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ABSTRACT

We consider the problem of performing efficient search in a
large database system. We present a novel data structuring
technique and show how a branch and bound search algorithm
can use the proposed data organization to prune the search
space. Simulation results confirm that, using these techniques,
a search can be expedited significantly without incurring a
large storage penalty. As a side benefit, it is possible to
organize the search to obtain successive approximations to the
desired solution with considerable reduction in total search.

1. INTRODUCTION

The capability to process recursive queries is likely to be an
essential feature in the next generation of database systems,
and considerable research has recently been devoted to
devising techniques for processing recursion. Extremal path
problems [9] constitute a large and useful subclass of recursive
queries and arise in several practical applications [3,8,16].
An extremal path problem on a graph involves the
identification of a path between a pair of nodes in the graph
that has an extreme value (highest or lowest on some
precedence ordering) for its label, or the calculation of the
value of such an extremal label. The label for a path is
computed by applying a specified concatenation function to
the labels of the arcs (or sub-paths) constituting the path. In
addition, there may be constraints on nodes and/or arcs that
may or may not be included in the desired path. Examples of
such problems include the problem of finding the cheapest
flight between two cities, the problem of finding the critical
path in a project network, the problem of finding the most
reliable path in a communication network, etc. Other
examples of such problems appear in {3,5, 8,9, 14, 16].

The nature of extremal path problems is such that their
solution often requires a search over a sizable data space. In
this paper, we investigate how such a search can be performed
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efficiently over 8 very large database. We discuss the issues
of both data organization and how the search can use this data
organization effectively. To keep the discussion concrete, we
shall use the shortest path problem as the running paradigm.
However, later in the paper, we shall show how our approach
extends naturally to other path problems.

Our overall approach is to partially precompute some
information and then to use it at run time to prune the search
space. We must hasten to add that we are considering really
large databases, such as those with topographical map data.
By an analysis similar to [13], one can estimate that simply to
store a small 100 mile by 100 mile map discretized at 100
foot intervals, one requires about 2.4 Giga bytes of storage.
From this, one can get an idea of the size of data involved
when larger maps are considered. The size of path
information in a transitive closure is considerably larger than
the original relation. When data is of this magnitude,
precomputing and storing path information, even after using
the encoding and compression techniques that are proposed in
{1,12], would be infeasible. We are, therefore, proposing a
new data organization technique in this paper, and we show
how this data organization allows us to derive successively
tighter bounds that must be satisfied by a point that is to be
opened' during the search process. These bounds can cut
down tremendously the number of data points explored by a
search algorithm, such as Dijkstra’s algorithm [10] for finding
the shortest path between two points.

The organization of the rest of the paper is as follows. In
Section 2, we present our data organization scheme based on
the concept of domains, and show how it can be used for
pruning the search without a large storage overhead. We also
discuss how domains can be created in the first place. This
basic two-level structure is extended to a multi-level structure
in Section 3. In Section 4, we present simulation results that
support our analysis developed in the previous sections
regarding the effectiveness of our techniques. Some
generalizations and related issues have been discussed in
Section 5. We present our conclusions in Section 6.

1. We are using the phrase “‘open’’ to represent the set of possible next moves
as used in the Al literature on search algorithms (see [7), for example). If a
node under consideration is openod, then we shall, perhaps at a later time,
investigate the possibility of the desired shortest path going through that
node. If the bounds indicate that the desired shortest path cannot pass
through the node, it is not opened.



2. DOMAIN ENCODING

In the state-space search paradigm [7], in order to find the
solution of a problem, a search algorithm starts from one or
more initial states and finds paths to the goal states. In
absence of any criteria for determining whether an
intermediate node should be explored (opened), the number of
nodes explored before arriving at a solution is likely to be
prohibitively large. We provide a bounding procedure to cut
down on the number of intermediate nodes that are explored
before the final solution is obtained. New algorithms can be
designed wusing this bounding procedure, or it can be
incorporated in any branch and bound search algorithm to
improve its performance.

Our bounding procedure is based on partially
precomputing some information, and then using it for
developing successively tighter bounds for opening an
intermediate node. If a node does not satisfy the bounds, it
need not be opened. In this section, we describe what
information is precomputed and how it is used to obtain the
bounds. We also analyze the storage overhead due to this
precomputed information and the extent to which the search

space may be pruned by our bounding procedure.
2.1 Data Organization

Given a graph consisting of nodes, arcs between the nodes,
and labels on these arcs (representing distance or some other
appropriate quantity), divide the nodes into sets called
domains, such that there exists a path from each node in a
domain D to every other node in D. Each domain has a
distinguished point called the center of domain or simply
center. The radius of a domain D is the shortest distance
between the center and a node in D that is farthest from the
center. (If the distances to and from the center are different,
the larger of the two gives the radius). We discuss how to
form domains in Section 2.6. For now let us assume that such
domains have somehow been created.

The shortest distance between all domain centers is
precomputed and compressed using the techniques described
in [1,12]. Efficient techniques, such as those described in
[4,5], may be used for computing the shortest distances. In
addition, the shortest distance between each node and its
domain center (and vice versa, if different) is precomputed
and stored.

2.2 A Lower Bound

Given the data organization described above, we will first
derive a lower bound on the distance between two points that
belong to different domains. This lower bound will be used in
deriving the upper bound on the distance through a point
which is being considered to be opened. If the distance
through a candidate point is larger than the upper bound, this
point is not opened.

Lemma 2.1. Let D, and D, be two distinct domains with
centers ¢y and c,. Let p, € D, and py € D,. Then, the
shortest distance from p, to p,

PPz 2 €163 =€ \p) —~ PaCy

where c,c, is the shortest distance from c, to c,, c,p, is the
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shortest distance from c, to p,, and p,c, is the shortest
distance from p, to ¢;.2

PROOF. The lower bound on the distance from p, to p, is
derived by considering the bound on the distance from ¢, to
¢,. Since c,c, is the shortest distance from ¢, to c,, any
alternate path from ¢; to ¢, is at least as big. We, therefore,
have (see Figure 2.1)

D,

Figure 2.1. Lower bound on distance between two points

€162 SC1py +p1p2 + P2y
or
P1P2 2 C1C3 —C 1Py = P2Cy

Note that all the three terms on the right hand side of the
above inequality have been precomputed for any two points.
Therefore, with the data organization described above, the
lower bound on distance between any two points in the graph
can be easily determined. Also note that this lower bound
would be greater than the trivial lower bound of 0 if the two
points under consideration are far apart.

2.3 Pruning the Search

Lemma 2.1 can now be used to prune the searches. Let D,
and D, be two distinct domains with centers ¢, and c;, and
we are interested in finding the shortest distance from
p1 € D, o p, € D,. An initial upper bound on the shortest
distance from p, to p, can be written as

pwps¥ =picy + 103+ cop (2.1

where p,c, is the shortest distance from p, to c;, c,c; is the
shortest distance from c; to ¢;, and c,p, is the shortest
distance from c; to p;. Note that all the terms on the right
hand side of the Eqn. (2.1) have been precomputed, and hence
this upper bound can be easily determined.

Now suppose that, during the search process, we want to
determine whether to open a point p, that belongs to a domain
D,, distinct from D ,, and whose center is c3 (see Figure 2.2).
The distance p,p, from p, to p; would be known at this
stage. The point p; should be opened only if the distance
from p, to ps, p1ps. together with the lower bound on the
distance from p3 to p,, pap5, is less than the current upper
bound on distance from p, to p,, p;p5. That is, only if>

2. We have chosen to represent the distance between the points p, and p, by
concatenating the two points, instead of using one symbol with subscripts as
ind, ,., for notational simplicity.

3. Most scarch procedures use the best known current distance from p, to p, as
the upper bound on distance from p, to p,. The upper bound on p,p,
specified by Eqn. (2.2) is considerably tighter if pook w 0.



Figure 2.2. Upper bound on distance for opening a point

P1P3 +Pwpa” <pips” 22
By Lemma 2.1
p3pat =csca —caps —pacy 3

Substituting Eqns. (2.1) and (2.3) in (2.2), we obtain the
condition as

P1P3 < (p1€y + 1+ Copy ) — (€3€3 — €3p3 — paca )
or

P1P3 < (€163 — C3C2 ) + p1cy +Pacy + €2ps + Cap3 (2.4

Our search procedure for determining the shortest distance
from p, to py can thus be summarized as follows. Start from
node p; and the upper bound on distance from p;, to p,,
p1PY, obtained from Eqn. (2.1). Open a point p4 only if the
upper bound on the distance from p, to ps specified by Eqn.
(24) is satisfied. If p; is opened, we obtain
(p1P3 + P3Cs + €3y + copy ) 85 a new bound on distance
from p, to p,. If this new bound is lower than the current
upper bound on the distance from p; to p,, this bound
becomes the new tighter upper bound. Any number of
heuristics, such as breadth first, best first, etc. [15], may be
used for determining the next candidate point p,. In the case
of Dijkstra’s algorithm, the next candidate point is the one that
currently has the shortest distance from the starting point (a
form of “‘best first’'). Search terminates when no new p;
may be opened, or the only remaining candidate ps is the
desired destination p, itself.

2.4 Size and Effort Analysis

In this section, we present an approximate analysis to develop
an intuitive understanding for the storage overhead due to the
precomputed information and savings in effort due to our
bounding procedure. The results of the analysis will be
confirmed with simulations in Section 4. Storage is measured
in units of tuples. A constant multiplication factor, which
does not affect the order of magnitude analysis, can be used to
convert the measure to bytes or pages. The effort, for the
purposes of the analysis, is measured in terms of the number
of nodes opened. Once again a multiplication by the average
degree will translate it into the number of tuples examined,
and does not affect the order of magnitude analysis.

First consider the extra storage required in our scheme.
We require extra storage for maintaining the transitive closure
of the domain centers, and also for storing the shortest
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distance between the domain center and all other nodes within
a domain. Let us assume that the nodes have been divided
into d domains. Thus, there would be d domain centers and
their transitive closure would require O(d?) storage. Since
there is an arc between each node and its domain center and
vice versa and domains are mutually disjoint, the arcs between
domain centers and other nodes in the domain require O ()
storage.

Thus, for a given graph, the data organization that we have
presented has an O(n) space overhead and an additional
O(d?) space overhead that depends on the sizes of the
domains. By choosing domains to be sufficiently large and
hence reducing the number of domains d, the O (d2) term can
be made arbitrarily small and the space overhead can be made
within & constant fraction of the storage required for the
original relation. However, as we will see shortly, increasing
the domain size adversely affects the savings in effort that
results from using our bounding procedure.

Tuming to the effort analysis, let us define the radius of a
domain to be the longest distance between a point in the
domain and its center, and let the radius of the domain with
largest radius be 8. Then, in the worst case, we can substitute
in Eqn. (2.4),

Pi€1=paca =copy =c3p3 =3,
to obtain

P1Ps +C’C2<CIC2+48 (2-5

If p,p, is considered approximately equal to c;c,, Eqn. (2.5)
can be represented as an ellipse with focii ¢, and c; and
parameters (see Figure 2.3)

w=c;c,/2, Bu=w+298
so that

vVizul-w2=48(w+d) Q.6

Figure 2.3. Search space with and without domain encoding

Only points lying inside this ellipse are candidates for p,,
with points lying outside not satisfying Eqn. (2.5). Assuming
that the points are approximately evenly distributed, the area
of this ellipse is the measure of the search space (the number
of points that may be explored by the search algorithm), and
is given by :



v =% (w + 28) (48 (w + 8))* = 2rnw (O w)* 2.7

assuming w » 3. The implication of this assumption is that
we are interested in finding shortest distance between points
that are far apart. Thus, the effort using our bounding
procedure is O (w>? 8%). This effort increases as the size of
the domains is increased, but only as the square root of the
radius of the largest domain. Note that this is a worst case
analysis, and a domain choice that has a high 8 but low
average distance from node to domain center may actually
perform better for most source-destination choices than one
with a somewhat lower 8 but most node to domain center
distance close to 3.

By way of comparison, observe that the Dijkstra’s
algorithm proceeds in an expanding circle around the source
until it finds the destination. All points inside the circle
shown in Fig. 2.3 would be examined by the Dijkstra’s
algorithm, whereas Dijkstra augmented by our pruning scheme
would only consider nodes that lie within the intersection of
the circle and the ellipse. Thus, the number of points explored
by plain Dijkstra can be approximated by

% (c,c) =4 w? 28

From Egns. 2.7 and 2.8, the ratio of the number of points
explored with and without domain encoding is given by

effort ratio = (8/4w)% = (8/2¢,¢,)* = (3/2p1p2)* (29

If 3« 2p,p,, that is, if we are finding shortest distance
between points that are farther apart, the effort ratio will be
considerably less than 1 and there would be substantial speed
up.

Thus, the ratio of effort in finding shortest distance
between two points p, and p,, using our procedure compared
to Dijkstra, is O(8% p,p3*). This ratio increases (and hence
the speed up reduces) as the square root of the radius of the
largest domain, and hence our earlier observation that the
benefit of our scheme decreases as the domains are made
bigger by decreasing the total number of domains. Notice,
however, that while the storage overhead increases as the
square of the total number of domains, the effort ratio
increases only as the square root of the radius of domains. In
Section 4, we will further explore this speed up and the size
penalty trade-off as the domain sizes are varied, when we
report on the results of experimental evaluation of our

bounding procedure.

2.5 Domain Transitive Closures — A Possible
Embellishment

Whereas it is not feasible to maintain the entire transitive
closure of a large graph, it may be possible to precompute and
store the transitive closures of individual domains, particularly
if the domains are small. In a sense, that is what we have
done at the top level of the data organization presented in
Section 2.1 by precomputing the transitive closure of the
domain centers (rather than specifying a single center node for
the entire graph and maintaining distances between it and the
domain centers). The natural question that arises is whether
there is any advantage in embellishing the data organization
described in Section 2.1 by maintaining transitive closures in
the lower level domains as well. We will pursue this
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embellishment in this section. Note that if the entire domain
closure has been computed, distances between points in a
domain and their domain center required in the structure
described in Section 2.1 are automatically included in the
closure, and do not have to be separately stored. However,
we will still require the top-level closure of paths between
domain centers.

First consider the extra storage requirement of this new
data organization. If there are d domains and each domain
consists of no more than ¢ points, each domain transitive
closure is O(q?), and the storage required for the domain
transitive closures would be O(d ¢%). In addition to the
domain transitive closures, O (d2) storage would be required
for the top level transitive closure. Note that we no longer
require distances from the domain center to every other node
within a domain. Thus, the total extra storage required is
0(d q») +0(d>.

Since the number of points in a domain q is O (n4d), the
expression for the total extra storage required can be written
as O (n%d) + O(d?). This expression is minimized when d is
O(n®), giving a total extra storage requirement of O (n*?).
This size is considerably smaller than the size required for
storing the closure of entire graph, which is O(n?). However,
O(n*?) could be considerably larger than O(E) storage
required for the original graph (E is the number of edges in
the graph).

Considering the effort estimates, unfortunately, domain
transitive closures do not improve any bounds on the worst-
case performance. One can only subjectively state that
maintaining local transitive closures may reduce the number of
points that need be opened within a domain and thus benefit
average performance. Experimental work is required to
determine whether the effort savings is substantial enough to
offset the extra storage penalty. We will report our
experimental results on this count in Section 4.

2.6 Domain Creation

In this section, we address the issue of how to create domains.
In many practical situations, there may be information
available that sutomatically suggests how the domains should
be structured. For example, on a road map, one would expect
to have major intersections and freeway exits as centers of
domains that surmound them for a certain radius. However,
given an arbitrary graph, it is not immediately clear how to
form domains. One can think of properties that may be
subjectively considered desirable, such as the domains should
be roughly equal in radius, should have roughly the same
number of nodes, and so on. Let us, therefore, first establish
the objective function of interest.

We care about how the domains are formed because they
determine how good the bounding procedure is. In particular
we obtain an upper bound between two nodes as the sum of
the distance between the source and its domain center, the
distance between the domain center of the destination and the
destination, and the distance between the centers of two
domains (Eqn. 2.1). We would like this quantity to be as
small as possible (see Eqn. 2.2). On the other hand, we obtain
the lower bound between two nodes as the distance between



the centers of the two nodee minug the distance to the source
from its domain center minus the distance from the destination
to its domain center (Lemma 2.1). We would like this
quantity to be as large as possible (see Eqn. 2.2). Thus, there
is a conflicting requirement in the case of domain center to
domain center distances. On the average, this distance may be
a second order effect and can be ignored. However, the
distance between a node and its domain center must aiways be
minimized, and reducing this distance on average would
improve both bounds.

We can then formally state our problem as one of
choosing a specified number of domain centers such that the
average distance to (from) a node from (to) its domain center,
by the probability of the node i

branch and bound process, is minimized.

For simplicity, let us assume that each node is equally
likely to be picked and that the connection to its domain
center is equally likely to be required in either direction. If
50, our task is to minimize the average distance between the
nodes and their domain centers, with the distance in both
directions being considered if different. In other words, we
wish to select k domain center nodes in a graph with n nodes
such as to minimize the sum over all # nodes of the distance
from the node to the nearest domain center node. This
problem can be shown to be np-hard, since a special case of
it, for an undirected graph with unit distances on all arcs, and
the desired minimum distance being n—k, is the well-known
np-complete vertex-cover problem®*.

We, therefore, developed several heuristics to solve this
problem, three of which are described below:

Heuristic I

1. Pick a node at random, not yet member of any domain,
and assign it to be the center of a new domain.

ocomrring in tha
oCCumng m e

waiohtad
weignies oie

2. Assign every node within an empirically selected
distance from this domain center’, not already part of
another domain, to belong to the current domain.

3. Repeat steps 1 and 2 until the requisite number of
domains have been created.

4. For each node not part of any domain at this point,
assign it to the domain whose center is nearest to this
node.

For graphs with asymmetric distances between nodes, we
average the distance in the two directions.

We tried several variations on this heuristic, none of which
improved the performance (in terms of the average distance to
center measure), and some of which actually worsened it.
Most of these variations were in the nawre of rendering the

4. We thank Yehuda Afek for showing that this problem is mp-hard.

S. This empirical distance may initially be sct quite large so that cvery node is
assigned a domain even before the requisite number of domains arc created.
The distance is then gradually reduced until there remained a fow nodes that
are unassigned after the requisite numnber of domains are created.
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choice of domain centers less random. For example, one
could insist upon a certain minimum distance between two
nodes selected to be domain centers. Or, for example, one
could pick only those nodes to be domain centers that have a

low average distance to other nodes.
Heuristic I
i. Pick a node at random, not yet member of any domain,
and assign it to be the center of a new domain.
2. Start from the node closest to this domain center and
successively consider nodes farther and farther away (in
terms of their distance in the transitive closure) until the

domain has included its fair share of nodes (empirically
varied the

fram
the graph divided by the number of domains specified),
or until a node considered is farther away from the
domain center than some empirically specified maximum
limit. Nodes already assigned to another domain are
passed over.

quotient of the total number of nodes in

3. Repeat steps 1 and 2 until the requisite number of
domains have been created.

4. For each node not part of any domain at this point,
assign it to the domain whose center is nearest to this
node.

Heuristic III

Both Heuristics I and II require that a complete transitive
closure, or at least a large fraction of the closure consisting of
the nodes nearest to each node, has been computed prior to
domain creation. The following simpler heuristic permits
nodes to be assigned to domains without any consideration of
the distance labels on the arcs:

1. Pick a node at random, not yet member of any domain,
and assign it to be the center of a new domain.

2. Start from nodes that have direct edges (from and) to
this domain center and assign them to the current
domain if not already assigned. Then consider nodes
that are two traversals away, that is, nodes that can
reach the domain center through no more than two edge
traversals. Then consider the nodes that are three
traversals away, and so forth. Between nodes all of
which are a certain number of traversals away, consider
them in random order. Continue assigning nodes to the
current domain one by one until the domain has
included its fair share of nodes.

3. Repeat steps 1 and 2 umtil the requisite number of
domains have been created.

4. For each node not part of any domain at this point,
consider its immediate neighbors in arbitrary order, then
its neighbors two traversals away and so forth, until a
node is found that has been assigned a domain. Assign
the current node to the same domain.

3. A MULTI-LEVEL STRUCTURE

The domain encoding considered in the previous section can
be thought of as dividing the nodes into two “‘levels’’. At the



base level (or level 0) there are all the nodes is the graph. At
the next level (level 1), sets of these nodes have been
aggregated into domains and there is one center node for each
domain. The next logical question is whether this idea can be
extended to have multiple levels of domains and whether there
is any advantage in having a mult-level structure. We will
first show how the two-level structure can be extended to
multiple levels, and then analyze the effectiveness of such a
structure.

3.1 Data Organization

As in the case of two-level structure, divide the data points
into domains and identify a center for each domain. However,
instead of computing and storing the closure of all paths
between centers, divide these centers also into level 2 domains
and identify a center for each such domain. These centers are
again divided into domains, and so on. At the top level, we
have one domain, and we compute and store the closure of all
paths between points in that domain. As before, we also
maintain distance from a node to its domain center, and vice
versa, for domains at all levels. Figure 3.1 pictorially shows
the data organization.

SN Level 3 Domain
y | 1Y
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! ! ! VY Level 2 Domains
PR LU A O | 1
R
I T T L T
P A B B B A
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Figure 3.1. Multi-Level Structure. (Boxes represent domains
and bullets represent centers)

3.2 Search Procedure

We will now present the bounding procedure that uses the
multi-level structure described above to obtain bounds on the
point which is being considered to be opened. This bounding
procedure can then be incorporated in a branch and bound
search algorithm.

We first derive an analog of Lemma 2.1 for the multilevel
case that gives a lower bound on the distance between two
points that belong to two different domains.

Lemma 3.1. Let p, and p, be the two points of interest, and
let there be a total of k levels Let the centers for the domains
corresponding to p, be c, (for the level 1 domain), c} (for the
level 2 domain), ~, c%, and the centers for the domains
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corresponding to p, be c}, c3, Then,

Pwp22cich —( c“c“ g c" Ted2 + -+ cdel + ¢lpy )
~(Pach +cicd + -+ 6‘2'202" +chict)
PROOF. Similar 1o the proof for Lemma 2.1.
Observe that it is possible for the points p, and p, have a

common domain center at level { (i < k), and in that case the
only realizable lower bound on p,p, would be zero.

The search procedure is similar to the search procedure for
two-level structure. An initial upper bound on the distance
from p, to p, is given by

'-Cz

Ple —(plc;+c,lcl+ +c‘z‘1+c"1c1)+cc2
+ (ke +eh ek o+ cded + clp, )

If p, and p, have a common center at level i, then the initial
upper bound would be

Pwp2” = (picl+efet + - + cf2cf! +c"c' )
+ (chei el c“2 + = +c3cl +clpy)

A point p; €D, should be opened only if

PPy < Pll’zu - papo”

The lower bound on distance from p; to p,, p3p,~, can be
determined using Lemma 3.1.

If a point p; is opened, it may result in tightening the
upper bound on distance from p; to p,, and the new upper
bound may become

U _ 1
p1p2’ =p1ps + (paci+clc} + - + ¢} 2c" -

+chcf +( C%C'i"+c§“c‘" + ot c%c, +clpy)

if this new bound is lower than the current upper bound. If
ps and p, have a common center at j, then the potential new
upper bound would be

P12’ =pips + (psch+cict + - + d"cé‘ +citel )
+ (chef el ek ¢ o 4 cle} +cipy)

3.3 Size and Effort Analysis

We will first informally and then formally argue that the
multi-level structure just presented is not a viable alternative
to the two-level structure presented in Section 2. The problem
with the multi-level structure is that it considerably weakens
the bounding procedure. If the source and destination points
are nearby, then the lower bounds generated by Lemma 3.1
would almost always be zero. On the other hand, if the
source and destination points are far apart, then the upper
bounds become very loose as the effective radius increases.
There is some reduction in storage overhead since the number
of points at the top level would be smaller than the number of
points in the two-level structure, and hence the top level
closure would be smaller. However, we will now have to
additionally keep distances from points in the intermediate
levels to their domain centers at the higher levels.

To see this formally, let us treat the entire graph as a
single domain at level k. Let there be d,_; domains at level
k-1, each of which contains d;_, domains at level k-2, giving
a total of dy_,d,_, domains at level k—2. Similarly, let there

J
be dl~ldk-2"'dk—j = I-Idk_,' domains at level k—j. For
i=l

klk)



simplicity of notation, consider each node of the original
graph to be in a level 0 domain by itself, with the node itself
being the domain center. Now since level 0 domains are the
individual nodes themselves, t.he total rllulmber of nodes in the

Nanta that

oranh 2= — s tha
INOGIC uidl il ui

graph 7 = diadiydey = [[dis
i=1 i=0
case of two-level structure, we had only a dg, which we called

q, and a d, we called d.

Let us first compute the extra storage requirement. For
simplicity, let dy = dy = - =d;_; =d. We maintain closure
only for the level k—1 domain centers, and need O(d?)
storage for it, since there are d level k-1 domain centers. In
addition, for each domain, we keep distance from the points in
the domain to the domain center and vice versa. Provided
d » 1, we need only consider this storage at the lowest level,
At all higher levels, there are significantly fewer nodes. So
we need O (n) storage for distance between nodes and domain
centers. Thus, the total extra storage required is
O(n) + O(d?). This expression is similar to the two-level
case, the only difference being d is likely to be significantly
smaller now, since d = n'* for the multi-level case whereas
d = n* for the two-level structure. The storage goes down as
k increases, but only very slowly.

Let us now examine the effect on effort. Let §; through
8;.; be the maximum rsdu of the level 1 through level k-1

28 Then, the effective maximum

TIAd
= 11%i-

domains, and let A; =

*“radius’’ of a level k—l domam. which is the upper bound on
the path we generate through our storage structure from a
node to its k—1 level domain center, is A, ;. In the worst
case, the nodes between which bounds are sought, belong to
different domains except at the top level. Therefore, the effort
computation can be made in the same fashion as for a two-
level data organization, with A, , used as the radius. Thus,
the effort required is bounded solely by the radius of the top-
level domains. Since, A, ; is large, we get very poor
bounding with the multi-level structure,

We indeed performed several simulations (experimental
results not reported in this paper) and the multi-level structure
just described was found to consistently perform worse than
the two-level structure. As such, this form of multi-level
encoding will not be discussed any further.

3.4 An Embellishment

We saw that the multi-level structure has better storage
characteristics than the two-level structure, but has poor
bounding characteristics. We will now describe an
embellishment of the above multi-level structure that incurs
slightly higher storage penalty but has the potential of
exhibiting better bounding characteristics. The basic idea is to
keep the domain closures at every level instead of only at the
top level, as was done in embellishing the two-level structure
in Section 2.

With this embellishment, the lower bound on distance
between two points p, and p, is given by

Pip2 2 cich - (clc +eitef? 4 4 c? cl +clp;)

—(p2c} +cic} + - +c{2c +ciley)
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where i (i S k) is the level at which there exists a domain such
that the shortest distance between ¢ and ¢} has been stored.

The initial upper bound on the distance from points p, to
D, is given by

P2 = (pici+elct + - + c{”d“ Fefel )+ eich
+(clef el el & e cich + cipy)
where j is the smallest level at which the shortest distance
between c{ and c4 has been stored for some j.

Finally, if a point p3 is opened, it may potentially tighten
the unner bound on distance from p; to ps, and the new upper

= LPr— G 22 IR 220 [ g 4424

bound may become

p1p2” = p1ps + (paci+cicd + - + 2l +c"‘c3 )
+chch + (chef ek teh? + -+ ced + clp, )
where [ is the smallest level at which the shortest distance
between ¢} and ¢} has been stored for some I.

Let us now analyze the effect of this embellishment.

First note that each domain has d points, and hence the
size of transitive closure local to each domain is O (d?). The
total number of domains is dominated by the number of
domains at the lowest level, which is O (nd). Therefore, the
additional storage required for domain closures is O (nd). We
do not require distances from center to nodes within domain,
as these distances are already included in the closure of the
domains. By choosing & to be sufficiently large, d and hence
the factor nd can be made arbitrarily small. Thus, the
additional storage overhead can be reduced to no more than a
constant factor of the storage required for the original relation.

The domain closures do not reduce the radius of the top
level domain, and hence the worst case effort continues to be
as bad as for the multi-level structure without domain
closures. However, it is now possible that whenever the nodes
in question lie within the same domain well below the top
level, much tighter bounds may be obtained. Only
experimental study can tell whether this trade-off is
reasonsble. We will present these experimental results in
Section 4.

Before leaving the topic of the multi-level structures, we
would like to make a few points in their favor. The reason
the multi-level structure did so badly in our analysis is that for
large &, the top level domains are very large and hence
provide very weak bounds. The effectiveness of multi-level
structures would be enhanced if the size of the k-1 level
domains is kept considerably smaller than the size of the
graph. These k-1 size domains could then be split into lower
level domains that may or may not be considerably smaller.
Moreover, in a situation in which most queries concern points
that are not far apart, a multi-level structure may be a good
choice. Finally, an attractive use of multi-level structure is in
obtaining approximate solutions with great savings in effort as
discussed in [2].

4. PERFORMANCE EVALUATION

In this section, we present the results of several simulation
experiments that we performed to study the effectiveness of
the data organization techniques presented in this paper. We



first make a few observations on the performance evaluation
methodology, and describe the datasets used in the study.

4.1 Methodology

We use two performance metrics. One is the size ratio which
is defined to be the ratio of the size of total information stored
with our domain encoding technique and the size of original
database. One would like this metric to be as close to 1 as
possible. The other metric is the effort ratio which is defined
to be the ratio of the /O by the Dijkstra algorithm with and
without domain encoding. The effort with domain encoding
includes the J/O for fetching the bounding information. The
effort has been computed by considering search for shortest
distance between several points with varying distance between
them, and averaging over all searches. Care was taken to
ensure that domain centers were not chosen to be the source
or destination for any search. If a domain center were the
source or destination, our encoding structure would result in
considerably tighter bounding and consequently in much less
effortt The Dijkstra algorithm has been used as the
benchmark, since it is generally regarded to be the best
algorithm for finding shortest path between two points [11].
One would like to make the effort ratio as close to zero as
possible.

Following the lead in [4], synthetic graphs were used as
data sets. The distance between two nodes was assumed to be
a uniform random variable over a specified positive interval.
The number of nodes were varied to obtain databases of
different sizes, and for a given database, the number of
domains were varied to get domains of different sizes.
Heuristic III given in Section 2.6 was used to divide the nodes
into various domains. We chose Heuristic I for its
computational simplicity. The other two heuristics should
result in even better performance of our scheme. Most of the
experiments were performed with a graph of 2500 nodes, with
average outdegree of 8 and the average distance value of 5.
We couldn’t use larger databases in the simulations as that
would have made simulations prohibitively expensive to run.
However, our analysis indicates that the larger the database
the more effective our techniques should be.

4.2 Experiment 1: Two-Level Structure without
Domain Closures

In the first set of experiments, the effort and size ratios were
measured as a function of domain size for the two-level
structure without domain closures. The domain sizes have
been specified in number of nodes in a domain. Figure 4.1
shows the result for the 2500 node database.

For very small domain sizes, there is significant size
overhead. Small domain sizes result in a large number of
domains, and hence the storage required to maintain distance
between every pair of domain centers become large. As the
domain size is increased, the size overhead decreases, and for
large domains, the size overhead becomes a constant fraction
of the size of the original relation. The effort ratio, on the
other hand, increases as the square root of the domain size as
the domain size is increased. One could then choose an
operating point that gives a large speed-up at the expense of
large storage overhead, or aliemately, if the storage is at
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Figure 4.1. Effort and Size ratios for two-level structure
(2500 node database)

premium, one could pay a small storage overhead and still get
some speed up.

A good choice for the domain size, which achieves good
speed up and incurs only moderate storage overhead, seems to
be the square root of the total number of nodes in the graph.
Figure 4.2 shows, for this choice of domain size, the effort
and size ratios for graphs of different sizes. Database size has
been expressed in number of nodes in the corresponding

graph.
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Figure 4.2. Effort and Size ratios for two-level structure
(different databases)

This graph is very encouraging as it shows that by paying
about 40% storage overhead, nearly 100% speed up may be
obtained.

43 Experiment 2: Two-Level Structure with Domain
Closures

The second set of experiments examined the usefulness of
precomputing the transitive closure within each domain as
suggested in Section 2.5. The effort and size ratios have been
plotted in Figure 4.3 as a function of domain size for the same
2500 node database.

When the domain sizes are small, very little storage is
required to store the domain closures. However, there are a
large number of domain centers, and the total storage
requirement is dominated by the closure between these domain
centers. For large domain sizes, there are very few domain
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Figure 4.3. Effort and Size ratios for two-level structure with
domain closures (2500 node database)

centers, and the closure between them would be small.
However, the domain closures now become very large. As
discussed in Section 2.5, the optimum domain size is of the
order of the cube root of the number of nodes. The shape of
the effort ratio curve is the same as in Figure 4.1 for the two-
level structure without domain closures. This is not very
surprising, given our observation in Section 2.5 that no
significant improvement in bounding is obtained by keeping
the domain closures.

Figure 4.4 presents a comparison of the two-level structure
with and without domain closure. In this figure, we have
plotted the effort ratio against the size ratio for two schemes.
The various data points in this figure have been obtained by
extracting effort ratio and size ratio numbers for different
domain values from Figures 4.1 and 4.3. Note from Figure
43 that two different effort ratios are obtained, one higher
than the other, for the same size ratio, due to the concavity of
the size ratio curve. This accounts for the rather odd shape of
the curve for the structure with domain closures in Figure 4.4.
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Figure 4.4. Effort vs. Size for two-level structure with and
without domain closures (2500 node database)

It is apparent from Figure 4.4 that performance-wise the
scheme without domain closures totally dominates the scheme
with domain closures., For any acceptable storage overhead,
better speed up may be obtained using the structure without
domain closures. Similarly, for any desired speed up, the

without domain closures structure incurs less storage overhead.
Although not presented here, similar results were also obtained
with databases of different sizes. We can thus conclude that
the effort saving resulting from a reduction in number of
points that need be opened in a domain does not justify the
large storage overhead incurred by domain closures.

4.4 Experiment 3: Multi-Level Structure

The third set of experiments examined the effectiveness of the
multi-level structure with domain closures presented in Section
3. The experiments were performed for the 2500 node
database and 4 nodes per domain (except the top level), and
by varying the number of levels in the structure, The small
domain sizes were chosen to obtain sufficient number of
levels. Figure 4.5 shows the effort and size ratios for different
number of levels in the multi-level structure.
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Figure 4.5. Effort and Size ratios for multi-level structure
with domain closures (2500 node database)

For two levels, the multi-level structure reduces to a two-
level structure with domain closures such as the one discussed
in the previous experiment. This data point is plotted simply
to provide a reference. For other levels, as predicted in
Section 3, the size overhead is considerably reduced, but at the
same time, the effort ratio also increases.

By way of comparison, we have plotted the effort vs. size
curves for the two-level structure and the multi-level structure
in Figure 4.6 It can be seen that performance-wise, for most of
the operating region, the two-level structure dominates the
multi-level structure. However, it is possible to reduce the
storage overhead at a level which is not possible with the
two-level structure at considerable loss in speed ups. Note
that the two-level structure requires at least two times the
number of nodes units of additional storage (to store distance
from each node to its domain center and vice versa), whereas
with the multi-level structure one could go below this bound
on storage overhead.

In order to ensure that the trends that we got for multi-
level structure have not been biased by our choice of domain
size, we obtained the effort and size ratios for three-level
structure for different domain sizes and have compared it with
the two-level structure in Figure 4.7.

It is clear from Figure 4.7 that the two-level structure
completely dominates the three-level structure. The odd shape
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of the curve for the three-level structure in Figure 4.7 is due
to the concavity of the size ratio as the domain size is varied.
The storage required for the top level closure dominates the
storage overhead for small sized domains. For large domain
sizes, the closures at lower levels dominate the storage
overhead.

We can thus conclude that the justification for the multi-
level structure stems not from speed up consideration but the
storage overhead consideration. Only if the storage is at a
premium does a multi-level structure become attractive, with
very small domains and a large number of levels.

4.5 Summary of Experimental Results

From the simulation results presented in this section, the two-
level structure without domain closures emerges as the data
organization technique of choice. It offers a wide range of
operating points to choose from depending upon the speed up
desired and the storage overhead one is willing to incur. A
good choice for the domain size, which achieves significant
speed up and incurs only moderate storage overhead, seems to
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be the square root of the database size. For this choice, we
were able to obtain nearly 100% reduction in I/O by paying
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calculation with our domain encoding scheme included extra
I/O to fetch the necessary bounding information. Considering
the fact that the large databases are generally I/O bound, the
significant reduction in I/O due to the search space pruning
makes our scheme very attractive.

There doesn’t seem to be any advantage in keeping the
domain closures with the two-level structure. The small
additional savings in I/O resulting from a reduction in number
of points that need be opened in a domain does not justify the
large storage overhead incurred by domain closures.

If one is primarily interested in speed up, the multi-level
structure also is not a viable altemnative. However, if the
storage is at a premium and one is interested in obtaining
some speed up by paying very little storage overhead, a
multi-level structure may be used. Note that the two-level
structure requires at least two times the number of nodes units
of additional storage (to store distance from each node to its
domain center and vice versa), whereas with the multi-level
structure one could go below this bound on storage overhead.

5. GENERALIZATIONS

In this section, we present some generalizations of the
techniques presented in the previous sections. In particular,
we show in Section 5.1 how our techniques apply to problems
other than shortest path problems and search algorithms other
than Dijkstra’s algorithm. In Section 5.2, we consider the
case when the domains are not mutually disjoint. Finally, in
Section 5.3, we suggest how to handle gracefully changes to
the base relation that could invalidate precomputed shortest
paths stored as part of our data structure.

5.1 Other Applications

So far in this paper, all the discussion has been centered
around the problem of determining the shortest path between
two points and how Dijkstra’s algorithm can be speeded up
using our bounding procedure. However, as stated in Section
1, the techniques presented in this paper apply equally well to
all extremal path problems, and our bounding procedure can
be incorporated in any search algorithm based on the state-
space search paradigm. In this section, we illustrate how these
generalizations are possible.

An extremal path problem on a graph involves the
identification of a path between a pair of nodes in the graph
that has an extreme value (highest or lowest on some
precedence ordering) for its label, or the calculation of the
value of such an extremal label. If one is interested in
smallest or lowest value, the bounding procedure developed

‘for the shortest path problem directly applies with distance

being replaced by the appropriate quantity. For largest or
highest value, the bounding procedure can easily be modified
by switching the roles of upper and lower bounds. We
illustrate using the problem of determining the longest path
between two points as the paradigm for deriving the bounding
procedure, and then we will incorporate this bounding
procedure in a breadth-first search algorithm.



The database will again have to be divided into domains.
However, we will now maintain largest distance between
domain centers, and between the domain center and all other
points and vice versa within & domain. We discuss only the
two-level structure.

With this data organization, first of all, an initial lower
bound on the largest distance between the points of interest,
py and p,, is obtained as:

PPt = picy + 162+ copy
where ¢; is the domain center of the domain D; to which
belongs the point p;. During the search process, a point ps
should be opened only if

P1ps +pp¥ > pwpat .1

By a reasoning similar to Lemma 2.1, an upper bound on
distance between p; and p, can be obtained as:

p3p¥ = e3cy —caps - pacy

We will now incorporate the above bounding procedure in
a breadth-first search [15] procedure. Note that the semi-naive
algorithm [6] also performs a breadth-first search for
determining reachability from a specified node. In the
following algorithm, OPEN is a queue, each element of which
is a tple of the form <node, distance> where the distance
field contains the best (largest) known distance from source to
the corresponding node.

"
* Breadth-first Search with bounding for determining

* largest distance between points p and ¢

*/
determine the initial lower bound on largest distance, pg”
OPEN := <p, 0>

while g is not the only element in OPEN do
{

remove the first element <i, d;> from OPEN (other than
for every j € Succ(i) do
{
if j is in OPEN then
<j, d}) = <j, max(dj, d,~+d,'j)>
else do
{
determine if j should be opened -- use Eqn. (5.1)
if j needs to be opened then
{
append <j, d;+d;;> to OPEN;
update pg"
}
}

}
5.2 Multiple Domain Membership
We have thus far assumed that the nodes have been divided
into non-intersecting domains, so that each node has a unique
domain center. If a node is allowed to belong to more than
one domains, there will be multiple domain centers that can be

')
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reached from a node. For each pair of domain centers
selected (one for the source, one for the destination node) a
bound is obtained on the path that we wish to bound. Several
such pairs are considered and the one that produces the
tightest bound is the one that is selected. The advantage is
that considerably tighter bounds can be obtained. The
disadvantage is that if each node has ¢ domain centers, c?
bounds have to be considered, and unless ¢ is kept small, the
effort involved in simply bounding the search could become
significant.

5.3 Incremental Changes

Whenever some derived information is materialized, a change
in the base information needs to be reflected in a change in
the derived information. We require precomputed shortest
distances between domain centers, and between each domain
center and its constituent nodes. Whenever a modification is
made to the original graph, this precomputed information has
to be updated. Obviously, a complete recomputation would be
extremely expensive. One possibility is to use the incremental
techniques suggested in [1]. However, given the extremely
large sizes of graphs that we now have in mind, even these
incremental techniques may be too expensive to use
frequently. Fortunately, a simple solution exists.

The basic observation to make is that the precomputed
shortest distances are needed to derive bounds that are used to
prune the search. Even if we did not have exact values of
these shortest distances, but rather only upper and lower
bounds on them, these bounds can appropriately be used in
place of exact values, while deriving bounds for pruning the
search. Thus, instead of maintaining precomputed shortest
distances between domain centers and between each domain
center and its constituent nodes, we will maintain the upper
and lower bounds on these distances. To begin with, the
upper and lower bounds would be same (and equal to exact
distances). As the base relation is updated, instead of
recomputing the materialized shortest distances, we will
appropriately update the upper or the lower bound. Of course,
we will get somewhat less pruning since we now have weaker
bounds than we would if we knew the exact distances. After
several modifications to the database, the upper and lower
bounds on precomputed distances would diverge quite a bit,
and the exact shortest distances required by the data structure
may be recomputed. In a quasi-static situation, this approach
can become very attractive.

6. CONCLUSIONS

In this paper, we considered the problem of performing
efficient search over large databases. To this end, we
presented a data organization technique that relies on partially
precomputing some information, and a bounding procedure
that uses this data organization to prune the search space. Our
data organization technique and the bounding procedure may
be incorporated in a branch and bound search algorithm, or
new algorithms can be designed using our bounding
procedure. These techniques can be used to solve a large
number of useful and practical path problems such as the
shortest path, critical path, largest capacity path, path of
maximum reliability, etc. [3,5,8,9,14,16], and can also be



gainfully employed in large expert database systems in which
the search component of the expert systems has been
integrated with the data management capability of database
management systems. Simulation results confirm that, using
these techniques, a search can be expedited significantly
without incurring a large storage penalty.
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