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Abstract 1.1. High Performance 
This paper presents an overview of the techniques 

we are using to build a DBMS at Berkeley that will 
simultaneously provide high performance and high avai- 
lability in transaction processing environments, in appli- 
cations with complex ad-hoc queries and in applications 
with large objects such as images or CAD layouts. We 
plan to achieve these goals using a general purpose 
DBMS and operating system and a shared memory mul- 
tiprocessor. The hardware and software tactics which 
we are using to accomplish these goals are described in 
this paper and include a novel “fast path” feature, a spe- 
cial purpose concurrency control scheme, a two- 
dimensional file system, exploitation of parallelism and a 
novel method to efficiently mirror disks. 

We strive for high performance in three different 
application areas: 

1) transaction processing 
2) complex ad-hoc queries 
3) management of large objects 

1. INTRODUCTION 
At Berkeley we are constructing a high perfor- 

mance data base system with novel software and 
hardware assists. The basic goals of XPRS (extended 
Postgres on Raid and Sprite) are very high performance 
from a general purpose DBMS running on a conven- 
tional operating system and very high availability. More- 
over, we plan to optimize for either a single CPU in a 
computer system (e.g. a Sun 4) or a shared memory mul- 
tiprocessor (e.g a SEQUENT Symmetry system). We 
discuss each goal in turn in the remainder of this intro- 
duction and then discuss why we have chosen to exploit 
shared memory over shared nothing or shared disk. 

Previous high transaction rate systems have been built on 
top of low-level, hard-to-program, underlying data 
managers such as TPF [BAMB87] and IMS/Fast Path 
[DATE84]. Recent systems which are optimized for 
complex ad-hoc queries have been built on top of high- 
function data managers (e.g. GAMMA [DEW1861 and 
DBC/lOlZ [TERA85]); however such systems have used 
custom low-level operating systems. Lastly, applications 
requiring support for large objects (such as images or 
CAD geometries) have tended not to use a general pur- 
pose data manager because of performance problems. 

The first goal of XPRS is to demonstrate that high 
performance in each of these areas can be provided by a 
next generation DBMS running on a general purpose 
operating system without unduly compromising perfor- 
mance objectives. Clearly, this will be a major advantage 
as it will bring the benefits of ease of application con- 
struction, ease of application migration, data indepen- 
dence and low personnel costs to each of these areas. 
Specilically, we are using a slightly modified version of 
POSTGRES [STON86] as the underlying data manager 
and the Sprite network operating system [OUST87]. Our 
concrete performance goals for XPRS in each of the 
three application areas are now described. 
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We feel that general purpose CPUs will obey Joy’s 
law of: 

MIPS = 2 ** (year - 1984) 
at least for the next several years. As such, we are 
confident that single processor systems of 50-100 MIPS 
will appear by 1991 and that shared memory multipro- 
cessors of several hundred MIPS will also occur in the 
same time frame. Consequently, we expect that CPU 
limitations of current transaction processing engines will 
become less severe in the future. Therefore we strive 
only for “good” performance on TPl [ANON851 which 
has come to be the standard benchmark by which tran- 
saction processing performance is measured, i.e: 

100,000 instructions per transaction 



XACT&x = 10 * MIPS 
For example a 100 MIPS system should be capable of 
1000 TPls per second. 

Achieving this goal requires system tuning, the 
removal of critical sections in the code, and avoiding 
lock contention on so-called hot spots, i.e. records or 
blocks with high traftic. To alleviate this latter problem, 
it is necessary for the DBMS to hold locks for shorter 
periods of time, and we are planning to use two tactics to 
help in this regard. First, we plan to run the various 
DBMS commands in a transaction in parallel where pos- 
sible to shorten the amount of time they hold locks. In 
addition, we are using a special purpose concurrency 
control algorithm which avoids locking altogether in cer- 
tain situations. These tactics are described later in this 
paper. 

Some researchers believe that high performance is 
achieved easily by using a low-function high- 
performance DBMS such as IMS/Fast Path. Others 
question the propriety of removing DBMS services such 
as query optimization and views and suggest utilizing 
only high level interfaces. Clearly, the elimination of 
function from the path length of high traffic interactions 
is a possible optimization strategy. Although we are not 
enthusiastic about this strategy because we feel that the 
potential problems outweight the advantages, we are 
going to allow exploitation of this concept by imple- 
menting a novel fast path scheme to achieve a variable 
speed interface. We also discuss this tactic later in this 
paper. 

Although transaction processing systems typically 
perform short tasks such as TPl, there are occasional 
longer running transactions. Such transactions will be a 
clear locking bottleneck, unless they can be parallel&d. 
Parallel execution of single commands has been 
addressed in [DEWI85, DEW186, RICH871. In this 
paper we sketch a slightly different approach that 
focuses on a multi-user environment, the presence of 
shared memory and the necessity of carefully exploiting 
a large amount of main memory. Our performance goal 
is to outperform recent systems such as GAMMA and 
the DBC/1012 on ad-hoc queries using comparable 
amounts of hardware. 

Lastly, high performance is necessary in engineer- 
ing environments where large objects are stored and 
retrieved with great regularity. A typical image might be 
several megabytes and an application program that 
processes images requires retrieval and storage of such 
objects at high bandwidth. Current commercial systems 
tend not to store such objects at all, while prototype 
extendible systems (e.g. POSTGRES [STON861 and 
EXODUS [CARE86]) have been designed with object 
management needs in mind. The current design of both 
systems will limit the speed at which large objects can be 

retrieved to the sequential reading speed of a single disk 
(about 1.5 mbytes/set for current low-end disks). Hence, 
a 64 mbyte object will require about 43 seconds of 
access time. Especially if a supercomputer is the one 
making the request, it is unreasonable to require such 
delays. Our last goal of XPRS is an order of magnitude 
improvement in access times to large objects. We plan 
to achieve this goal with a variable-speed two- 
dimensional file system which is described below. 

1.2. High Availability 
A second goal of XPRS is to make data base 

objects unavailable as infrequently as possible. There 
are two common causes of data unavailability, errors and 
locking problems, and we discuss each in turn. Errors 
have been classified by [GRAY 871 into: 

hardware errors (e.g. dish crashes) 
software errors (e.g. OS or DBMS crashes) 
operator errors (e.g. accidental disk erasure) 
environment errors (e.g. power failure) 

Because we are designing an I/O system, our goal is to 
make a contribution to improved availability in this area 
in the presence of hardware errors. Our initial ideas 
have resulted in an efficient way to mirror disks at much 
reduced storage costs [pATT88]. On the other hand, in 
the case of CPU failures, we assume that XPRS would 
be part of a distributed data base system such as Non- 
stop SQL [GRAY87A], INGRES/STAR lRfI87] or 
ORACLE/STAR. Availability in the presence of CPU or 
memory failures is provided in such systems by tradi- 
tional distributed DBMS multi-copy techniques. Hence, 
this area is not discussed further in this paper. 

Software errors are soon likely to be the dominant 
cause of system failures because hardware and operator 
errors are declining in frequency and environment errors 
are largely power problems which can be avoided by 
uninterruptable power supplies [GRAY87]. It should be 
noted that many current techniques. for achieving high 
availability (such as process-pairs for non-stop operation 
and mirrored disks) are vulnerable to software errors. 
Obviously, an errant DBMS will write bad data on each 
disk in a mirrored pair, and the backup process may 
write the same bad data that caused its mate to fail. 
Hence, our assumption in XPRS is to realize that 
software errors will happen. Therefore, our goal in 
XPRS is to recover from software crashes in seconds. 
The tactics which we have in mind are described later in 
the paper and depend on the characteristics of the storage 
system built into POSTGRES ISTON871. 

Operator errors are best avoided by having no 
operator. Hence, another goal of XPRS is to perform all 
utility functions automatically, so that an operator-free 
environment is feasible. Among other things an 
operator-free environment requires that the system self- 
adapt to adding and deleting disks, automatically balance 
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the load on disks arms, and create and drop indexes 
automatically. 

In summary our goals for XPRS are improved I/O 
system availability in the event of hardware errors, 
ensuring that data is not lost as a result of software 
errors, instantaneous recovery from software errors, and 
a system capable of running with no operator. 

A second availability goal in XPRS is never to 
make a data base object unavailable because of locking 
problems. These result from running large (usually 
retrieval) commands which set read locks on large 
numbers of data objects, and from housekeeping chores 
performed by the data manager. For example, in current 
systems it is often advisable to reorganize a B-tree index 
to achieve physical contiguity of index pages after a long 
period of splits and recombinations of pages. Such a 
reorganization usually makes the index unavailable for 
the duration of the reorganization and perhaps the under- 
lying relation as well. In XPRS this and all other house- 
keeping chores must be done incrementally without lock- 
ing a relation or taking it off line. 

1.3. Shared Memory 
In contrast to other recent high performance sys- 

tems such as NONSTOP SQL [GRAY87A], GAMMA 
[DEW1861 and the DBC 1012 [TERA85] which have all 
used a shared-nothing [STON86A] architecture, we are 
orienting XPRS to a shared memory environment. The 
reason for making this choice is threefold. First the 
memory, bus bandwidth and controller technology are at 
hand for at least a 20 TPl/sec system. Hence, speed 
requirements for advanced applications seem achievable 
with shared memory. Moreover, a 2000 TPl/sec. system 
will require around 8000 I/OS per second, i.e. about 250 
drives. The aggregate bandwidth of the I/OS, assuming 
4K pages, is about 32 mbyte&c. Current large main- 
frames routinely attach this number of drives and 
sufficient channels to deal with the bandwidth. 

Second, the reason to favor shared memory is that 
it is 25 to 50 percent faster on TPl style benchmarks 
than shared nothing [BHID88] and has the added advan- 
tage that main memory and CPUs are automatically 
shared and thereby load balanced. Hence, WC avoid 
many of the software headaches which are entailed in 
shared nothing proposals. 

Lastly, some people criticize shared memory sys- 
tems on availability grounds. Spccilically, they allege 
that shared nothing is fundamentally more highly avail- 
able than shared memory, because failures are contained 
in a single node in shared nothing system while they cor- 
rupt an entire shared memory system. Certainly this is 
true for hardware errors. 

On the other hand, consider software errors. With 
conventional log-based recovery a shared nothing system 

i “. 

will recover the failed node in a matter of minutes by 
processing the log. A shared memory system will take at 
least as long to recover the entire system because it will 
have a larger log, resulting in lower availability. How- 
ever, suppose the operating system and the data manager 
can recover instantaneously from a software or operator 
error (i.e. in a few seconds). In this case, both a shared 
memory and shared nothing system recover instantly, 
resulting in the same availability. 

In summary, we view a shared memory system as 
nearly equally available as an equivalent shared nothing 
system. In addition, we view XPRS as having higher 
availability than any log-based system because it recov- 
ers instantly from software errors. Moreover, a shared 
memory system is inherently higher performance than 
shared nothing and easier to load balance. 

In the rest of this paper we discuss the solutions 
that we are adopting in XPRS to achieve these goals. In 
Section 2 we present our tactics to provide high perfor- 
mance on transaction processing applications. 
Spscitically, we discuss our fast path mechanism that is 
being added to POSTGRES to cut overhead on simple 
transactions. Moreover, we discuss inter-query parallel- 
ism which can cut down on the length of time transac- 
tions hold locks. Finally, we consider a specialized con- 
currency control system which avoids locks entirely in 
some situations. Section 3 then turns to performance 
techniques applicable to complex commands. We 
present our approach to query processing in this section 
which attempts to achieve intra-query parallelism to 
improve response time as well as make excellent use of 
large amounts of main memory. Then, in Section 4 we 
indicate how to achieve high performance when materi- 
alizing large objects. We first argue that traditional tile 
systems are inadequate solutions in our environment and 
suggest a novel two-dimensional file system that can pro- 
vide a variable speed I/O interface. 

Section 5 continues with our ideas for achieving 
high availability in the presence of failures. We briefly 
discuss hardware reliability and suggest a novel way to 
achieve ultra-high disk reliability. Then, we turn to 
software techniques which can improve availability and 
indicate how we expect to achieve instantaneous 
recovery. Section 6 then closes with our algorithms to 
avoid data unavailability because of locking problems. 

2. TRANSACTION PROCESSING PER- 
FORMANCE 

This section explores three tactics relevant to tran- 
saction processing performance. 

2.1. Fast Path 
It is common knowledge that TPl consists of 4 

commands in a query language such as SQL [DATE841 
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or POSTQUEL [ROWE871 together with a begin XACT 
and an end XACT statement. If an application program 
gives these commands to the data manager one at a time, 
then the boundary between the data manager and the 
application must be crossed in both directions 6 times. 
Moreover, if the application runs on a workstation and 
the DBMS runs on a host, the messages must go over the 
network, increasing the cost of the boundary crossing. 
This overhead contributes 20-30 percent of all CPU 
cycles consumed by a TPl transaction. To alleviate this 
difliculty, several current commercial systems support 
procedures in the data base and POSTGRES does like- 
wise. Hence, TPl can be deIincd as a procedure arid 
stored in a relation, say 

COMMANDS (id, code) 
and then later executed as follows: 

execute (COMMANDS.code with check-amount, 
teller#) where COMMANDS.id = “TPl” 

In this way the TPl procedure is executed with the user 
supplied parameters of the check amount and the teller 
number, and the boundary between POSTGRES and an 
application will be crossed just once. 

To go even faster POSTGRES makes use of user- 
detined functions. For example, a user can write a func- 
tion OVERPAID which takes an integer argument and 
returns a boolean. After registration with the data 
manager, any user can write a query such as: 

retrieve (EMP.name) 
where OVERPAID (EMPsalary) 

Of course it is also legal to execute a simpler query such 
as: 

retrieve (result = OVERPAID (7)) 
which will simply evaluate OVERPAID for a constant 
parameter. 

Fast Path is a means of executing such user 
defined functions with very high performance. 
Specillcally, we have extended the POSTQUEL query 
language to include: 

function-name(parameter-list) 
as a legal query. For example, 

OVERPAID(7) 
could be submitted as a valid POSTGRES query. The 
run-time system will accept such a command from an 
application and simply pass the arguments to the code 
which evaluates the function which is linked into the 
POSTGRES address space without consuming overhead 
in type checking, parsing or query optimization. Hence, 
there will be 200 or fewer instructions of overhead 
between accepting this command and executing it. 
Using this facility (essentially a remote procedure call 
capability) TPl can be detined as a POSTGRES function 

and a user would simply type: 
TPl(check-amount, teller-name) 

The implementation of the TPl function can be 
coded in several ways. The normal implementation 
would be for the function to simply execute precon- 
structed query plans for the four commands which make 
up TPl. This will result in a somewhat faster implemen- 
tation of J’Pl than executing a stored procedure because 
of the reduced overhead in the procedure call. 

Alternately, an application designer can more 
directly control the low level routines in POSTGRES. 
POSTGRES has user defined access methods, which 
correspond to a collection of 13 functions described in 
[wENS88]. These functions can be directly called by a 
user written procedure. As a result, high performance 
can be achieved by coding TPl directly against the 
access method level of POSTGRES. Although this pro- 
vides no data independence, no type checking and no 
integrity control, it does allow the possibility of excellent 
performance. Moreover, there are also interfaces to the 
buffer manager as well as higher level interfaces in the 
query execution system. 

Using this technique of user written procedures, 
POSTGRES can provide a variable speed interface. 
Hence, a transaction can make use of the maximum 
amount of data base services consistent with its perfor- 
mance requirements. This approach should be con- 
trasted with “toolkit” systems (e.g. EXODUS 
[CARE86]) which require a data base implementor to 
build a custom system out of tool-kit modules. 

2.2. Inter-query Parallelism 
There is no reason why all commands in TPl can- 

not be run in parallel. If any of the resulting parallel 
commands fails, then the transaction can be aborted. In 
the usual case where all commands succeed, then the net 
effect wilI be that locks are held for shorter periods of 
time and lock contention will be reduced. Since an 
application program can open multiple portals to 
POSTGRES, each can be executing a parallel command. 
However, we expect high performance systems to store 
procedures in the system which are subsequently exe- 
cuted. A mechanism is needed to expedite inter-query 
parallelism in this situation. Although it is possible to 
build a semantic analyzer to detect possible parallelism 
[SELL86], we are following a much simpler path. 
Specifically, we are extending POSTGRES with a single 
keyword parallel that can be placed between any two 
POSTGRES commands. This will be a marker to the 
run-time system that it is acceptable to execute the two 
commands in parallel. Hence, TPl can be constructed as 
four POSTQUEL commands each separated from its 
neighbor by parallel. 
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The reason for this approach is that it takes, in 
effect, a theorem prover to determine possible semantic 
parallelism, and we do not view this as a cost-effective 
solution. 

2.3. Special Purpose Concurrency Control 
We make use of a deli&ion of commutative tran- 

sactions in this section. Suppose a .transaction is con- 
sidered as a collection of atomic actions, al, . . . . am; each 
considered as a read-modify-write of a single object. 
Two such transactions Tl and T2, with actions al, . . ..am 
and bI ,..., bn will be said to commute if any interleaving 
of the actions of the two transactions for which both 
transactions commit yields the same final data base state. 
In the presence of transaction failures we require a some- 
what stronger definition of commutativity which is simi- 
lar to the one in [BADR87]. Two transactions will be 
said to failure commute if they commute and for any 
initial data base state S and any interleaving of actions 
for which both Tl and T2 succeed, then the decision by 
either transaction to voluntarily abort cannot cause the 
other to abort. 

For example, consider two TPl withdrawals. 
These transactions commute because both will succeed if 
there are sufficient funds to cover both checks being 
written. Moreover, both withdrawals failure commute 
because when sufficient funds are present either transac- 
tion will succeed even if the other decides to abort. On 
the other hand, consider a $100 deposit and a $75 with- 
drawal transaction for a bank balance of $50. If the 
deposit is first, then both transactions succeed. However, 
if the deposit aborts then the withdrawal would have 
insuflicient funds and be required to abort, Hence, they 
do not failure commute. 

Suppose a data base administrator divides all tran- 
sactions in XPRS into two classes, Cl and C2. Members 
of Cl all failure commute, while members of C2 consist 
of all other transactions. Moreover, he provides an 
UNDO function to be presently described. Basically, 
members of Cl will be run by XPRS without locking 
interference from other members of Cl. Members of C2 
will be run with standard locking to ensure serializability 
against other members of C2 and also for members of 
Cl. 

To accomplish this POSTGRES must expand the 
normal read and write locks with two new lock types, 
Cl-read and Cl-write. Members of Cl set these new 
locks on objects that they respectively read and write. 
Figure 1 shows the conflict table for the four kinds of 
locks: Obviously, Cl transactions will be run against 
each other as if there was no locking at all. Hence, they 
will never wait for locks held by other members of Cl. 
Other transactions are run with normal locks. Moreover, 
Cl-read and Cl-write. locks function as ordinary locks 

R W Cl-R Cl-W 

R ok no ok no 
W no no no no 
Cl-R ok no ok ok 
Cl-W no no ok ok 

Compatibility modes for locks. 
Figure 1. 

with regard to C2 transactions. 
Because multiple Cl transactions will be pro- 

cessed in parallel, the storage manager must take care to 
ensure the correct ultimate value of all data items when 
one or more Cl transactions aborts, Consider three tran- 
sactions, Tl, T2 and T3 which withdraw respectively 
$100, $50 and $75 from an account with $175 initially. 
Because the POSTGRES storage system is designed as a 
no-overwrite storage manager, the first two transactions 
will write new records as follows: 

initial value: $175 
next value: $75 written by Tl which is in progress 
next-value: $25 written by T2 which is in progress 

The transaction T3 will fail due to insufficient funds and 
not write a data record. 

POSTGRRS must be slightly altered to achieve 
this effect. It currently maintains the “state” of each 
transaction in a separate data structure as: 

committed 
aborted 
in progress 

To these options a fourth state must be added: 
C 1 -in-progress 

Moreover, POSTGRES must return data records that are 
written by either Cl-in-progress or committed transac- 
tions to higher level software instead of just the latter. 
The locking system will ensure that these Cl-in-progress 
records are not visible to C2 transactions. Using this 
technique Cl updates are now immediately visible to 
other concurrent Cl transactions as desired. 

When an ordinary transaction aborts, POSTGRES 
simply ignores its updates and they are ultimately 
garbage-collected by an asynchronous vacuum cleaner. 
However, if a Cl transaction aborts, there may be subse- 
quent Cl transactions that have updated records that the 
aborted transaction also updated. For example, if Tl 
aborts, the state of the account will be: 
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initial value: $175 
next value: $75 written by Tl which aborted 
next-value: $25 written by I2 which is in progress 

Since all the versions of an individual record are 
compressed and chained together on a linked list by the 
storage manager, this situation will occur if the storage 
manager discovers a record written by an aborted tran- 
saction followed by one or more records written by a 
transaction with status “Cl-in-progress” or “commit”. 

In this case, the storage manager must present the 
correct data value to the next requesting transaction. 
Consider the record prior to the aborted transaction as 
“old-data” and the record written by the aborted tran- 
saction as “new data.” The run time system simply 
remembers these values. Then, when it discovers the 
end of the chain, it finds a third record which we term 
“current data.” The run time system now calls a specific 
UNDO function: 

UNDO (old-data, new-data, current-data) 
which returns a modified current record. The run time 
system writes this revised record with the same transac- 
tion and command identifier as the aborted record. In 
this case, the UNDO function would return $125 and the 
account state would be changed to: 

initial value: $175 
next value: $75 written by Tl which aborted 
next-value: $25 written by T2 which is in progress 
next-value: $125 written on behalf of Tl as a correction 

Hence, later in the chain of records there will be a 
specific “undo” record. Of course, if the run time sys- 
tem sees the undo record, it knows not to reapply the 
UNDO function. 

It is possible to generalize this technique to sup- 
port several classes of Cl transactions each with their 
own UNDO function. However, we view the result as 
not worth the effort that would be entailed. 

3. INTRA-QUERY PARALLELISM 

3.1. Introduction 
Intra-query parallelism is desirable for two rea- 

sons. First, less lock conflicts are generated if a query 
finishes quickly, and thereby increased throughput can 
be achieved. For example, a recent study [BHID88] has 
shown that substantial gains in throughput are possible 
using parallel plans if a command accesses more than 
about 10 pages. Second, one can achieve dramatically 
reduced response time for individual commands. This 
section presents a sketch of the optimization algorithm 
planned for XPRS. 

In supporting parallel query plans, it is essential to 
allocate a single relation to multiple files. We choose to 
do this by utilizing a distribution criteria, e.g: 

EMP where age < 20 TO file 1 
EMP where age > 40 TO file 2 
EMP where age >= 20 and age <= 40 TO file 3 

to partition a relation into fragments. Such distribution 
criteria will be arbitrary one-relation predicates and can 
include used defined functions such as hash functions. 

When creating indexes on the EMP relation, say 
on the salary field, it is equally natural to construct three 
physical indexes, one for each fragment, This will 
ensure that parallel plans do not often collide for access 
to the same disk arm or collection of arms. These 
indexes would have the form: 

index on EMP(salary) where age c 20 
index on EMP(salary) where age > 40 
index on EMP(salary) where age >= 20 and age c= 40 

Such data structures are partial indexes and offer a col- 
lection of desirable features as discussed in [STON88]. 
Notice that such indexes are smaller than a current con- 
ventional index and should be contrasted with other pro- 
posals (e.g join indexes [VALD87], links [ASTR76] and 
the indexes in IMS [DATE84]) which are larger than a 
conventional index. 

Three issues must be addressed by a parallel 
optimizer in the XPRS environment. First, we assume 
that that main memory in a 1991 computer system will 
approach or exceed 1 gigabyte. Obviously with 900 
megabytes or more of buffer pool space, a DBMS will 
keep large portions of data base objects in main memory. 
For example, one can join two 450 megabyte objects by 
reading both into main memory and then performing a 
main-memory sort-merge. 

On the other hand, in a multiuser environment 
much less buffer space may actually be available. 
Unfortunately, different query plans for the same query 
are optimal depending on how much buffer space is 
available. Consider for example the following query: 

retrieve (Rl all) where R 1 .a = R2.b 
and R2.c = R3.d 

and assume that R2 and R3 have a clustered index on 
fields c and d respectively. Further assume that all rela- 
tions occupy the same number of pages, P, and that the 
join of R2 to R3 yields a temporary of size .lP while the 
one between Rl and R2 contains 1 record. Lastly, sup 
pose the optimizer cost function includes only I/O. 

In this case one can first join Rl to R2 and then 
join the result to R3. Alternately, one can first join R2 to 
R3 and then join the result to Rl. If there is a large 
amount of memory, the first option will read Rl and R2 
into main memory, compute the one record join and then 
read the single page from R3 which is required. On the 
other hand, the second option will read all three relations 
in their entirety, resulting in a higher cost. If only 
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minimal main memory is available, the result is some- 
what different. The first option will perform a disk- 
based merge-sort join of Rl and R2, at a cost of 2P * log 
P + 2P. The resulting one record temporary will reside in 
main memory where a single extra page fetch will obtain 
the matching values from R3. The second option will 
read Rl and R2 through the clustered index at cost 2P 
producing a temporary which is written to disk at cost 
.lP. A disk based merge sort must be done between this 
temporary and Rl at a cost of .lP * log .lP + .lP + P log 
P + P. The formulas for the two casts are presented 
below and generally the second option will be cheaper 
for minimum memory. 

query plan cost with cost with 
zero memory large memory 

(R 1 join R2) join R3 2P*Log P+2P+ 1 2P+l 

Rl join (R2 join R3) 3.2P+P*logP+ .lP*log .lP 3P 

In this case the first plan is superior for a large buffer 
pool while the second wins if little or no space is avail- 
able. Consequently, even without considering possible 
parallelism, the XPRS query optimizer should carefully 
consider available main memory in its decision making. 

When parallelism is considered, the optimizer 
must also face the number of parallel plans into which to 
decompose a user query. For example, suppose a user 
requests: 

retrieve (RI .all) where Rl .a = R2.b and 
R2.c = R3.d and R3.e = R4.f 

and suppose the best sequential plan is found to be 
a) join Rl to R2 
b) join R3 to R4 
c) join the results of a) and b) 

In this case, there may (or may not be) sufficient memory 
to perform steps a) and b) in parallel. Consequently, the 
XPRS optimizer must be cognizant of memory allocation 
when deciding the amount of parallelism to exploit. 

Lastly, the XPRS optimizer must be able to decide 
between two different plans, one of which has greater 
parallelism while the other consumes less resources. 

We feel that optimizers are becoming exceedingly 
complex, and we have pointed out that main memory and 
parallelism considerations will necessarily result in addi- 
tional complexity. Although others [GRAE87, 
LOHM88] are trying to make optimizers extendible, we 
are more concerned with making them simpler so that 
additional optimization, such as that discussed above, 
can be performed. To accomplish this goal, we plan to 
restrict the collection of available join tactics. All optim- 
izers must include iterative substitution to process non- 
equijoins. Moreover, some results must be sorted (those 

specified by an SQL ORDER BY clause), and therefore 
merge-sort comes with marginal extra complexity. 
However, other join tactics (e.g. hash-joins) are inessen- 
tial, and we plan to not include them in XPRS. 

In theory the optimizer search space includes all 
possible ways to parallelize all sequential plans for all 
possible buffer pool sizes. This space is hopeless to 
search exhaustively, and we plan a two step heuristic. In 
the first step we expect to find good sequential plans for 
various memory sizes. Then, in the second step we plan 
to explore parallel versions of only these plans. The final 
outcome is a collection of plans and a memory range 
over which each should be run. 

At the time of execution, the query executor will 
make a call on the buffer manager to determine space 
availability and based on the reply will choose one of the 
collection of plans. It will then supervise execution of 
the resulting parallel algorithm. We turn now to con- 
structing this collection of plans. 

3.2. Constructing Parallel Query Plans 
Our optimizer Iirst finds a collection of good 

sequential plans as follows. Using a conventional disk- 
oriented sequential plan optimizer, we expect to produce 
a plan P(0, Q) for each query Q which is the best plan 
under the assumption of zero main memory. In addition 
we expect to produce a plan P (BIG, Q) which assumes 
as much main memory, BIG, as needed. This plan will 
typically read each relation accessed into main memory 
and do all joins in main memory with as much parallel- 
ism as possible. BIG is then calculated as the amount of 
memory needed by all pairs of parallel join operands and 
their answers. If 

P (0, Q) = P (BIG, Q) 
then we will stop constructing plans. If not, we will con- 
struct P (BIG/2, Q) and compare it to the previous two 
plans. If it is the same as either plan or has a cost within 
(say) 10 percent of either plan, we Will assume that the 
optimized plan at each endpoint is, in fact, optimal for 
the whole interval. Then, we will subdivide the remain- 
ing interval (if any), and repeat the process. The net 
result is a collection of sequential plans and an interval 
of memory within which each is optimal. 

Next we will explore all possible ways to parallel- 
ize this collection of plans. To decide between compet- 
ing plans, we must use a different cost function from 
traditional optimizers. Specilically, our initial cost func- 
tion for a query plan, Q, using X units of buffer space 
will be: 

cost(X,Q) =(RES(X,Q)/MINRES(Q))(l+ 
W2 (TIME (X, Q) / MINeTIME (Q))) 

where 
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RES (X, Q) = Ntuples (X, Q) + Wl * EIO (X, Q) ; 
this is the traditional optimizer cost function 

Ntuples (X, Q) = number of tuples examined 
EIO (X, Q> = expected number of I/O’s to evaluate 
Q with X amount of buffer space 

Wl = the traditional fudge factor relating I/O and 
CPU utilization 

MIN-RES (Q) = the minimum cost plan for Q using 
the traditional function 

TIME (X, Q) = expected elapsed time with X amount of 
buffer space assuming all processors can be 
allocated to this plan 

MIN_TIME (Q) = the time of the fastest plan for 
the query Q. 

W2 = fudge factor relating response time to 
resource consumption 

If w2 = 0, this new cost function reduces to one 
equivalent to the traditional one. On the other hand, 
choosing a large value of W2 will make response time a 
major criteria. 

The XPRS optimizer will iterate over most of the 
ways to parallelize each plan. However, many leaf nodes 
of any candidate query plan consists of a scan of a data 
relation or a scan of a secondary index. Each such leaf 
node will be automatically decomposed into parallel sub- 
plans, one for each data fragment or partial index 
involved. This tactic can always be applied because it 
will lower TIME (X, Q) without altering main memory 
requirements. Moreover, if any scan is followed by a 
sort node, this node can also be split into the same 
number of parallel nodes as the scan node. 

The ultimate outcome will be a collection of paral- 
lel plans with the memory requirements for each one. 
We expect to proceed with an optimizer on this sort. 
Clearly, finding good heuristics to prune the search space 
will be a major challenge that we plan to explore further. 

4. PERFORMANCE ON MATERIALIZ- 
ING LARGE OBJECTS 

4.1. Introduction 
We expect XPRS to run on a system with a large 

number of disks. As noted in [PAlT88], we believe that 
only 3 l/2” and 5 l/4” drives will be attractive in a cou- 
ple of years. Hence, we expect large capacity storage 
systems to made up of substantial numbers (say 100 or 
more) of such drives. Additionally, these drives do not 
have removable platters, so the concept of a mounted file 
system is not required, and we can think of the collection 
of drives as a two-dimensional array. 

In keeping with our objective of using a conven- 
tional file system, the problem becomes one of designing 
a Sprite file system for this disk array which simultane- 
ously yields good performance in transaction processing, 

complex commands, and materializing large objects. To 
simplify the discussion, we will assume that a storage 
system has D drives, numbered l,...,D, the allocation unit 
is a disk track and the ith disk has Ti tracks. Hence, the 
storage system is a two dimensional array of tracks, and 
we will assume that the horizontal dimension is the drive 
number and the vertical dimension is the track number 
on a drive. 

In many traditional file systems a user can add a 
new extent to a tile which is allocated sequentially on a 
single drive. If necessary, it would be broken into multi- 
ple smaller contiguous extents. In our storage system an 
extent of size E would correspond to a vertical rectangle 
of width 1 and height E. 

Recently, researchers have suggested striping files 
across a collection of disks [SALE86, LIVN85]. Striping 
L <= D disks entails allocating the Ith track to the Jth 
disk de&mined by: 

J = remainder (I/L) + 1 
In this way, a large sequential I/O can be processed by 
reading all disks in parallel, and very high bandwidth on 
sequential I/O is possible. In our model this corresponds 
to a rectangle of width L and height of 1 or more. 

In the next subsections we argue that both horizon- 
tal (striped over all D drives) and vertical (i.e. tradi- 
tional) allocation schemes are undesirable in our 
environment and that a two-dimensional file system 
which allocates extents as general M by W rectangles is 
the best alternative. Then, we close this section with a 
few comments on the design of FTD (Files -- Two 
Dimensions). 

4.2. Horizontal Allocation 
Define the width W of a rectangle of storage as 

the number of drives it is striped over. The choice: 
W=D 

will result in tricky problems in the area of high availa- 
bility and space management. 

In all real environments the number of disks 
changes over time. Hence, infrequently, the value of D 
will change, usually to a bigger value. When a disk is 
added or dropped, one must restripe all remaining disks. 
This is a bulk reorganization that will result in the file 
that is restriped being unavailable during the reorganiza- 
tion. Any incremental restriping algorithm must result in 
two different widths (namely old D and new D) being 
supported during the reorganization. 

In addition, if the various disks have different 
capacities, then space management will be problematic 
because there will be no way to use extra space on larger 
dliVC!S. 
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Lastly, it is unlikely that hot spots will develop in a 
striped file system. However, in the unlikely event that 
they do occur, there is absolutely nothing that can be 
done about them, because the allocation algorithm is 
fixed. 

4.3. Vertical Allocation 
One might be led to consider vertical allocations, 

i.e. W = 1. Unfortunately this solution fails to achieve 
our performance goal on large objects. 

A large object will occur in a single tuple of a sin- 
gle data base object. For example, the following relation 
might store an image library: 

IMAGE ( name, description) 
Here, the description field would be several megabytes in 
size. In a system with W = 1, a description would be 
stored on a single drive, and therefore the bandwidth 
available to return it to an application program would be 
limited to the sequential read speed of the drive (about 
1.5 mbyes/sec depending on the drive select@. Clearly, 
XPRS would fail to achieve its performance goal on 
these applications with vertical allocation. 

4.4. The Design of FI’D 
The clear conclusion is that neither horizontal nor 

vertical allocation is a desirable solution, and the tile sys- 
tem, FTD, of XPRS must be able to support extents 
which are arbitrary rectangles. Consequently each 
extent, Ei, of a file is a data structure: 

DRi: the drive number on which the extent starts 
Wi: the width of the extent in disks 
Si: the size of the extent in tracks 
(TRj: 1 c= j <= Wi) the track number on the jth disk 
on which the extent starts 

Hence, each extent is allocated to a contiguous collection 
of disks and contains Si tracks on each disk. However, 
the starting location of the portion of the extent can be 
different for each disk, thus easing the space allocation 
problem. In addition, addressing in an extent is striped. 
Hence, track 1 is allocated to drive DRi, track 2 to 
DRi+l, etc. 

In the remainder of this section we discuss the 
choice of Wi. There are at least two considerations that 
would cause one to increase Wi and at least two that 
would cause it to be lowered. First, bandwidth on large 
read operations will be proportional to Wi. Hence, in 
supercomputer access to a DBMS, one should choose a 
large Wi. In addition, a larger choice of Wi will tend to 
minimize the impact of “hot spots” in the disk system, 
i.e. drives on which there is contention for blocks from 
multiple transactions. If a single file is spread over a 
larger number of drives, one would expect contention for 

blocks in that file to decrease. However, there can also 
be contention for blocks in different files on the same 
drive. Reducing such contention is a file placement 
problem. The amount of such inter-file contention will 
decrease as the Wi for both files is increased. As a 
result, concern for hot spots would cause one to increase 
Wi. 

On the other hand, there are two considerations 
which would cause one to choose lower values for Wi. 
First, space management will probably be easier with 
lower values. This will clearly be true if some disks 
have different capacities from others. We expect to 
demonstrate this conjecture with a simulation study 
which has already started. 

Second, there are many environments where the 
extra bandwidth from a large Wi cannot be utilized by 
the DBMS. As noted earlier, parallelism will be obtained 
by splitting data relations into multiple files and allocat- 
ing parallel query plans to process each tile. Suppose the 
CPU processing one of these parallel plans is (say) 15 
MIPS. Furthermore, suppose we assume typical records 
of (say) 100 bytes and a query which requires (say) 500 
CPU instructions per record. In this case, we require 5 
instructions per byte of data and a 15 MIPS CPU can 
keep up with at most 2 disks. If the CPU cost per record 
is cut in half, then four disks can be supported. Hence, 
the benefit of striping more than a few disks will be lost 
because of CPU saturation. 

In conclusion we expect to design a tile system 
where files can be extended an extent at a time and appli- 
cation software can optionally suggest the value of W 
that would be appropriate for the extent. Larger values 
of W may result in higher bandwidth and less problems 
with hot spots. On the other hand, lower values may 
result in equal effective bandwidth and less problems 
with space management. 

5. HIGH AVAILABILITY IN THE PRES- 
ENCE OF ERRORS 

5.1. RAID 
The I/O system in XPRS will be based on RAIDS 

(Redundant Arrays of Inexpensive Disks) [PATT88]. 
The underlying premise is that small numbers of large 
expensive disks can be replaced by very large numbers 
of inexpensive disks to achieve substantially increased 
transfer bandwidth at a comparable system cost. The 
major problem with disk arrays is the drastically reduced 
mean time to failure (M’ITF) because of the large 
numbers of additional system components. 

RAIDS are only of interest if they can be made 
fault tolerant. At one extreme, each data disk can have 
an associated “mirror” disk, which is comparable to 
Tandem’s mirrored disk approach. However, 50% of the 
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available disk capacity is dedicated to redundant data 
storage, a rather high price to pay. 

We take an alternative approach and assume that 
each FTD “logical drive” is, in fact, made up of a 
group of N physical disks. On N-l of these disks normal 
data blocks are stored, while on the Nth disk, we store 
the parity bit for the remaining drives. Blocks on dif- 
ferent drives can be read independently; however, writes 
require (up to) four physical I/OS: 

(1) read original data block 
(2) read its associated parity block 
(3) write the updated data block 
(4) write the updated parity block 

Intelligent buffer management and/or read-modify-write 
transactions can eliminate one or two of these I/OS in 
many cases. 

To avoid the hot spot on the Ntb drive during write 
operations, parity blocks are actually interleaved across 
all N disks. Consequently, up to N/2 writes can be ser- 
viced simultaneously. 

Note that the parity blocks represent much reduced 
overhead compared to the fully mirrored approach. For 
N = 8, one in every eight blocks is a parity block. This 
represents only a 12.5% capacity overhead. 

When the controller discovers that a disk has a 
hard failure, processing continues in a degraded fashion 
as follows. A hot spare is allocated to the group, replac- 
ing the failed disk. A read to the failed disk is mapped 
into parallel reads of the data and parity blocks of the 
remaining disks, and the lost data is reconstructed on the 
fly. Writes are processed as above, and are written 
through to the spare. 

Just as in the case of fully mirrored disks, a second 
failure renders the group unavailable. Thus it is also 
important to reconstruct the contents of the failed disk 
onto the spare drive expeditiously. Two strategies are 
possible: stop and reconstruct, or reconstruct in the back- 
ground. In the former, access to the group is suspended 
while the reconstruction software runs flat out to rebuild 
the lost disk. Sequential access can be used to advantage 
to keep the reconstruction time to a minimum, but 
assuming a group of 8 100 Mbyte 3 l/4” disks, this is a 
computationally intensive task which will take at least 

100 mbytes/l.5 mbytes per second = 67 seconds 
assuming that the I/O processor doing the reconstruction 
can keep up. This approach does not satisfy the high 
availability goals of XPRS. 

The altcmativc is to spread the reconstruction over 
a longer period, interleaving reconstruction and conven- 
tional I/O. We assume the actual elapsed time to recon- 
struct the disk thereby increases by a factor of 400 to 
four hours. 

The drawback of this approach is that a longer 
recovery period will adversely affect the MTIF because 
a second physical failure will cause data loss during the 
longer reconstruction period. To be specillc, assume the 
average time to a physical disk failure is 30000 hours, 
and therefore the failure rate, h, is l/30000. Assume that 
the average repair time is 4 hours, and therefore the 
repair rate, tt, is l/4. The mean time to failure of a group 
of N disks is: 

MITF = 7v&J-F 
Thus, MTTF decreases linearly with increasing repair 
time (decreasing repair rate). For N = 8 and a 4 hour 
repair interval, the MTTF exceeds 3.5 million hours. Put 
differently, one can have a disk array of 20 of these 
groups containing 160 drives, and be assured that the 
MTIF of the entire system is 175,781 hours, a little over 
20 years. 

In XPRS we will consequently assume that the 
disk system is perfectly reliable. 

5.2. Software Errors 
The POSTGRES storage manager is discussed in 

[STON87] and has the novel characteristic that it has no 
log in the conventional sense. Instead of overwriting a 
data record, it simply adds a new one and relies on an 
asynchronous vacuum cleaner to move “dead” records 
to an archive and reclaim space. The POSTGRES log 
therefore consists of two bits of data per transaction giv- 
ing its status as 

committed 
aborted 
in progress 
C 1 -in-progress 

To commit a transaction in POSTGRES one must: 
move data blocks written by the transaction to 

“stable” memory 
set the commit bit 

To abort a transaction one need only set the abort bit. To 
recover from a crash where the disk is intact, one need 
only abort all transactions alive at the time of the failure, 
an instantaneous operation. Since RAID has an inlinite 
MlTF for disk errors, there are no crashes which leave 
disk data unreadable. 

To achieve higher reliability one must be able to 
recover from software errors caused by the DBMS or the 
OS writing corrupted disk blocks. In this section we 
sketch our design which has the side benefit of making 
the buffer pool into “stable” storage. This will make 
committing POSTGRES transactions extremely fast. We 
base our design on two assumptions: 

Assumption 1: The OS ensures that each main memory 
page is either GUARDED or FREE. Any guarded page 
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is assumed to be physically unwritable and its contents 
obtainable after any crash. 

We expect to implement GUARDED and FREE 
by setting the bit in the memory map that controls page 
writability. With a battery back-up scheme for main 
memory and the assumption that memory hardware is 
highly reliable, Assumption 1 seems plausible. 

Assumption 2: The DBMS and the OS consider the 
operation of GUARDING a page as equivalent to “I am 
well.” Hence, issuing a GUARD command is equivalent 
to the assertion by the appropriate software that it has not 
written bad data. 

Although there is no way to ascertain the validity of 
Assumption 2, we expect to attempt to code routines near 
GUARD points as “fail fast.” 

Our buffering scheme makes use of the fact that 
the OS has one copy of each block read and the DBMS 
has a second in its buffer pool. Moreover there are 6 
system calls available to the DBMS: 

G-READ (X,A) :Rcad disk block X into main 
memory page A leaving A GUARDED 

READ (X,A) :Read disk block X into main 
memory page A leaving A FREE 

G-WRITE (A,X) :Write main memory page A to disk 
block X leaving A GUARDED 

WRITE (A,X) :Write main memory page A to disk 
block X leaving A FREE 

GUARD (A) :GUARD main memory page A 
FREE (A) :FREE main memory page A 

The OS implements a G-READ command by allocating 
a buffer page, B, in its buffer pool and performing the 
following operations: 

LIZ 09 
physical read of X into B 
GUARD (B) 
FREE (A) 
copy B into A 
GUARD (A) 

The READ command is nearly the same, omitting only 
the last GUARD (A). The OS implements G-WRITE 
(X,A) by using its version of the page, B, as follows: 

GUARD (A) 
FREE (B) 
copy A into B 
GUARD (B) 

The WRITE command is the same except it adds a FREE 
(A) at the end. The OS can write pages from its buffer 
pool to disk at any time to achieve its space management 
objectives. 

Each time the DBMS modifies a data page, it must 
perform a WRITE or a G-WRITE command to move the 
OS copy into synchronization. Moreover, it must assert 
that it has not written invalid data. According to 
Assumption 2, it would perform a GUARD command 
preceding the WRITE or G-WRITE command. For 
efficiency purposes, we have combined the two calls 
together; therefore a WRITE or G-WRITE command is 
equivalent to a “wellness” assertion by the DBMS. 

If a crash occurs, then the OS takes the initiative to 
discard all unguarded pages in its buffer pool as well as 
in the DBMS buffer pool. All other buffer pool pages 
are preserved. Moreover, the code segments of the OS 
and DBMS are automatically guarded, so they are intact. 

Lastly, it should be noted that both the DBMS and 
OS copies of a page are never simultaneously unguarded. 
Hence, if the DBMS page is discarded, it will be 
refreshed from the OS page. If the OS page is discarded, 
it will be rewritten from the DBMS page. Moreover, 
since the number of unguarded pages at any one time is 
small, the two copies can be brought into synchroniza- 
tion quickly during recovery time. 

It is acceptable for multiple transactions to have 
the same page simulataneously FREE. In this case, a 
GUARD operation by one transaction requires the OS to 
perform the obvious bookkeeping leaving the page 
FREE. Only when the last transaction GUARDS the 
page can the actual page be guarded. Of course, a tran- 
saction must delay committing until all the pages it has 
written have become physically guarded. It will be useful 
to periodically delay transactions which wish to FREE a 
“hot spot” page so that the current writers of the page 
can finish and the page can be GUARDED. This is simi- 
lar in concept to action consistent checkpoints discussed 
in [GRAY81]. 

There are additional details that concern how to 
preserve the data structure which holds the mapping of 
disk pages to buffer pages. However, space precludes an 
explanation here. Also, assuming that the I/O system 
does not write blocks to the wrong place along with 
Assumptions 1 and 2 above, our scheme does not lose 
data and recovers essentially instantly. 

6. AVOIDING DATA UNAVAILABILITY 
DUE TO LOCKING 

In this section we indicate the approach taken by 
HERS to avoid data unavailability on large user reads 
and on storage reorganizations. 

6.1. User Reads 
POSTGRES automatically supports access to a 

relation as of some time in the past. For example, a user 
can obtain the names of employees as of January 15th as 
follows: 
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retrieve (EMP.name) 
using EMP@“January 151988” 

All retrieve commands can be run as of some time in the 
past. Because no locks are set for such commands, they 
cause no data unavailability. In addition, our technique 
does not require a user to predeclare his transaction to be 
read-only as required by some other tcchniqucs, e.g 
[CHAN82]. 

6.2. Storage Reorganization Without Lock- 
ing 

We now illustrate how partial indexes can be used 
by an automatic demon to achieve incremental index 
reorganization. 

To convert from a B-tree index on a key to either a 
rebuilt B-tree index or a hash index on the same key, one 
can proceed as follows. Divide the key range of the 
index into N intervals of either fixed or varying size. 
Begin with the first interval. Lock the interval and con- 
struct a new index entry for each tuple in the interval. 
When the process is complcte, unlock the interval. The 
new index is now valid for the interval 

key < VALUE-l 
where VALUE-l is the low key on the next index page 
to be examined. The old index can be considered valid 
for the whole key range or it can be restricted to: 

key >= VALUE-l 
In this latter case, the space occupied by the index 
records of the first interval can be reclaimed. If the inter- 
vals are chosen to be the key ranges present in the root 
level of the old B-tree, then this space reclamation can 
occur without destroying the B-tree property for the old 
index. 

The query optimizer need only be extended to 
realize that the two indexes together cover the key range. 
Hence, if a query must be processed with a qualilication 
of the form: 

where VALUE-3 c key c VALUE-4 
it is necessary to construct two query plans, one for each 
index. There is little complexity to this optimizer extcn- 
sion. At one’s leisure, the remaining N- 1 intervals can be 
processed to generate the complete index. 

All storage reorganizations to achieve alternate 
access paths or arm balance can be similarly coded as 
incremental operations using distribution criteria and 
partial indexes. We expect to embed these techniques 
into a collection of asynchronous demons that will run in 
background, thereby relieving the operator of manual 
(and error prone) operations. 

It would also be possible to build an index without 
setting any locks and then process the log to correct the 
index afterwards. This would be similar to incremental 

techniques for dumping relations, so called “fuzzy 
dumps”. Our technique is superior because portions of 
the index can be utilized as soon as they have been con- 
structed. There is no need to wait for the end of the 
entire build procedure. 

7. CONCLUSIONS 
We have described the design of a hardware and 

software system to support high performance applica- 
tions. This entails modifying POSTGRES to support 
fast-path and partial indexes, writing a collection of 
demons to provide housekeeping services without the 
presence of a human, building a controller for RAID, and 
providing parallel query plans. 

The hardware platform utilized will either be a 
large Sun machine or a SEQUENT Symmetry system. 
The construction of RAID is in progress and we expect 
an initial prototype by late 1988. The fast-path feature of 
POSTGRES is nearly operational and we are tuning up 
the system to achieve our TPS performance goal. Dur- 
ing 1989 we will concentrate on partial indexes and 
parallel plans 
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