
THE DESIGN OF XPRS

Michael Stonebraker, Randy Katz, David Patterson, and John Ousterhout
EECS Department

University of California, Berkeley

Abstract 1.1. High Performance
This paper presents an overview of the techniques

we are using to build a DBMS at Berkeley that will
simultaneously provide high performance and high avai-
lability in transaction processing environments, in appli-
cations with complex ad-hoc queries and in applications
with large objects such as images or CAD layouts. We
plan to achieve these goals using a general purpose
DBMS and operating system and a shared memory mul-
tiprocessor. The hardware and software tactics which
we are using to accomplish these goals are described in
this paper and include a novel “fast path” feature, a spe-
cial purpose concurrency control scheme, a two-
dimensional file system, exploitation of parallelism and a
novel method to efficiently mirror disks.

We strive for high performance in three different
application areas:

1) transaction processing
2) complex ad-hoc queries
3) management of large objects

1. INTRODUCTION
At Berkeley we are constructing a high perfor-

mance data base system with novel software and
hardware assists. The basic goals of XPRS (extended
Postgres on Raid and Sprite) are very high performance
from a general purpose DBMS running on a conven-
tional operating system and very high availability. More-
over, we plan to optimize for either a single CPU in a
computer system (e.g. a Sun 4) or a shared memory mul-
tiprocessor (e.g a SEQUENT Symmetry system). We
discuss each goal in turn in the remainder of this intro-
duction and then discuss why we have chosen to exploit
shared memory over shared nothing or shared disk.

Previous high transaction rate systems have been built on
top of low-level, hard-to-program, underlying data
managers such as TPF [BAMB87] and IMS/Fast Path
[DATE84]. Recent systems which are optimized for
complex ad-hoc queries have been built on top of high-
function data managers (e.g. GAMMA [DEW1861 and
DBC/lOlZ [TERA85]); however such systems have used
custom low-level operating systems. Lastly, applications
requiring support for large objects (such as images or
CAD geometries) have tended not to use a general pur-
pose data manager because of performance problems.

The first goal of XPRS is to demonstrate that high
performance in each of these areas can be provided by a
next generation DBMS running on a general purpose
operating system without unduly compromising perfor-
mance objectives. Clearly, this will be a major advantage
as it will bring the benefits of ease of application con-
struction, ease of application migration, data indepen-
dence and low personnel costs to each of these areas.
Specilically, we are using a slightly modified version of
POSTGRES [STON86] as the underlying data manager
and the Sprite network operating system [OUST87]. Our
concrete performance goals for XPRS in each of the
three application areas are now described.

This rescarch was sponsored by the Defense Advanced Research
Projects Agency under contract NOOO39-84-C-0089, the Amy
Research Oflice under contract DAAL03-87-G-0041, and the National
Science Foundation under contract MIP-8715235.

Permission to copy without fee all or Put Of Ihb mataid ir

gr~ntcdpovidadthattheoopitsanMtmdeadirrributedf~
direct commcrcid advantage, the VIDB cowright notice amI
the title of the publication ad its date apnea, and notice ir given
that copying is by permission of the Very Large Data Base
Endowment. To copy othawisc, or to mblish, nquhs a fee
and/or special pumission from the Edowmcnt.

Proceedings of the 14th VLDB Confemce
Los Angeles, California 1988 318

We feel that general purpose CPUs will obey Joy’s
law of:

MIPS = 2 ** (year - 1984)
at least for the next several years. As such, we are
confident that single processor systems of 50-100 MIPS
will appear by 1991 and that shared memory multipro-
cessors of several hundred MIPS will also occur in the
same time frame. Consequently, we expect that CPU
limitations of current transaction processing engines will
become less severe in the future. Therefore we strive
only for “good” performance on TPl [ANON851 which
has come to be the standard benchmark by which tran-
saction processing performance is measured, i.e:

100,000 instructions per transaction

XACT&x = 10 * MIPS
For example a 100 MIPS system should be capable of
1000 TPls per second.

Achieving this goal requires system tuning, the
removal of critical sections in the code, and avoiding
lock contention on so-called hot spots, i.e. records or
blocks with high traftic. To alleviate this latter problem,
it is necessary for the DBMS to hold locks for shorter
periods of time, and we are planning to use two tactics to
help in this regard. First, we plan to run the various
DBMS commands in a transaction in parallel where pos-
sible to shorten the amount of time they hold locks. In
addition, we are using a special purpose concurrency
control algorithm which avoids locking altogether in cer-
tain situations. These tactics are described later in this
paper.

Some researchers believe that high performance is
achieved easily by using a low-function high-
performance DBMS such as IMS/Fast Path. Others
question the propriety of removing DBMS services such
as query optimization and views and suggest utilizing
only high level interfaces. Clearly, the elimination of
function from the path length of high traffic interactions
is a possible optimization strategy. Although we are not
enthusiastic about this strategy because we feel that the
potential problems outweight the advantages, we are
going to allow exploitation of this concept by imple-
menting a novel fast path scheme to achieve a variable
speed interface. We also discuss this tactic later in this
paper.

Although transaction processing systems typically
perform short tasks such as TPl, there are occasional
longer running transactions. Such transactions will be a
clear locking bottleneck, unless they can be parallel&d.
Parallel execution of single commands has been
addressed in [DEWI85, DEW186, RICH871. In this
paper we sketch a slightly different approach that
focuses on a multi-user environment, the presence of
shared memory and the necessity of carefully exploiting
a large amount of main memory. Our performance goal
is to outperform recent systems such as GAMMA and
the DBC/1012 on ad-hoc queries using comparable
amounts of hardware.

Lastly, high performance is necessary in engineer-
ing environments where large objects are stored and
retrieved with great regularity. A typical image might be
several megabytes and an application program that
processes images requires retrieval and storage of such
objects at high bandwidth. Current commercial systems
tend not to store such objects at all, while prototype
extendible systems (e.g. POSTGRES [STON861 and
EXODUS [CARE86]) have been designed with object
management needs in mind. The current design of both
systems will limit the speed at which large objects can be

retrieved to the sequential reading speed of a single disk
(about 1.5 mbytes/set for current low-end disks). Hence,
a 64 mbyte object will require about 43 seconds of
access time. Especially if a supercomputer is the one
making the request, it is unreasonable to require such
delays. Our last goal of XPRS is an order of magnitude
improvement in access times to large objects. We plan
to achieve this goal with a variable-speed two-
dimensional file system which is described below.

1.2. High Availability
A second goal of XPRS is to make data base

objects unavailable as infrequently as possible. There
are two common causes of data unavailability, errors and
locking problems, and we discuss each in turn. Errors
have been classified by [GRAY 871 into:

hardware errors (e.g. dish crashes)
software errors (e.g. OS or DBMS crashes)
operator errors (e.g. accidental disk erasure)
environment errors (e.g. power failure)

Because we are designing an I/O system, our goal is to
make a contribution to improved availability in this area
in the presence of hardware errors. Our initial ideas
have resulted in an efficient way to mirror disks at much
reduced storage costs [pATT88]. On the other hand, in
the case of CPU failures, we assume that XPRS would
be part of a distributed data base system such as Non-
stop SQL [GRAY87A], INGRES/STAR lRfI87] or
ORACLE/STAR. Availability in the presence of CPU or
memory failures is provided in such systems by tradi-
tional distributed DBMS multi-copy techniques. Hence,
this area is not discussed further in this paper.

Software errors are soon likely to be the dominant
cause of system failures because hardware and operator
errors are declining in frequency and environment errors
are largely power problems which can be avoided by
uninterruptable power supplies [GRAY87]. It should be
noted that many current techniques. for achieving high
availability (such as process-pairs for non-stop operation
and mirrored disks) are vulnerable to software errors.
Obviously, an errant DBMS will write bad data on each
disk in a mirrored pair, and the backup process may
write the same bad data that caused its mate to fail.
Hence, our assumption in XPRS is to realize that
software errors will happen. Therefore, our goal in
XPRS is to recover from software crashes in seconds.
The tactics which we have in mind are described later in
the paper and depend on the characteristics of the storage
system built into POSTGRES ISTON871.

Operator errors are best avoided by having no
operator. Hence, another goal of XPRS is to perform all
utility functions automatically, so that an operator-free
environment is feasible. Among other things an
operator-free environment requires that the system self-
adapt to adding and deleting disks, automatically balance

319

the load on disks arms, and create and drop indexes
automatically.

In summary our goals for XPRS are improved I/O
system availability in the event of hardware errors,
ensuring that data is not lost as a result of software
errors, instantaneous recovery from software errors, and
a system capable of running with no operator.

A second availability goal in XPRS is never to
make a data base object unavailable because of locking
problems. These result from running large (usually
retrieval) commands which set read locks on large
numbers of data objects, and from housekeeping chores
performed by the data manager. For example, in current
systems it is often advisable to reorganize a B-tree index
to achieve physical contiguity of index pages after a long
period of splits and recombinations of pages. Such a
reorganization usually makes the index unavailable for
the duration of the reorganization and perhaps the under-
lying relation as well. In XPRS this and all other house-
keeping chores must be done incrementally without lock-
ing a relation or taking it off line.

1.3. Shared Memory
In contrast to other recent high performance sys-

tems such as NONSTOP SQL [GRAY87A], GAMMA
[DEW1861 and the DBC 1012 [TERA85] which have all
used a shared-nothing [STON86A] architecture, we are
orienting XPRS to a shared memory environment. The
reason for making this choice is threefold. First the
memory, bus bandwidth and controller technology are at
hand for at least a 20 TPl/sec system. Hence, speed
requirements for advanced applications seem achievable
with shared memory. Moreover, a 2000 TPl/sec. system
will require around 8000 I/OS per second, i.e. about 250
drives. The aggregate bandwidth of the I/OS, assuming
4K pages, is about 32 mbyte&c. Current large main-
frames routinely attach this number of drives and
sufficient channels to deal with the bandwidth.

Second, the reason to favor shared memory is that
it is 25 to 50 percent faster on TPl style benchmarks
than shared nothing [BHID88] and has the added advan-
tage that main memory and CPUs are automatically
shared and thereby load balanced. Hence, WC avoid
many of the software headaches which are entailed in
shared nothing proposals.

Lastly, some people criticize shared memory sys-
tems on availability grounds. Spccilically, they allege
that shared nothing is fundamentally more highly avail-
able than shared memory, because failures are contained
in a single node in shared nothing system while they cor-
rupt an entire shared memory system. Certainly this is
true for hardware errors.

On the other hand, consider software errors. With
conventional log-based recovery a shared nothing system

i “.

will recover the failed node in a matter of minutes by
processing the log. A shared memory system will take at
least as long to recover the entire system because it will
have a larger log, resulting in lower availability. How-
ever, suppose the operating system and the data manager
can recover instantaneously from a software or operator
error (i.e. in a few seconds). In this case, both a shared
memory and shared nothing system recover instantly,
resulting in the same availability.

In summary, we view a shared memory system as
nearly equally available as an equivalent shared nothing
system. In addition, we view XPRS as having higher
availability than any log-based system because it recov-
ers instantly from software errors. Moreover, a shared
memory system is inherently higher performance than
shared nothing and easier to load balance.

In the rest of this paper we discuss the solutions
that we are adopting in XPRS to achieve these goals. In
Section 2 we present our tactics to provide high perfor-
mance on transaction processing applications.
Spscitically, we discuss our fast path mechanism that is
being added to POSTGRES to cut overhead on simple
transactions. Moreover, we discuss inter-query parallel-
ism which can cut down on the length of time transac-
tions hold locks. Finally, we consider a specialized con-
currency control system which avoids locks entirely in
some situations. Section 3 then turns to performance
techniques applicable to complex commands. We
present our approach to query processing in this section
which attempts to achieve intra-query parallelism to
improve response time as well as make excellent use of
large amounts of main memory. Then, in Section 4 we
indicate how to achieve high performance when materi-
alizing large objects. We first argue that traditional tile
systems are inadequate solutions in our environment and
suggest a novel two-dimensional file system that can pro-
vide a variable speed I/O interface.

Section 5 continues with our ideas for achieving
high availability in the presence of failures. We briefly
discuss hardware reliability and suggest a novel way to
achieve ultra-high disk reliability. Then, we turn to
software techniques which can improve availability and
indicate how we expect to achieve instantaneous
recovery. Section 6 then closes with our algorithms to
avoid data unavailability because of locking problems.

2. TRANSACTION PROCESSING PER-
FORMANCE

This section explores three tactics relevant to tran-
saction processing performance.

2.1. Fast Path
It is common knowledge that TPl consists of 4

commands in a query language such as SQL [DATE841

320

or POSTQUEL [ROWE871 together with a begin XACT
and an end XACT statement. If an application program
gives these commands to the data manager one at a time,
then the boundary between the data manager and the
application must be crossed in both directions 6 times.
Moreover, if the application runs on a workstation and
the DBMS runs on a host, the messages must go over the
network, increasing the cost of the boundary crossing.
This overhead contributes 20-30 percent of all CPU
cycles consumed by a TPl transaction. To alleviate this
difliculty, several current commercial systems support
procedures in the data base and POSTGRES does like-
wise. Hence, TPl can be deIincd as a procedure arid
stored in a relation, say

COMMANDS (id, code)
and then later executed as follows:

execute (COMMANDS.code with check-amount,
teller#) where COMMANDS.id = “TPl”

In this way the TPl procedure is executed with the user
supplied parameters of the check amount and the teller
number, and the boundary between POSTGRES and an
application will be crossed just once.

To go even faster POSTGRES makes use of user-
detined functions. For example, a user can write a func-
tion OVERPAID which takes an integer argument and
returns a boolean. After registration with the data
manager, any user can write a query such as:

retrieve (EMP.name)
where OVERPAID (EMPsalary)

Of course it is also legal to execute a simpler query such
as:

retrieve (result = OVERPAID (7))
which will simply evaluate OVERPAID for a constant
parameter.

Fast Path is a means of executing such user
defined functions with very high performance.
Specillcally, we have extended the POSTQUEL query
language to include:

function-name(parameter-list)
as a legal query. For example,

OVERPAID(7)
could be submitted as a valid POSTGRES query. The
run-time system will accept such a command from an
application and simply pass the arguments to the code
which evaluates the function which is linked into the
POSTGRES address space without consuming overhead
in type checking, parsing or query optimization. Hence,
there will be 200 or fewer instructions of overhead
between accepting this command and executing it.
Using this facility (essentially a remote procedure call
capability) TPl can be detined as a POSTGRES function

and a user would simply type:
TPl(check-amount, teller-name)

The implementation of the TPl function can be
coded in several ways. The normal implementation
would be for the function to simply execute precon-
structed query plans for the four commands which make
up TPl. This will result in a somewhat faster implemen-
tation of J’Pl than executing a stored procedure because
of the reduced overhead in the procedure call.

Alternately, an application designer can more
directly control the low level routines in POSTGRES.
POSTGRES has user defined access methods, which
correspond to a collection of 13 functions described in
[wENS88]. These functions can be directly called by a
user written procedure. As a result, high performance
can be achieved by coding TPl directly against the
access method level of POSTGRES. Although this pro-
vides no data independence, no type checking and no
integrity control, it does allow the possibility of excellent
performance. Moreover, there are also interfaces to the
buffer manager as well as higher level interfaces in the
query execution system.

Using this technique of user written procedures,
POSTGRES can provide a variable speed interface.
Hence, a transaction can make use of the maximum
amount of data base services consistent with its perfor-
mance requirements. This approach should be con-
trasted with “toolkit” systems (e.g. EXODUS
[CARE86]) which require a data base implementor to
build a custom system out of tool-kit modules.

2.2. Inter-query Parallelism
There is no reason why all commands in TPl can-

not be run in parallel. If any of the resulting parallel
commands fails, then the transaction can be aborted. In
the usual case where all commands succeed, then the net
effect wilI be that locks are held for shorter periods of
time and lock contention will be reduced. Since an
application program can open multiple portals to
POSTGRES, each can be executing a parallel command.
However, we expect high performance systems to store
procedures in the system which are subsequently exe-
cuted. A mechanism is needed to expedite inter-query
parallelism in this situation. Although it is possible to
build a semantic analyzer to detect possible parallelism
[SELL86], we are following a much simpler path.
Specifically, we are extending POSTGRES with a single
keyword parallel that can be placed between any two
POSTGRES commands. This will be a marker to the
run-time system that it is acceptable to execute the two
commands in parallel. Hence, TPl can be constructed as
four POSTQUEL commands each separated from its
neighbor by parallel.

321

The reason for this approach is that it takes, in
effect, a theorem prover to determine possible semantic
parallelism, and we do not view this as a cost-effective
solution.

2.3. Special Purpose Concurrency Control
We make use of a deli&ion of commutative tran-

sactions in this section. Suppose a .transaction is con-
sidered as a collection of atomic actions, al, am; each
considered as a read-modify-write of a single object.
Two such transactions Tl and T2, with actions al,am
and bI ,..., bn will be said to commute if any interleaving
of the actions of the two transactions for which both
transactions commit yields the same final data base state.
In the presence of transaction failures we require a some-
what stronger definition of commutativity which is simi-
lar to the one in [BADR87]. Two transactions will be
said to failure commute if they commute and for any
initial data base state S and any interleaving of actions
for which both Tl and T2 succeed, then the decision by
either transaction to voluntarily abort cannot cause the
other to abort.

For example, consider two TPl withdrawals.
These transactions commute because both will succeed if
there are sufficient funds to cover both checks being
written. Moreover, both withdrawals failure commute
because when sufficient funds are present either transac-
tion will succeed even if the other decides to abort. On
the other hand, consider a $100 deposit and a $75 with-
drawal transaction for a bank balance of $50. If the
deposit is first, then both transactions succeed. However,
if the deposit aborts then the withdrawal would have
insuflicient funds and be required to abort, Hence, they
do not failure commute.

Suppose a data base administrator divides all tran-
sactions in XPRS into two classes, Cl and C2. Members
of Cl all failure commute, while members of C2 consist
of all other transactions. Moreover, he provides an
UNDO function to be presently described. Basically,
members of Cl will be run by XPRS without locking
interference from other members of Cl. Members of C2
will be run with standard locking to ensure serializability
against other members of C2 and also for members of
Cl.

To accomplish this POSTGRES must expand the
normal read and write locks with two new lock types,
Cl-read and Cl-write. Members of Cl set these new
locks on objects that they respectively read and write.
Figure 1 shows the conflict table for the four kinds of
locks: Obviously, Cl transactions will be run against
each other as if there was no locking at all. Hence, they
will never wait for locks held by other members of Cl.
Other transactions are run with normal locks. Moreover,
Cl-read and Cl-write. locks function as ordinary locks

R W Cl-R Cl-W

R ok no ok no
W no no no no
Cl-R ok no ok ok
Cl-W no no ok ok

Compatibility modes for locks.
Figure 1.

with regard to C2 transactions.
Because multiple Cl transactions will be pro-

cessed in parallel, the storage manager must take care to
ensure the correct ultimate value of all data items when
one or more Cl transactions aborts, Consider three tran-
sactions, Tl, T2 and T3 which withdraw respectively
$100, $50 and $75 from an account with $175 initially.
Because the POSTGRES storage system is designed as a
no-overwrite storage manager, the first two transactions
will write new records as follows:

initial value: $175
next value: $75 written by Tl which is in progress
next-value: $25 written by T2 which is in progress

The transaction T3 will fail due to insufficient funds and
not write a data record.

POSTGRRS must be slightly altered to achieve
this effect. It currently maintains the “state” of each
transaction in a separate data structure as:

committed
aborted
in progress

To these options a fourth state must be added:
C 1 -in-progress

Moreover, POSTGRES must return data records that are
written by either Cl-in-progress or committed transac-
tions to higher level software instead of just the latter.
The locking system will ensure that these Cl-in-progress
records are not visible to C2 transactions. Using this
technique Cl updates are now immediately visible to
other concurrent Cl transactions as desired.

When an ordinary transaction aborts, POSTGRES
simply ignores its updates and they are ultimately
garbage-collected by an asynchronous vacuum cleaner.
However, if a Cl transaction aborts, there may be subse-
quent Cl transactions that have updated records that the
aborted transaction also updated. For example, if Tl
aborts, the state of the account will be:

322

initial value: $175
next value: $75 written by Tl which aborted
next-value: $25 written by I2 which is in progress

Since all the versions of an individual record are
compressed and chained together on a linked list by the
storage manager, this situation will occur if the storage
manager discovers a record written by an aborted tran-
saction followed by one or more records written by a
transaction with status “Cl-in-progress” or “commit”.

In this case, the storage manager must present the
correct data value to the next requesting transaction.
Consider the record prior to the aborted transaction as
“old-data” and the record written by the aborted tran-
saction as “new data.” The run time system simply
remembers these values. Then, when it discovers the
end of the chain, it finds a third record which we term
“current data.” The run time system now calls a specific
UNDO function:

UNDO (old-data, new-data, current-data)
which returns a modified current record. The run time
system writes this revised record with the same transac-
tion and command identifier as the aborted record. In
this case, the UNDO function would return $125 and the
account state would be changed to:

initial value: $175
next value: $75 written by Tl which aborted
next-value: $25 written by T2 which is in progress
next-value: $125 written on behalf of Tl as a correction

Hence, later in the chain of records there will be a
specific “undo” record. Of course, if the run time sys-
tem sees the undo record, it knows not to reapply the
UNDO function.

It is possible to generalize this technique to sup-
port several classes of Cl transactions each with their
own UNDO function. However, we view the result as
not worth the effort that would be entailed.

3. INTRA-QUERY PARALLELISM

3.1. Introduction
Intra-query parallelism is desirable for two rea-

sons. First, less lock conflicts are generated if a query
finishes quickly, and thereby increased throughput can
be achieved. For example, a recent study [BHID88] has
shown that substantial gains in throughput are possible
using parallel plans if a command accesses more than
about 10 pages. Second, one can achieve dramatically
reduced response time for individual commands. This
section presents a sketch of the optimization algorithm
planned for XPRS.

In supporting parallel query plans, it is essential to
allocate a single relation to multiple files. We choose to
do this by utilizing a distribution criteria, e.g:

EMP where age < 20 TO file 1
EMP where age > 40 TO file 2
EMP where age >= 20 and age <= 40 TO file 3

to partition a relation into fragments. Such distribution
criteria will be arbitrary one-relation predicates and can
include used defined functions such as hash functions.

When creating indexes on the EMP relation, say
on the salary field, it is equally natural to construct three
physical indexes, one for each fragment, This will
ensure that parallel plans do not often collide for access
to the same disk arm or collection of arms. These
indexes would have the form:

index on EMP(salary) where age c 20
index on EMP(salary) where age > 40
index on EMP(salary) where age >= 20 and age c= 40

Such data structures are partial indexes and offer a col-
lection of desirable features as discussed in [STON88].
Notice that such indexes are smaller than a current con-
ventional index and should be contrasted with other pro-
posals (e.g join indexes [VALD87], links [ASTR76] and
the indexes in IMS [DATE84]) which are larger than a
conventional index.

Three issues must be addressed by a parallel
optimizer in the XPRS environment. First, we assume
that that main memory in a 1991 computer system will
approach or exceed 1 gigabyte. Obviously with 900
megabytes or more of buffer pool space, a DBMS will
keep large portions of data base objects in main memory.
For example, one can join two 450 megabyte objects by
reading both into main memory and then performing a
main-memory sort-merge.

On the other hand, in a multiuser environment
much less buffer space may actually be available.
Unfortunately, different query plans for the same query
are optimal depending on how much buffer space is
available. Consider for example the following query:

retrieve (Rl all) where R 1 .a = R2.b
and R2.c = R3.d

and assume that R2 and R3 have a clustered index on
fields c and d respectively. Further assume that all rela-
tions occupy the same number of pages, P, and that the
join of R2 to R3 yields a temporary of size .lP while the
one between Rl and R2 contains 1 record. Lastly, sup
pose the optimizer cost function includes only I/O.

In this case one can first join Rl to R2 and then
join the result to R3. Alternately, one can first join R2 to
R3 and then join the result to Rl. If there is a large
amount of memory, the first option will read Rl and R2
into main memory, compute the one record join and then
read the single page from R3 which is required. On the
other hand, the second option will read all three relations
in their entirety, resulting in a higher cost. If only

323

minimal main memory is available, the result is some-
what different. The first option will perform a disk-
based merge-sort join of Rl and R2, at a cost of 2P * log
P + 2P. The resulting one record temporary will reside in
main memory where a single extra page fetch will obtain
the matching values from R3. The second option will
read Rl and R2 through the clustered index at cost 2P
producing a temporary which is written to disk at cost
.lP. A disk based merge sort must be done between this
temporary and Rl at a cost of .lP * log .lP + .lP + P log
P + P. The formulas for the two casts are presented
below and generally the second option will be cheaper
for minimum memory.

query plan cost with cost with
zero memory large memory

(R 1 join R2) join R3 2P*Log P+2P+ 1 2P+l

Rl join (R2 join R3) 3.2P+P*logP+ .lP*log .lP 3P

In this case the first plan is superior for a large buffer
pool while the second wins if little or no space is avail-
able. Consequently, even without considering possible
parallelism, the XPRS query optimizer should carefully
consider available main memory in its decision making.

When parallelism is considered, the optimizer
must also face the number of parallel plans into which to
decompose a user query. For example, suppose a user
requests:

retrieve (RI .all) where Rl .a = R2.b and
R2.c = R3.d and R3.e = R4.f

and suppose the best sequential plan is found to be
a) join Rl to R2
b) join R3 to R4
c) join the results of a) and b)

In this case, there may (or may not be) sufficient memory
to perform steps a) and b) in parallel. Consequently, the
XPRS optimizer must be cognizant of memory allocation
when deciding the amount of parallelism to exploit.

Lastly, the XPRS optimizer must be able to decide
between two different plans, one of which has greater
parallelism while the other consumes less resources.

We feel that optimizers are becoming exceedingly
complex, and we have pointed out that main memory and
parallelism considerations will necessarily result in addi-
tional complexity. Although others [GRAE87,
LOHM88] are trying to make optimizers extendible, we
are more concerned with making them simpler so that
additional optimization, such as that discussed above,
can be performed. To accomplish this goal, we plan to
restrict the collection of available join tactics. All optim-
izers must include iterative substitution to process non-
equijoins. Moreover, some results must be sorted (those

specified by an SQL ORDER BY clause), and therefore
merge-sort comes with marginal extra complexity.
However, other join tactics (e.g. hash-joins) are inessen-
tial, and we plan to not include them in XPRS.

In theory the optimizer search space includes all
possible ways to parallelize all sequential plans for all
possible buffer pool sizes. This space is hopeless to
search exhaustively, and we plan a two step heuristic. In
the first step we expect to find good sequential plans for
various memory sizes. Then, in the second step we plan
to explore parallel versions of only these plans. The final
outcome is a collection of plans and a memory range
over which each should be run.

At the time of execution, the query executor will
make a call on the buffer manager to determine space
availability and based on the reply will choose one of the
collection of plans. It will then supervise execution of
the resulting parallel algorithm. We turn now to con-
structing this collection of plans.

3.2. Constructing Parallel Query Plans
Our optimizer Iirst finds a collection of good

sequential plans as follows. Using a conventional disk-
oriented sequential plan optimizer, we expect to produce
a plan P(0, Q) for each query Q which is the best plan
under the assumption of zero main memory. In addition
we expect to produce a plan P (BIG, Q) which assumes
as much main memory, BIG, as needed. This plan will
typically read each relation accessed into main memory
and do all joins in main memory with as much parallel-
ism as possible. BIG is then calculated as the amount of
memory needed by all pairs of parallel join operands and
their answers. If

P (0, Q) = P (BIG, Q)
then we will stop constructing plans. If not, we will con-
struct P (BIG/2, Q) and compare it to the previous two
plans. If it is the same as either plan or has a cost within
(say) 10 percent of either plan, we Will assume that the
optimized plan at each endpoint is, in fact, optimal for
the whole interval. Then, we will subdivide the remain-
ing interval (if any), and repeat the process. The net
result is a collection of sequential plans and an interval
of memory within which each is optimal.

Next we will explore all possible ways to parallel-
ize this collection of plans. To decide between compet-
ing plans, we must use a different cost function from
traditional optimizers. Specilically, our initial cost func-
tion for a query plan, Q, using X units of buffer space
will be:

cost(X,Q) =(RES(X,Q)/MINRES(Q))(l+
W2 (TIME (X, Q) / MINeTIME (Q)))

where

324

RES (X, Q) = Ntuples (X, Q) + Wl * EIO (X, Q) ;
this is the traditional optimizer cost function

Ntuples (X, Q) = number of tuples examined
EIO (X, Q> = expected number of I/O’s to evaluate
Q with X amount of buffer space

Wl = the traditional fudge factor relating I/O and
CPU utilization

MIN-RES (Q) = the minimum cost plan for Q using
the traditional function

TIME (X, Q) = expected elapsed time with X amount of
buffer space assuming all processors can be
allocated to this plan

MIN_TIME (Q) = the time of the fastest plan for
the query Q.

W2 = fudge factor relating response time to
resource consumption

If w2 = 0, this new cost function reduces to one
equivalent to the traditional one. On the other hand,
choosing a large value of W2 will make response time a
major criteria.

The XPRS optimizer will iterate over most of the
ways to parallelize each plan. However, many leaf nodes
of any candidate query plan consists of a scan of a data
relation or a scan of a secondary index. Each such leaf
node will be automatically decomposed into parallel sub-
plans, one for each data fragment or partial index
involved. This tactic can always be applied because it
will lower TIME (X, Q) without altering main memory
requirements. Moreover, if any scan is followed by a
sort node, this node can also be split into the same
number of parallel nodes as the scan node.

The ultimate outcome will be a collection of paral-
lel plans with the memory requirements for each one.
We expect to proceed with an optimizer on this sort.
Clearly, finding good heuristics to prune the search space
will be a major challenge that we plan to explore further.

4. PERFORMANCE ON MATERIALIZ-
ING LARGE OBJECTS

4.1. Introduction
We expect XPRS to run on a system with a large

number of disks. As noted in [PAlT88], we believe that
only 3 l/2” and 5 l/4” drives will be attractive in a cou-
ple of years. Hence, we expect large capacity storage
systems to made up of substantial numbers (say 100 or
more) of such drives. Additionally, these drives do not
have removable platters, so the concept of a mounted file
system is not required, and we can think of the collection
of drives as a two-dimensional array.

In keeping with our objective of using a conven-
tional file system, the problem becomes one of designing
a Sprite file system for this disk array which simultane-
ously yields good performance in transaction processing,

complex commands, and materializing large objects. To
simplify the discussion, we will assume that a storage
system has D drives, numbered l,...,D, the allocation unit
is a disk track and the ith disk has Ti tracks. Hence, the
storage system is a two dimensional array of tracks, and
we will assume that the horizontal dimension is the drive
number and the vertical dimension is the track number
on a drive.

In many traditional file systems a user can add a
new extent to a tile which is allocated sequentially on a
single drive. If necessary, it would be broken into multi-
ple smaller contiguous extents. In our storage system an
extent of size E would correspond to a vertical rectangle
of width 1 and height E.

Recently, researchers have suggested striping files
across a collection of disks [SALE86, LIVN85]. Striping
L <= D disks entails allocating the Ith track to the Jth
disk de&mined by:

J = remainder (I/L) + 1
In this way, a large sequential I/O can be processed by
reading all disks in parallel, and very high bandwidth on
sequential I/O is possible. In our model this corresponds
to a rectangle of width L and height of 1 or more.

In the next subsections we argue that both horizon-
tal (striped over all D drives) and vertical (i.e. tradi-
tional) allocation schemes are undesirable in our
environment and that a two-dimensional file system
which allocates extents as general M by W rectangles is
the best alternative. Then, we close this section with a
few comments on the design of FTD (Files -- Two
Dimensions).

4.2. Horizontal Allocation
Define the width W of a rectangle of storage as

the number of drives it is striped over. The choice:
W=D

will result in tricky problems in the area of high availa-
bility and space management.

In all real environments the number of disks
changes over time. Hence, infrequently, the value of D
will change, usually to a bigger value. When a disk is
added or dropped, one must restripe all remaining disks.
This is a bulk reorganization that will result in the file
that is restriped being unavailable during the reorganiza-
tion. Any incremental restriping algorithm must result in
two different widths (namely old D and new D) being
supported during the reorganization.

In addition, if the various disks have different
capacities, then space management will be problematic
because there will be no way to use extra space on larger
dliVC!S.

325

Lastly, it is unlikely that hot spots will develop in a
striped file system. However, in the unlikely event that
they do occur, there is absolutely nothing that can be
done about them, because the allocation algorithm is
fixed.

4.3. Vertical Allocation
One might be led to consider vertical allocations,

i.e. W = 1. Unfortunately this solution fails to achieve
our performance goal on large objects.

A large object will occur in a single tuple of a sin-
gle data base object. For example, the following relation
might store an image library:

IMAGE (name, description)
Here, the description field would be several megabytes in
size. In a system with W = 1, a description would be
stored on a single drive, and therefore the bandwidth
available to return it to an application program would be
limited to the sequential read speed of the drive (about
1.5 mbyes/sec depending on the drive select@. Clearly,
XPRS would fail to achieve its performance goal on
these applications with vertical allocation.

4.4. The Design of FI’D
The clear conclusion is that neither horizontal nor

vertical allocation is a desirable solution, and the tile sys-
tem, FTD, of XPRS must be able to support extents
which are arbitrary rectangles. Consequently each
extent, Ei, of a file is a data structure:

DRi: the drive number on which the extent starts
Wi: the width of the extent in disks
Si: the size of the extent in tracks
(TRj: 1 c= j <= Wi) the track number on the jth disk
on which the extent starts

Hence, each extent is allocated to a contiguous collection
of disks and contains Si tracks on each disk. However,
the starting location of the portion of the extent can be
different for each disk, thus easing the space allocation
problem. In addition, addressing in an extent is striped.
Hence, track 1 is allocated to drive DRi, track 2 to
DRi+l, etc.

In the remainder of this section we discuss the
choice of Wi. There are at least two considerations that
would cause one to increase Wi and at least two that
would cause it to be lowered. First, bandwidth on large
read operations will be proportional to Wi. Hence, in
supercomputer access to a DBMS, one should choose a
large Wi. In addition, a larger choice of Wi will tend to
minimize the impact of “hot spots” in the disk system,
i.e. drives on which there is contention for blocks from
multiple transactions. If a single file is spread over a
larger number of drives, one would expect contention for

blocks in that file to decrease. However, there can also
be contention for blocks in different files on the same
drive. Reducing such contention is a file placement
problem. The amount of such inter-file contention will
decrease as the Wi for both files is increased. As a
result, concern for hot spots would cause one to increase
Wi.

On the other hand, there are two considerations
which would cause one to choose lower values for Wi.
First, space management will probably be easier with
lower values. This will clearly be true if some disks
have different capacities from others. We expect to
demonstrate this conjecture with a simulation study
which has already started.

Second, there are many environments where the
extra bandwidth from a large Wi cannot be utilized by
the DBMS. As noted earlier, parallelism will be obtained
by splitting data relations into multiple files and allocat-
ing parallel query plans to process each tile. Suppose the
CPU processing one of these parallel plans is (say) 15
MIPS. Furthermore, suppose we assume typical records
of (say) 100 bytes and a query which requires (say) 500
CPU instructions per record. In this case, we require 5
instructions per byte of data and a 15 MIPS CPU can
keep up with at most 2 disks. If the CPU cost per record
is cut in half, then four disks can be supported. Hence,
the benefit of striping more than a few disks will be lost
because of CPU saturation.

In conclusion we expect to design a tile system
where files can be extended an extent at a time and appli-
cation software can optionally suggest the value of W
that would be appropriate for the extent. Larger values
of W may result in higher bandwidth and less problems
with hot spots. On the other hand, lower values may
result in equal effective bandwidth and less problems
with space management.

5. HIGH AVAILABILITY IN THE PRES-
ENCE OF ERRORS

5.1. RAID
The I/O system in XPRS will be based on RAIDS

(Redundant Arrays of Inexpensive Disks) [PATT88].
The underlying premise is that small numbers of large
expensive disks can be replaced by very large numbers
of inexpensive disks to achieve substantially increased
transfer bandwidth at a comparable system cost. The
major problem with disk arrays is the drastically reduced
mean time to failure (M’ITF) because of the large
numbers of additional system components.

RAIDS are only of interest if they can be made
fault tolerant. At one extreme, each data disk can have
an associated “mirror” disk, which is comparable to
Tandem’s mirrored disk approach. However, 50% of the

326

available disk capacity is dedicated to redundant data
storage, a rather high price to pay.

We take an alternative approach and assume that
each FTD “logical drive” is, in fact, made up of a
group of N physical disks. On N-l of these disks normal
data blocks are stored, while on the Nth disk, we store
the parity bit for the remaining drives. Blocks on dif-
ferent drives can be read independently; however, writes
require (up to) four physical I/OS:

(1) read original data block
(2) read its associated parity block
(3) write the updated data block
(4) write the updated parity block

Intelligent buffer management and/or read-modify-write
transactions can eliminate one or two of these I/OS in
many cases.

To avoid the hot spot on the Ntb drive during write
operations, parity blocks are actually interleaved across
all N disks. Consequently, up to N/2 writes can be ser-
viced simultaneously.

Note that the parity blocks represent much reduced
overhead compared to the fully mirrored approach. For
N = 8, one in every eight blocks is a parity block. This
represents only a 12.5% capacity overhead.

When the controller discovers that a disk has a
hard failure, processing continues in a degraded fashion
as follows. A hot spare is allocated to the group, replac-
ing the failed disk. A read to the failed disk is mapped
into parallel reads of the data and parity blocks of the
remaining disks, and the lost data is reconstructed on the
fly. Writes are processed as above, and are written
through to the spare.

Just as in the case of fully mirrored disks, a second
failure renders the group unavailable. Thus it is also
important to reconstruct the contents of the failed disk
onto the spare drive expeditiously. Two strategies are
possible: stop and reconstruct, or reconstruct in the back-
ground. In the former, access to the group is suspended
while the reconstruction software runs flat out to rebuild
the lost disk. Sequential access can be used to advantage
to keep the reconstruction time to a minimum, but
assuming a group of 8 100 Mbyte 3 l/4” disks, this is a
computationally intensive task which will take at least

100 mbytes/l.5 mbytes per second = 67 seconds
assuming that the I/O processor doing the reconstruction
can keep up. This approach does not satisfy the high
availability goals of XPRS.

The altcmativc is to spread the reconstruction over
a longer period, interleaving reconstruction and conven-
tional I/O. We assume the actual elapsed time to recon-
struct the disk thereby increases by a factor of 400 to
four hours.

The drawback of this approach is that a longer
recovery period will adversely affect the MTIF because
a second physical failure will cause data loss during the
longer reconstruction period. To be specillc, assume the
average time to a physical disk failure is 30000 hours,
and therefore the failure rate, h, is l/30000. Assume that
the average repair time is 4 hours, and therefore the
repair rate, tt, is l/4. The mean time to failure of a group
of N disks is:

MITF = 7v&J-F
Thus, MTTF decreases linearly with increasing repair
time (decreasing repair rate). For N = 8 and a 4 hour
repair interval, the MTTF exceeds 3.5 million hours. Put
differently, one can have a disk array of 20 of these
groups containing 160 drives, and be assured that the
MTIF of the entire system is 175,781 hours, a little over
20 years.

In XPRS we will consequently assume that the
disk system is perfectly reliable.

5.2. Software Errors
The POSTGRES storage manager is discussed in

[STON87] and has the novel characteristic that it has no
log in the conventional sense. Instead of overwriting a
data record, it simply adds a new one and relies on an
asynchronous vacuum cleaner to move “dead” records
to an archive and reclaim space. The POSTGRES log
therefore consists of two bits of data per transaction giv-
ing its status as

committed
aborted
in progress
C 1 -in-progress

To commit a transaction in POSTGRES one must:
move data blocks written by the transaction to

“stable” memory
set the commit bit

To abort a transaction one need only set the abort bit. To
recover from a crash where the disk is intact, one need
only abort all transactions alive at the time of the failure,
an instantaneous operation. Since RAID has an inlinite
MlTF for disk errors, there are no crashes which leave
disk data unreadable.

To achieve higher reliability one must be able to
recover from software errors caused by the DBMS or the
OS writing corrupted disk blocks. In this section we
sketch our design which has the side benefit of making
the buffer pool into “stable” storage. This will make
committing POSTGRES transactions extremely fast. We
base our design on two assumptions:

Assumption 1: The OS ensures that each main memory
page is either GUARDED or FREE. Any guarded page

327

is assumed to be physically unwritable and its contents
obtainable after any crash.

We expect to implement GUARDED and FREE
by setting the bit in the memory map that controls page
writability. With a battery back-up scheme for main
memory and the assumption that memory hardware is
highly reliable, Assumption 1 seems plausible.

Assumption 2: The DBMS and the OS consider the
operation of GUARDING a page as equivalent to “I am
well.” Hence, issuing a GUARD command is equivalent
to the assertion by the appropriate software that it has not
written bad data.

Although there is no way to ascertain the validity of
Assumption 2, we expect to attempt to code routines near
GUARD points as “fail fast.”

Our buffering scheme makes use of the fact that
the OS has one copy of each block read and the DBMS
has a second in its buffer pool. Moreover there are 6
system calls available to the DBMS:

G-READ (X,A) :Rcad disk block X into main
memory page A leaving A GUARDED

READ (X,A) :Read disk block X into main
memory page A leaving A FREE

G-WRITE (A,X) :Write main memory page A to disk
block X leaving A GUARDED

WRITE (A,X) :Write main memory page A to disk
block X leaving A FREE

GUARD (A) :GUARD main memory page A
FREE (A) :FREE main memory page A

The OS implements a G-READ command by allocating
a buffer page, B, in its buffer pool and performing the
following operations:

LIZ 09
physical read of X into B
GUARD (B)
FREE (A)
copy B into A
GUARD (A)

The READ command is nearly the same, omitting only
the last GUARD (A). The OS implements G-WRITE
(X,A) by using its version of the page, B, as follows:

GUARD (A)
FREE (B)
copy A into B
GUARD (B)

The WRITE command is the same except it adds a FREE
(A) at the end. The OS can write pages from its buffer
pool to disk at any time to achieve its space management
objectives.

Each time the DBMS modifies a data page, it must
perform a WRITE or a G-WRITE command to move the
OS copy into synchronization. Moreover, it must assert
that it has not written invalid data. According to
Assumption 2, it would perform a GUARD command
preceding the WRITE or G-WRITE command. For
efficiency purposes, we have combined the two calls
together; therefore a WRITE or G-WRITE command is
equivalent to a “wellness” assertion by the DBMS.

If a crash occurs, then the OS takes the initiative to
discard all unguarded pages in its buffer pool as well as
in the DBMS buffer pool. All other buffer pool pages
are preserved. Moreover, the code segments of the OS
and DBMS are automatically guarded, so they are intact.

Lastly, it should be noted that both the DBMS and
OS copies of a page are never simultaneously unguarded.
Hence, if the DBMS page is discarded, it will be
refreshed from the OS page. If the OS page is discarded,
it will be rewritten from the DBMS page. Moreover,
since the number of unguarded pages at any one time is
small, the two copies can be brought into synchroniza-
tion quickly during recovery time.

It is acceptable for multiple transactions to have
the same page simulataneously FREE. In this case, a
GUARD operation by one transaction requires the OS to
perform the obvious bookkeeping leaving the page
FREE. Only when the last transaction GUARDS the
page can the actual page be guarded. Of course, a tran-
saction must delay committing until all the pages it has
written have become physically guarded. It will be useful
to periodically delay transactions which wish to FREE a
“hot spot” page so that the current writers of the page
can finish and the page can be GUARDED. This is simi-
lar in concept to action consistent checkpoints discussed
in [GRAY81].

There are additional details that concern how to
preserve the data structure which holds the mapping of
disk pages to buffer pages. However, space precludes an
explanation here. Also, assuming that the I/O system
does not write blocks to the wrong place along with
Assumptions 1 and 2 above, our scheme does not lose
data and recovers essentially instantly.

6. AVOIDING DATA UNAVAILABILITY
DUE TO LOCKING

In this section we indicate the approach taken by
HERS to avoid data unavailability on large user reads
and on storage reorganizations.

6.1. User Reads
POSTGRES automatically supports access to a

relation as of some time in the past. For example, a user
can obtain the names of employees as of January 15th as
follows:

328

retrieve (EMP.name)
using EMP@“January 151988”

All retrieve commands can be run as of some time in the
past. Because no locks are set for such commands, they
cause no data unavailability. In addition, our technique
does not require a user to predeclare his transaction to be
read-only as required by some other tcchniqucs, e.g
[CHAN82].

6.2. Storage Reorganization Without Lock-
ing

We now illustrate how partial indexes can be used
by an automatic demon to achieve incremental index
reorganization.

To convert from a B-tree index on a key to either a
rebuilt B-tree index or a hash index on the same key, one
can proceed as follows. Divide the key range of the
index into N intervals of either fixed or varying size.
Begin with the first interval. Lock the interval and con-
struct a new index entry for each tuple in the interval.
When the process is complcte, unlock the interval. The
new index is now valid for the interval

key < VALUE-l
where VALUE-l is the low key on the next index page
to be examined. The old index can be considered valid
for the whole key range or it can be restricted to:

key >= VALUE-l
In this latter case, the space occupied by the index
records of the first interval can be reclaimed. If the inter-
vals are chosen to be the key ranges present in the root
level of the old B-tree, then this space reclamation can
occur without destroying the B-tree property for the old
index.

The query optimizer need only be extended to
realize that the two indexes together cover the key range.
Hence, if a query must be processed with a qualilication
of the form:

where VALUE-3 c key c VALUE-4
it is necessary to construct two query plans, one for each
index. There is little complexity to this optimizer extcn-
sion. At one’s leisure, the remaining N- 1 intervals can be
processed to generate the complete index.

All storage reorganizations to achieve alternate
access paths or arm balance can be similarly coded as
incremental operations using distribution criteria and
partial indexes. We expect to embed these techniques
into a collection of asynchronous demons that will run in
background, thereby relieving the operator of manual
(and error prone) operations.

It would also be possible to build an index without
setting any locks and then process the log to correct the
index afterwards. This would be similar to incremental

techniques for dumping relations, so called “fuzzy
dumps”. Our technique is superior because portions of
the index can be utilized as soon as they have been con-
structed. There is no need to wait for the end of the
entire build procedure.

7. CONCLUSIONS
We have described the design of a hardware and

software system to support high performance applica-
tions. This entails modifying POSTGRES to support
fast-path and partial indexes, writing a collection of
demons to provide housekeeping services without the
presence of a human, building a controller for RAID, and
providing parallel query plans.

The hardware platform utilized will either be a
large Sun machine or a SEQUENT Symmetry system.
The construction of RAID is in progress and we expect
an initial prototype by late 1988. The fast-path feature of
POSTGRES is nearly operational and we are tuning up
the system to achieve our TPS performance goal. Dur-
ing 1989 we will concentrate on partial indexes and
parallel plans

[ASTR76]

[ANON851

lBADR871

[BAMB87]

[BHID88]

[CARE861

REFERENCES

Astrahan, M. et. al., “System R: A Rela-
tional Approach to Data,” ACM-TODS,
June 1976.
Anon et. al., “A Measure of Transaction
Processing Power,” Tandem Computers,
Cupertino, CA. Technical Report 85.1,
1985.
Badrinath, B. and Ramamritham, K.,
“Semantics-Based Concurrency Con-
trol: Beyond Commutativity,” Proc.
1987 Data Engineering Conference, Los
Angeles, CA, February 1987.
Bamberger, F., “Citicorp’s New High
Performance Transaction Processing
System,” Proc. 2nd International
Workshop on High Performance Tran-
saction Systems, Asilomar, CA. Sept.
1987.
Bhide, A. and Stonebraker, M., “A Per-
formance Comparison of Two Architec-
tures for Fast Transaction Processing,”
Proc. 1988 IEEE Data Engineering
Conference, Los Angeles, CA, Feb.
1988.
Carey, M. et. al., “The Architecture of
the EXODUS Extensible DBMS,” Proc.
International Workshop on Object-
oriented Data Bases, Pacilic Grove, CA,
Sept. 1986.

329

[CHAN82]

[DATE84]

[DEW1851

[DEW1861

[GRAE87]

[GRAY811

[GRAY871
[GRAY 87A]

[LIVN86]

[LOHM87]

[OUST871

[PATT88]

iRICH

Chan, A. et. al., “The Implementation of
an Integrated Concurrency Control and
Recovery Scheme,” Proc. 1982 ACM-
SIGMOD Conference on Management
of Data, Orlando, FL, June 1982.
Date, C., “An Introduction to Database
Systems, 3rd Edition” Addison-Wesley,
Reading, Mass., 1984.
Dewitt, D. and Gerber, R., “Muhipro-
cessor Hash-based Join Algorithms,”
Proc. 1985 VLDB Conference, Stock-
holm, Sweden, Sept. 1985.
Dewitt, D. et. al., “GAMMA: A High
Performance Dataflow Database
Machine,” Proc. 1986 VLDB Confer-
ence, Kyoto, Japan, Sept. 1986.
Graefe, G. and Dewitt, D., “The
EXODUS Optimizer Generator,” Proc.
1987 ACM-SIGMOD Conference on
Management of Data, San Francisco,
CA, May 1987.
Gray, J. et. al., “The Recovery Manager
of the System R Database Manager,”
Computing Surveys, June 1981.
Gray, J., (private communication).
Gray, J. et. al., “NON-STOP SQL,”
Proc. 2nd International Workshop on
High Performance Transaction Systems,
Asilomar, CA, Sept. 1987.
Livny, M. et. al., “Multi-disk Manage-
ment Algorithms,” IEEE Database
Engineering, March 1986.
Lohman, G., “Grammar-like Functional
Rules for Representing Query Optimiza-
tion Alternatives,” IBM Research, San
Jose, CA, RJ5992, Dec. 1987.
Oustcrhout, J. et. al., “The Sprite Net-
work Operating System,” Computer
Science Division, University of Califor-
nia, Berkeley, CA, Report UCB/CSD
87/359, June 1987.
Patterson, D. et. al., “RAID: Redundant
Arrays of Inexpensive Disks,” Proc.
1988 ACM-SIGMOD Conference on
Management of Data, Chicago, Ill., June
1988.
Richardson, J. et. al., “Design and
Evaluation of Parallel Pipelined Join
Algorithms,” Proc. 1987 ACM-
SIGMOD Conference on Management
of Data, San Francisco, CA, May 1987.

[ROWE871

[RTI87]

[SALE861

[SELL861

iSELI

[STON86]

[STON86A]

[STON87]

[STON88]

ITERA

IVALD87]

IwENS881

Rowe, L. and Stonebraker, M., “The
POSTGRES Data Model,” Proc. 1987
VLDB Conference, Brighton, England,
Sept. 1987.
Relational Technology,
“INGRES/STAR Reference Manual,
Version 5.0” Relational Technology,
Inc., Alameda, CA, June 1986.
Salem, K. and Garcia-Molina, H., “Disk
Striping,” Proc. 1986 IEEE Data
Engineering Conference, Los Angeles,
CA, February 1986.
Sellis, T., “Global Query Optimiza-
tion,” Proc. 1986 ACM-SIGMOD
Conference on Management of Data,
Washington, D.C., May 1986.
Selinger, P. et. al., “Access Path Selec-
tion in a Relational Data Base System,”
Proc. 1979 ACM-SIGMOD Conference
on Management of Data, Boston, Mass.,
June 1979.
Stonebraker, M. and Rowe, L., “The
Design of POSTGRES,” Proc. 1986
ACM-SIGMOD Conference on Manage-
ment of Data, Washington, D.C., May
1986.
Stonebraker, M., “The Case for Shared
Nothing,” IEEE Database Engineering,
March 1986.
Stonebraker, M., “The POSTGRES
Storage System,” Proc. 1987 VLDB
Conference, Brighton, England, Sept.
1987.
Stonebraker, M., “The Case for Partial
Indexes,” Electronics Research Labora-
tory, University of California, Berkeley,
CA, Report ERL M88/62, June. 1988.
Teradata Corp., “DBC/1012 Data Base
Computer Reference Manual,” Teradata
Corp., Los Angeles, CA, November
1985.
Valduriez, P., “Join Indices,” ACM-
TODS, June 1987.
Wensel, S. (ed.), “The POSTGRES
Reference Manual,” Electronics
Research Laboratory, University of Cali-
fornia, Berkeley, CA, Report M88/20,
March 1988.

330

