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Abetrae t 

In this paper, we first develop a fragmentation method 

that reduces the storage overhead of replicated ob- 

jects. We then present a data management protocol for 

these fragmented objects, and show that this protocol 

is a generalisation of quorum consensus algorithms for 

replicated data in which objects are not fragmented. 

Although this protocol reduces storage requirements, 

it does not achieve the same level of resiliency for both 

read and write operations. By integating a log-based 

propagation mechanism with our protocol, we are able 

to achieve the same level of resiliency for both read and 

write operations as other quorum consensus protocob, 

while reducing the storage cost. 

1 Introduction 

In a distributed database system data is replicated 

to achieve fault-tolerance. One of the most im- 

portant advantages of replication is that it masks 

and tolerates failures in the network gracefully. 

In particular, the system remains operational and 

available to the users despite failures. Another 
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advantage is that recovery from catastrophic fail- 

ures, such as a loss of storage media, becomes 

possible due to the presence of redundant infor- 

mation in the system. However, the increase in 

fault-tolerance in a replicated database has several 

underlying costs: storage and communication. In 

this paper, we present an algorithm that reduces 

the storage cost of replication, while achieving the 

same degree of data availability as previous repli- 

cated data management protocols [7]. 

We consider a distributed system consisting of 

a set of sites connected by a communication net- 

work. Sites communicate with each other through 

messages only. We assume that sites are either 

fail-stop [13], or may fail to send or receive mes- 

sages. Communication links may fail by crashing, 

or by failing to deliver messages. Combinations of 

such failures may lead to partitioning failures(4], 

where sites in a port&on may c&nmunicate with 

each other, but no communication can occur be- 

tween sites in different partitions. We also assume 

that the failures in the systems are temporary. 

That is, a site does not fail permanently and the 

network does not remain partitioned forever. 

Gifford [7] presents a simple quorum consensus 

protocol to manage replicated objects in a dis- 

tributed environment that suffers from such fail- 

ures. In this protocol an object may be read by 

reading a read quorum number of copies, and it 



may be written by writing a write quorum num- 

ber of copies. The restriction on the choice of 

quorum assignment is that the sum of the read 

and write quorums must exceed the total number 

of copies of the object in the system. Also, the 

size of write quorum must be such that the sum 

of two write quorums exceeds the total number of 

copies of the object. 

Since Gifford’s protocol does not require that 

write operations be executed at all copies of an 

object, it becomes necessary to be able to iden- 

tify the current copy in any read or write quorum 

number of copies. This is achieved by associat- 

ing a version number with each copy. The version 

number is updated every time a copy is modified. 

The copy with the largest version number is cur- 

rent. The new version number assigned to each 

copy is one more than the version associated with 

the current copy. The read and write quorums in 

this protocol are such that the read and write op 

erations are always performed on a current copy. 

The read and write quorums in [7] determine 

the number of copies that may become inaccessi- 

ble without rendering the object unavailable for 

reading or writing. For example, consider an ob- 

ject z with N(z] copies, and read quorum Qr[z] 

and write quorum Qyl[z]. A read operation can 

be executed even when N[z] - Qr[z] copies are 

inaccessible. Similarly, a write operation can be 

executed even when N[z] - Q,,, [z] copies are inac- 

cessible. The main disadvantage of this protocol, 

however, is that in order to achieve such a degree 

of availability the object as a whole must be repli- 

cated at N sites, hence, requiring N times the 

storage of one copy. 

Paris [12] presents an interesting protocol that 

addresses the problem of storage requirements in 

Gifford’s protocol. Instead of storing an object 

z at N[z] sites, this protocol stores the object at 

m[z] sites (m[z] 5 N[z]) and stores tvitnesees at 

the remaining N[z] - m[z] sites. A witness stores 

only a version number, and hence requires nom- 

inal storage. An analysis shows that when read 

and write quorums correspond to a majority of 

copies, and under very general assumptions, the 

reliability of a replicated object with N[z] copies 

is the same as the reliability of au object with 

m]z] copies and N[z] - m[z] witnesses. A cru- 

cial assumption made in [12] to achieve this de- 

gree of reliability ie the existence of a repair pro- 

cc88 that ensures the continuous availability of a 

valid quorum, i.e., all copies residing on a site 

that has failed will be brought upto-date when 

the site recovers. The repair process must be exe 

cuted atomically at recovery time; otherwise cer- 

tain timing and failure sequences may result in an 

available quorum that does not contain a current 

copy of the object. 

In this paper we propose a protocol that en- 

sures the same degree of data availability as that 

attained by Gifford’s quorum consensus protocol, 

while, in general, requiring less storage. Our pro- 

tocol reduces storage costs when write quorums 

are less than all copies of an object. In order 

to make write operations fault-tolerant, most sys- 

tems satisfy this property, and therefore our pro- 

tocol can be used to reduce storage costs. Fur- 

thermore, the protocol does not require any spe- 

cial recovery process to handle failures, and the 

updating of information on recovering sites is not 

subject to special timing constraints. 

In the next section we present our fragmen- 

tation method for objects and describe a simple 

replicated data management protocol. We show 

that the protocol cannot attain the same level of 

read and write resiliency as [7], while reducing 

the storage requirements. In section 3 we extend 

this simple protocol to achieve the same level of 
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resiliency for read and write operations as that 
achieved by Gifford’s protocol, while still requir- 

ing less storage. We conclude the paper with a 

discussion of our results. 

2 A Simple Data Management Protocol 

We consider a set of sites connected by bidirec- 

tional links. A distributed database consists of a 

set of object8 that may reside at different sites. 

Users execute tran8aetion.9 that read and write 

the objects in the database. The execution of a 

transaction is atomic, i.e., before a transaction 

terminates it either commits or aborts all changes 

it made to the database. We also assume that 

transaction execution is synchronized by an un- 

derlying concurrency control mechanism, e.g, two- 

phase locking protocol[5] or timestamp ordering 

protocol [Z]. 

2.1 The Protocol 

In a distributed system, a high level of data avail- 

ability can be achieved by storing several copies of 

each object at different sites. The standard quo 

rum consensus approach [7] would require repli- 

cating the object, i.e., storing the whole object, 

at several sites. We say that the implementation 

of an object requires 1 storage if that implemen- 

tation uses I times as much storage as a mingle 

copy of the object would use. Hence, the stan- 

dard replication approach uses n storage, if an 

object is replicated at n sites. We now propose 

a different approach to distribute an object at n 

different sites. This approach requires m storage, 

where m 5 n. In this section we propose a sim- 

ple protocol for managing a replicated object at n 

sites, where each site stores a fraction of the whole 

object, thus requiring low storage requirements. 

Given an object z, we distribute it on n[z] sites 

so that the overall storage used is m[z] 5 n[z]. 

This is done by dividing the object z into n[z] 

frogmento and storing them on n[z] sites such 

that: 

1. Each fragment is stored at m[z] different 

sites. 

2. Each site has m[z] distinct fragments. 

The m[z] fragments of z stored at a site are called 

a segment. Since each fragment is replicated at 

m[z] sites, the total storage used in our scheme is 

m[z] storage. We define the Full Copy Equivalent 

(FCE[z]) of an object z to be the least number 

of segments necessary in the worst case to recon- 

struct the object, i.e., the least number of seg- 

ments containing all n[z] distinct fragments of z. 

Since each fragment exists in m[z] segments, any 

44 - m[z] + 1 segments must contain at least 

one copy of each fragment of z. Furthermore, if 

FCE[z] is less than n[z] - m[z] + 1 then in the 

worst case FCE[z] segments may not contain any 

copy of a particular fragment. Thus, the fragmen- 

tation technique satisfies the following property: 

Fl. For an object z, FCE(z] is at least n(z] - 

m[z] + 1 distinct segments. 

Figure 1 depicts one possible storage scheme for 

an object x with 3 copies at 5 sites, i.e., m[z] = 3 

and n[z] = 5. In this example, FCE[z] is 3 seg- 

ments. Note that the entire object could be con- 

structed from two segments: 81 and 84; however, 

not any two segments would suffice, e.g., segments 

81 and 82 do not contain fragment fs. In Contra&, 

any three segments would suffice to reconstruct 

the entire object z. 

We associate with each segment a version num- 

ber, which is initialized to 1, and with each object 

2, a read quorum, q,[z], and a write quorum, qW(z]. 

A read operation, r[z], is executed as follows: 

1. Select qr[z] segments of z, and determine the 
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fi: +* fragment of the object 8j: J*“” segment of the object 
Figure 1: A storage scheme for an object z with 3 copiee at 5 sites 

maximum version number, on,,, of the se- 

lected segmenta. 

2. Read FCE[z] segments with the version 

number vn,, to correctly construct the 

whole object x. 

A write operation, w[z], is executed as follows: 

1. Select qw [z] segments of x and determine the 

maximum version number, vn,,, of the se- 

lected segments. 

2. Write all fragments in the selected segments 

and update their version numbers to vn,,+ 

1. 

Read and write quorums must satisfy the follow- 

ing requiremente: 

n[z] - m[z] + 1 L q&] 5 n[z] (2.1) 
max (+I - +I + 1, [,-I) I 9&l < +I 

(24 
+I+ (+I - +I + 1) L a[Z] + q&l 5 2 l n[z] 

P-3) 

Equation (2.1) captures the requirement that 

each read operation must access at least FCE[z] 

segments, i.e., at least n[z] - m[z] + 1 aegmenta, 

otherwise some fragments of the object may not 

be in the read quorum (property Fl), and hence, 

the object cannot be reconstructed completely. 

Equation (2.2) places two restrictions on the 

lower bound of the write quorums. First, a write 

operation on object x must write at least FCE[z] 

segments. Second, any two write operations of 

an object z must have a non-empty intersection, 

i.e., there must be at least one segment written 

by both operations. This restriction is imposed 

because every write operation must assign a new 

version number greater than the version numbers 

assigned to any segment.’ 

Finally, Equation (2.3) impoeea the restriction 

that for an object z, any two sets of sizes qr [(z] and 

qw[z] must contain at least FCE[z] segments in 

common. Since a read operation intersecta with 

every write operation, it can determine the high- 

est version number written. Furthermore, the en- 

tire object x can be constructed by using FCE[z] 

segments with the highest version number. The 

following lemma formalizes these arguments and 

shows the necessity of the lower bound in Equa- 

tion (2.3). 

Lemma 1 For a read operation r [t] to read the 

entire object z with the highest version number, 

q,(z]+q,&] must be greater than or equal to n[z]+ 

(n[z] - m[z] + 1). 

Proof. If q&r] + qw[z] < n[z] + 1, then in the 

worst case r[z] may not access any segment with 

‘Equatione (2.1) and (2.2) aeoume that operation8 must 
acceee the entire object. We are inveetigating poeeibla opti- 
miratione that can be made when operationr acceea a mb- 
ret of the fragmentr of the object. 
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the highest version number. Hence, we only have 

to consider the case where: 

44 < !+I + %u[4 < f+] + (+I - m[z] + 1) 

i.e., the case where a read and write operation 

have a non-empty intersection that does not con- 

tain FCE[z] segments. In this case, r[z] in- 

tersects with every write operation at least at 

one segment, and hence, r[z] can calculate the 

value of the highest version number on,,. Let 

w&z] be the write operation that writes z with 

the version number VII-=. Let qr [z] + q,,, [z] = 

+I + (44 - m[z] + 1) - 1 then, in the worst 

case, operations wmoZ[z] and r[z] have at most 

44 - m[z] segments in common. But from Fl, 

this implies that r[z] in the worst case may not be 

able to construct the entire object z with VIZ-~. 

Thus, q,[z] + qw[z] must be greater that or equal 

to n[z] + (+I - m[z] + 1). cl 

We next compare Equations (2.1), (2.2), and 

(2.3) with Gifford’s Equations relating the read 

and write quorums of replicated objects. In Gif- 

ford’s protocol, a read operation can be performed 

by accessing az few as one copy of an object. On 

the other hand, in our protocol, one segment does 

not represent the entire object, and hence from 

Equation (2.1) a read operation for an object x 

must access at least FCE[z] segments. It must 

be noted, however, that in order to increase the 

availability of write operations in Gifford’s proto- 

col, the read quorum, in general, is chosen greater 

than one. We make use of this fact to reduce’the 

storage cost of replication and will further address 

this issue in the next section. 

A similar distinction exists for the write oper- 

ations in the two protocols. In Gifford’s proto- 

col, a write operation can be executed with as 

few as [,q] copies an object z, while our pm 

tocol requires the maximum of T+] - m[z] + 1 

and r-1 g 
‘\ 

se ments. This restriction, however; -\ 
can be made void by always choosing a value of 

m[x] such that $l < m[z] 5 n[z]. Hence, Equa- 
tion (2.2) requires that two write operations must 

have at least one segment in common, which is 

the same as in Gifford’s protocol. This is due to 

the observation that in order to execute a write 

operation the current value of the object is not 

necessary, rather, the highest version number as- 

sociated with any of its segments must be avail- 

able. 

Finally, in Giiford’s protocol, a read and a write 

operation on an object z need only one copy in 

common. However, in our protocol, for a trans- 

action to read an object z, it must be able to ac- 

cess at least fl[z] - m[z] + 1 segments with the 

highest version number (Equation (2.3)). Note 

that for the purpose of correctness, i.e., to en- 

sure one-copy serididdity [3], the sum of read 

and write quorum of n[z] + 1 segments would have 

been sufficient. This is due to the fact that to en- 

sure one-copy serializability, all our protocol has 

to guarantee is that two conflicting operations2 

must physically conflict on at least one segment. 

Since our protocol imposes stronger restrictions 

on read and write quorums, it must ensure one- 

copy serializability. 

3.3 Resiliency of the Protocol 

The simple protocol is a generalization of Gifford’s 

quorum consensus protocol in which objects are 

not fragmented, or, equivalently, in which for ob- 

ject 2, m[z] = +I. In thii section we compare 

the levels of resiliency achieved by both protocols: 

we show that, in general, our protocol can achieve 

the same resiliency level for at least one operation 

at reduced storage cost. We start by formalizing 

‘Two operatbnr conflict if thei operate on the lame 
object and at lea& one of them ir a write operation. 
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the notion of resiliency as follows: an implemen- 

tation of an object z has read resiliency, &[a~), if 

a read operation on x can be executed even after 

R&j segments are inaccessible due to site or par- 
titioning failures. Write resiliency, Izyl[z], for an 

object ZE is defined similarly. 

For purposes of comparison, let Qw[z] and Qr[z] 

be the read and write quorums associated with an 

object z according to Gifford’s protocol, and let 

N[z] be the total number of copies implement- 

ing object Z. This implementation has a read ra 

siliency R,[z] = A+]-Q&J and awrite resiliency 

&[2] = N[z]-Q,[2]. Wenow present twoimple 

mentations using our protocol, one that achieves 

the same write resiliency as that achieved by Gif- 

ford’s protocol (but a lower degree of read re- 

siliency), and another that achieves the same read 

resiliency (but a lower write resiliency). Both im- 

plementations use less storage than that required 

by Gifford’e protocol. 

We implement our protocol using n[z] = N[z] 

segments, and any value of m[z] such that $$ < 

m[z] 5 n[z]. The fragmentation approach cau 

achieve the same write resiliency for write oper- 

ations by assigning qw[z] = &[z]; since n[z] = 

N[x], qw[z] > v = q, and since 9 < m[z], 

!h&] 1 n[z] - m[z] + 1. Hence, our protocol al- 

lows the implementation of an object z using as 

low as half the storage requirements of Gifford’s 

protocol, while achieving the same degree of write 

resiliency, and the same communication costs per 

write operations (since qw [z] = QyI[z]). Unfortu- 

nately, to achieve this degree of write resiliency 

and communication cost with less storage, read 

operations in our protocol become more expen- 

sive and less resilient to failures. More specifically, 

qr[z] = Q,[z]+(n[z]-m[z]), i.e., the read quorum 

has increased in size by (+I - m[z]), and hence 

the read resiliency has decreased by that amount 

too. 

Our second implementation achieves the same 

read resiliency as Gifford’s protocol while using 

less storage. However, this improved performance 

is at the expense of write operations. Let n[z] = 

N[z] and q&t] = Q,[z]. Since q,[z] 3 n[z]-m[z]+ 

1, we require that m[z] 2 n[~] - Qr[z] + 1. Hence,, 

the greater the read quorum, the smaller m[z] may 

be, thus achieving the same read resiliency while 

requiring less storage. However, write quorums 

are larger in size than in the corresponding im- 

plementation using GifFord’s protocol, specifically, 

qw[z] = Q,,,[z] + (n[z] - m[z]), i.e., the write que 

rum has increased in sise by (n[z] - m[z]), thus 

lowering the write resiliency of 2. 

In conclusion, we note that since the read 

and write quorum for an object z must contain 

FCE[z] segments, i.e., n[z] - m[z] + 1 segments, 

both read and write operations cannot achieve the 

same degree of resiliency and communication cost 

as Gifford’s protocol using less storage. In the 

next section we present a special mechanism that 

overcomes this problem, and then we show that 

we can attain comparable cost and resiliency per- 

formance to Gifford’s protocol using less storage. 

3 A Modified Data Management Protocol 

In the previous section we showed that in order 

to reduce the storage cost of a replicated object 

x from n[z] copies to m[z] copies, the sire of the 

intersection between read and write operations in- 

creases from one copy of 2 to n[z] - m[z] + 1 seg- 
ments of a~. The larger size of intersection between 

read and write operations results in increased 

communication costs for read and/or write oper- 

ations. In this section we provide an underlying 

mechanism, which ensures that the information 

written by a write operation on an object is even- 

tually propagated to all segments of the object 
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in the syetem. Although all segments of an ob- 

ject z are updated as a result of a write opera- 

tion on z, this does not mean that q,,,[z] in thia 

protocol is n[z]. By using this underlying mecha- 

nism, we will 8how how to decrease the size of in- 

tesection between read and write operations from 

44 - m[z] + 1 segments to one segment while 

maintaining the reduced level of storage for z. 

First, we describe the underlying mechanism to 

propagate write operation8 to all segments of an 

object. Next, we explain how to integrate our 

protocol with the propagation mechanism. Fi- 

nally, we compare our modified protocol with Gif- 

ford’8 protocol and demonstrate that we achieve 

the Bame level of resiliency and communication 

cost for read and write operations in our proto 

col. 

3.1 The Propagation Mechanism 

A common technique to propagate information ef- 

ficiently in a network and, thus, synchronize var- 

ious components of a distributed application is 

to construct a log of certain application specific 

events that have occurred in the network [14]. In 

the case of a replicated database such events in- 

clude reading or writing a copy of an object at the 

coordinator site of a transaction. Each Bite main- 

tains a local copy of the log, which is organized as 

an ordered sequence of event records, and a prop 

agation mechanism is employed to keep the copies 

of the log upto-date. The mechanism makes.use 

of communication operations, send and receive, to 

exchange portions of the copies of the log for this 

purpose [6,15,9,11,8]. The background messages 

used in the propagation mechanism to bring all 

the copies of the log upto-date are also referred 

to as gossip message8 in [ 11). We have chosen the 

algorithm proposed by [15] to integrate the prop 

agation mechanism with our protocol. 

The algorithm described by Wuu and Bernstein 

[15] is an efficient implementation of the prop 

agation mechanism. Each site, Si, maintains a 

time-table, 7, which is an N x N array of times- 

tamp8 of events that have occurred in the net- 

work, where N is the total number of sites. A 

site uses the time-table to place a bound on how 

out-of-date other &es are about events that have 

happened in the network. The time-table allows 

a site to decide what portion of its copy of the log 

it should send to another site, and when all sites 

have learned about a particular event. This infor- 

mation is used by a site to determine when certain 

portions of ite copy of the log can be discarded. 

Hence a site retains a particular event record in 

its copy of the log only if it is not certain that 

all other sites have learned of that event. The 

happened bGfore relation, ‘hn [lo], relates the ap 

plication specific events and the communication 

operations employed by the propagation mechs 

niem. Periodically a site sends its time-table and 

a portion of ite copy of the log to another site. On 

receiving such a message a site update8 it8 copy of 

the log by including event records of which it was 

unaware and update8 its time-table using infor- 

mation in the received time-table. The following 

two properties are guaranteed by the algorithm: 

Pl. Every eite eventually learns of each event. 

P2. If cl and ez are two eventa such that ei*ez, 

then if a eite knows of ez, it must also know 

of cl. 

Pl is dependent on the assumption that site fail- 

ures and network partitions are not permanent. 

It follows from P2 that a site can process events 

in the happened-before order. 

It must be noted that in the model of the system 

discussed above, all communication among sites is 

performed implicitly by exchanging the copies of 
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logs among the sites. That is, explicit communi- 
cation operations, eend and receive, are not avail- 

able to application programs. Instead, au applica- 

tion program relies on the underlying propagation 

mechanism to inform other sites about its opera- 

tion request (for example, a find operation on a 

distributed dictionary). The responses of other 

sites (for example, the results of a find opera- 

tion on a distributed dictionary) are also commu- 

nicated to the application program through the 

log. Although the propagation mechanism has an 

overhead of maintaining copies of the log, it has 

several advantages that offset this extra overhead: 

it can be easily implemented in an unreliable net- 

work, and the number of messages in the system 

can be reduced at the expense of the size of mes- 

sages. Furthermore, the size of the copies of the 

log is bounded since sites discard event records 

from their copies as soon as they discover that all 

sites have learned about the events corresponding 

to these event records. Several optimizations have 

been proposed in [15] that reduce the overhead as- 

sociated with this mechanism. 

3.2 The Integrated Protocol 

We now integrate the propagation mechanism in- 

troduced in the previous subsection with the ex- 

ecution of read and write operations of transac- 

tions. The fragmentation approach described ear- 

lier is used to store the segments of objects at dif- 

ferent sites. The model of the system remains the 

same as that developed in Section 2.1 except for 

the distinction that application programs, trans- 

actions in our case, do not explicitly communicate 

with remote sites in the system. All communica- 

tion is achieved by modeling operations and the 

results of the operations as events in the system 

and then exchanging the copies of the log among 

the sites. The site where a transaction originates 

is designated w the coordinator of the transac- 

tion. Read and write operations of a transaction 

are recorded as events in the copy of the log at the 

coordinator; other sites in the network learn about 

these events as a result of the propagation. F’ur- 

thermore, sites agreeing to be in the quorum of an 

operation do not communicate explicitly with the 

coordinator. Instead, their decision to be in the 

quorum is also recorded as an event in their copy 

of the log; they too rely on the underlying com- 

munication operations to propagate these events 

to the coordinator. 

We associate with each object x, a read quorum, 

qr[[z], and a write quorum, qw[z]. A read opera- 

tion, r[z], in this protocol is executed as follows: 

1. 

2. 

3. 

A read operation, r[z], results in an event, 

r[z]-event, at the coordinator. An r[z]-event 

record is placed in the coordinator’s copy of 

the log. When the coordinator’s copy of the 

log is propagated to other sites, the effect is 

the same as the transaction sending a read 

request to other sites in the system. 

When a site, S, learns of r[z]-event and 

decidess to be in the quorum for r[z], 

an event, oks(r[z])-event, occurs at that 

site. The event record corresponding to 

ok,g (r [ z&event in the copy of the log includes 

the value of the segment of z at that site. 

When the site’s copy of the log is eventually 

propagated to the coordinator, the effect is 

the same as the transaction receiving a reply 

to the read request from a site in the quorum. 

The operation, r[z], is not completed until 

the coordinator can determine that qr[z] seg- 

ments of x have been accessed. The events, 

‘Thir decision ir bawd on the concurrency control mech- 
anirm employed. 
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oks(r[z])-event, are observed at the coordi- 

nator for this purpose. After accessing q,[z] 

segments of x, the coordinator returns the 

value of x to the requesting transaction. 

A write operation, w[z], is executed as follows: 

1. A write operation, w[z], results in an event, 

v[z]-event, at the coordinator. A v[z]-event 
record is placed in the coordinator’s copy of 

the log. When the coordinator’s copy of the 

log is propagated to other sites, the effect is 

same as the transaction sending a version re- 

quest to other sites in the system. 

2. When a site, S, learns of a v(z]-event 
and decides to be in the quorum for w[z], 

an event, oks(v[z])- event, occurs at that 

site. The event record corresponding to 

oks(v[z])-event in the copy of the log includes 

the version of the segment of z at that site. 

When the site’s copy of the log is eventually 

propagated to the coordinator, the effect is 

same as the transaction receiving a reply to 

the version request from a site in the quorum. 

3. The operation, w[z], is not completed until 

the coordinator can determine that gw [z] seg- 

ments of z have been accessed. The events, 

oks(v[z])-event, are observed by the coordi- 

nator for this purpose. The operation, w[z], 

is completed when an event, w[z]-event, oc- 
curs at the coordinator. A w[z]-event record 

is placed in the coordinator’s copy of the log, 

and the event record includes the new value 
of z and its version number that will be used 

to update the segments of z at various sites in 

the network. When the coordinator’s copy of 

the log is propagated to other sites, the effect 

is same as the transaction executing a write 

at other sites. Note that the concurrency con- 

trol mechanism ensures no other transactions 

can access z until the transaction executing 

w[z] commits or aborts at its quorum. 

The modified protocol must satisfy the following 

requirements: 

+I - m[z] + 1 5 q&l 5 n[x] (3.1) 
max 

( 
n[z] - m/z] + 1, F*l) I qw(z] I n[z] 

(3.2) 

n[z] + 1 5 !+I + 4&J 5 2 - 44 (3.3) 
Equations (3.1) and (3.2) are the same sa Aqua- 

tions (2.1) and (2.2) from the previous section; 

this is due to the identical considerations. On the 

other hand, Equation (3.3) is different and states 

that the read and write quorum intersection of 

one segment is sufficient. This is a significant im- 

provement from the previous section where it was 

required that a read and a write quorum for an ob- 

ject z must have an intersection of rz[z] - m[z] + 1 

segments. This is due to the fact that the event 

record for w[z] in the copy of the log at a site 

contains the entire information about x, and not 

only the information concerning the segment of 

z at that site. Since qr[z] + qw[z] 2 n[z] + 1, 

there will always be at least one segment with 

the highest version number in q,[z] correspond- 

ing to some write operation wmoz[2]. If r[t] col- 

lects n[z] - m[z] + 1 segments or more with the 

highest version number, it can reconstruct the en- 

tire object z. In the case when r[z] collects fewer 

than n[z] - m[z] + 1 segments with the highest 

version number, then w,,,,,,[z]-event has not been 

propagated to all segments of z in the network. 

Since an event record is discarded by a site only 

when all sites learn about the event, therefore 

w,,,,,,[z]-event record still exists in the log. Hence, 

the coordinator can always construct the entire 

object z by using its copy of the log. This is for- 

mally proved in the following lemma. 

Lemma 2 For a read operation, r(z], to read the 

current value of an object z, it is sufficient that 
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Q,[z] + g,,,[z] be greater than or equal to n[z] + 1. 

Proof. Since q,[z) + qW[z] 2 n[z] + 1, therefore 

r[z] intersects with every write operation at least 

at one segment, and hence, can determine the 

highest version number vn,,,,,=. Let w,,,&] be 

the write operation that writes z with version 

number vnnror . Since q&z] > n[z] - m[z] + 1, 

there are two possible cases. If r[z] collects 

+I - m[z] + 1 segments with vnMc, it can con- 

struct current value of z. Otherwise, t[z] collects 

fewer than n[z] - m[z] + 1 segments with vn,,,,,, 

and w-,[z]-event must exist in the copies of the 

log at the sites that have the segments of z with 

on,= (This is from (15) in which an event record 

is discarded by a site if it can determine that all 

sites have learned about the event). At least one 

of these sites, S, with vn,,,,,= must be in q?[z]. 

Since at S, r[z] will read from w,,Jz], then: 

w-,[z]-event++]-event+oks(r[z])-event 

Hence, when the coordinator of r[z] learns about 

oks(r[z])-event, from P2, it must also become 

aware of w,,,,,,[z]-event. Thus, the coordinator 

will always return the current value of x. Cl 

Although we have described the protocol in 

which oks(r[z])- event includes the value of the 

segment of z at S, this is not necessary. A possi- 

ble optimization is not to include the values in the 

events. Instead, the coordinator (after collecting 

the required number of oks(r[z])-event) can ex- 

plicitly read the value of the segments from the 

respective sites in the quorum. This will result in 

a significant reduction in the size of the log. An 

extension of this optimization is related to query 
processing. If objects are fragmented in such a 

way that queries reference objects on a fragment 

basis, the coordinator can reduce communication 

by executing a query at the site where the up-to 

date fragment resides. 

3.3 Resiliency of the Protocol 

The quorum intersection requirement in our pro- 
tocol is identical to that in Gifford, and there- 

fore, we achieve the same level of resiliency with 

m copies that is achieved by Gifford with n copies. 

However, the range of assignment for read and 

write quorums in our protocol is narrower than 

the ranges in the Gifford’s scheme. As in Section 

2.2, let Q,,,[z] and Q,[z] be the read and write quo- 

rums associated with an object z according to Gif- 

ford’s protocol, and let A+] be the total number 

of copies implementing object z. This implemen- 

tation has a read resiliency &[z] = N[z] - Q~[z] 

and a write resiliency &[z] = N[z] - f&[z]. In 

our implementation, we use n[z] = N[z], qr[z] = 

Qr[z], and q,,,[z] = QW[z]. We choose m[z] such 

that: 

n[x] - m[z] + 1 L q&] I n[z] (3.1) 

max 
( 
n[z] - m[z] + 1, [VI) I 94 I +] 

(3.2) 

If we choose a value of m[z] such that y < 

m[z] 5 n[z] then Equation (3.2) reduces to: 

[,-I 5 a&] I n[s] (3.2) 
which imposes the same restriction on write op- 

erations as in Gifford’s protocol. Thus the only 

restriction imposed by our scheme is that the 

read quorum must be greater than or equal to 

+I - m[z] + 1. This implies that the range of 

read quorum assignment is restricted at the lower 

end in our protocol. However, this is not a serious 

shortcoming, since any fault-tolerant implementa- 

tion of an object z will rarely use the lower end 

of the read quorum assignments (for write opera- 

tions to tolerate the failures of t copies, the read 
quorum must be greater than t). 

We now show how to reduce storage for a given 
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read and write resiliency constraint so that it is 

minimal with respect to the fragmentation ap- 

proach. Given qr [z] and qw [z] for an object z cor- 

responding to the desired level of resiliency, Equa- 

tion (3.3) requires that: 

qr[4 2 +I + 1 - !l8&1 
But from Equation (3.1), we know that q,[z] 2 

44 - m[z] + 1. Thus, in order to minimize stor- 

age (in our protocol) and still satisfy the resiliency 

constraints, we must choose: 

q,[z] = n[+m[z]+l, ami q,[z] = n[z]+l-qw[z]. 

Hence, m[z] = q,,,[z]. This result indicates 

that for any quorum assignment other than read- 

one/write-all approach, we can reduce storage in 

our protocol and still maintain the same level of 

availability as in other quorum consensus algo- 

rithms. 

4 Conclusion 

In this paper, we presented a simple and storage 

efficient protocol for managing replicated data. 

We first developed a fragmentation approach to 

reduce storage requirements in a replicated envi- 

ronment, and described a generalization of Gif- 

ford’s protocol to maintain data in this approach. 

However, this protocol can not achieve the same 

level of resiliency for both read and write oper- 

ations as Gifford’s protocol, while reducing the 

storage. In order to overcome this drawback, we 

integrated a propagation technique proposed by 

Wuu and Bernstein [15] with our protocol. This 

propagation mechanism does have an extra stor- 

age overhead of maintaining the copies of the log 

in the system. In particular, when an object is 

updated, the storage requirements of the copies of 

the log increase temporarily. We are currently de- 

veloping a model to analyze the storage behavior 

of our protocol and compare it with other repli- 

cated data management protocols. We would also 

like to integrate our fragmentation method with 

other propagation mechanisms[9,11,8], which may 

be more suitable for different environments. In 

this paper, we demonstrated that for any read 

quorum greater than one, our protocol can reduce 

the storage while maintaining the same resiliency 

for read and write operations. In most fault tol- 

erant systems based on the quorum approach, the 
write quorum is generally less than all copies of 

an object, and hence the read quorum is greater 

than one. Such fault tolerant systems can bena 

fit from the approach proposed in this paper to 

reduce storage. Furthermore in [l], it has been 

argued that the optimal read and write quorums 

are majority assignments. Given such an assign- 

ment of read and write quorums, we can reduce 

the storage cost by as much as half of that used in 

Gilford’s protocol and still achieve the same level 

of resiliency and communication cost for both read 

and write operations. 

Acknowledgements 

We would like to thank John Bruno and Abdel- 

salam Heddaya for suggesting improvements to an 

earlier draft of the paper. We are also grateful to 

the anonymous refrees for their comments on the 

paper. 

References 

[l] Ahamad M., Ammar M. H., “Performance 

Characterization of Quorum Consensus Al- 

gorithms for Replicated Data”, Proceedings 

of Sixth Symposium on Reliability in Dis- 

tributed Software and Database Systems’, 

pp 161-168, 1987. 

[2] Bernstein P. A., Goodman N., ‘Concurrency 

Control in Distributed Database Systems”, 

429 



ACM Computing Surveys, Vol. 13, No. 2, pp 
185221, June 1981. 

[3] Bernstein P. A., Goodman N., “The Fail- 

ure and Recovery Problem for Replicated 

Databases”, Proceedings of the Second An- 

nual ACM Symposium of Principles of Dis- 

tributed Computing, August, 1983. 

[4] Davidson S., Garcia-Molina, H., and Skeen, 

D., “Consistency in Partitioned Networks’“, 

ACM Computing Surveys, Vol. 17, No. 3, pp 

341-370, September 1985. 

[S] Eswaran K. P., Gray J. N., Lorie R. A., 

Traiger I. L., “The Notion of Consistency 

and Predicate Locks in Database System” 

Communications of the ACM 11, pp 624-633, 

1976. 

[S] Fischer M. J., Michael A., “Sacrificing Se- 

rializability to Attain High Availability of 

Data in an Unreliable Network”, ACM 
SIGACT-SIGMOD Symposium on Principles 

of Database Systems, 1982. 

[7] Gifford D. K., “Weighted Voting for RepIi- 

cated Data”, Proceedings of the Seventh 

Symposium on Operating Systems Princi- 

ples, December 1979. 

[8] Heddaya A., Hsu M., Weihl W., “Two Phase 

Gossip: Managing Distributed Event Histo- 

ries”, To Appear in Information Sciencee: An 

International Journal, 1988. 

[9] Joseph T. A., Birman K. P., “Low Cost man- 

agement of Replicated Data in Fault-Tolerant 
Distributed Systems”, ACM Transactions on 

Computer Systems, Vol. 4, No.1, February 

1986. 

[lo] Lamport L., ‘Tie, Clocks, and the Order- 

ing of events in a Distributed System”, Com- 

munication of the ACM, July 1978. 

[ll] Liskov B., R. Ladin, “Highly Available Ser- 

vices in Distributed Systems”, Proceedings of 

the Fifth ACM Symposium on Priniciples of 

Distributed Computing, August 1986. 

[12] Paris J. F., UVoting with Witnesses: A Con- 

sistency Scheme for Replicated Files”, Pro- 

ceedings of the 6th Conference on Distributed 

Computing Systems, 1986. 

[13] SchIicting R., Schneider F. B., ‘Fail-Stop 

Processors: An Approach to Designing Fault- 

Tolerant Computing Systems”, ACM Trans- 

actions on Computing Systems, Vol. 1, No. 

3, pp 222238, August 1983. 

[ 141 Schneider F. B., ‘Synchronization in Dis- 

tributed Programs”, ACM ?Dansactions on 

Progr amming Languages and Systems, April 

1982. 

[15] Wuu G. T. J., Bernstein A. J., “Efficient So 

lutions to he Replicated Log and Dictionary 

Problems’@, Proceedings of the Third ACM 

Symposium on Priniciples of Distributed 

Computing, August 1984. 

430 


