
Fast Text Access Methods for Optical and
Large Magnetic Disks: Designs and Performance Comparison.

Chriatos Faloutsos’
Raphael Chan

Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT
High capacity disks, especially optical ones, are com-
mercially available. These disks are ideal for
archiving large text data bases. In this work, we
examine efficient searching techniques for such
applications. We propose a unifying framework,
which reveals the similarities between signature files
and an inverted file using a hash table. Then, we
design methods that combine the ease of insertion of
the signature files with the fast retrieval of the
inverted files. We develop analytical models for
their performance and we verify it through experi-
mentation on a 2.8 Mb data base. The agreement
between theory and experimentation is very good.
The results show that the proposed methods achieve
fast retrieval, they require a modest lo%-30% space
overhead, (as opposed to 50%-300% overhead [13]
for the inverted files), and they do not require re-
writing; thus, they can handle insertions easily, they
permit searches during an insertion and they can be
used with write-once optical disks. Using our
verified model, the performance predictions for the
proposed methods on large data bases (e.g., 250 Mb)
are very promising.

1. Introduction

Text retrieval methods have attracted much interest
recently [3,11,12,27,30]. One of the main reasons is
probably the development of optical disks. Text
databases are traditionally large and have archival
nature: there are insertions in them, but almost

’ Also with University of Maryland Institute for Advanced
Computer Studies (UMIACS).

This research was sponsored partially by the National
Science Foundation under the grant DCR-86-16833.

Permission to copy without fee all OT part Of this IlWhl is

gmaed provided that the copies me not made 0T distributed f01

direct commercial advmtage. rhe VLDB copyright mtice and
he title of the ~bliution and its date qperlr. and notice ir given
chat copying is by permission of the Very Large Data Base
Endowment. To copy othawise, or to republish qti a fee
ml/or special permission from the Endowment

Prweedings of the 14th VLDB Conference
Los Angeles, California 1988 280

never deletions and updates. These two characteris-
tics make the optical disks the ideal storage
medium. Optical disks have high recording capaci-
ties (of the order of 1 Gigabyte for 12” platters),
low cost (R 300 dollars for a 12” disk) and long
archival life (at least 10 years [lo]). The proposed
methods compete well on all classes of optical disks:
the readonly CD-ROMs, the write-once-read-
many (WORM) ones, and the erasable ones. They
also compete on the traditional magnetic disks, as
well. We shall examine the WORM ones with more
emphasis, because they are the only commercially
available optical disks that can be written upon,
and because the write-once restriction creates
interesting problems, that the traditional access
methods (e.g., B-trees) can not solve efficiently.
Notice that the write-once restriction creates no
problems for text databases, exactly because there
are seldom deletions and updates. There are
numerous applications involving storage and
retrieval of textual data:
- Electronic office filing [30], [3].
- Computerized libraries. For example, the U.S.

Library of Congress has been pursuing the
“Optical Disk Pilot Program” [21], [18],
where the goal is to digitize the documents
and store them on an optical disk. A similar
project is carried out at the National Library
of Medicine [29].

- Automated law [14] and patent offices [15].
The U.S. Patent and Trademark Office has
been examining electronic storage and retrieval
of the recent patents on a system of 200 opti-
cal disks.

- Electronic storage and retrieval of
from newspapers and magazines.

articles

- Consumers’ data bases, which contain
tions of products in natural language.

descrip-

- Electronic encyclopedias [4], [121.
- Indexing of software components to

reusability [26].
enhance

All of the above applications require an efficient
search method. This is exactly the problem

addressed in this work. We opt for the following
characteristics:

1) The method should introduce a small space
overhead.

2) The method should be fast, requiring a few
disk accesses to respond to simple queries (e.g.,
single word ones).

3) The method should not require re-writing.

There are two advantages, if a method requires no
re-writing of the index structure:

a The method can handle insertions easily,
without the need to shut down the system.
Even at the presence of (at most) one writer,
readers can be allowed to continue searching
the data base. The idea is that the readers
can ignore the newly written items, which will
not overwrite the old items in the data base,
exactly because no re-writing is necessary.
This is very important in archival environ-
ments with large insertion and query frequen-
cies, such as the U.S. patent office [15].

l The method can work more easily on a
WORM disk: Every change on the index will
not require re-writing, which is impossible in
WORMs.

In fact, WORM disks have the additional restriction
that, once a page is written, it can not be changed,
even if it is almost empty. Methods that require
“append-only” operations can by-pass the problem
by keeping on a magnetic disk those few pages of
the index or the text file that are not completely
full; the full pages can be dumped on the optical
disk. Notice that methods that require dynamic
rearrangements of the index, such as a B-tree
inverted index, can not easily take advantage of
such an arrangement, because they will require a
large portion of the (already large) index to reside
on the magnetic disk.

Signature files [8,9] satisfy the insertion and
space requirements, but may be slow for large data
bases. In order to accelerate their search time, we
examine bit-sliced storage of the signature file; in
addition, we propose compression of each bit-slice,
which achieves even better search times. Based on
these ideas, we propose a family of methods that
satisfy all of the above design goals, and we present
analytical and experimental results for their perfor-
mance.

The paper is organized as follows: In section 2
we describe the problem and its parameters. In sec-
tion 3 we examine briefly older text retrieval
methods, with emphasis on the signature files. In

section 4 we propose a family of methods, baaed on
compressed bit-sliced signature files and describe
them in detail. In section 5 we provide the space-
time analysis of the proposed methods. In section 6
we present experimental results on a 2.85 Mb data
base, as well as the expected performance of the pro-
posed methods on a large data base, based on our
analysis. In section 7 we present the conclusions
and future research directions.

2. Problem definition.

The general problem is defined as follows:

Pl:

Given the description of the data base, (size in
bytes, number of documents e.t.c.)

Find the best method, as well as the optimal
values for the design parameters

To solve the above, the following sub-problem has
to be solved:

P2:

Given - the description of the data base,
- the search method
- the (not necessarily
the design parameters

Find - the performance of
response times e.t.c.)

optimal) values for

the method (space,

Tables T2.1, T2.2 and T2.3 list the input, design
and output parameters respectively. The input
parameters describe the data base, the output
parameters measure the performance of a given
method in a specific setting, and the design parame-
ters are to be chosen by the designer, to optimize
the performance. Notice that we use a stop-list of
150 words - the most common English words, such
aa “the”, “a”, etc. This saves space, without penal-
izing the retrieval performance.

The false drop probability Fd is the proba-
bility that the signature of a non-qualifying docu-
ment will qualify.

Fd= false drops
N-actual drops

We examine single word queries in this paper.
General Boolean queries will be examined in the
near future.

2. Survey.

Text retrieval methods form the following large
classes [S]: Full text scanning, inversion, and signa-
ture files, which we shall focus next. Signature files
work as follows: The documents are stored sequen-

281

Symbol
N
L

Ly

D

NJ

V

P

b

Definition

total number of documents
average length of a document in bytes

number of distinct words per document
(document vocabulary)
number of distinct NON-COMMON
words per documents

total number of words in the whole col-
lection of documents
total number of DISTINCT words in the
collection of documents (vocabulary of
the collection)
size of a disk page (=block) in bytes
(typically: 1 Kb)
bits per bvte (typicallv: 8)

Table T2.1
Input parameters (description of the data base).

Symbol
F
s
BP

P
4

Definition

size of the document signature in bits
size of the hssh table
size of a bucket for the postings lists in
bytes
size of a pointer (4 bytes or less)
size of a bucket for the intermediate lev-
el (see the last two methods) in bytes

Table T2.2
Design parameters

tially in the “text file”. Their “signatures” (hash-
coded bit patterns) are stored sequentially in the
“signature file’. When a query arrives, the signa-
ture file is scanned sequentially and many non-
qualifying documents are discarded. The rest are
either checked (so that the “false drops” are dis-
carded) or they are returned to the user ss they are.

cal blocks”, that is, pieces of text that contain a
constant number D of distinct, non-common words.
Each such word yields a “word signature”, which is
a bit pattern of size F, with m bits set to q 1”) while
the rest are “0” (see Figure F3.1). F and m are
design parameters. The word signatures are OR-ed
together to form the block signature. Block signa-
tures are concatenated, to form the document signa-
ture. The m bit positions to be set to “1” by each
word are decided by hash functions. Searching for a
word is handled by creating the signature of the
word and by examining each block signature for
‘1”‘s in those bit positions that the signature of the
search word has a l 1 q .

Word Signature

free 001 ooo 110 010
text 000 010 101 001

block signature 001 010 111011

Figure F3.1.
Illustration of the superimposed coding method.

It is assumed that each logical block
consists of D=2 words only.

The signature size F is 12 bits. m=4 bits per word.

For the rest of this work, the above method
will be called SSF, for Sequential Signature File.
Figure F3.2 illustrates the file structure used: In
addition to the text file and the signature file, we
need the so-called *pointer file”, with pointers to
the beginnings of the logical blocks. One of the bits
of a pointer can be used as a flag, to indicate
whether the corresponding logical block belongs to a
different document than the previous logical block.

signature file
F bits pointer text

. l file file

ui full text scanning but I,-,~ hl,,0k91**‘I I The method is faster thz
slower than inversion [22] on large data bases. It

.“a. “.““..Y

requires much smaller space overhead than inversion
(ti 10% [2], as opposed to 50%-300% that inversion
requires [13]) and it can handle insertions easily. 1

Signature files typically use superimposed cod-
ing [l?] to create the signature of a document. A
brief description of the method follows; more details
are in (51. For performance reasons, that will be
explained later, each document is divided into “logi-

Figure F3.2
File structure for SSF

The signature file is an Z$(N binary matrix.
Previous analysis showed that, for a given value of

282

Symbol

ov
Fd

dR,S
d R,i,s

d,u
d R,i,u

4 disk accesses on insertion of a document
A number of actually uualifyinn documents

Definition

space overhead of the method
False drop probability (single word
queries)
disk accesses on successful search
disk accesses on the index only (success-
ful search)
disk accesses on unsuccessful search
disk accesses on the index only (unsuc-
cessful search)

Table T2.3
Performance measures (“output parameters”).

F, the optimal value of m is such that this matrix
contains ” 1”‘s with probability 50% 128). This is
the reason that documents have to be divided into
logical blocks: Without logical blocks, a long docu-
ment would have a signature full of *l*‘s, and it
would always create a false drop. To avoid unneces-
sary complications, for the rest of the discussion we
assume that all the documents span exactly one
logical block.

4. Proposed methods

4.1. Framework

All of the forthcoming methods start from the sig-
nature file, which can be thought of as a bit-matrix,
abstractly. The differences among the methods are
in the way this matrix is stored (row-wise or
column-wise) and whether compression is used or
not.

storage
compression

No (7n>=l)

Yes (m=l)

l- row-wise column-wise

seq. sig. files
(SSF)
VBC

bit sliced sig.
files (BSSFl
compressed bit
slices; CBS,
DCBS, NFD (M
inversion, with
hash table)

Table T4.1
Proposed framework for text retrieval

methods with false drops.

The classification of Table T4.1 encompasses all the
text retrieval methods that allow false drops. The

SSF method is naturally in the entry for row-wise
storage, without compression. The VBC method
(Variable Bit-block Compression) [9] suggests row-
wise storage of the bit matrix, followed by compres-
sion of each row. There, it was showed that, when-
ever compression is applied, the best value for m is
1. VBC achieves better false drop probability for
the same space overhead than SSF. In the present
work, we are mainly focusing on the methods that
store the bit matrix column-wise, because they are
faster on retrieval. These methods are described in
detail next. Table T4.2 gives a list of the names of
the methods and their abbreviations.

SSF Sequential Sign. Files

_ BSSF Bit-Sliced Sign. Files

CBS Compressed Bit Slices

DCBS Doubly Compressed Bit Slices

NFD No False Drops

Table T4.2
List of methods and abbreviations

4.2. Bit-Sliced Signature Files (BSSF)

To improve the search time of SSF, we can store the
bit-matrix of the signature files column-wise, as
shown in Figure F4.1.

N log. blocks
+ b

F
bits

Figure F4.1
Transposed bit matrix

To allow insertions, we propose is to use F different
files, one per each bit position, which will be
referred to by “bit-files”. The method will be
called BSSF, for “Bit Sliced Signature Files”. Fig-
ure F4.2 illustrates the proposed file structure.

283

Searching for a single word requires the
retrieval of m bit vectors (instead of all of the F bit
vectors) which are subsequently ANDed together.
The resulting bit vector has N bits, with “1”‘s at
the positions of the qualifying logical blocks.

4 N log. blocks
l

pointer file

T lolrlrl . . . lllllOl1~
FIT

111 I I . . . 1
F .

files :
101 I I a.. 1

~ [ll I I . . . 1

Figure F4.2
File structure for Bit-Sliced Signature Files.

The text file is omitted.

An insertion of a new logical block requires F disk
accesses, one for each bit-file, but no rewriting!
Thus, the proposed methods is applicable on
WORM optical disks. As mentioned in the intro-
duction, commercial optical disks do not allow a sin-
gle bit to be written; thus, we have to use a mag-
netic disk, that will hold the last page of each file;
when they become full, we will dump them on the
optical disk. Using the results of the forthcoming
analysis, we can predict the size of each bit file and
allocate enough space for it on the optical disk from
the very beginning. E.g., if the design suggests
using F=lOOO, for an overhead of 10% on a 300Mb
disk, then each bit file will require at most 30 Kb.
Figure F4.3 shows how the bit files could be actually
stored on the surface of the WORM disk.

St%\ Y!lelst2~~~!tol!le Et&
-7 J & J

I 1 07 I I I 1 I ..a

0 30Kb 60Kb 30Mb

Figure F4.3
Pre-allocation of space for the bit files.

4.3. Compressed Bit Slices (CBS).

Although the bit sliced method is much faster
than SSF on retrieval, there may be room for two
improvements:

1) On searching, each search word requires the
retrieval of m bit files, exactly because each

word signature has m bits set to “1’. The
search time could be improved if m was forced
to be “1”.

2) The insertion of a logical block requires too
many disk accesses (namely, F, which is typi-
cally 600-1000)

If we force m=l, then F has to be increased, in
order to maintain the same false drop probability
(see the formulas in section 5). For the next three
methods, we shall use S to denote the size of a sig-
nature, to highlight the similarity of these methods
to inversion using hash tables. The corresponding
bit matrix and bit files will be sparse and they can
be compressed. The easiest way to compress each
bit file is to store the positions of the “1”‘s. How-
ever, the size of each bit file is unpredictable now,
subject to statistical variations. Therefore, we store
them in buckets of size BP, which is a design param-
eter. As a bit file grows, more buckets are allocated
to it on demand. These buckets are linked together
with pointers. Obviously, we also need a directory
(hash table) with S pointers, one for each bit slice.

N logical blocks

S bits

0 -
1 -

-
0

0 -

0
0 -

0
0 -

. . .

0
0

1

0 -

0
0 -

0

0 -

Figure F4.4
Sparse bit matrix

Notice the following:

1) There is no need to split documents into logi-
cal blocks any more. This is true for every
method that has m=l.

2) The pointer file can be eliminated. Instead of
storing the position of each ” 1” in a
(compressed) bit file, we can store a pointer to
the document in the text file.

284

hash
table

-

-
-

-

level 1, or
*postings file”

text file

f
chain

I--j
Figure F4.5

Illustration of CBS
Thus, the compressed bit files will contain pointers
to the appropriate documents (or logical blocks).
The set of all the compressed bit files will be called
“level 1” or “postings file”, to agree with the termi-
nology of inverted files [25].

The postings file consists of postings buckets,
of size BP bytes (BP is a design parameter). Each
such bucket contains pointers to the documents in
the text file, as well as an extra pointer, to point to
an overflow postings bucket, if necessary.

Figure F4.5 illustrates the proposed file struc-
ture, and gives an example, assuming that the word
“base” hashes to the 30-th position
(h(‘I base”)=30), and that it appears in the docu-
ment starting at the 1145-th byte of the text file.

Searching is done by hashing a word to obtain
the postings bucket address. This bucket, as well as
its overflow buckets, will be retrieved, to obtain the
pointers to the relevant documents. To reduce the
false drops, the hash table should be sparse. The
method is similar to hashing. The differences are
the following:

(a) The directory (hash table) is sparse; Tradi-
tional hashing schemes require loads of 80-
90%.

(b) The actual word is stored nowhere. Since the
hash table is sparse,, there will be few colli-
sions. Thus, we save space and maintain a
simple file structure.

The similarities between CBS and hash-based
inverted files illustrate the generality of our frame-

285

work.

4.4. Doubly Compressed Bit Slices (DCBS).

The motivation behind this method is to try
to compress the sparse directory of CBS. The file
structure we propose consists of a hash table, an
intermediate file, a postings file and the text file as
in Figure F4.6.

level 1. or 1
intermediate

.evel2, or

%
file

posfielle”gs text file

r -j
:
I
I
I
I
I

;3a

Sl
I
I
I
I
I
I
I
I
I
I

”

hi

Figure F4.6
Illustration of DCBS.

The method is similar to CBS. It uses a hashing
function h,(), which returns values in the range
(O,(S-1)) and d t e ermines the slot in the directory.
The difference is that DCBS makes an effort to dis-
tinguish among synonyms, by using a second hash-
ing function h2(), which returns bit strings that are
h bits long. These hash codes are stored in the
“intermediate file”, which consists of buckets of Bi
bytes (design parameter). Each such bucket con-
tains records of the form (hashcode, ptr). The
pointer ptr is the head of a linked list of postings
buckets.

Figure F4.6 illustrates an example, where the
word “base” appears in the document that starts at
the 1145-th byte of the text file. The example also
assumes that h=3 bits, h,(“base”)= 30 and
h,(“base”)= (O11)2.

Searching for the word “base” is handled as
follows:

Step 1 h,(“base”)= 30: The 30-th pointer of
the directory will be followed. The
corresponding chain of intermediate
buckets will be examined.

Step 2 hz(q base”)= (011)s: the records in the
above intermediate buckets will be
examined. If a matching hash code is
found (at most one will exist!), the
corresponding pointer is followed, to
retrieve the chain of postings buckets.

Step 3 The pointers of the above postings buck-
ets will be followed, to retrieve the quali-
fying (actually or falsily) documents.

Insertion is omitted for brevity.

OBSERVATION 1: Notice that the postings
buckets will be exactly the same ss if we had the
setting of CBS, with a hash table of size S2* (see
Figure F4.7) and a hash function h(z) =
hi(z) I I h,(s). The symbol ? I I ” stands for concate-
nation of binary strings. This observation shows
how DCBS achieves compression of the sparse hash
table of CBS. More important is the fact that we
can reuse the analytical formulas of CBS with the
appropriate changes.

level 2
postings file

I_

Figure F4.7
Illustration of the equivalence between CBS and DCBS.

4.6. No False Dropa method (NFD).

Here we propose a method to avoid false drops
completely, without storing the actual words in the
index. The idea is to modify the intermediate file of
the DCBS, and store a pointer to the word in the
text file. Specifically, each record of the intermedi-
ate file will have the format (ha&code, ptr,
ptr- to- word), where ptr-to- word is a pointer to
the word in the text file.

This way each word can be completely dis-
tinguished from its synonyms, using only h bits for
the haah code and p (=4 bytes, usually) for the
ptr- to- word. The advantages of storing
ptr- to- word instead of storing the actual word are
two: (1) space is saved (a word from the dictionary
is ~8 characters long [19]), and (2) the records of
the intermediate file have fixed length; thus, there is
no need for a word delimiter and there is no danger
for a word to cross bucket boundaries.

Searching is done in a similar way with DCBS.
The only difference is that, whenever a matching
hashcode is found in Step 2, the corresponding
ptr- to- word is followed, to avoid synonyms com-
pletely.

4

SI

I
4

.:
” ptr ‘.‘,

ashcode ptr- to- word

Figure F4.8
Illustration of NFD

6. Analysis.

‘For every method, we shall examine the per-
formance measures (“output parameters”) for a
given setting (“input parameters”) and a given
selection of the “design parameters”. The measures
we are interested in are listed in T3.1:
a the space overhead Ov
l the false drop probability Fd

l dR,s> dR,” number of disk accesses on retrieval
(successful and unsuccessful, respectively). They
include the disk accesses to search the index, as well
as to retrieve the (actually or falsily) qualifying
documents.
l dI number of disk accesses on insertion of a docu-
ment

Intermediate quantities that we are interested in,
are

286

l dR,i,s~ dR,i,u: the number of disk accesses to search
the index for a single word query (for successful and
unsuccessful search, respectively). They account for
the disk accesses needed to find the list of pointers
to the (actually or falsily) qualifying documents (but
not to retrieve them).
aA= ii: average number of actual drops, or aver-
age number of documents each word occurs in.

For all the methods, the following formulas hold:

dR,s= dR,i,r +

(FAN-A)+ A)$ disk accesses (5.0.1)

dR,u= dR,i,u + FdN$ disk accesses (5.0.2)

For the last three methods, that use compressed bit
sliced signatures, we have:

dF D(dR,i,e+ 1) (5.0.3)

Due to space limitations, we omit the details of the
derivation of the formulas (see [?I).

5.1. Sequential Signature Files (SSF).

Overhead.

OV= [$$I + [$$I pages (5.1.1)

False drop probability.

Fd= (f,m, with m= y (5.1.2)

Unsuccessful Retrieval.

FN
dR,i,u= Pb

I I
+ F,N disk accesses (5.1.3)

Successful Retrieval.

d
FN

R,i,s= K
I I

+ FAN-A)+A disk accesses (5.1.4)

Insertion.

(5.1.5)

6.2. Bit-sliced signature files (BSSF).

Overhead.

OFF+ p I FN h& II I pages (5.2.1)

False drop probability. The formula for it is

exactly the same with the one for SSF (Eq. 5.1.2)

unsuccessful Retrieval.

d
N

R,i,u= I I - m+ FdN disk accesses
Fb

(5.2.2)

Succeesful Retrieval

d
N

R,i,#= E I I m + FAN-A)+ A disk accesses (5.2.3)

Insertion.

dFl+F/2 (5.2.4)

6.8. Compressed Bit Slices (CBS).

Each word will occur in 0 documents on the
average, where

Space overhead:

ov= + I
where

V

(5.3.1)

BP + si:p (5.3.2)

Pww (5.3.3)

is the average length of chains of pages in the first
level, with

c(w)= (tG)$$- buckets I I P
and

False drop probability.

Fd=l- 1-i s [1 D D M-

Unsuccessful Retrieval.

d R,i,u= 1+ c

Successful Retrieval.

d R,i,s = l+e,

where
V-l

c,= wC_oP(v-l,s,w’)c.(w’)

(5.3.4)

(5.3.5)

(5.3.6)

(5.3.7)

(5.3.8)

(5.3.9)

287

and

c,(d)= (w’+ 1) 1

6.4. Doubly Compreeeed Bit S1k1 (DCBS).

space4 overhead.

ov=

where

on = s2h c2 p w3-

with

and

-
c2 = 5 P(We4 c2w

w=o

c2(w)= WiTA I I BP-p

False drop probability.

Fd=l- 1-A
I P

D
S2h -s2”

Unsuccessful Retrieval.

d R,j,u= 1+ &+ ;

Successful Retrieval.
-

dR,i,,= 1+ ++ c

with

-
c,,1= E p(V-l,s,wjo~+ l)El

cU’-0

V-l -
cr,z= c p(V-l,S2”

cU’-0
97 lb*+ l)gq

(5.4.1)

(5.4.2)

(5.4.3)

(5.4.4)

(5.4.5)

(5.4.6)

(5.4.7)

(5.4.8)

(5.4.9)

(5.4.10)

(5.4.11)

(5.4.10)

6.6. No False Drops method (NFD).

Space overhead.

with

(+v*-p- BP F I BP-P P
paw

and

pages
False drop probability.

Fe0

Unsuccessful Retrieval.

- v
dR,j+= 1+ cl+ -

s2h

Successful Retrieval.

d
1+c,

R,j,r= 1+ y+
1 V-l
--+I+ iip
2 s2h I I BP-P

with
V-l -

c,,1= g P(V-Gw) w+ l+ygy.
WI’=0 I I I

(5.5.1)

(5.5.2)

(5.5.3)

(5.5.4)

(5.5.5)

(5.5.6)

(5.5.7)

6. Experimental results

To validate our models, we implemented the CBS,
DCBS and NFD methods and we run simulation
experiments on a set of technical reports. To allow
comparisons with previous experiments on signature
file methods, we divided the data base into “logical
blocks q , each of which was treated as a separate
document. The words “logical block” and “docu-
ment” are considered identical. The data base had
the following characteristics:

L = 1024 Kbytes per document
D = 58 distinct non-common words per docu-
ment
N = 2,784 documents
V= 7,765 vocabulary-size of the data base
NL = 2.8 Mbytes size of the data base
NW = 436,904 total number of words in data
base.

The parameters we used for the following experi-
ments are as follows:

postings bucket size, BP = 68 bytes (16 docu-
ment pointers per bucket)

288

The

pointer size, p = 4 bytes
byte size, b = 8 bits
hash code, h = 8 bits (for DCBS and NFD
only)
Size of a disk page, P = 1024 bytes

size of the hash table was S=32,000 and 64,000
for the CBS method, and S=l,OOO and 2,000 for
DCBS and NFD. The size of intermediate blocks
for DCBS was Bi= 36 and 24 bytes for S=lOOO and
2000 respectively. For NFD, the values of Bi were
Bi= 76 and 40 bytes respectively.

We asked 1000 successful and 1000 unsuccess-
ful queries. The query words were chosen randomly
from the dictionary of the “spell” utility of UNIX.

Notice that some of the design parameters are
not “fine tuned”. The main goal in this section is
to validate our analytical model, and not to exhibit
the best performance that the methods can achieve.
Ways of fine tuning the parameters are discussed in

1%
Graphs G6.1-2 compare the theoretical and

experimental false drop probability Fd and the
search time for the index (dR,i,(r and dR,i,u), for CBS.
The horizontal axis is the size of the hash table S.
Graphs G6.3-4 do the same for the DCBS method,
and G6.5 for the NFD method. In all the graphs,
the dashed lines stand for the theoretically expected
values, while the solid ones for the experimental
values.

We measured other parameters, too, such as
the overhead Ov and the disk accesses on insertion
for each of the three methods. To save space, we do
not provide graphs for them, but we discuss the
results next. The conclusion from the experiments
is that the theoretical and experimental values agree
very well. Table T6.1 gives a list of the relative
errors for the predictions of our analysis.

Table T6.1
Relative errors between theoretical

and experimental performance.

The major observations are:

-

-

-

The model expects w 40% fewer disk accesses
dl on insertion, than actually required. This
was the only significant problem of our model.
The reason is that words are not distributed
uniformly; High frequency words appear in
almost any document, and require a long
search, exactly because the postings chain for
this word is long.

The model gives pessimistic, but very close
estimates for the search performance. The
explanation is again the non-uniform distribu-
tion of words. Since the query words were
chosen randomly from the dictionary of the
“spell” utility of UNIX, it was more probable
to search for a word with few occurrences, and
therefore a shorter postings chain.

The average number of qualifying documents
was 19.05, very close to the theoretically
expected number (20.7).

0.1. Arithmetic examples

Since our analysis has been verified, we can
use it to predict the performance of our methods on
several environments. First, we consider the data
base of our experiments. Using only p=3 bytes per
pointer and B,=66, we obtain the graph G6.6.
Notice that 3 bytes can hold pointers for data bases
of up to 224= 16 Mb in size. Graph G6.6 plots the
total number of disk accesses dR,@ on successful
search as a function of the overhead Ov for all the
signature methods.

Notice that all the proposed methods require very
small space overhead (12% for BSSF, m 20% for
the rest), with very good search performance: To
retrieve Fs: 20 qualifying documents, BSSF requires
dR,,=55 disk accesses in total (2.75 per document,
for 12% overhead), CBS requires 27 disk accesses
(1.35 per document, for 22% overhead), DCBS
requires 24 disk accesses (1.20 per document, for
22% overhead) and NFD requires 25 disk accesses
(1.25 per document for 22% overhead).

A larger data base could have the following
characteristics: Consider a 5 l/4 inch optical disk,
with 300 Mb capacity, where we plan to store techn-
ical papers. Each paper has L=30 Kb size, with a
vocabulary of D = 1000 words (these estimates are
based on measurements on actual technical reports).
The vocabulary of the collection is pessimistically
estimated as V=lOO,OOO, which is the vocabulary of
the best dictionaries [19]. Leaving 50 Mb for the
index and other overheads, we have 250 Mb, which
can hold 250 Mb / 30 Kb NN 8,300 = N documents.
Graph G6.7 plots the analytical results for this set-

289

0.1ooo’ 0.1ooo’
1ogFd vs. 1ogFd vs. S, for CBS

0.0100 ;

I
\
t
.

t t
0.0100’ ;

\
t
t

1ogFd ‘\ log Fd \

0.0010’ a%, 0.0010’ a%,
@#)I‘ - @#)I‘ - -.

the&y

Graph G6.1 Graph G6.3
Fd for the CBS method; Fd for the DCBS method;
theory and experiments. theory and experiments.

6
search (disk accesses) vs. S, for CBS

1
5-f

disk accesses :

4’ ’
;
I

3’ :
I
,

\ \ .
-3 - + - - flie+-sue exp- uc

Graph G6.2 Graphs G6.4
Search time for the CBS method; Search time for the DCBS method;

theory and experiments. theory and experiments.

0.00100
1

1ogFd vs. S, for DCBS

1ogFd

0.ooo10’

l

\
\
\
t

\

\

t
\

exp-un
exp-sue

4
\

. . . .
.k

-\
the&y

search (disk accesses) vs. S, for DCBS
5

4 1
disk accesses

I
+-cc+-+ A--c --- *----*

e‘xp-suc theory-sue

04 ’ - . - ’ . . . ’

O 200Basl-??%e s!!L”!!! *Ooo

290

search (disk accesses) vs. S, for NFD
6’

disk accesses
5’

*.+ * 4 - -e- -.- - --+---
theorj&uc

4’ exp-Suc

3’

2’

l A&&v- .- - - - c _
1’ th&y&ns

0 2000 4000 6000 8000
hash table sire S

Graph G6.5.
Search time for the NF’D method;

theory and experiments.

,()() disk acccesses (sue. search) vs. Ov T’
1 i

..-- :“”
j

i
i

-0 10 20 30
Space overhead Ov (per cent)

disk m

disk accesses (sue. search) vs. Ov i .._._..,........ .‘.‘i’.‘....‘...’

2ooo 1
0 10 20 30 40

Space overhead Ov(per cent)

Graph G6.7
Total disk accesses on successful

search versus space overhead
for a 250Mb data base. Analytical results.
Squares correspond to the CBS method,
circles to DCBS and triangles to NF’D.

Graph G6.6
Total disk accesses on successful search dR,,

versus space overhead. Analytical results
for the 2.8 Mb data base, with p=3 bytes.
Squares correspond to the CBS method,
circles to DCBS and triangles to NFD.

291

ting.

Notice that
- the proposed methods require even smaller

overhead: BSSF needs 8%, CBS needs 20%,
and DCBS and NFD need 17%.

- BSSF is slower on searching, requiring w 109
more disk accesses than the other methods.

7. Discussion - Conclusions.

All of the proposed methods (BSSF, CBS,
DCBS, NFD) fulfill the design goals. They require
small overhead (m 10% for BSSF, 2030% for the
rest), they are fast on retrieval and they require no
rewriting: Thus, they work well with optical disks
and they handle insertions easily, allowing readers
to access the data base, even when a new document
is inserted concurrently.

The proposed methods combine the best of
both worlds (signature files and inversion), and can
compete against both. Thus, they can be applied in
any situation where the traditional SSF have been
applied, such as rule indexing in Prolog data bases
(11, [23], for formatted attributes [20], [24], or
combinations of attributes and text [6] etc..

The proposed methods can also compete
against traditional inverted files on magnetic disks,
or on erasable optical disks: They give fast
responses, for smaller space overhead, allowing
searches even during an insertion. They only suffer
from the lack of alphabetical ordering on the words
of the vocabulary. However, using order preserving
hashing functions (161, this disadvantage can be
eliminated.

Finally, the proposed methods can be used
easily on CD-ROMs. There, the whole data base is
available during the design time; accurate statistics
can be gathered, and the design parameters can be
fine-tuned to the specific data base and the specific
performance requirements.

The contributions of this work are the following:
- The framework. It encompasses all the old

signature-based methods, and it reveals the
similarities between signature files and
inverted files, leading to the design of methods
that combine the best characteristics of both
sides. Moreover, using the framework, any
new variation of the SSF gives immediately
rise to 3 new methods, one for each entry of
Table T4.1.

- The detailed design of the proposed methods
and the development of accurate analytical

models for their performance study.

Future research can deal with the following
- Simulation of the BSSF method.
- Performance analysis on general,

queries

topics:

Boolean

- Derivation of approximate, simpler formulas
for the analysis.

- Performance comparison with B-tree indices.

Aclcnowledgmenh

The authors would like to thank Timos Sellis and
Leo Mark for providing some of the technical
reports for the experiments.

References

1.

2.

3.

4.

5.

6.

7.

8.

292

Berra, P.B., S.M. Chung, and N.I. Hachem,
“Computer Architecture for a Surrogate File
to a Very Large Data/Knowledge Base,” IEEE
Computer Magazine, vol. 20, no. 3, pp. 25-32,
March 1987.

Christodoulakis, S. and C. Faloutsos, “Design
Considerations for a Message File Server,”
IEEE Trane. on Software Engineering, vol.
SE-lo, no. 2, pp. 201-210, March 1984.

Christodoulakis, S., F. Ho, and M. Theodori-
dou, “The Multimedia Object Presentation
Manager in MINOS: A Symmetric Approach,”
Proc. ACM SIGMOD, May 1986.

Ewing, J., S. Mehrabanzad, S. Sheck, D. Ostr-
off, and B. Shneiderman, “An Experimental
Comparison of a Mouse and Arrow-jump Keys
for an Interactive Encyclopedia,” Znt. Journal
of Man-Machine Studies, pp. 29-45, Jan.
1986.

Faloutsos, C., “Access Methods for Text,”
ACM Computing Surveys, vol. 17, no. 1, pp.
49-74, March 1985.

Faloutsos, C., “Integrated access methods for
messages using signature files,” IFIP WG 8.4
Working Conference on Method8 and Tool8 for
Office eysteme, pp. 135-157, Pisa, Italy,
October 1986.

Faloutsos, C. and R. Ghan, “Fast Text Access
Methods for Optical and Large Magnetic
Disks: Designs and Performance Comparison,”
UMIACS-TR-87-66 CS-TR-1958, Univ. of
Maryland, College Park, Dec. 1987.

Faloutsos, C. and S. Christodoulakis, “Signa-
ture Files: An Access Method for Documents
and its Analytical Performance Evaluation,”

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

ACM Trane. on Office Information Systems,
vol. 2, no. 4, pp. 267-288, Oct. 1984.

Faloutsos, C. and S. Christodoulakis,
“Description and Performance Analysis of Sig-
nature File Methods,” ACM TOOIS, vol. 5,
no. 3, pp. 237-257, 1987.

Fujitani, L., “Laser Optical Disk: The Coming
Revolution in On-Line Storage,” CACM, vol.
27, no. 6, pp. 546-554, June 1984.

Gonnet, G.H., “Unstructured Data Bases,”
Tech. Report CS-82-69, Univ. of Waterloo,
1982.

Gonnet, G.H. and F.W. Tompa, “Mind your
grammar: a new approach to modelling text,”
Proc. of the Thirteenth Int. Conf. on Very
Large Data Badea, pp. 339-346, Brighton,
England, Sept. f-4, 1987.

Haskin, R.L., “Special-Purpose Processors for
Text Retrieval,” Database Engineering, vol. 4,
no. 1, pp. 16-29, Sept. 1981.

Hollaar, L.A., “Text Retrieval Computers,”
IEEE Computer Magazine, vol. 12, no. 3, pp.
40-50, March 1979.

Hollaar, L.A., K.F. Smith, W.H. Chow, P.A.
Emrath, and R.L. Haskin, “Architecture and
Operation of a Large, Full-Text Information-
Retrieval System,” in Advanced Database
Machine Architecture, ed. D.K. I-I&o, pp.
256-299, Prentice-Hall, Englewood Cliffs, New
Jersey, 1983.

Knott, G.D., “Expandable Open Addressing
Hash Table Storage and Retrieval,” Proc.
SIGFIDET, pp. 187-206, San Diego, Calif,
1971.

Mooers, C., “Application of Random Codes to
the Gathering of Statistical Information,” Bul-
letin 31, Zator Co, Cambridge, Mass, 1949.
based on M.S. thesis, MIT, January 1948

Nofel, P.J., “40 Million Hits on Optical
Disk,” Modern Office Technology, pp. 84-88,
March 1986.

Peterson, J.L., “Computer Programs for
Detecting and Correcting Spelling Errors,”
CACM, vol.. 23, no. 12, pp. 676-687, Dec.
1980.

Pfaltz, J.L., W.H. Berman, and E.M. Cagley,
“Partial Match Retrieval Using Indexed
Descriptor Files,” CACM, vol. 23, no. 9, pp.
522-528, Sept. 1980.

Price, Joseph, “The Optical Disk Pilot Project
At the Library of Congress,” Videodisc and

.22.

23.

24.

25.

26.

27.

28.

29.

30.

293

Optical Disk, vol. 4, no. 6, pp. 424-432,
Nov.-Dec. 1984.

Rabitti, F. and J. Ziska, “Evaluation of
Access Methods to Text Documents in Office
Systems,” Proc. 3rd Joint ACM-BCS Sympo-
sium on Research and Development in Znfor-
mation Retrieval, Cambridge, England, 1984.

Ramamohanarao, K. and J. Shepherd, “A
Superimposed Codeword Indexing Scheme for
Very Large Prolog Databases,” Third Intern.
Conj. on Logic Programming, Springer Verlag,
London, 1986.

Sacks-Davis, R. and K. Ramamohanarao, “A
Two Level Superimposed Coding Scheme for
Partial Match Retrieval,” Information Sye-
terns, vol. 8, no. 4, pp. 273-280, 1983.

Salton, G. and M.J. McGill, Introduction to
Modern Information Retrieval, McGraw-Hill,
1983.

Standish, T.A., “An Essay on Software
Reuse,” IEEE Trane. on Software Engineer-
ing, vol. SE-lo, no. 5, pp. 494-497, Sept.
1984.

Stanfill, C. and B. Kahle, “Parallel Free-Text
Search on the Connection Machine System,”
CACM, vol. 29, no. 12, pp. 1229-1239, Dec.
1986.

Stiassny, S., “Mathematical Analysis of Vari-
ous Superimposed Coding Methods,” Ameri-
can Documentation, vol. 11, no. 2, pp. 155-
169, Feb. 1960.

Thoma, G.R., S. Suthasinekul, F.A. Walker, J.
Cookson, and M. Rsshidian, “A Prototype
System for the Electronic Storage and
Retrieval of Document Images,” ACM TOOIS,
vol. 3, no. 3, July 1985.

Tsichritzis, D. and S. Christodoulakis, “Mes-
sage Files,” ACM Trans. on Office Injorma-
tion Systema, vol. 1, no. 1, pp. 88-98, Jan.
1983.

