
Techniques for Design and Implementation of
Efficient Spatial Access Methods *

Bernhard Seeger Hans-Peter Kriegel

University of Bremen, D-2800 Bremen, West Germany

Abstract

In order to handle spatial data efficiently, aa re-
quired in computer aided design and g-data ap
plications, a database management system (DBMS)
needs an access method that will help it retrieve
data items quickly according to their spatial loca-
tion. In this paper we present a classification of
existing spatial access methods and show that they
use one of the following three techniques: clipping,
overlapping regions, and transformation. From a
practical point of view we provide a tool box sup-
porting simple design of a spatial access method for
a given point access method using one of the above
techniques. We analyze the technique of transfor-
mation in more detail and show that our new con-
cept of asymmetric partitioning is more retrieval
efficient than the traditional symmetric approach.
Furthermore we suggest a hybrid method combin-
ing the techniques of overlapping regions and trans-
formation and provide an analysis and comparison
of our new method. For data for which an analysis
of R- and R+-trees was available, these comparisons
demonstrate a superiority of our scheme.

1 Introduction

Access methods for secondary storage which allow efficient
manipulation of large amounts of records are an essential
part of a database management system (DBMS). In tra-
ditional applications, objects are represented by records,
which are d-dimensional points, d 2 1, and thus point
access methods (PAMs) are required. We distinguish ac-
cess methods for primary keys (one-dimensional points)

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base EnQwment. To copy
otherwise. or to republish, requires a fee and/or special permission
from the Endowment.

and access methods for secondary keys (multidimensional
points).

However, it turned out that PAM are not sufficient for
applications like computer aided design ([SRG 831, [MT 83]),
automatic generation of maps POD 871, or image pro-
cessing [R.L 851. In particular, new access methods are
necessary for the organization of multidimensional spatial
objects, like rectangles, polygons, circles, etc. . We call
these methods spatial access methods (SAMS). Addition-
ally, queries asking for spatial objects seem to be more
complex than queries asking for points. For instance a
typical spatial query is the point-query: Given a point,
find all spatial objects that contain the point.

In this paper we will deal with SAMs baaed on multi-
dimensional dynamic hashing schemes (MDHs). We will
show that MDHs without directory, whose most efficient
representative is PLOP-Hashing [KS 881, can easily be ex-
tended to very efficient SAMs. Moreover, our new method
combines different techniques of various previous SAMs.
Particularly, our scheme generalizes on one hand the con-
cept of transformation of spatial objects [NH 851, on the
other hand the basic concept of R-trees [Gut 841.

In the following we assume that d-dimensional spatial
objects are in the d-dimensional unit cube Ed = [0, l)d, d 1
1. Obviously, this can easily be fulfilled by simple trans-
formation. The problem of storing d-dimensional spatial
objects can be reduced to handle d-dim. rectangles by
finding the minimum bounding rectangle (MBR) of a spa-
tial object. Moreover we will assume that the sides of the
MB& are parallel to the axis of the data space Ed.

The remainder of this paper is organized as follows.
In section 2 we briefly review one of the most efficient
MDH schemes without directory, called multidimensional
dynamic piecewise linear order preserving hashing, in short
PLOP-Hashing. For a more complete discussion we refer
to [KS 881. Then in section 3 we will present a classifica-
tion of existing SAMs baaed on three techniques: clipping,
overlapping regions, and transformation. We discuss the
properties of schemes using these techniques. In section 4
we apply the technique of overlapping regions to PLOP-

‘This work was supported by grant no. Kr670/41 from the
Deutache Forschungsgemeinschaft (German Renearch Society)

Proceedi s of the 14th VLDB Conference
Los Ange es, California 1988 P 360

Hashing. In section 5 we apply the transformation and
overlapping region technique to PLOP-Hashing which re-
sults in a hybrid SAM. The most important contribution
of this paper is the design of an asymmetric partitioning
and an analysis thereof. Section 6 concludes the paper and
gives some aspects of future work.

2 Piecewise Linear Order Preserv-
ing Hashing

The basic idea of multidimensional PAMs is to divide the
data space into disjoint regions. The objects contained in
one region are stored in one bucket, or in a short chain
of buckets. In order to support a dynamic adaptation,
the number of disjoint regions depends on the number of
records. MDH schemes commonly partition the data space
using a dynamic grid.

In the past few years a large spectrum of MDH schemes
was proposed. MDH schemes fall in one of two categories:
those that do not use a directory and those that use a
directory. There is a large variety of MDH schemes with
directory, like the grid file [NHS 841, multidimensional ex-
tendible hashing [Oto 841 or different types of hash trees
([Oto 861, [Ouk 851, [WK 851). In all these schemes the
directory resides fully or partially on secondary storage.

In this section we will review PLOP-Hashing, a MDH
scheme without directory. In [KS 881 we presented PLOP-
Hashing in detail and reported on an experimental per-
formance comparison with the grid file [NHS 841, where
PLOP-Hashing turned out to be the superior scheme.

MDH schemes without a directory are based on (one-
dimensional) linear hashing [Lit SO]. Using a hashing func-
tion H, we compute the address of a short chain of buckets,
where the set of addresses {O,..,m-1) is time varying. Giv-
ing up the directory we have to allow overflow records, i.e.
records which cannot be placed in the first bucket of the
corresponding chain, called primary bucket. The overflow
records are stored in a so-called secondary bucket which
is chained with the primary bucket. The primary bucket
resides in the primary file, the secondary bucket in the
secondary file. This very simple type of treating overflow
records is called bucket chaining. One chain of buckets is
also called a page.

Two basically different order preserving address func-
tions have been suggested for MDH schemes without di-
rectory. One of them is the interpolation function [Bur 831
which generates a one-dimensional key from a d-attribute
composite key using z-ordering [OM 841 and then computes
the address using a one dimensional order preserving hash-
ing function. The other address function is the one used

Figure 1: Partition of the data space [0, 1)’ generated by
PLOP-Hashing

in MOLHPE [KS 861 and quantile-hashing [KS 871 which
was originally suggested to compute directory addresses in
multidimensional extendible hashing [Oto 841. In our ap-
proach we will use this address function to compute page
addresses.

As already indicated, the data space is partitioned by
an orthogonal grid, see figure 1. The partitioning points
of the grid on each axis are defined by d binary trees,
d 2 1, comparable to the scales of the grid file. Each in-
ner node of such a binary tree stores a partitioning point
representing a (d-l)-dimensional hype&me that cuts the
space into two rectangular shaped regions. Each leaf is as-
sociated with a d-dimensional slice S(i,j) of the data space
which is bounded by two neighboring partioning hyper-
planes, 0 5 i < mj, 1 5 j 5 d, where mj is the number
of slices corresponding to the jth axis. Such a slice S(i,
j) is addressed by the index i stored in the corresponding
leaf, 0 2 i < mj, 1 < j 5 d. The whole data space is
the union of d-dimensional rectangles which are not cut by
any partitioning hyperplane and are therefore called cells.
All the d-dimensional points lying in one cell are stored in
one page. The address of that page is computed using the
index ij of all slices S(ij, j), whose intersection results in
the corresponding cell, 0 5 ij < mj, 1 5 j 5 d. In figure 1,
the addresses of the pages are depicted in the correspond-
ing cells. For example key K = (0.2,O.S) belongs to slices
S(l,l) and S(2,2), and therefore K is stored in the page

361

with address 9. Additionally to an index i, each leaf con-
tains the number d of points which are in the slice S(i, j),
0 5 i < mj, 1 < j 5 d. This information is used to expand
the file in a piecewise linear fashion.

Before explaining the principle of piecewise linear ex-
pansions, let us introduce some further notations. The file
size m is given by the number of pages in the file. The level
L = [log, mJ indicates how often the file size has doubled,
assuming a file size of one page at the beginning. More-
over the level Zj of axis j, which is given by Ij = [log, mj] ,
1 5 j < d, specifics how often the number of slices of axis j
has doubled. For example in figure 1 the file has 16 pages
and therefore the level L is 4, II = 2 and 1, = 2. During one
doubling of the file size the number of pages increases from
2L to 2Lt’ - 1. During this process, one axis s, 1 5 8 5 d
called split axis is selected in which the expansions are car-
ried out. Let us assume that the split axis s is chosen in
a cyclic order, i.e. s = L MOD d + 1. Then our scheme
partitions the data space -metrically, i.e.]li - lj] 5 1,
~<i,j<d.

The pages of the file are arranged in groups go, .., g,,,,-1,
where the union of the cells of one group gj is the slice
S(j,s), 0 5 j c m,. A rule, called control function, triggers
the expansion of the file by another group of pages, respec-
tively slice. First one group of pages will be selected by
the control function (e.g. if the load factor of this group
is more than 100%). We have illustrated this situation on
the left side of figure 2, where we have a file of 4 pages.
Thus the level L = 2 and s denotes the first axis. Now we
consider two groups gc = { 0,2} and gr = { 1,3}. Assum-
ing zs > 26 (b = capacity of a bucket), i.e. the group go
contains more than 2b records, the control function calls
for an expansion of the file, particularly of the group go.
Thus the slice S(O,l) will be cut into two by inserting a
new partitioning point into the binary tree of the first axis
and expanding the file by the group gz = {4,5), see the
right side of figure 2.

The expansion of one group does not proceed in one
macro step, but step by step using an expansion pointer
(epr, ..,epd), which indicates the page to be expanded next.
Thus the split group will be expanded linearly as for linear
hashing [Lit SO], and the whole file will be expanded in a
piecewise linear fashion.

In addition to the expansion of the file we have con-
sidered contraction and reorganization. As for expansion
we have a control function, which triggers merging of two
groups belonging to neighboring slices into one group. We
have chosen the following control function for contraction:
Merge the pair of neighboring groups with the minimum
number of records, if the load factor is below 45%.

Until now, we have described PLOP-Hashing as a sym-

Figure 2 Expansion of a file organized by PLOP-Hashing

metric MDH scheme without directory. However, PLOP-
Hashing allows a dynamic B,symmetric partitioning of the
data space. In this sense “dynamic” means that after dou-
bling of the file size the expansion axis can be chosen in an
arbitrary way yielding an asymmetric partition. Moreover
considering an expansion of the file, PLOP-Hashing allows
distributing the records of c slices over c+l slices, c > 0,
and thus supports partial expansions ([Lar 801, [KS 861).

3 An overview of spatial access
methods

In this section we will provide an overview of spatial access
methods (SAMS) which are based on the approximation of
a complex spatial object by the minimal bounding rectan-
gle (MBR) with th e sides of the rectangle parallel to the
sxes of the data space. In figure 3, polygons are illustrated
together with their MBRs in the 2dimensional data space
[O,l)‘. The most important property of this simple ap-
proximation is that a complex object is represented by a
limited number of bytes. Although a lot of information is
lost, MBRs of spatial objects preserve the most essential
geometric properties of the object, i.e. the location of the
object and the extension of the object in each axis.

There are other proposals using more complex approx-
imations of spatial objects. The most interesting of them,
which is particularly designed for the organization of data
in secondary memory, is used in the PROBEproject [Ore 861.
Similar to quad- and octtrees [Sam 851, a grid is assumed
covering the spatial object where all cells of the grid inter-
secting the object are stored in a file. Combining cells to
rectangles and applying z-order [OM 84) to identify these
rectangles, results in a more compressed representation of
objects than in case of octtrees. To support clustering of

362

o%i
4

1.0

Figure 3: Some polygons and their corresponding MBRs

spatial objects, all corresponding rectangles of the object
are stored in a separate file for this particular object. A
minimal bounding rectangle characterizes an object using
a short record. Thus it is possible to organize the ap-
proximation of different objects in a single file. For every
minimal bounding rectangle of an object, a pointer refers
to a file where a more exact approximation or the exact
description of the object is stored.

SAMs organizing minimal bounding rectangles of ob-
jects can be classified into three groups. Each of these
groups is characterized by a special technique that allows
an extension of a multidimensional point access method
(PAM) to a multidimensional SAM. Thus the performance
of such SAMs depends on the underlying PAM and de-
pends on the applied technique. In the remainder of this
section we will essentially limit our discussion to the prop-
erties of these techniques.

In the following, we consider several so-called spatial
queries. The first two queries should be supported by each
SAM :

1. point query :
Given a point P E Ed, find all d-dim. rectangles R
in the file with P E R

2. rectangle intersection :
Given a d-dim. rectangle S s Ed, find all d-dim.
rectangles R in the file with S I-I R # 8

3. rectangle enclosure :
Given a d-dim. rectangle S c Ed, find all d-dim.
rectangles R in the file with R > S

4. rectangle containment :
Given a d-dim. rectangle S s Ed, find all d-dim.
rectangles R in the file with R E S

5. volume queries :
Given u E (O,l), find all d-dim. rectangles R in the
file with volume equal to v.

As demonstrated in [HKSS 881, queries (3) - (5) are very
important to recognize similar CAD-objects in CAD data”
In order to maintain low insertion costs, exact match queries
should also be supported efficiently. In particular, a SAM
should be dynamic, i.e. insertions and deletions should
not reduce retrieval performance. In analogy to PAMs it
is important that retrieval performance should essentially
be independent of the distribution of the spatial objects.
These last two aspects usually depend on the underlying
PAM and are therefore not discussed in detail in this sec-
tion.

Additionally to the distribution of objects the density
O(P) of a point P E Ed can influence retrieval perfor-
mance, where the density O(P) is the number of rectangles
in the file containing P E Ed. The global density of a file
is given by

0 = &%0(P) (1)

The value of 0 heavily depends on the particular applica-
tion. Let us consider two applications in the area of car-
tography, where we organize polygons using the minimal
bounding rectangles (MBR) of the polygons:

1. storing contour lines, which are used in topographical
maps, leads to a high global density

2. storing limits of lots, which are used in conventional
maps, commonly leads to a low density

3.1 Clipping

Clipping can easily be explained by describing the inser-
tion of a new rectangle. Assuming a partition of the data
space into disjoint regions, an insertion of a rectangle will
be performed like an insertion of a point. Problems will
only occur, if a rectangle R intersects with more than one
disjoint region. Clipping of a rectangle means that R is
partitioned into a minimal set of rectangles {R’, .., Rg},
where

R=fiR’, q>l
i=l

Every rectangle R’, 1 5 i 5 q, intersects. with exactly
one disjoint region. Now we can insert these q rectangles
R’ , .., E1p into the fle.

In figure 4 we have depicted the partition of the data
space after insertion of ten 2-dimensional rectangles RI, .., RIO

363

El ‘I r %
I

I %

T-

1 R2 IO So
5

Figure 4: Insertion of ten P-dim. rectangles RI, .., RIO into
a file using clipping based on PLOP-Hashing

into the file using clipping based on PLOP-Hashing. The
file consists of six pages, three slices vertical to axis 1 and
two slices vertical to axis 2. Rectangles R5 and Rs are
partitioned into two, rectangle Rg is partitioned into four
rectangles.
The most important advantage of schemes using clipping

is that they are really extensions of the underlying PAM. If
such a scheme organizes only point data, it will inherit all
the properties of the underlying PAM. Additionally, d-dim.
points and d-dim. rectangles can be organized together in
one file.

However, a drawback is obviously the duplication of
rectangles in the Iile, for instance rectangle Rg must be
stored four times in our example, see figure 4. Thus stor-
age utilization will be indirectly reduced. Deletions and
insertions require more disk accesses than in case of point
data. In particular, a rectangle must be inserted in all
buckets where the corresponding region intersects the rect-
angle. Moreover, assuming a bucket capacity of b records,
b > 1, and an underlying point access method allowing no
overflow records, all such SAMs based on clipping require
that the following condition 2 is fulfilled

(2)

This phenomenon can be easily illustrated by an ex-
ample. Let us assume b=2 and three P-dim. rectangles
RI n R2 n R3 # 8. Because overflow records are avoided,
these. rectangles must be stored on several buckets. In par-
ticular, a hyperplane must exist that separates these rect-

angles into two subsets. This hyperplane requires clipping
at most one of these rectangles. Therefore at least on the
left or on the right of the hyperplane, there will be again
three rectangles with a nonempty common intersection.

PLOP-Hashing allows overflow records and therefore
the functionality of the derived SAM is guaranteed. How-
ever, retrieval performance can suffers from the redun-
dance introduced by clipping.

Assuming condition 2 is fulfilled, let us now consider
spatial queries. To answer a point query (1) and a rect-
angle enclosure query (3) only one data page must be ac-
cessed. Obviously, this behavior makes such schemes very
attractive. Assuming the same search rectangle for query 2
and query 4 the same data buckets must be accessed (and
thus the same number of disk accesses is required) although
the number of answers of query 4 is usually much lower
than of query 2. In case of query 4, a lot of records, so-
called false drops, must be accessed which do not satisfy
the query. To reduce disk accesses for these queries, rect-
angles that are completely contained in an arbitrary query
rectangle must be separated from all other rectangles with
a nonempty intersection outside of the query rectangle. If
this requirement is fulfilled, search regions will be disjoint
and thus the number of false drops can be reduced. Let
us now consider query 5. This type of query cannot be
supported in anyway by a SAM based on clipping, i.e such
a query can only be answered, if all data pages in the file
sre accessed.

It is important to realize that clipping can be applied
to every multidimensional PAM. In particular, the R+-tree
[SRF 871, Box - Excel1 [TS 821 and the multi layer grid
file [SW 881 are SAMs applying the technique of clipping
based on the K-D-B-tree [Rob 811, Excel1 [TS 82) and the
grid file [NHS 841, respectively. All these underlying PAMs
avoids overflow records and therefore the functionality of
the corresponding SAM is limited to applications where
condition 2 is fuhYled.

3.2 Overlapping Region Schemes

Such as clipping, overlapping region schemes (OR - schemes)
organize d-dimensional rectangles using a d-dimensional
PAM. For the following considerations we define the region
of a bucket as the minimal bounding box of the rectangles
belonging to the bucket. Contrary to clipping, OR-schemes
allow data buckets where the corresponding regions have
a common overlap. We will discuss the principle of OR-
schemes by a short introduction to the R-tree [Gut 841,
one of the most popular SAMs.

The R-tree is a balanced tree generalizing the B+-tree
concept [Corn 791 to spatial objects. Storage utilization is

364

Figure 5: Organization of some rectangles and the corre-
sponding structure of the R-tree

guaranteed to be above 50%. Minimal bounding rectangles
of spatial objects are stored in the leaves of the tree, where
each of the leaves corresponds to a data bucket. In an inner
node of the tree there are tuples (R,p), where p is a pointer
referring to a son and R is the minimal bounding rectangle
of all rectangles in the corresponding son. Since clipping of
rectangles is avoided, a rectangle is stored in exactly one of
the data blocks. Thus overlapping regions of different data
blocks are allowed for the organization of spatial objects.

In figure 5 we have illustrated the structure of an R-
tree and the partition of the corresponding data space. As
demonstrated, the regions Sz and Ss have a non-empty
common intersection.

The advantage of OR-schemes is that storage utiliia-
tion depends only on the underlying PAM, since every rect-
angle is uniquely represented in the file. Thus the W-tree
inherits the guarantee of at least 50% storage utilization
to the R-tree. Another nice property is that, in analogy
to clipping methods, d-dim. points and d-dim. rectangles
can be organized together in one file.

However, retrieval performance depends heavily on the
amount of overlap. As demonstrated in [FSR 871, retrieval

performance can degenerate, if rectangles with highly vary-
ing volumes occur. Particularly to rmswer an exact match
query more than one access to data buckets is usually re-
quired. Obviously, this will increase costs for insertions
and deletions.

Let us now consider spatial queries as introduced at
the beginning of this section. Depending on the amount of
overlap, a point query requires more than one access to a
data bucket and quite a few accesses to directory buckets.
For example, assuming a point P E Sz f~ Sa in figure 5,
the corresponding point query requires access to two data
buckets. Similar to clipping schemes, both, a rectangle
containment query and a rectangle intersection query re-
quire access to the same data buckets. As mentioned, a
separation of these different rectangles can improve per-
formsnce.

In [Ooi 871 overlapping regions is proposed for the kd-
tree [Ben 751. In section 4 we will to apply the technique
of overlapping regions to PLOP-Hashing.

3.3 Transformation

The basic idea of transformation-schemes (T-schemes) is
to represent minimal bounding rectangles of multidimen-
sional spatial objects by higher dimensional points. For
instance, a 2dimensional rectangle R with sides parallel
to the axis is represented by a I-dimensional point (center
representation)

(cl, ~2, el, 4

where c = (cl, cz) E (0,l)’ is the center of the rectangle
and e = (el,ez) E (0,0.5)’ is the distance of the center
to the sides of the rectangle. As proposed by Nievergelt
and Hinrichs [NH 851, these 4-dimensional points can be
organized by the grid file [NHS 841, generally speaking by
a multidimensional PAM.

Another choice of parameters is the corner representa-
tion, where a 2-dim. rectangle can be represented by its
lower left comer (Zi, Iz) E [O, 1)” and its upper right comer
(ui, uz) E [O, 1)‘. However, the choice of the parameters
can influence performance and characteristics of the SAM.
The basic advantage of the center representation is that
location parameters, like the center of a rectangle, are dis-
tinct from extension parameters. Moreover, the center of
a rectangle seems to be the best location parameter, since
the distance to all other points within the rectangle is min-
imized.

Due to the illustration of examples, in the following we
limit our considerations to segments (l-dim. rectangles).
According to the different representations, a segment can
be described by (c,e), where c E (0,l) is the center and
e E (0,0.5) is half of the length of the segment or by (I, u),

365

1: 3.
Sl l

e
s4 l

0.

1/\1/,

1’ s2 -

O. .o

2. p4 s*

1.0 c 1.0

Figure 6: Transformation of segments Ij into P-dim. points
I” = (cj, ej) (center representation) and Sj = (Ij, uj) (cor-
ner representation), j = 1,..,4

where J E [O,l), and ue(O,l) is the left and right limit
of the segment, respectively. Let us mention that most
PAMs - in particular PAMs based on hashing, such as the
grid file [NHS 841, hashtrees [Oto 861 or quantile hashing
[KS 871 - assume a rectangular shaped data space. Re-
trieval performance and storage utilization will decrease,
if the data space contains regions where no data occurs,
socalled dead regions . Let us consider the corner repre-
sentation, then the 2-dim. data space must be the unit
square [0, 1)z. However data occurs only above the diag-
onal, because J < 21. Thus in case of segments in half of
the data space no data occurs and for 3-dimensional rect-
angles only l/8 of the data space can contain data. Using
the center representation, the S-dim. data space is given
by (0,l) x (0,0.5). As depicted in figure 6 data can only
occur in the triangular shaped subspace

T = {(c, e) 1 e < min(c, 1.0 - c), c E (0,l.O) }

However, since in common applications the length of seg-
ments is quite short with respect to the unit segment [OJ),
the subspace T can be reduced to a trapezoid formed sub
space (also called the real data space)

T emm = { (c,e) 1 e < min(c, 1.0 - c,emaz) ,c E (0,l.O))

where emaz E (0,0.5) is the maximum length of a segment
presently in the file. For emax k: 0 the real data space
corresponds approximately to the rectangular shaped data
space (0,l) X (0, emax).

Assuming segments, spatial queries can be illustrated
in 2-dim. data space. For a segment S, we have depicted in
figure 7 the disjoint regions where segments R occur with
R > S, R C S and R n S # 0. Obviously, T-schemes
have the advantage that the rectangle enclosure query is
particularly supported, i.e all answers for the query are in a
cone shaped region of the data space (0,l) x (0,emax). In
a similar way, the search region of point queries, rectangle
intersection queries and rectangle containment queries can
be represented as cone shaped subspace of the data space,

t extension

C 1-O center

Figure 7: Assuming the center representation and a seg-
ment S=(c,e), the regions where are all segments R with
R > S,R c S are disjoint, and the region where are all
segments R with R n S # 0 contains the other “search”
regions

see figure 7. An additional advantage of T-schemes is that
queries are supported asking for the volume of rectangles
or for the length of the sides of rectangles.

In analogy to OR-schemes, rectangles are uniquely rep-
resented in the file. Applications are not restricted to
those fulfilling a particular condition such as for clipping
schemes. Additionally, all properties of the underlying
PAM are inherited to the T-scheme.

The main drawback is that d-dimensional rectangles
lying close together are spread out in the 2d-dimensional
data space. This will typically occur if rectangles have
strongly varying volumes. However, a large distance of
segments in the transformed data space does not imply
that these rectangles are stored far away from each other
in the file.

The major problem of T-schemes is how we can esti-
mate the value of emax to reduce the data space as much
aa possible. For a motivation of the problem let us con-
sider the grid file [NHS 841. During the initialization of
the grid file the user must fix the data space for the whole
life cycle of the file. At the point of initialization, the user
often has no knowledge of the data to arrive later. Thus,
typically the value of emax will be highly overestimated or
‘even emax will be set to the possible maximum value of
the domain. In the following sections, we will demonstrate
how we can avoid these drawbacks of existing T-schemes
using PLOP-Hashing and the transformation technique.

4 Overlapping Regions applied to
PLOP-Hashing

In this section we will propose a SAM based on PLOP-
Hashing and the technique of overlapping regions. As
mentioned in section 2, PLOP-Hashing organizes the data

366

space using a dynamic grid. The d-dim. grid is specified
by d binary trees which reside in main memory. In the
leaves of the binary trees we store information to compute
addresses and additionally we store the number of records
in a slice to control expansion. Let us consider a-dim.
rectangles given by

(cl,% el, e2)

where c = (cr,cz) E (0,l)’ is the center of the rectangle
and e = (el,ez) E (0,0.5)2 is the distance of c to the sides
of the rectangle. The center of the rectangle uniquely de-
termines the address of the page storing the rectangle. The
address is independent of the distance e. We will see that
e determines the degree of overlap.

Additionally to PLOP-Hashing used as a PAM, we
store in the leaf of the j-th binary tree corresponding to
slice S(i,j) the minimum min(i,j) and the maximum max(i,j),
0 5 i < mj, 1 5 j 5 d, where

min(i, j) := min {I iI= cj - ej, R = (c, e) is a rectangle
in the file with c E S(i, j)}

max(i, j) := max {I II= cj + ej, R = (c, e) is a rectangle
in the file with c E S(i, j)}

This additional information is stored in the leaf corre-
sponding to the slice S&j). To give an intuitive under-
standing of this method, we will consider the example il-
lustrated in figure 8. The data space is divided by the grid
in six disjoint regions, each corresponding to a page on
secondary storage. In the snapshot depicted in figure 8 we
have inserted 10 rectangles Rl,..,Rlo in the fde, the same
rectangles as in the example of section 3.1 . Although rect-
angle Re intersects 4 grid cells, its address is determined
by its center and thus R.s is stored in the same page ss R3.

Now let us consider insertion of the rectangle RI1 =
(cll,ell), where cri = (0.55, 0.35) and err = (0.15,0.05).
We proceed as follows:

1. Searching the binary trees using the components of
cl1 yields the P-dim. index il = 1 (see figure 8) and
is = 0, and thus yields the address of the page, where
the rectangle has to be inserted.

2. Since 0.4 = cir - err < m&(1,1) = 0.588, min(l,l)
has to be updated (min(l,l) := 0.4).

3. Additionally max(O,2) has to be updated (max(O,2)
:= 0.4).

Similar to the R-tree, the cost of a point query is usu-
ally more than one disk access. Considering performance
of exact match queries, insertions and deletions, in our
method one page access suffices whereas the number of

I Y
W-J

Figure 8: OR-method applied to PLOP-Hashing with the
binary trees shown

disk accesses in the R-tree increases with increasing size of
the rectangle. As in all schemes applying the OR-method,
the performance of point and rectangle intersection queries
in our scheme depends on the variation in the size of the
rectangles. Insertion of some large rectangles may reduce
the performance rapidly. We conclude that a combination
of the technique of overlapping regions and a PAM based
on an efficient MDH scheme is an interesting competitor
to the R-tree.

5 Asymmetric partioning of the
data space

In this section we will propose a variant of PLOP-Hashing
suitable for organization of Sd-dimensional points, which
are generated by transformation of d-dim. rectangles. Niev-
ergelt and Hinrichs [NH 851 have proposed a similar scheme
based on the grid file. However our scheme offers three
essential improvements: the partition of the ‘real’ data
space, the dynamic organization of each axis and the asym-
metric partition of the data space. These three properties
are discussed in the remainder of this section. We want to
emphasize that property 2 and to a large portion property
1 cannot be achieved in a MDH scheme with directory, like
the grid file.

367

In the following, we consider the organization of seg-
ments (one-dimensional rectangles) transformed into 2-dim.
points (c,e) using the center representation, where c is the
center of the segment, 0 < c < 1 and e is the distance of
c to the margin, 0 < e < 0.5. As shown in section 3.3, we
can reduce our data space to

T emo2 = {(c,e) IO s c 2 1.0, 0 5 e 5 emaz}

To maintain a dynamic organization of the c-axis, when
the value of emax changes, we store for each slice of the
c-axis the maximum e-value

emaxi = max {e 1 I = (c, e) is a segment in the file
with (c, e) E S(i, c)}

where S(i,c) is the slice for index i in the c-axis, 0 5 i < m,
and m, is the number of slices in the c-axis. Then emax is
given by emax = max (emasil0 5 i < m,}.

We emphasize that in case of the grid file the domain
of the scales is fixed. The maximum and minimum of the
domain must be chosen during the initialization of the file.
Moreover the values of records which will be inserted in
the file are unknown. To guarantee the functionality of
the method, the maximum of the e-axis is highly overes-
timated. Thus in the grid file empty data space where
records do not occur is likely to be created.

The knowledge of emax, the maximum in the e-axis,
heavily influences the type of partitioning of the data space.
PLOP-Hashing was proposed to partition the data space
symmetrically (see section 2). Nevertheless, allowing ssym-
metric partitions will improve retrieval performance. Let
us consider an example, where emax x 0. Since segments
are nearly reduced to one-dimensional points, a scheme
which partitions only the c-axis (such as proposed in sec-
tion 4), seems be more attractive than a scheme with a
symmetric partition of the data space.

5.1 Choice of the partition in case of uni-
form distribution

In the following, our goal is to minimize the number of
disc accesses in a point query using PLOP-Hashing as un-
derlying PAM. The above considerations indicate that the
minimum will generally not be achieved for a symmetric
partitioning of the center-axis and the extension-axis, i.e.
the levels of both axes differ by at most one (to put it
differently, the number of partitioning points in one axis
is at most twice the number of partitioning points in the
other axis). In this section we will optimize the degree of
asymmetry of both axis, i.e. we will optimize levels I, and
I, of the center-axis and extension-axis, respectively, for a
given global level L. We will assume that the L-dimensional
records (c,e) E T.,,, are uniformly distributed in the data

emax J \

-I
\/’

0 .25 P .5 .75 1.0 c

Figure 9: A the with 16 pages and asymmetric partition
of the data space Tern-, where L = 4, 1, = 3, 1, = 1,
PC = {0,1/g ..,7/8, l}, P, = {O,emas/2, emax}

sp~%m,. Obviously, this is not a realistic assumption.
However, under this assumption we will be able to de-
rive the difference in performance for schemes with sym-
metric and asymmetric partition of the data space with
analytic tools. Under the assumption of uniform distribu-
tion, PLOP-Hashing partitions the data space in equidis-
tant cells.

Let us now consider a file organized by PLOP-Hashing,
which consists of n records and 2” pages, L 1 0, where L
is the level of the file. Thus the set PC of partitioning
points of axis c is given by P’ := { i/2’, 1 0 5 i 5 21c}
and the set P, of partitioning points of axis e is given by
P, := {emaz * i/2’. I 0 5 i 5 2’e). The variables 1, and
1, denote the level of the axis c and axis e, respectively.
Then the level of the file is given by L = 1, + 1.. In figure 9
we have illustrated the different terms.

Our goal is to estimate the average number of disk ac-
cesses for answering a point query or a rectangle inter-
section query. In this report, we will only consider point
queries. A generalization to more complex queries is obvi-
ous.

L&PEI en&o2 := [emax, 1.0 - emaz). We will ask for
all segments containing this point P. Since P E I,,,, the
region where answers can occur is a right-angled triangle.
Assuming a uniform distribution the expected number of
answers for a point query is emax * n. Now we calculate
the number of cells which intersect with the search region.
Thus we need the lengths Si, 1 5 i 5 2’0, of the line
segments, which are obtained by intersection of the search
region and the hyperplanes belonging to the partitioning
points of the e-axis, see figure 9. Then we obtain Si = 2i *
emax/2’., i = O,.., 2”. Thus the expected value Ei how
often hyperplanes of axis c intersect the line segments is
Ei = &*2” = 2i*emax*2’c-‘e, i = 0, ..,2”. The expected
number A of grid cells, which intersect the search region is
given by A = g!!l(Ei + 1) = emax * (2” + 2L) + 2’. . For

368

I:= I,, we obtain the formula depending on the variable 1:

A(I) := emaz * (2’ + 2L) + 2L-’ 0 5 15 L (3)

The minimum value lmin of the function A(1) can be com-
puted using the derivation A’(1). Then we obtain by A’(l,a)
= 0

lmin = 1 fL - log, emax)/
ifemax * 2L < 1
otherwise (4)

The minimum number Amin := A’(lmin) of grid cells which
intersect the search region is given by

Ani* =
1

Zemax * 2L + 1 ifemax * 2L < 1
emax * 2L + 2(emax * 2L)1/2 otherwise

(5)
Thus the number of disk accesses to answer a point query
is given by A(l)*cl, where cl denotes the average number of
buckets per chain (page). To represent our result (5) as a
function of n, we derive the usual performance measure pm
for a complex query which is given by the quotient of the
average number of accessed candidates (including the false
drops) and the average number of answers. Considering
the average storage utilization su = n/(2L * b), we obtain
for 2L * emax 2 1

pm=
(Ami, * ~1) * (b * SU)

emax * n
= cl + O(l/fi) (6)

after insertion of formula (5) and further manipulations.
This result is independent of the degree of overlap. The

first term of the sum corresponds to the average chain
length which will be almost 1 in case of uniform distri-
bution. The second term express the additional overhead
introduced by the margin of a search region which is also
induced by the margin of a range query in a MDH scheme
storing point objects.

In order to compare the difference of the performance
for schemes which partition the data space in a symmetric
fashion and schemes which partition the data space in a
optimal way, we will present some analytic results.

In the following we assume a file of 2L, L > 0, pages,
which are completely filled. Thus the number n of records
in the file is n = 2L * b, where b is the capacity of a
bucket. To compare the performance, we define the param-
eter VAR = (Asym - Amin)/ Asym, where Asym = A(L/2)
is the number of cells intersecting the search region in case
of a symmetric partition.

In our first diagram of the appendix (figure lo), we
have depicted As,,,,, and Amin depending on the level L of
the file, where b = 50 and emax = l/256. The difference
in performance is essential. After insertion of 51266 seg-
ments, 8 grid cells intersect the search region, whereas for

a symmetric partition 36 grid cells intersect the search re-
gion. In figure 11 of the appendix, we have depicted the
parameter VAR depending on the number of records.

In [FSR 871 the performance of R-trees and R+-trees is
analyzed for a special uniform distribution. Due to space
limitations this distribution is not explained here. We have
evaluated the performance in case of this distribution for
our scheme and depict it in figure 12 and 13 of the ap-
pendix. In figure 12 the number of segments n is fixed
(100,000) and the length of the segments and thus the
density 0 is varying. In figure 13 the density 0 is fixed
(0~40) and the number of segments is varying. Both fig-
ures show the number of disk accesses to answer a point
query. These figures, which were originally presented in
[FSR 871 without th e values of our scheme, demonstrate
the superior behavior of our scheme compared to R-trees
and R+-trees.

These results demonstrate that for an efficient SAM
based on transformation, we have to allow for asymmetric
partitions. As mentioned before, a uniform distribution of
segments is unlikely to occur in practice. Thus the results
of this section are more of a theoretical nature.

5.2 Choice of the partion in case of non-
uniform distributions

In this section we do not assume an uniform distribution as
in section 3.1. Thus we cannot use formula (3) for deciding,
how we should partition the data space T,,,.

Let us now assume that the file consists of 2L pages
and let us assume we have to decide, which axis should be
the next split axis. The grid partition GP is given by

GP:=(Pc,Pe):= {(c,e) 1 (cEPcAO<e<0.5)V
(eEP.AOIcll)}

where PC and P. are the set of partitioning points of axis
c and e, respectively. Now we proceed as follows:

1. Compute grid partitions GP, and GP, where

GP. = (Pc,fi:> 1 Fe I= 2’.+’ + 1 and
GP, = (&,P,) 1 & I= 2’.+’ + 1

2. Determine some points PI, ..,Pk E [0, l), Ic > 1.
Compute the number of grid cells Ai, Af of the grid
partition GP,, GP,, respectively, which intersect
the search region of Pi, 1 5 i 5 k.

3. If Ci”=, Ai > &, Ai, then e is the next split
axis,otherwise c is the next split axis.

In step 1 the “virtual” grid partitions GP, and GP, are
constructed from the “real” grid partition GP and addi-
tional information in the leaves of the binary trees. The

369

new sets PC and p= depend on the sets P. and PC. The
sets are generated by an interpolation technique. In step
2 the parameter k is not fixed, but should depend on the
number of records in the file. We want to emphasize that
this algorithm does not need any disk access. All the in-
formation which is used by the algorithm is stored in main
memory.

6 Conclusion

The contribution of this paper can be summsrized ss fol-
lows:

l A classification of existing spatial access methods is
derived. Every spatial access method is based on a
multidimensional point access method applying one
of the following three techniques: transformation,
clipping and overlapping regions.

l As an example, we applied these different techniques
to one of the most efficient point access methods,
PLOP - Hashing. Additionally we discuss in detail
the technique of transformation and introduce the
concept of asymmetric partitioning which is more ef-
ficient than the traditional symmetric partitioning.

l We proposed a hybrid method based on PLOP-Hashing
combining the techniques of overlapping regions and
transformation. This hybrid method improves per-
formance by tuning to the characteristics of the par-
ticular application.

l We provide an analysis of the hybrid method in com-
parison to a scheme which partitions the data space
symmetrically. Moreover we present a brief compar-
ison to R-trees and R+-trees, which demonstrate the
superiority of our scheme.

In our future work we will verify our results by experi-
ments in various applications with an implementation of
our scheme. Our goal is an experimental comparison of
different spatial access methods.

Acknowledgement

We would like to thank the anonymous referees for their
valuable suggestions.

References

[Ben 75) Bentley, J.L.:‘Multidimensionai Search Trees Used for
Associative Searching’, Communications of ACM, Vol. 18,
No. 9,1975,pp.509-517

[Bur 831 Burkhard, W.A.: Interpolation-based index mainte-
nance’, BIT 23, 274-294, 1983

[Corn 791 Comer, D.:“The Ubiquitous B-tree”, Computing Sur-
veys, Vol. 11, No. 2,1979,pp.121-137

[HKSS 881 Heep, S., Kriegel, BP., Schneider, R., Seeger, B.:
‘Konzepte zur Suche geometrischer Bauteile’, Proc. GI
Fachgespraech Non-Standard Datenbanken fuer Anwendun-
gen der graphischen Datenverarbeitung, in German

[FNPS 791 Fagin, R., Nievergelt, N., Pippenger, N., Strong,
R.:‘Extendible Hashing - A Fast Access Method for Dynamic
F&d, ACM TODS 4(3), 1979

[FSR 871 Faloutsos, C., Sellis, T., Roussopoulos, N.: ‘Analysis
of object oriented spatial access methods’ Proc. ACM SIG-
MOD Int. Conf on Management of Data, 1987

[Gut 841 Guttman, A.:‘R-trees: a dynamic index structure for
spatial searching’, Proc. ACM SIGMOD Int. Conf on Man-
agement of Data, 47-57, 1984

[KS 861 KriegeI, H.P., Seeger, B.:‘Multidimensionai order pre-
serving linear hashing with partial expansions’, Proc. Int.
Conf. on Database Theory, 1986, Lecture Notes in Computer
Science 243, 203-220

[KS 871 Kriegel, H.P., Seeger, B.:‘Multidimensionai quantile
hashing is very efficient for non-uniform distributions’, Proc.
Int. Conf. on Data Engineering, 1987, 19-17, extended ver-
sion will appear in Information Science

[KS 881 Kriegel, H.P., Seeger, B.:‘PLOP-Hashing: a grid file
without directory’, Proc. Int. Conf. on Data Engineering,
1988, 369-376

[Lar 801 Larson, P.A.: ‘Linear hashing with partial expansions’,
Proc. 6’h Int. Conf. on VLDB, 224-232, 1980

[Lit 801 Litwin, W.: ’ Linear hashing: a new tool for file and
table addressing’, Proc. 6th Int. Conf. on VLDB, 212-223,
1980

[MOD 871 Manola, F., Orenstein, J., Dayal, U.:‘Geographic in-
formation processing in the Probe database system’, Proc.
8’h Int. Symp. on Automation in Cartography, Baltimore,
1987

[MT 831 Mantyla, M., Tamminen, M.:‘Locaiized set operations
for solid modeling’, Computer Graphics, 17, 3,279288, 1983

[NHS 841 Nievergelt, J. , Hinterberger, H., Sevcik, K.C.: ‘The
grid file: an adaptable, symmetric multikey file structure’,
ACM TODS, 9, 1, 38-71, 1984

[NH 85) Nievergelt, J., Hinrichs, K.:‘Storage and access struc-
tures for geometric data bases’, Proc. Int. Conf. on Founds-
tions of Data Organization, 335-345, 1985

[Ooi 871 Ooi, B.C.:‘A data structure for geographic database’,
Proc. on 2”d GI Conf. on Database Systems for Office Au-
tomation, Engineering, and Scientific Application, 1987

[Ore 861 Orenstein, J.A.:‘Spatial Query Processing in an
Object-Oriented Database System’, Proc. ACM SIGMOD
Int. Conf. on Management of Data, 1986

370

[OM 841 Orenstein, J.A., Merett, T.H.:‘A class of data
structures for associative searching’, Proc 3fh ACM
SIGACT/SIGMOD Symp. on PODS, 1984

[Oto 841 Otoo, E.J.:‘A mapping function for the directory of a
multidimensional extendible hashing’, Proc. 10th Iut. Conf.
on VLDB, 491-506, 1984

[Oto 861 otoo, E.,J.:‘Baianced multidimensional extendible
hash tree’, Proc 5’h ACM SIGACT/SIGMOD Symp. on
PODS, 1986

[Ouk 851 Ouksel, M.:‘The interpolation based grid file’, Proc qfh
ACM SIGACT/SIGMOD Symp. on PODS, 1985

[Rob 811 Robinson, J.T.:‘The K-D-B-tree: a search structure for
large multidimensional dynamic indexes’, Proc. ACM SIG-
MOD Int. Conf on Management of Data, 1618,198l

[RL 851 RoussopouIos, N., Leifker, D.:‘Direct spatial search on
pictorial databases using packed R-trees’, Proc. ACM SIG-
MOD Int. Conf on Management of Data, 17-31,1985

[Sam 851 Samet, H.:‘The Quadtree and Related Data Struc-
tures’, Computing Surveys, Vol 16, No. 2,1984

[SRF 871 Sellis, T., Roussopoulos, N., FaIoutsos, C.: ‘The R+-
tree: a dynamic index for multi-dimensional objects’, Proc.
13’h Int. Conf. on VLDB, 1987

[SW 881 Six, H.-W., Widmayer, P.: ‘Spatial Searching in Ge-
ometric Databases’, Proc. Int. Conf. on Data Engineering,
1988

[SRG 831 Stonebraker, M., Rubenstein, B., Guttman, A.: ‘Ap-
plication of abstract data types and abstract indices to CAD
data bases’, Proc. ACM SIGMOD Conf. on Engineering De-
sign Applications, 1983

[TS 821 Tamminen, M., Sulonen, R.: ‘The Excel1 method for
efficient geometric access to data’, Proc. lgth ACM Design
Automation , Conf.,345351,1982

[WK 85) Whaug, K.-Y., Krishnamurthy, R.:‘MuItilevel grid
files’, draft report, IBM Research Lab., Yorktown Heights,
1985

Appendix

A

14.

lo-

6-

2-
,

iAsp

/

A min

/

number of segments * lo4
5 10 . 15 . 20

c

Figure 10: Disk accesses for symmetric and asymmetric
partioning depending on the number of segments (b = 50,
emax = l/256)

1 VAR(%)

Figure 11: Performance gain VAR depending on the num-
ber of segments (b = 50, emax = l/256)

4.001

3.50

Disk

2.50

I R-Ike
/

/

2.00 Jq. ensity 0
.

0 IO 20 30 40 %

Figure 12: Disk accesses depending on the density 0 (b =
50, rl = 100,000)

5.0

4.0

Disk

2.0

1 .o.
nm of segmnts

! IO3 104 105 106
,

1

Figure 13: Disk accesses depending on the number of seg-
ments (b = 50, 0 = 40)

371

