [7].

We consider a distributed system consisting of

a set of sites connected by a communication net-

work. Sites communicate with each other through

messages only. We assume that sites are either

fail-stop [13], or may fail to send or receive mes-

sages. Communication links may fail by crashing,

or by failing to deliver messages. Combinations of

such failures may lead to partitioning failures(4],

where sites in a port&on may c&nmunicate with

each other, but no communication can occur be-

tween sites in different partitions. We also assume

that the failures in the systems are temporary.

That is, a site does not fail permanently and the

network does not remain partitioned forever.

Gifford [7] presents a simple quorum consensus

protocol to manage replicated objects in a dis-

tributed environment that suffers from such fail-

ures. In this protocol an object may be read by

reading a read quorum number of copies, and it

may be written by writing a write quorum num-

ber of copies. The restriction on the choice of

quorum assignment is that the sum of the read

and write quorums must exceed the total number

of copies of the object in the system. Also, the

size of write quorum must be such that the sum

of two write quorums exceeds the total number of

copies of the object.

Since Gifford’s protocol does not require that

write operations be executed at all copies of an

object, it becomes necessary to be able to iden-

tify the current copy in any read or write quorum

number of copies. This is achieved by associat-

ing a version number with each copy. The version

number is updated every time a copy is modified.

The copy with the largest version number is cur-

rent. The new version number assigned to each

copy is one more than the version associated with

the current copy. The read and write quorums in

this protocol are such that the read and write op

erations are always performed on a current copy.

The read and write quorums in [7] determine

the number of copies that may become inaccessi-

ble without rendering the object unavailable for

reading or writing. For example, consider an ob-

ject z with N(z] copies, and read quorum Qr[z]

and write quorum Qyl[z]. A read operation can

be executed even when N[z] - Qr[z] copies are

inaccessible. Similarly, a write operation can be

executed even when N[z] - Q,,, [z] copies are inac-

cessible. The main disadvantage of this protocol,

however, is that in order to achieve such a degree

of availability the object as a whole must be repli-

cated at N sites, hence, requiring N times the

storage of one copy.

Paris [12] presents an interesting protocol that

addresses the problem of storage requirements in

Gifford’s protocol. Instead of storing an object

z at N[z] sites, this protocol stores the object at

m[z] sites (m[z] 5 N[z]) and stores tvitnesees at

the remaining N[z] - m[z] sites. A witness stores

only a version number, and hence requires nom-

inal storage. An analysis shows that when read

and write quorums correspond to a majority of

copies, and under very general assumptions, the

reliability of a replicated object with N[z] copies

is the same as the reliability of au object with

m]z] copies and N[z] - m[z] witnesses. A cru-

cial assumption made in [12] to achieve this de-

gree of reliability ie the existence of a repair pro-

cc88 that ensures the continuous availability of a

valid quorum, i.e., all copies residing on a site

that has failed will be brought upto-date when

the site recovers. The repair process must be exe

cuted atomically at recovery time; otherwise cer-

tain timing and failure sequences may result in an

available quorum that does not contain a current

copy of the object.

In this paper we propose a protocol that en-

sures the same degree of data availability as that

attained by Gifford’s quorum consensus protocol,

while, in general, requiring less storage. Our pro-

tocol reduces storage costs when write quorums

are less than all copies of an object. In order

to make write operations fault-tolerant, most sys-

tems satisfy this property, and therefore our pro-

tocol can be used to reduce storage costs. Fur-

thermore, the protocol does not require any spe-

cial recovery process to handle failures, and the

updating of information on recovering sites is not

subject to special timing constraints.

In the next section we present our fragmen-

tation method for objects and describe a simple

replicated data management protocol. We show

that the protocol cannot attain the same level of

read and write resiliency as [7], while reducing

the storage requirements. In section 3 we extend

this simple protocol to achieve the same level of

420

resiliency for read and write operations as that
achieved by Gifford’s protocol, while still requir-

ing less storage. We conclude the paper with a

discussion of our results.

2 A Simple Data Management Protocol

We consider a set of sites connected by bidirec-

tional links. A distributed database consists of a

set of object8 that may reside at different sites.

Users execute tran8aetion.9 that read and write

the objects in the database. The execution of a

transaction is atomic, i.e., before a transaction

terminates it either commits or aborts all changes

it made to the database. We also assume that

transaction execution is synchronized by an un-

derlying concurrency control mechanism, e.g, two-

phase locking protocol[5] or timestamp ordering

protocol [Z].

2.1 The Protocol

In a distributed system, a high level of data avail-

ability can be achieved by storing several copies of

each object at different sites. The standard quo

rum consensus approach [7] would require repli-

cating the object, i.e., storing the whole object,

at several sites. We say that the implementation

of an object requires 1 storage if that implemen-

tation uses I times as much storage as a mingle

copy of the object would use. Hence, the stan-

dard replication approach uses n storage, if an

object is replicated at n sites. We now propose

a different approach to distribute an object at n

different sites. This approach requires m storage,

where m 5 n. In this section we propose a sim-

ple protocol for managing a replicated object at n

sites, where each site stores a fraction of the whole

object, thus requiring low storage requirements.

Given an object z, we distribute it on n[z] sites

so that the overall storage used is m[z] 5 n[z].

This is done by dividing the object z into n[z]

frogmento and storing them on n[z] sites such

that:

1. Each fragment is stored at m[z] different

sites.

2. Each site has m[z] distinct fragments.

The m[z] fragments of z stored at a site are called

a segment. Since each fragment is replicated at

m[z] sites, the total storage used in our scheme is

m[z] storage. We define the Full Copy Equivalent

(FCE[z]) of an object z to be the least number

of segments necessary in the worst case to recon-

struct the object, i.e., the least number of seg-

ments containing all n[z] distinct fragments of z.

Since each fragment exists in m[z] segments, any

44 - m[z] + 1 segments must contain at least

one copy of each fragment of z. Furthermore, if

FCE[z] is less than n[z] - m[z] + 1 then in the

worst case FCE[z] segments may not contain any

copy of a particular fragment. Thus, the fragmen-

tation technique satisfies the following property:

Fl. For an object z, FCE(z] is at least n(z] -

m[z] + 1 distinct segments.

Figure 1 depicts one possible storage scheme for

an object x with 3 copies at 5 sites, i.e., m[z] = 3

and n[z] = 5. In this example, FCE[z] is 3 seg-

ments. Note that the entire object could be con-

structed from two segments: 81 and 84; however,

not any two segments would suffice, e.g., segments

81 and 82 do not contain fragment fs. In Contra&,

any three segments would suffice to reconstruct

the entire object z.

We associate with each segment a version num-

ber, which is initialized to 1, and with each object

2, a read quorum, q,[z], and a write quorum, qW(z].

A read operation, r[z], is executed as follows:

1. Select qr[z] segments of z, and determine the

421

81 : 82 : 83 : 84 : 86 :

fl

B f2

fs

f2

El A
f4

fi: +* fragment of the object 8j: J*“” segment of the object
Figure 1: A storage scheme for an object z with 3 copiee at 5 sites

maximum version number, on,,, of the se-

lected segmenta.

2. Read FCE[z] segments with the version

number vn,, to correctly construct the

whole object x.

A write operation, w[z], is executed as follows:

1. Select qw [z] segments of x and determine the

maximum version number, vn,,, of the se-

lected segments.

2. Write all fragments in the selected segments

and update their version numbers to vn,,+

1.

Read and write quorums must satisfy the follow-

ing requiremente:

n[z] - m[z] + 1 L q&] 5 n[z] (2.1)
max (+I - +I + 1, [,-I) I 9&l < +I

(24
+I+ (+I - +I + 1) L a[Z] + q&l 5 2 l n[z]

P-3)

Equation (2.1) captures the requirement that

each read operation must access at least FCE[z]

segments, i.e., at least n[z] - m[z] + 1 aegmenta,

otherwise some fragments of the object may not

be in the read quorum (property Fl), and hence,

the object cannot be reconstructed completely.

Equation (2.2) places two restrictions on the

lower bound of the write quorums. First, a write

operation on object x must write at least FCE[z]

segments. Second, any two write operations of

an object z must have a non-empty intersection,

i.e., there must be at least one segment written

by both operations. This restriction is imposed

because every write operation must assign a new

version number greater than the version numbers

assigned to any segment.’

Finally, Equation (2.3) impoeea the restriction

that for an object z, any two sets of sizes qr [(z] and

qw[z] must contain at least FCE[z] segments in

common. Since a read operation intersecta with

every write operation, it can determine the high-

est version number written. Furthermore, the en-

tire object x can be constructed by using FCE[z]

segments with the highest version number. The

following lemma formalizes these arguments and

shows the necessity of the lower bound in Equa-

tion (2.3).

Lemma 1 For a read operation r [t] to read the

entire object z with the highest version number,

q,(z]+q,&] must be greater than or equal to n[z]+

(n[z] - m[z] + 1).

Proof. If q&r] + qw[z] < n[z] + 1, then in the

worst case r[z] may not access any segment with

‘Equatione (2.1) and (2.2) aeoume that operation8 must
acceee the entire object. We are inveetigating poeeibla opti-
miratione that can be made when operationr acceea a mb-
ret of the fragmentr of the object.

422

the highest version number. Hence, we only have

to consider the case where:

44 < !+I + %u[4 < f+] + (+I - m[z] + 1)

i.e., the case where a read and write operation

have a non-empty intersection that does not con-

tain FCE[z] segments. In this case, r[z] in-

tersects with every write operation at least at

one segment, and hence, r[z] can calculate the

value of the highest version number on,,. Let

w&z] be the write operation that writes z with

the version number VII-=. Let qr [z] + q,,, [z] =

+I + (44 - m[z] + 1) - 1 then, in the worst

case, operations wmoZ[z] and r[z] have at most

44 - m[z] segments in common. But from Fl,

this implies that r[z] in the worst case may not be

able to construct the entire object z with VIZ-~.

Thus, q,[z] + qw[z] must be greater that or equal

to n[z] + (+I - m[z] + 1). cl

We next compare Equations (2.1), (2.2), and

(2.3) with Gifford’s Equations relating the read

and write quorums of replicated objects. In Gif-

ford’s protocol, a read operation can be performed

by accessing az few as one copy of an object. On

the other hand, in our protocol, one segment does

not represent the entire object, and hence from

Equation (2.1) a read operation for an object x

must access at least FCE[z] segments. It must

be noted, however, that in order to increase the

availability of write operations in Gifford’s proto-

col, the read quorum, in general, is chosen greater

than one. We make use of this fact to reduce’the

storage cost of replication and will further address

this issue in the next section.

A similar distinction exists for the write oper-

ations in the two protocols. In Gifford’s proto-

col, a write operation can be executed with as

few as [,q] copies an object z, while our pm

tocol requires the maximum of T+] - m[z] + 1

and r-1 g
‘\

se ments. This restriction, however; -\
can be made void by always choosing a value of

m[x] such that $l < m[z] 5 n[z]. Hence, Equa-
tion (2.2) requires that two write operations must

have at least one segment in common, which is

the same as in Gifford’s protocol. This is due to

the observation that in order to execute a write

operation the current value of the object is not

necessary, rather, the highest version number as-

sociated with any of its segments must be avail-

able.

Finally, in Giiford’s protocol, a read and a write

operation on an object z need only one copy in

common. However, in our protocol, for a trans-

action to read an object z, it must be able to ac-

cess at least fl[z] - m[z] + 1 segments with the

highest version number (Equation (2.3)). Note

that for the purpose of correctness, i.e., to en-

sure one-copy serididdity [3], the sum of read

and write quorum of n[z] + 1 segments would have

been sufficient. This is due to the fact that to en-

sure one-copy serializability, all our protocol has

to guarantee is that two conflicting operations2

must physically conflict on at least one segment.

Since our protocol imposes stronger restrictions

on read and write quorums, it must ensure one-

copy serializability.

3.3 Resiliency of the Protocol

The simple protocol is a generalization of Gifford’s

quorum consensus protocol in which objects are

not fragmented, or, equivalently, in which for ob-

ject 2, m[z] = +I. In thii section we compare

the levels of resiliency achieved by both protocols:

we show that, in general, our protocol can achieve

the same resiliency level for at least one operation

at reduced storage cost. We start by formalizing

‘Two operatbnr conflict if thei operate on the lame
object and at lea& one of them ir a write operation.

423

the notion of resiliency as follows: an implemen-

tation of an object z has read resiliency, &[a~), if

a read operation on x can be executed even after

R&j segments are inaccessible due to site or par-
titioning failures. Write resiliency, Izyl[z], for an

object ZE is defined similarly.

For purposes of comparison, let Qw[z] and Qr[z]

be the read and write quorums associated with an

object z according to Gifford’s protocol, and let

N[z] be the total number of copies implement-

ing object Z. This implementation has a read ra

siliency R,[z] = A+]-Q&J and awrite resiliency

&[2] = N[z]-Q,[2]. Wenow present twoimple

mentations using our protocol, one that achieves

the same write resiliency as that achieved by Gif-

ford’s protocol (but a lower degree of read re-

siliency), and another that achieves the same read

resiliency (but a lower write resiliency). Both im-

plementations use less storage than that required

by Gifford’e protocol.

We implement our protocol using n[z] = N[z]

segments, and any value of m[z] such that $$ <

m[z] 5 n[z]. The fragmentation approach cau

achieve the same write resiliency for write oper-

ations by assigning qw[z] = &[z]; since n[z] =

N[x], qw[z] > v = q, and since 9 < m[z],

!h&] 1 n[z] - m[z] + 1. Hence, our protocol al-

lows the implementation of an object z using as

low as half the storage requirements of Gifford’s

protocol, while achieving the same degree of write

resiliency, and the same communication costs per

write operations (since qw [z] = QyI[z]). Unfortu-

nately, to achieve this degree of write resiliency

and communication cost with less storage, read

operations in our protocol become more expen-

sive and less resilient to failures. More specifically,

qr[z] = Q,[z]+(n[z]-m[z]), i.e., the read quorum

has increased in size by (+I - m[z]), and hence

the read resiliency has decreased by that amount

too.

Our second implementation achieves the same

read resiliency as Gifford’s protocol while using

less storage. However, this improved performance

is at the expense of write operations. Let n[z] =

N[z] and q&t] = Q,[z]. Since q,[z] 3 n[z]-m[z]+

1, we require that m[z] 2 n[~] - Qr[z] + 1. Hence,,

the greater the read quorum, the smaller m[z] may

be, thus achieving the same read resiliency while

requiring less storage. However, write quorums

are larger in size than in the corresponding im-

plementation using GifFord’s protocol, specifically,

qw[z] = Q,,,[z] + (n[z] - m[z]), i.e., the write que

rum has increased in sise by (n[z] - m[z]), thus

lowering the write resiliency of 2.

In conclusion, we note that since the read

and write quorum for an object z must contain

FCE[z] segments, i.e., n[z] - m[z] + 1 segments,

both read and write operations cannot achieve the

same degree of resiliency and communication cost

as Gifford’s protocol using less storage. In the

next section we present a special mechanism that

overcomes this problem, and then we show that

we can attain comparable cost and resiliency per-

formance to Gifford’s protocol using less storage.

3 A Modified Data Management Protocol

In the previous section we showed that in order

to reduce the storage cost of a replicated object

x from n[z] copies to m[z] copies, the sire of the

intersection between read and write operations in-

creases from one copy of 2 to n[z] - m[z] + 1 seg-
ments of a~. The larger size of intersection between

read and write operations results in increased

communication costs for read and/or write oper-

ations. In this section we provide an underlying

mechanism, which ensures that the information

written by a write operation on an object is even-

tually propagated to all segments of the object

424

in the syetem. Although all segments of an ob-

ject z are updated as a result of a write opera-

tion on z, this does not mean that q,,,[z] in thia

protocol is n[z]. By using this underlying mecha-

nism, we will 8how how to decrease the size of in-

tesection between read and write operations from

44 - m[z] + 1 segments to one segment while

maintaining the reduced level of storage for z.

First, we describe the underlying mechanism to

propagate write operation8 to all segments of an

object. Next, we explain how to integrate our

protocol with the propagation mechanism. Fi-

nally, we compare our modified protocol with Gif-

ford’8 protocol and demonstrate that we achieve

the Bame level of resiliency and communication

cost for read and write operations in our proto

col.

3.1 The Propagation Mechanism

A common technique to propagate information ef-

ficiently in a network and, thus, synchronize var-

ious components of a distributed application is

to construct a log of certain application specific

events that have occurred in the network [14]. In

the case of a replicated database such events in-

clude reading or writing a copy of an object at the

coordinator site of a transaction. Each Bite main-

tains a local copy of the log, which is organized as

an ordered sequence of event records, and a prop

agation mechanism is employed to keep the copies

of the log upto-date. The mechanism makes.use

of communication operations, send and receive, to

exchange portions of the copies of the log for this

purpose [6,15,9,11,8]. The background messages

used in the propagation mechanism to bring all

the copies of the log upto-date are also referred

to as gossip message8 in [11). We have chosen the

algorithm proposed by [15] to integrate the prop

agation mechanism with our protocol.

The algorithm described by Wuu and Bernstein

[15] is an efficient implementation of the prop

agation mechanism. Each site, Si, maintains a

time-table, 7, which is an N x N array of times-

tamp8 of events that have occurred in the net-

work, where N is the total number of sites. A

site uses the time-table to place a bound on how

out-of-date other &es are about events that have

happened in the network. The time-table allows

a site to decide what portion of its copy of the log

it should send to another site, and when all sites

have learned about a particular event. This infor-

mation is used by a site to determine when certain

portions of ite copy of the log can be discarded.

Hence a site retains a particular event record in

its copy of the log only if it is not certain that

all other sites have learned of that event. The

happened bGfore relation, ‘hn [lo], relates the ap

plication specific events and the communication

operations employed by the propagation mechs

niem. Periodically a site sends its time-table and

a portion of ite copy of the log to another site. On

receiving such a message a site update8 it8 copy of

the log by including event records of which it was

unaware and update8 its time-table using infor-

mation in the received time-table. The following

two properties are guaranteed by the algorithm:

Pl. Every eite eventually learns of each event.

P2. If cl and ez are two eventa such that ei*ez,

then if a eite knows of ez, it must also know

of cl.

Pl is dependent on the assumption that site fail-

ures and network partitions are not permanent.

It follows from P2 that a site can process events

in the happened-before order.

It must be noted that in the model of the system

discussed above, all communication among sites is

performed implicitly by exchanging the copies of

425

logs among the sites. That is, explicit communi-
cation operations, eend and receive, are not avail-

able to application programs. Instead, au applica-

tion program relies on the underlying propagation

mechanism to inform other sites about its opera-

tion request (for example, a find operation on a

distributed dictionary). The responses of other

sites (for example, the results of a find opera-

tion on a distributed dictionary) are also commu-

nicated to the application program through the

log. Although the propagation mechanism has an

overhead of maintaining copies of the log, it has

several advantages that offset this extra overhead:

it can be easily implemented in an unreliable net-

work, and the number of messages in the system

can be reduced at the expense of the size of mes-

sages. Furthermore, the size of the copies of the

log is bounded since sites discard event records

from their copies as soon as they discover that all

sites have learned about the events corresponding

to these event records. Several optimizations have

been proposed in [15] that reduce the overhead as-

sociated with this mechanism.

3.2 The Integrated Protocol

We now integrate the propagation mechanism in-

troduced in the previous subsection with the ex-

ecution of read and write operations of transac-

tions. The fragmentation approach described ear-

lier is used to store the segments of objects at dif-

ferent sites. The model of the system remains the

same as that developed in Section 2.1 except for

the distinction that application programs, trans-

actions in our case, do not explicitly communicate

with remote sites in the system. All communica-

tion is achieved by modeling operations and the

results of the operations as events in the system

and then exchanging the copies of the log among

the sites. The site where a transaction originates

is designated w the coordinator of the transac-

tion. Read and write operations of a transaction

are recorded as events in the copy of the log at the

coordinator; other sites in the network learn about

these events as a result of the propagation. F’ur-

thermore, sites agreeing to be in the quorum of an

operation do not communicate explicitly with the

coordinator. Instead, their decision to be in the

quorum is also recorded as an event in their copy

of the log; they too rely on the underlying com-

munication operations to propagate these events

to the coordinator.

We associate with each object x, a read quorum,

qr[[z], and a write quorum, qw[z]. A read opera-

tion, r[z], in this protocol is executed as follows:

1.

2.

3.

A read operation, r[z], results in an event,

r[z]-event, at the coordinator. An r[z]-event

record is placed in the coordinator’s copy of

the log. When the coordinator’s copy of the

log is propagated to other sites, the effect is

the same as the transaction sending a read

request to other sites in the system.

When a site, S, learns of r[z]-event and

decidess to be in the quorum for r[z],

an event, oks(r[z])-event, occurs at that

site. The event record corresponding to

ok,g (r [z&event in the copy of the log includes

the value of the segment of z at that site.

When the site’s copy of the log is eventually

propagated to the coordinator, the effect is

the same as the transaction receiving a reply

to the read request from a site in the quorum.

The operation, r[z], is not completed until

the coordinator can determine that qr[z] seg-

ments of x have been accessed. The events,

‘Thir decision ir bawd on the concurrency control mech-
anirm employed.

426

oks(r[z])-event, are observed at the coordi-

nator for this purpose. After accessing q,[z]

segments of x, the coordinator returns the

value of x to the requesting transaction.

A write operation, w[z], is executed as follows:

1. A write operation, w[z], results in an event,

v[z]-event, at the coordinator. A v[z]-event
record is placed in the coordinator’s copy of

the log. When the coordinator’s copy of the

log is propagated to other sites, the effect is

same as the transaction sending a version re-

quest to other sites in the system.

2. When a site, S, learns of a v(z]-event
and decides to be in the quorum for w[z],

an event, oks(v[z])- event, occurs at that

site. The event record corresponding to

oks(v[z])-event in the copy of the log includes

the version of the segment of z at that site.

When the site’s copy of the log is eventually

propagated to the coordinator, the effect is

same as the transaction receiving a reply to

the version request from a site in the quorum.

3. The operation, w[z], is not completed until

the coordinator can determine that gw [z] seg-

ments of z have been accessed. The events,

oks(v[z])-event, are observed by the coordi-

nator for this purpose. The operation, w[z],

is completed when an event, w[z]-event, oc-
curs at the coordinator. A w[z]-event record

is placed in the coordinator’s copy of the log,

and the event record includes the new value
of z and its version number that will be used

to update the segments of z at various sites in

the network. When the coordinator’s copy of

the log is propagated to other sites, the effect

is same as the transaction executing a write

at other sites. Note that the concurrency con-

trol mechanism ensures no other transactions

can access z until the transaction executing

w[z] commits or aborts at its quorum.

The modified protocol must satisfy the following

requirements:

+I - m[z] + 1 5 q&l 5 n[x] (3.1)
max

(
n[z] - m/z] + 1, F*l) I qw(z] I n[z]

(3.2)

n[z] + 1 5 !+I + 4&J 5 2 - 44 (3.3)
Equations (3.1) and (3.2) are the same sa Aqua-

tions (2.1) and (2.2) from the previous section;

this is due to the identical considerations. On the

other hand, Equation (3.3) is different and states

that the read and write quorum intersection of

one segment is sufficient. This is a significant im-

provement from the previous section where it was

required that a read and a write quorum for an ob-

ject z must have an intersection of rz[z] - m[z] + 1

segments. This is due to the fact that the event

record for w[z] in the copy of the log at a site

contains the entire information about x, and not

only the information concerning the segment of

z at that site. Since qr[z] + qw[z] 2 n[z] + 1,

there will always be at least one segment with

the highest version number in q,[z] correspond-

ing to some write operation wmoz[2]. If r[t] col-

lects n[z] - m[z] + 1 segments or more with the

highest version number, it can reconstruct the en-

tire object z. In the case when r[z] collects fewer

than n[z] - m[z] + 1 segments with the highest

version number, then w,,,,,,[z]-event has not been

propagated to all segments of z in the network.

Since an event record is discarded by a site only

when all sites learn about the event, therefore

w,,,,,,[z]-event record still exists in the log. Hence,

the coordinator can always construct the entire

object z by using its copy of the log. This is for-

mally proved in the following lemma.

Lemma 2 For a read operation, r(z], to read the

current value of an object z, it is sufficient that

427

Q,[z] + g,,,[z] be greater than or equal to n[z] + 1.

Proof. Since q,[z) + qW[z] 2 n[z] + 1, therefore

r[z] intersects with every write operation at least

at one segment, and hence, can determine the

highest version number vn,,,,,=. Let w,,,&] be

the write operation that writes z with version

number vnnror . Since q&z] > n[z] - m[z] + 1,

there are two possible cases. If r[z] collects

+I - m[z] + 1 segments with vnMc, it can con-

struct current value of z. Otherwise, t[z] collects

fewer than n[z] - m[z] + 1 segments with vn,,,,,,

and w-,[z]-event must exist in the copies of the

log at the sites that have the segments of z with

on,= (This is from (15) in which an event record

is discarded by a site if it can determine that all

sites have learned about the event). At least one

of these sites, S, with vn,,,,,= must be in q?[z].

Since at S, r[z] will read from w,,Jz], then:

w-,[z]-event++]-event+oks(r[z])-event

Hence, when the coordinator of r[z] learns about

oks(r[z])-event, from P2, it must also become

aware of w,,,,,,[z]-event. Thus, the coordinator

will always return the current value of x. Cl

Although we have described the protocol in

which oks(r[z])- event includes the value of the

segment of z at S, this is not necessary. A possi-

ble optimization is not to include the values in the

events. Instead, the coordinator (after collecting

the required number of oks(r[z])-event) can ex-

plicitly read the value of the segments from the

respective sites in the quorum. This will result in

a significant reduction in the size of the log. An

extension of this optimization is related to query
processing. If objects are fragmented in such a

way that queries reference objects on a fragment

basis, the coordinator can reduce communication

by executing a query at the site where the up-to

date fragment resides.

3.3 Resiliency of the Protocol

The quorum intersection requirement in our pro-
tocol is identical to that in Gifford, and there-

fore, we achieve the same level of resiliency with

m copies that is achieved by Gifford with n copies.

However, the range of assignment for read and

write quorums in our protocol is narrower than

the ranges in the Gifford’s scheme. As in Section

2.2, let Q,,,[z] and Q,[z] be the read and write quo-

rums associated with an object z according to Gif-

ford’s protocol, and let A+] be the total number

of copies implementing object z. This implemen-

tation has a read resiliency &[z] = N[z] - Q~[z]

and a write resiliency &[z] = N[z] - f&[z]. In

our implementation, we use n[z] = N[z], qr[z] =

Qr[z], and q,,,[z] = QW[z]. We choose m[z] such

that:

n[x] - m[z] + 1 L q&] I n[z] (3.1)

max
(
n[z] - m[z] + 1, [VI) I 94 I +]

(3.2)

If we choose a value of m[z] such that y <

m[z] 5 n[z] then Equation (3.2) reduces to:

[,-I 5 a&] I n[s] (3.2)
which imposes the same restriction on write op-

erations as in Gifford’s protocol. Thus the only

restriction imposed by our scheme is that the

read quorum must be greater than or equal to

+I - m[z] + 1. This implies that the range of

read quorum assignment is restricted at the lower

end in our protocol. However, this is not a serious

shortcoming, since any fault-tolerant implementa-

tion of an object z will rarely use the lower end

of the read quorum assignments (for write opera-

tions to tolerate the failures of t copies, the read
quorum must be greater than t).

We now show how to reduce storage for a given

428

read and write resiliency constraint so that it is

minimal with respect to the fragmentation ap-

proach. Given qr [z] and qw [z] for an object z cor-

responding to the desired level of resiliency, Equa-

tion (3.3) requires that:

qr[4 2 +I + 1 - !l8&1
But from Equation (3.1), we know that q,[z] 2

44 - m[z] + 1. Thus, in order to minimize stor-

age (in our protocol) and still satisfy the resiliency

constraints, we must choose:

q,[z] = n[+m[z]+l, ami q,[z] = n[z]+l-qw[z].

Hence, m[z] = q,,,[z]. This result indicates

that for any quorum assignment other than read-

one/write-all approach, we can reduce storage in

our protocol and still maintain the same level of

availability as in other quorum consensus algo-

rithms.

4 Conclusion

In this paper, we presented a simple and storage

efficient protocol for managing replicated data.

We first developed a fragmentation approach to

reduce storage requirements in a replicated envi-

ronment, and described a generalization of Gif-

ford’s protocol to maintain data in this approach.

However, this protocol can not achieve the same

level of resiliency for both read and write oper-

ations as Gifford’s protocol, while reducing the

storage. In order to overcome this drawback, we

integrated a propagation technique proposed by

Wuu and Bernstein [15] with our protocol. This

propagation mechanism does have an extra stor-

age overhead of maintaining the copies of the log

in the system. In particular, when an object is

updated, the storage requirements of the copies of

the log increase temporarily. We are currently de-

veloping a model to analyze the storage behavior

of our protocol and compare it with other repli-

cated data management protocols. We would also

like to integrate our fragmentation method with

other propagation mechanisms[9,11,8], which may

be more suitable for different environments. In

this paper, we demonstrated that for any read

quorum greater than one, our protocol can reduce

the storage while maintaining the same resiliency

for read and write operations. In most fault tol-

erant systems based on the quorum approach, the
write quorum is generally less than all copies of

an object, and hence the read quorum is greater

than one. Such fault tolerant systems can bena

fit from the approach proposed in this paper to

reduce storage. Furthermore in [l], it has been

argued that the optimal read and write quorums

are majority assignments. Given such an assign-

ment of read and write quorums, we can reduce

the storage cost by as much as half of that used in

Gilford’s protocol and still achieve the same level

of resiliency and communication cost for both read

and write operations.

Acknowledgements

We would like to thank John Bruno and Abdel-

salam Heddaya for suggesting improvements to an

earlier draft of the paper. We are also grateful to

the anonymous refrees for their comments on the

paper.

References

[l] Ahamad M., Ammar M. H., “Performance

Characterization of Quorum Consensus Al-

gorithms for Replicated Data”, Proceedings

of Sixth Symposium on Reliability in Dis-

tributed Software and Database Systems’,

pp 161-168, 1987.

[2] Bernstein P. A., Goodman N., ‘Concurrency

Control in Distributed Database Systems”,

429

ACM Computing Surveys, Vol. 13, No. 2, pp
185221, June 1981.

[3] Bernstein P. A., Goodman N., “The Fail-

ure and Recovery Problem for Replicated

Databases”, Proceedings of the Second An-

nual ACM Symposium of Principles of Dis-

tributed Computing, August, 1983.

[4] Davidson S., Garcia-Molina, H., and Skeen,

D., “Consistency in Partitioned Networks’“,

ACM Computing Surveys, Vol. 17, No. 3, pp

341-370, September 1985.

[S] Eswaran K. P., Gray J. N., Lorie R. A.,

Traiger I. L., “The Notion of Consistency

and Predicate Locks in Database System”

Communications of the ACM 11, pp 624-633,

1976.

[S] Fischer M. J., Michael A., “Sacrificing Se-

rializability to Attain High Availability of

Data in an Unreliable Network”, ACM
SIGACT-SIGMOD Symposium on Principles

of Database Systems, 1982.

[7] Gifford D. K., “Weighted Voting for RepIi-

cated Data”, Proceedings of the Seventh

Symposium on Operating Systems Princi-

ples, December 1979.

[8] Heddaya A., Hsu M., Weihl W., “Two Phase

Gossip: Managing Distributed Event Histo-

ries”, To Appear in Information Sciencee: An

International Journal, 1988.

[9] Joseph T. A., Birman K. P., “Low Cost man-

agement of Replicated Data in Fault-Tolerant
Distributed Systems”, ACM Transactions on

Computer Systems, Vol. 4, No.1, February

1986.

[lo] Lamport L., ‘Tie, Clocks, and the Order-

ing of events in a Distributed System”, Com-

munication of the ACM, July 1978.

[ll] Liskov B., R. Ladin, “Highly Available Ser-

vices in Distributed Systems”, Proceedings of

the Fifth ACM Symposium on Priniciples of

Distributed Computing, August 1986.

[12] Paris J. F., UVoting with Witnesses: A Con-

sistency Scheme for Replicated Files”, Pro-

ceedings of the 6th Conference on Distributed

Computing Systems, 1986.

[13] SchIicting R., Schneider F. B., ‘Fail-Stop

Processors: An Approach to Designing Fault-

Tolerant Computing Systems”, ACM Trans-

actions on Computing Systems, Vol. 1, No.

3, pp 222238, August 1983.

[141 Schneider F. B., ‘Synchronization in Dis-

tributed Programs”, ACM ?Dansactions on

Progr amming Languages and Systems, April

1982.

[15] Wuu G. T. J., Bernstein A. J., “Efficient So

lutions to he Replicated Log and Dictionary

Problems’@, Proceedings of the Third ACM

Symposium on Priniciples of Distributed

Computing, August 1984.

430

