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ABSTRACT 
High capacity disks, especially optical ones, are com- 
mercially available. These disks are ideal for 
archiving large text data bases. In this work, we 
examine efficient searching techniques for such 
applications. We propose a unifying framework, 
which reveals the similarities between signature files 
and an inverted file using a hash table. Then, we 
design methods that combine the ease of insertion of 
the signature files with the fast retrieval of the 
inverted files. We develop analytical models for 
their performance and we verify it through experi- 
mentation on a 2.8 Mb data base. The agreement 
between theory and experimentation is very good. 
The results show that the proposed methods achieve 
fast retrieval, they require a modest lo%-30% space 
overhead, (as opposed to 50%-300% overhead [13] 
for the inverted files), and they do not require re- 
writing; thus, they can handle insertions easily, they 
permit searches during an insertion and they can be 
used with write-once optical disks. Using our 
verified model, the performance predictions for the 
proposed methods on large data bases (e.g., 250 Mb) 
are very promising. 

1. Introduction 

Text retrieval methods have attracted much interest 
recently [3,11,12,27,30]. One of the main reasons is 
probably the development of optical disks. Text 
databases are traditionally large and have archival 
nature: there are insertions in them, but almost 
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never deletions and updates. These two characteris- 
tics make the optical disks the ideal storage 
medium. Optical disks have high recording capaci- 
ties (of the order of 1 Gigabyte for 12” platters), 
low cost (R 300 dollars for a 12” disk) and long 
archival life (at least 10 years [lo]). The proposed 
methods compete well on all classes of optical disks: 
the readonly CD-ROMs, the write-once-read- 
many (WORM) ones, and the erasable ones. They 
also compete on the traditional magnetic disks, as 
well. We shall examine the WORM ones with more 
emphasis, because they are the only commercially 
available optical disks that can be written upon, 
and because the write-once restriction creates 
interesting problems, that the traditional access 
methods (e.g., B-trees) can not solve efficiently. 
Notice that the write-once restriction creates no 
problems for text databases, exactly because there 
are seldom deletions and updates. There are 
numerous applications involving storage and 
retrieval of textual data: 
- Electronic office filing [30], [3]. 
- Computerized libraries. For example, the U.S. 

Library of Congress has been pursuing the 
“Optical Disk Pilot Program” [21], [18], 
where the goal is to digitize the documents 
and store them on an optical disk. A similar 
project is carried out at the National Library 
of Medicine [29]. 

- Automated law [14] and patent offices [15]. 
The U.S. Patent and Trademark Office has 
been examining electronic storage and retrieval 
of the recent patents on a system of 200 opti- 
cal disks. 

- Electronic storage and retrieval of 
from newspapers and magazines. 

articles 

- Consumers’ data bases, which contain 
tions of products in natural language. 

descrip- 

- Electronic encyclopedias [4], [ 121. 
- Indexing of software components to 

reusability [26]. 
enhance 

All of the above applications require an efficient 
search method. This is exactly the problem 



addressed in this work. We opt for the following 
characteristics: 

1) The method should introduce a small space 
overhead. 

2) The method should be fast, requiring a few 
disk accesses to respond to simple queries (e.g., 
single word ones). 

3) The method should not require re-writing. 

There are two advantages, if a method requires no 
re-writing of the index structure: 

a The method can handle insertions easily, 
without the need to shut down the system. 
Even at the presence of (at most) one writer, 
readers can be allowed to continue searching 
the data base. The idea is that the readers 
can ignore the newly written items, which will 
not overwrite the old items in the data base, 
exactly because no re-writing is necessary. 
This is very important in archival environ- 
ments with large insertion and query frequen- 
cies, such as the U.S. patent office [15]. 

l The method can work more easily on a 
WORM disk: Every change on the index will 
not require re-writing, which is impossible in 
WORMs. 

In fact, WORM disks have the additional restriction 
that, once a page is written, it can not be changed, 
even if it is almost empty. Methods that require 
“append-only” operations can by-pass the problem 
by keeping on a magnetic disk those few pages of 
the index or the text file that are not completely 
full; the full pages can be dumped on the optical 
disk. Notice that methods that require dynamic 
rearrangements of the index, such as a B-tree 
inverted index, can not easily take advantage of 
such an arrangement, because they will require a 
large portion of the (already large) index to reside 
on the magnetic disk. 

Signature files [8,9] satisfy the insertion and 
space requirements, but may be slow for large data 
bases. In order to accelerate their search time, we 
examine bit-sliced storage of the signature file; in 
addition, we propose compression of each bit-slice, 
which achieves even better search times. Based on 
these ideas, we propose a family of methods that 
satisfy all of the above design goals, and we present 
analytical and experimental results for their perfor- 
mance. 

The paper is organized as follows: In section 2 
we describe the problem and its parameters. In sec- 
tion 3 we examine briefly older text retrieval 
methods, with emphasis on the signature files. In 

section 4 we propose a family of methods, baaed on 
compressed bit-sliced signature files and describe 
them in detail. In section 5 we provide the space- 
time analysis of the proposed methods. In section 6 
we present experimental results on a 2.85 Mb data 
base, as well as the expected performance of the pro- 
posed methods on a large data base, based on our 
analysis. In section 7 we present the conclusions 
and future research directions. 

2. Problem definition. 

The general problem is defined as follows: 

Pl: 

Given the description of the data base, (size in 
bytes, number of documents e.t.c.) 

Find the best method, as well as the optimal 
values for the design parameters 

To solve the above, the following sub-problem has 
to be solved: 

P2: 

Given - the description of the data base, 
- the search method 
- the (not necessarily 
the design parameters 

Find - the performance of 
response times e.t.c.) 

optimal) values for 

the method (space, 

Tables T2.1, T2.2 and T2.3 list the input, design 
and output parameters respectively. The input 
parameters describe the data base, the output 
parameters measure the performance of a given 
method in a specific setting, and the design parame- 
ters are to be chosen by the designer, to optimize 
the performance. Notice that we use a stop-list of 
150 words - the most common English words, such 
aa “the”, “a”, etc. This saves space, without penal- 
izing the retrieval performance. 

The false drop probability Fd is the proba- 
bility that the signature of a non-qualifying docu- 
ment will qualify. 

Fd= false drops 
N-actual drops 

We examine single word queries in this paper. 
General Boolean queries will be examined in the 
near future. 

2. Survey. 

Text retrieval methods form the following large 
classes [S]: Full text scanning, inversion, and signa- 
ture files, which we shall focus next. Signature files 
work as follows: The documents are stored sequen- 
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Symbol 
N 
L 

Ly 

D 

NJ 

V 

P 

b 

Definition 

total number of documents 
average length of a document in bytes 

number of distinct words per document 
(document vocabulary) 
number of distinct NON-COMMON 
words per documents 

total number of words in the whole col- 
lection of documents 
total number of DISTINCT words in the 
collection of documents (vocabulary of 
the collection) 
size of a disk page (=block) in bytes 
(typically: 1 Kb) 
bits per bvte (typicallv: 8) 

Table T2.1 
Input parameters (description of the data base). 

Symbol 
F 
s 
BP 

P 
4 

Definition 

size of the document signature in bits 
size of the hssh table 
size of a bucket for the postings lists in 
bytes 
size of a pointer (4 bytes or less) 
size of a bucket for the intermediate lev- 
el (see the last two methods) in bytes 

Table T2.2 
Design parameters 

tially in the “text file”. Their “signatures” (hash- 
coded bit patterns) are stored sequentially in the 
“signature file’. When a query arrives, the signa- 
ture file is scanned sequentially and many non- 
qualifying documents are discarded. The rest are 
either checked (so that the “false drops” are dis- 
carded) or they are returned to the user ss they are. 

cal blocks”, that is, pieces of text that contain a 
constant number D of distinct, non-common words. 
Each such word yields a “word signature”, which is 
a bit pattern of size F, with m bits set to q 1”) while 
the rest are “0” (see Figure F3.1). F and m are 
design parameters. The word signatures are OR-ed 
together to form the block signature. Block signa- 
tures are concatenated, to form the document signa- 
ture. The m bit positions to be set to “1” by each 
word are decided by hash functions. Searching for a 
word is handled by creating the signature of the 
word and by examining each block signature for 
‘1”‘s in those bit positions that the signature of the 
search word has a l 1 q . 

Word Signature 

free 001 ooo 110 010 
text 000 010 101 001 

block signature 001 010 111011 

Figure F3.1. 
Illustration of the superimposed coding method. 

It is assumed that each logical block 
consists of D=2 words only. 

The signature size F is 12 bits. m=4 bits per word. 

For the rest of this work, the above method 
will be called SSF, for Sequential Signature File. 
Figure F3.2 illustrates the file structure used: In 
addition to the text file and the signature file, we 
need the so-called *pointer file”, with pointers to 
the beginnings of the logical blocks. One of the bits 
of a pointer can be used as a flag, to indicate 
whether the corresponding logical block belongs to a 
different document than the previous logical block. 

signature file 
F bits pointer text 

. l file file 

ui full text scanning but I,-,~ hl,,0k91**‘I I The method is faster thz 
slower than inversion [22] on large data bases. It 

.“a. “.““..Y 

requires much smaller space overhead than inversion 
(ti 10% [2], as opposed to 50%-300% that inversion 
requires [13]) and it can handle insertions easily. 1 

Signature files typically use superimposed cod- 
ing [l?] to create the signature of a document. A 
brief description of the method follows; more details 
are in (51. For performance reasons, that will be 
explained later, each document is divided into “logi- 

Figure F3.2 
File structure for SSF 

The signature file is an Z$( N binary matrix. 
Previous analysis showed that, for a given value of 
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Symbol 

ov 
Fd 

dR,S 
d R,i,s 

d,u 
d R,i,u 

4 disk accesses on insertion of a document 
A number of actually uualifyinn documents 

Definition 

space overhead of the method 
False drop probability (single word 
queries) 
disk accesses on successful search 
disk accesses on the index only (success- 
ful search) 
disk accesses on unsuccessful search 
disk accesses on the index only (unsuc- 
cessful search) 

Table T2.3 
Performance measures (“output parameters”). 

F, the optimal value of m is such that this matrix 
contains ” 1”‘s with probability 50% 128). This is 
the reason that documents have to be divided into 
logical blocks: Without logical blocks, a long docu- 
ment would have a signature full of *l*‘s, and it 
would always create a false drop. To avoid unneces- 
sary complications, for the rest of the discussion we 
assume that all the documents span exactly one 
logical block. 

4. Proposed methods 

4.1. Framework 

All of the forthcoming methods start from the sig- 
nature file, which can be thought of as a bit-matrix, 
abstractly. The differences among the methods are 
in the way this matrix is stored (row-wise or 
column-wise) and whether compression is used or 
not. 

storage 
compression 

No (7n>=l) 

Yes (m=l) 

l- row-wise column-wise 

seq. sig. files 
(SSF) 
VBC 

bit sliced sig. 
files (BSSFl 
compressed bit 
slices; CBS, 
DCBS, NFD (M 
inversion, with 
hash table) 

Table T4.1 
Proposed framework for text retrieval 

methods with false drops. 

The classification of Table T4.1 encompasses all the 
text retrieval methods that allow false drops. The 

SSF method is naturally in the entry for row-wise 
storage, without compression. The VBC method 
(Variable Bit-block Compression) [9] suggests row- 
wise storage of the bit matrix, followed by compres- 
sion of each row. There, it was showed that, when- 
ever compression is applied, the best value for m is 
1. VBC achieves better false drop probability for 
the same space overhead than SSF. In the present 
work, we are mainly focusing on the methods that 
store the bit matrix column-wise, because they are 
faster on retrieval. These methods are described in 
detail next. Table T4.2 gives a list of the names of 
the methods and their abbreviations. 

SSF Sequential Sign. Files 

_ BSSF Bit-Sliced Sign. Files 

CBS Compressed Bit Slices 

DCBS Doubly Compressed Bit Slices 

NFD No False Drops 

Table T4.2 
List of methods and abbreviations 

4.2. Bit-Sliced Signature Files (BSSF) 

To improve the search time of SSF, we can store the 
bit-matrix of the signature files column-wise, as 
shown in Figure F4.1. 

N log. blocks 
+ b 

F 
bits 

Figure F4.1 
Transposed bit matrix 

To allow insertions, we propose is to use F different 
files, one per each bit position, which will be 
referred to by “bit-files”. The method will be 
called BSSF, for “Bit Sliced Signature Files”. Fig- 
ure F4.2 illustrates the proposed file structure. 
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Searching for a single word requires the 
retrieval of m bit vectors (instead of all of the F bit 
vectors) which are subsequently ANDed together. 
The resulting bit vector has N bits, with “1”‘s at 
the positions of the qualifying logical blocks. 

4 N log. blocks 
l 

pointer file 

T lolrlrl . . . lllllOl1~ 
FIT 

111 I I . . . 1 
F . 

files : 
101 I I a.. 1 

~ [ll I I . . . 1 

Figure F4.2 
File structure for Bit-Sliced Signature Files. 

The text file is omitted. 

An insertion of a new logical block requires F disk 
accesses, one for each bit-file, but no rewriting! 
Thus, the proposed methods is applicable on 
WORM optical disks. As mentioned in the intro- 
duction, commercial optical disks do not allow a sin- 
gle bit to be written; thus, we have to use a mag- 
netic disk, that will hold the last page of each file; 
when they become full, we will dump them on the 
optical disk. Using the results of the forthcoming 
analysis, we can predict the size of each bit file and 
allocate enough space for it on the optical disk from 
the very beginning. E.g., if the design suggests 
using F=lOOO, for an overhead of 10% on a 300Mb 
disk, then each bit file will require at most 30 Kb. 
Figure F4.3 shows how the bit files could be actually 
stored on the surface of the WORM disk. 

St%\ Y!lelst2~~~!tol!le Et& 
-7 J & J 

I 1 07 I I I 1 I ..a 

0 30Kb 60Kb 30Mb 

Figure F4.3 
Pre-allocation of space for the bit files. 

4.3. Compressed Bit Slices (CBS). 

Although the bit sliced method is much faster 
than SSF on retrieval, there may be room for two 
improvements: 

1) On searching, each search word requires the 
retrieval of m bit files, exactly because each 

word signature has m bits set to “1’. The 
search time could be improved if m was forced 
to be “1”. 

2) The insertion of a logical block requires too 
many disk accesses (namely, F, which is typi- 
cally 600-1000) 

If we force m=l, then F has to be increased, in 
order to maintain the same false drop probability 
(see the formulas in section 5). For the next three 
methods, we shall use S to denote the size of a sig- 
nature, to highlight the similarity of these methods 
to inversion using hash tables. The corresponding 
bit matrix and bit files will be sparse and they can 
be compressed. The easiest way to compress each 
bit file is to store the positions of the “1”‘s. How- 
ever, the size of each bit file is unpredictable now, 
subject to statistical variations. Therefore, we store 
them in buckets of size BP, which is a design param- 
eter. As a bit file grows, more buckets are allocated 
to it on demand. These buckets are linked together 
with pointers. Obviously, we also need a directory 
(hash table) with S pointers, one for each bit slice. 

N logical blocks 

S bits 

0 - 
1 - 

- 
0 

0 - 

0 
0 - 

0 
0 - 

. . . 

0 
0 

1 

0 - 

0 
0 - 

0 

0 - 

Figure F4.4 
Sparse bit matrix 

Notice the following: 

1) There is no need to split documents into logi- 
cal blocks any more. This is true for every 
method that has m=l. 

2) The pointer file can be eliminated. Instead of 
storing the position of each ” 1” in a 
(compressed) bit file, we can store a pointer to 
the document in the text file. 
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hash 
table 

- 

- 
- 

- 

level 1, or 
*postings file” 

text file 

f 
chain 

I--j 
Figure F4.5 

Illustration of CBS 
Thus, the compressed bit files will contain pointers 
to the appropriate documents (or logical blocks). 
The set of all the compressed bit files will be called 
“level 1” or “postings file”, to agree with the termi- 
nology of inverted files [25]. 

The postings file consists of postings buckets, 
of size BP bytes (BP is a design parameter). Each 
such bucket contains pointers to the documents in 
the text file, as well as an extra pointer, to point to 
an overflow postings bucket, if necessary. 

Figure F4.5 illustrates the proposed file struc- 
ture, and gives an example, assuming that the word 
“base” hashes to the 30-th position 
(h( ‘I base”)=30), and that it appears in the docu- 
ment starting at the 1145-th byte of the text file. 

Searching is done by hashing a word to obtain 
the postings bucket address. This bucket, as well as 
its overflow buckets, will be retrieved, to obtain the 
pointers to the relevant documents. To reduce the 
false drops, the hash table should be sparse. The 
method is similar to hashing. The differences are 
the following: 

(a) The directory (hash table) is sparse; Tradi- 
tional hashing schemes require loads of 80- 
90%. 

(b) The actual word is stored nowhere. Since the 
hash table is sparse,, there will be few colli- 
sions. Thus, we save space and maintain a 
simple file structure. 

The similarities between CBS and hash-based 
inverted files illustrate the generality of our frame- 
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work. 

4.4. Doubly Compressed Bit Slices (DCBS). 

The motivation behind this method is to try 
to compress the sparse directory of CBS. The file 
structure we propose consists of a hash table, an 
intermediate file, a postings file and the text file as 
in Figure F4.6. 

level 1. or 1 
intermediate 

.evel2, or 

% 
file 

posfielle”gs text file 

r -j 
: 
I 
I 
I 
I 
I 

;3a 

Sl 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

” 

hi 

Figure F4.6 
Illustration of DCBS. 

The method is similar to CBS. It uses a hashing 
function h,(), which returns values in the range 
(O,(S-1)) and d t e ermines the slot in the directory. 
The difference is that DCBS makes an effort to dis- 
tinguish among synonyms, by using a second hash- 
ing function h2(), which returns bit strings that are 
h bits long. These hash codes are stored in the 
“intermediate file”, which consists of buckets of Bi 
bytes (design parameter). Each such bucket con- 
tains records of the form (hashcode, ptr). The 
pointer ptr is the head of a linked list of postings 
buckets. 

Figure F4.6 illustrates an example, where the 
word “base” appears in the document that starts at 
the 1145-th byte of the text file. The example also 
assumes that h=3 bits, h,(“base”)= 30 and 
h,( “base”)= (O11)2. 

Searching for the word “base” is handled as 
follows: 

Step 1 h,( “base”)= 30: The 30-th pointer of 
the directory will be followed. The 
corresponding chain of intermediate 
buckets will be examined. 



Step 2 hz( q base”)= (011)s: the records in the 
above intermediate buckets will be 
examined. If a matching hash code is 
found (at most one will exist!), the 
corresponding pointer is followed, to 
retrieve the chain of postings buckets. 

Step 3 The pointers of the above postings buck- 
ets will be followed, to retrieve the quali- 
fying (actually or falsily) documents. 

Insertion is omitted for brevity. 

OBSERVATION 1: Notice that the postings 
buckets will be exactly the same ss if we had the 
setting of CBS, with a hash table of size S2* (see 
Figure F4.7) and a hash function h(z) = 
hi(z) I I h,(s). The symbol ? I I ” stands for concate- 
nation of binary strings. This observation shows 
how DCBS achieves compression of the sparse hash 
table of CBS. More important is the fact that we 
can reuse the analytical formulas of CBS with the 
appropriate changes. 

level 2 
postings file 

I_ 

Figure F4.7 
Illustration of the equivalence between CBS and DCBS. 

4.6. No False Dropa method (NFD). 

Here we propose a method to avoid false drops 
completely, without storing the actual words in the 
index. The idea is to modify the intermediate file of 
the DCBS, and store a pointer to the word in the 
text file. Specifically, each record of the intermedi- 
ate file will have the format (ha&code, ptr, 
ptr- to- word), where ptr-to- word is a pointer to 
the word in the text file. 

This way each word can be completely dis- 
tinguished from its synonyms, using only h bits for 
the haah code and p (=4 bytes, usually) for the 
ptr- to- word. The advantages of storing 
ptr- to- word instead of storing the actual word are 
two: (1) space is saved (a word from the dictionary 
is ~8 characters long [19]), and (2) the records of 
the intermediate file have fixed length; thus, there is 
no need for a word delimiter and there is no danger 
for a word to cross bucket boundaries. 

Searching is done in a similar way with DCBS. 
The only difference is that, whenever a matching 
hashcode is found in Step 2, the corresponding 
ptr- to- word is followed, to avoid synonyms com- 
pletely. 

4 

SI 

I 
4 

.: 
” ptr ‘.‘, 

ashcode ptr- to- word 

Figure F4.8 
Illustration of NFD 

6. Analysis. 

‘For every method, we shall examine the per- 
formance measures (“output parameters”) for a 
given setting (“input parameters”) and a given 
selection of the “design parameters”. The measures 
we are interested in are listed in T3.1: 
a the space overhead Ov 
l the false drop probability Fd 

l dR,s> dR,” number of disk accesses on retrieval 
(successful and unsuccessful, respectively). They 
include the disk accesses to search the index, as well 
as to retrieve the (actually or falsily) qualifying 
documents. 
l dI number of disk accesses on insertion of a docu- 
ment 

Intermediate quantities that we are interested in, 
are 
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l dR,i,s~ dR,i,u: the number of disk accesses to search 
the index for a single word query (for successful and 
unsuccessful search, respectively). They account for 
the disk accesses needed to find the list of pointers 
to the (actually or falsily) qualifying documents (but 
not to retrieve them). 
aA= ii: average number of actual drops, or aver- 
age number of documents each word occurs in. 

For all the methods, the following formulas hold: 

dR,s= dR,i,r + 

(FAN-A)+ A)$ disk accesses (5.0.1) 

dR,u= dR,i,u + FdN$ disk accesses (5.0.2) 

For the last three methods, that use compressed bit 
sliced signatures, we have: 

dF D(dR,i,e+ 1) (5.0.3) 

Due to space limitations, we omit the details of the 
derivation of the formulas (see [?I). 

5.1. Sequential Signature Files (SSF). 

Overhead. 

OV= [$$I + [$$I pages (5.1.1) 

False drop probability. 

Fd= (f,m, with m= y (5.1.2) 

Unsuccessful Retrieval. 

FN 
dR,i,u= Pb 

I I 
+ F,N disk accesses (5.1.3) 

Successful Retrieval. 

d 
FN 

R,i,s= K 
I I 

+ FAN-A)+A disk accesses (5.1.4) 

Insertion. 

(5.1.5) 

6.2. Bit-sliced signature files (BSSF). 

Overhead. 

OFF+ p I FN h& II I pages (5.2.1) 

False drop probability. The formula for it is 

exactly the same with the one for SSF (Eq. 5.1.2) 

unsuccessful Retrieval. 

d 
N 

R,i,u= I I - m+ FdN disk accesses 
Fb 

(5.2.2) 

Succeesful Retrieval 

d 
N 

R,i,#= E I I m + FAN-A)+ A disk accesses (5.2.3) 

Insertion. 

dFl+F/2 (5.2.4) 

6.8. Compressed Bit Slices (CBS). 

Each word will occur in 0 documents on the 
average, where 

Space overhead: 

ov= + I 
where 

V 

(5.3.1) 

BP + si:p (5.3.2) 

Pww (5.3.3) 

is the average length of chains of pages in the first 
level, with 

c(w)= (tG)$$- buckets I I P 
and 

False drop probability. 

Fd=l- 1-i s [ 1 D D M- 

Unsuccessful Retrieval. 

d R,i,u= 1+ c 

Successful Retrieval. 

d R,i,s = l+e, 

where 
V-l 

c,= wC_oP(v-l,s,w’)c.(w’) 

(5.3.4) 

(5.3.5) 

(5.3.6) 

(5.3.7) 

(5.3.8) 

(5.3.9) 
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and 

c,(d)= (w’+ 1) 1 

6.4. Doubly Compreeeed Bit S1k1 (DCBS). 

space4 overhead. 

ov= 

where 

on = s2h c2 p w3- 

with 

and 

- 
c2 = 5 P(We4 c2w 

w=o 

c2(w)= WiTA I I BP-p 

False drop probability. 

Fd=l- 1-A 
I P 

D 
S2h -s2” 

Unsuccessful Retrieval. 

d R,j,u= 1+ &+ ; 

Successful Retrieval. 
- 

dR,i,,= 1+ ++ c 

with 

- 
c,,1= E p(V-l,s,wjo~+ l)El 

cU’-0 

V-l - 
cr,z= c p(V-l,S2” 

cU’-0 
97 lb*+ l)gq 

(5.4.1) 

(5.4.2) 

(5.4.3) 

(5.4.4) 

(5.4.5) 

(5.4.6) 

(5.4.7) 

(5.4.8) 

(5.4.9) 

(5.4.10) 

(5.4.11) 

(5.4.10) 

6.6. No False Drops method (NFD). 
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6. Experimental results 

To validate our models, we implemented the CBS, 
DCBS and NFD methods and we run simulation 
experiments on a set of technical reports. To allow 
comparisons with previous experiments on signature 
file methods, we divided the data base into “logical 
blocks q , each of which was treated as a separate 
document. The words “logical block” and “docu- 
ment” are considered identical. The data base had 
the following characteristics: 

L = 1024 Kbytes per document 
D = 58 distinct non-common words per docu- 
ment 
N = 2,784 documents 
V= 7,765 vocabulary-size of the data base 
NL = 2.8 Mbytes size of the data base 
NW = 436,904 total number of words in data 
base. 

The parameters we used for the following experi- 
ments are as follows: 

postings bucket size, BP = 68 bytes (16 docu- 
ment pointers per bucket) 
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The 

pointer size, p = 4 bytes 
byte size, b = 8 bits 
hash code, h = 8 bits (for DCBS and NFD 
only) 
Size of a disk page, P = 1024 bytes 

size of the hash table was S=32,000 and 64,000 
for the CBS method, and S=l,OOO and 2,000 for 
DCBS and NFD. The size of intermediate blocks 
for DCBS was Bi= 36 and 24 bytes for S=lOOO and 
2000 respectively. For NFD, the values of Bi were 
Bi= 76 and 40 bytes respectively. 

We asked 1000 successful and 1000 unsuccess- 
ful queries. The query words were chosen randomly 
from the dictionary of the “spell” utility of UNIX. 

Notice that some of the design parameters are 
not “fine tuned”. The main goal in this section is 
to validate our analytical model, and not to exhibit 
the best performance that the methods can achieve. 
Ways of fine tuning the parameters are discussed in 

1% 
Graphs G6.1-2 compare the theoretical and 

experimental false drop probability Fd and the 
search time for the index (dR,i,(r and dR,i,u), for CBS. 
The horizontal axis is the size of the hash table S. 
Graphs G6.3-4 do the same for the DCBS method, 
and G6.5 for the NFD method. In all the graphs, 
the dashed lines stand for the theoretically expected 
values, while the solid ones for the experimental 
values. 

We measured other parameters, too, such as 
the overhead Ov and the disk accesses on insertion 
for each of the three methods. To save space, we do 
not provide graphs for them, but we discuss the 
results next. The conclusion from the experiments 
is that the theoretical and experimental values agree 
very well. Table T6.1 gives a list of the relative 
errors for the predictions of our analysis. 

Table T6.1 
Relative errors between theoretical 

and experimental performance. 

The major observations are: 

- 

- 

- 

The model expects w 40% fewer disk accesses 
dl on insertion, than actually required. This 
was the only significant problem of our model. 
The reason is that words are not distributed 
uniformly; High frequency words appear in 
almost any document, and require a long 
search, exactly because the postings chain for 
this word is long. 

The model gives pessimistic, but very close 
estimates for the search performance. The 
explanation is again the non-uniform distribu- 
tion of words. Since the query words were 
chosen randomly from the dictionary of the 
“spell” utility of UNIX, it was more probable 
to search for a word with few occurrences, and 
therefore a shorter postings chain. 

The average number of qualifying documents 
was 19.05, very close to the theoretically 
expected number (20.7). 

0.1. Arithmetic examples 

Since our analysis has been verified, we can 
use it to predict the performance of our methods on 
several environments. First, we consider the data 
base of our experiments. Using only p=3 bytes per 
pointer and B,=66, we obtain the graph G6.6. 
Notice that 3 bytes can hold pointers for data bases 
of up to 224= 16 Mb in size. Graph G6.6 plots the 
total number of disk accesses dR,@ on successful 
search as a function of the overhead Ov for all the 
signature methods. 

Notice that all the proposed methods require very 
small space overhead (12% for BSSF, m 20% for 
the rest), with very good search performance: To 
retrieve Fs: 20 qualifying documents, BSSF requires 
dR,,=55 disk accesses in total (2.75 per document, 
for 12% overhead), CBS requires 27 disk accesses 
(1.35 per document, for 22% overhead), DCBS 
requires 24 disk accesses (1.20 per document, for 
22% overhead) and NFD requires 25 disk accesses 
(1.25 per document for 22% overhead). 

A larger data base could have the following 
characteristics: Consider a 5 l/4 inch optical disk, 
with 300 Mb capacity, where we plan to store techn- 
ical papers. Each paper has L=30 Kb size, with a 
vocabulary of D = 1000 words (these estimates are 
based on measurements on actual technical reports). 
The vocabulary of the collection is pessimistically 
estimated as V=lOO,OOO, which is the vocabulary of 
the best dictionaries [19]. Leaving 50 Mb for the 
index and other overheads, we have 250 Mb, which 
can hold 250 Mb / 30 Kb NN 8,300 = N documents. 
Graph G6.7 plots the analytical results for this set- 
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Graph G6.6 
Total disk accesses on successful search dR,, 

versus space overhead. Analytical results 
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Squares correspond to the CBS method, 
circles to DCBS and triangles to NFD. 
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ting. 

Notice that 
- the proposed methods require even smaller 

overhead: BSSF needs 8%, CBS needs 20%, 
and DCBS and NFD need 17%. 

- BSSF is slower on searching, requiring w 109 
more disk accesses than the other methods. 

7. Discussion - Conclusions. 

All of the proposed methods (BSSF, CBS, 
DCBS, NFD) fulfill the design goals. They require 
small overhead (m 10% for BSSF, 2030% for the 
rest), they are fast on retrieval and they require no 
rewriting: Thus, they work well with optical disks 
and they handle insertions easily, allowing readers 
to access the data base, even when a new document 
is inserted concurrently. 

The proposed methods combine the best of 
both worlds (signature files and inversion), and can 
compete against both. Thus, they can be applied in 
any situation where the traditional SSF have been 
applied, such as rule indexing in Prolog data bases 
(11, [23], for formatted attributes [20], [24], or 
combinations of attributes and text [6] etc.. 

The proposed methods can also compete 
against traditional inverted files on magnetic disks, 
or on erasable optical disks: They give fast 
responses, for smaller space overhead, allowing 
searches even during an insertion. They only suffer 
from the lack of alphabetical ordering on the words 
of the vocabulary. However, using order preserving 
hashing functions (161, this disadvantage can be 
eliminated. 

Finally, the proposed methods can be used 
easily on CD-ROMs. There, the whole data base is 
available during the design time; accurate statistics 
can be gathered, and the design parameters can be 
fine-tuned to the specific data base and the specific 
performance requirements. 

The contributions of this work are the following: 
- The framework. It encompasses all the old 

signature-based methods, and it reveals the 
similarities between signature files and 
inverted files, leading to the design of methods 
that combine the best characteristics of both 
sides. Moreover, using the framework, any 
new variation of the SSF gives immediately 
rise to 3 new methods, one for each entry of 
Table T4.1. 

- The detailed design of the proposed methods 
and the development of accurate analytical 

models for their performance study. 

Future research can deal with the following 
- Simulation of the BSSF method. 
- Performance analysis on general, 

queries 

topics: 

Boolean 

- Derivation of approximate, simpler formulas 
for the analysis. 

- Performance comparison with B-tree indices. 
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