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Abstract

When column values in a large database follow highly
shewed distributions (such as Zipf distributions, typi-
cally found in textual databascs), query optimizers in
current relational systems often fail to choose optimal
query plans even for simple single-relation queries. The
major cause of these optimization failures is incorrect
predicate selectivity estimation; the likelihood and cost
of such errors are quantified. A scheme for adding user-
defined selectivity estimators to a relational DBMS is
proposed. The paper defines a series of new selectivity
estimation methods that work well with highly skewed
value distributions and then compares them to cur-
rently used methods such as uniform approximation
and histograms. Empirical data from a large biblio-
graphic database is used throughout the analyses in
this paper.

1. Introduction

While current query optimizers such as those in Sys-
tem R/DB2 [Selinger et al. 1979] or INGRES [RTI
1986, Stonebraker et al. 1976] use elaborate algorithms
to determine the best execution plan for multirelation
joins, their ability to optimize relatively simple single-
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relation queries is limited by their inability to estimate
accurately predicate selectivity. For some applications,
including textual and bibliographic databases, this lim-
itation is a major problem since column values are dis-
tributed in an irregular fashion, and effective query op-
timization depends on the ability to correctly estimate
selectivity of predicates.

Section 2 discusses models of highly skewed column
value distributions, which are based on Zipf distribu-
tions. Actual data from a large bibliographic database
is used to parameterize and validate the models pre-
sented. The third section quantifies the effects of in-
correct selectivity estimation in large databases where
column values follow these distributions and shows that
these errors are unacceptable. Section 4 defines a mech-
anisim for incorporating user-defined selectivity estima-
tors into a relational database using an approach sim-
ilar to that proposed for user-defined operators in pre-
vious research [Stonebraker 1986). The final section
proposes a series of new selectivity estimation methods
that work well with highly skewed column value distri-
butions on textual databases and compares the perfor-
mance of these estimators with previous methods such
as histograms and uniform approximation.

This paper uses SQL for a query language. To
avoid complexities involved in indexing textual data
[Lynch & Stonebraker 1988}, it is assumed that the
DBMS is augmented to permit column values to be sets
as proposed in, for example, |Zaniolo 1983]. Zaniolo’s
notation, adapted for SQL, is used: braces surrounding
a datatype in a table definition indicate that the col-
umn value is a set of that datatype, and the IN operator
tests for membership in a set. This paper is concerned



only with sets of strings. It is assnmed that the DBMS
can build a B-tree index for clements of a set of strings
by placing cach element in the B-tree, and that it will
nse this B-tree sccondary index to resolve set member-
ship (IN operator) predicates. Selectivity estimation
for a “standard” relational system with the IN opera-
tor is assumed to be a direct extension of the uniform-
distribution-based selectivity cstimation traditionally
used for equality predicates. This is detailed in Section
3. While the paper considers IN-operator predicates,
the results are equally applicable to standard equality
predicates on columns with similarly distributed values.

For a table T, CARD(T) is the number of rows in
the table. For an index I, CARD(I) is the total number
of entrics in the index. UNIQUE(I) is the number of
unique key values in an index I. The selectivity of a
predicate is defined to be the fraction of the tuples in a
relation that the predicate matches. Thus, a predicate
with sclectivity S will select SxCARD(T) rows from a
table T.

The empirical data in this paper is taken from a
large bibliographic database used by the MELVYL®
online union catalog, a replacement for a traditional
library card catalog that provides access to the hold-
ings of the libraries of the University of California nine-
campus system. The MELVYL catalog is described in
detail in [DLA 1987, Lynch 1987] and the references
there.
2. Modeling Bibliogr: phic Databases:
Zipf Distributions

An online library catalog is used as a cuncrete example
in this paper. The central relation in such a database
describes books and might be defined as:

CREATE TABLE BOOKS

(TITLE LONG VARCHAR, TITLE-KEYTERMS
{VARCHAR},

SUBJECTS LONG VARCHAR, SUBJECT-KEYTERMS
{VARCHAR}, other columns);

Here, TITLE-KEYTERMS and SUBJECT-KEY-
TERMS are sets of strings, the elements of which are
(roughly speaking) the individual words comprising the
book’s title and the subject headings assigned to the
book. (See |Lynch and Stonebraker 1988] for full de-
tails on keywords.) A typical online catalog user query
would be “find all books with the word history in the
title.” This would translate to an SQL query like

SELECT * FROM BOOKS WHERE "HISTORY"
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IN TITLE-KEYTERMS;

The set-valued columins TITLE-KEYTKRMS and
SUBJECT-KEYTERMS are assumed to have sec-
ondary B-tree indices to support IN operator predicates
as described above. The distribution of values in these
indices is the major focus of interest. A shnple, mathe-
matically tractable, and reasonably accurate first-order
model of keyterm selectivity in bibliographic databases
is provided by a discrete distribution called the Zipf
distribution [Fedorowicz 1981]. Many other authors, in-
cluding [Knuth 1968, 1973, Christodoulakis 1984], also
use the Zipf distiibution more generally to model dis-
tributions of values that are highly nonuniform, with-
out specific reference to bibliographic databases. Word
frequency distributions for many textual databases are
known to follow Zipf or Zipf-like distributions. The Zipf
distribution with parameter n, Zipf(n), is a set of prob-
abilities p;, 1 <1 < n, wherep; = 1/1 H,,. Here H,, is
the nth haymonic number, H,, “;::1 1/k. The dis-
tribution is interpreted as the probability that a given
keyterm appears in ¢ rows of the database is p;. The
expected number of appearances of a keyterm is n/ H,,.

The following (slightly rounded) values observed
from the MELVYL catalog database provide real-world
parameter values for the Zipf distribution model.

Rows in Books Table 4,000,000
Unique Subject Keyterms 300,000
Total Occurrences of Subject Keyterms 45,000,000
Unique Title Keyterms 1,000,000
Total Occurrences of Title Keyterms 20,000,000

While the Zipf distribution model is simple, ana-
Iytically tractable, and does capture the highly skewed
nature of keyterm distributions, it is far from per-
fect.  The value for n in the Zipf distribution
model for each of the keyterm indices can be deter-
mined by observing that CARD(I) = UNIQUE([])
* “average number of occurrences of a value in
I", or CARD(7)/UNIQUE(I) = n/ H,. For subject
keyterms n/ H,, = 150, so n is 1143; for title keyterms
n/ H, = 20, yielding n = 105. It is clear from these
figures that, as is common with Zipf distributions used
to model bibliographic databases, the match between
the theoretical distribution and the empirical data is
not close for the most frequently occurring terms. The
most common terms in the actual title file, which con-
tains about 950,000 keyterms, occur perhaps 70,000
times. (There are six terms occurring more than 70,000
times.) However, modeling this keyterm collection with
Zipf(70,000) would imply much larger numbers of to-
tal keyterm occurrences than actually are found in the



database. Tn addition, the standard Zipf distribution
tends to estimate incorrectly the number of infrequently
occurring terms. A Zipf (1143) distribution would pre-
dict that 1,000,000/ /7445 == 131,249 terms would occur
only once. In actualily, there are some 484,505 of these
terms in the MIELVYL catalog title keyterm file. More
claborate distributions can be used to obtain more pre-
cise models [Lynch 1987}, but space considerations pre-
clude a discussion here.

3. The Effects of Selectivity Estimation
Failure on the Performance of

Current Optimizers

In deternining the evaluation plan for a single-relation
conjunctive query involving several predicates, current
systems perform a selectivity estiimate on each predi-
cate [Selinger et al. 1979]. This seclectivity estimate
provides the approximate number of tuples from the
target relation that satisfies the predicate. Assuming
that secondary indices exist for all predicates involved
in the query (which will be typical in a bibliographic
retrieval environment), the query planner will choose
the predicate it believes to be most selective (i.e., sat-
isfied by the smallest number of tuples}, use the index
for that predicate to obtain the TIDs of the tuples sat-
isfying the predicate, and then read these tuples and
verify that they satisfy the remaining predicates in the
conjunctive query. Those tuples satisfying all predi-
cates comprise the result from the query. Consider the
following two queries:

SELECT * FROM BOOKS WHERE
terml IN TITLE-KEYTERMS AND term?2
IN SUBJECT-KEYTERMS;

and

SELECT * FROM BOOKS WHERE
terml1 IN TITLE-KEYTERMS AND term2
IN TITLE-KEYTERMS;

A current query planner will typically estimate se-
lectivity for an equality predicate by assuming a uni-
form distribution of column values when an index is
available, or statistics on the number of unique val-
ues appearing in a table for a given column are main-
tained. Assuming a column C is indexed by an index
I, selectivity of a predicate such as (C = value) will be
estimated by 1/UNIQUE(I). For set-valued relations,
where there can be more than one entry in the index
for a single column value appearing in the relation, this
formula must be generalized to estimate selectivity of
the IN operator to CARD(1)/CARD(T) «+ UNIQUE(I).
This uniform-distribution-based estimate gives an ex-
pected selectivity of 1/200,000 for title keyterms and
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3/80,000 for subject keyterms. The key point about
uniform distribution selectivity estimation is that selec-
tivity is estimated independently of the constant that
appears in the predicate.

In the first query, System R or INGRES will al-
ways choose the predicate involving the title keyterm
since the selectivity of values in the title keyterm index
is much smaller than the selectivity of values in the sub-
Ject keyterm index, and will use the title predicate to
select rows to read and examine. This may or may not
be a good dccision, depending on the values of termi
and term2; in many cases a randomly selected subject
keyterm will be more selective than a randomly selected
title keyterm. Specifically, if the subject keyterms are
Zipf(m) and the title keyterms are Zipf(n), the prob-
ability that using the title predicate to select the ac-
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HY = E?:x 1/1%, the nth generalized harmonic num-
ber. (Dectails of this and other computations are omit-
ted here in the interest of space; see [Lynch 1987] for
full details.)

cess path is correct is where

For m = 1143 and n = 105, this probability is
.6768; thus, the selected plan is correct about two out
of three times.

In the second example query, the optimizer can-
not differentiate between the selectivity of the first and
second predicates involving title keyterms; it will ar-
bitrarily select one. The likelihood that it will choose
the more selective predicate is somewhat better than
5. (It is better than .5 because the two terms may
have equal selectivity.) Assuming the distribution of
keyterms modeled by Zipf(n), a similar computations
shows that the correct choice will be made with proba-

bility 1/2 + HY2'/ 2H2.

For n == 105 (the value for title keyterms), the
probability that the correct plan is chosen is .5298. For
n = 1143 {a query similar to the second example but
involving subject keyterms rather than title keyterms),
the probability that the planner selects the correct plan
is .5142. The reason the probability is better than .5
is that some 1/H,, of the subject keyterms only occur
once; no matter which predicate is selected for the ac-
cess path, the selection will always be correct at least
that often (13% of the time for n = 1143). As queries
become more complex, the likelihood that the planner
will choose the optimal plan drops off quickly. Similar
computations show that for n = 105, a five-term query
only will be evaluated optimally with probability about
27.



Thus, the planner often will select the wrong plan.
This erroncons choice may not be disastrons if the se-
lected plan is only shightly suboptimal. If the sclected
plan requires an order of magnitude more I/O than the
optimal plan, however, the error is quite serions. To
measure the effects of bad plan selection due to incor-
rect selectivity estimation, the average number of 1/0
operations required for queries in the form

SELECT * FROM BOOKS WHERE terml IN TITLE-KEY-
TERMS AND term2 IN SUBJECT-KEYTERMS;

will be computed over all pairs {terml, termn2) where
terml is a title keyterm and term2is a rnbject keyterm.
Query plans will be sclected both by using the System
R/DB2 algorithm and under the assnmption that the
DBMS has perfect knowledge of predicate sclectivity
(and, thus, always selects the optimal plan from the set
of plans considered by System R/DB2 in this situation).
We assnme that the values of TITLE-KEYTERMS are
Zipf(n) and that those of SUBJECT-KEYTERMS are
Zipf(m).

The average number of 1/O operations required for
plans selected by the System R/DB2 planner is sim-
n
ply 32 i/iHy =
=1
curs ¢ times is used as the access path, ¢ reads are
necessary to obtain the corresponding tuples. In con-
trast, if the planner always sclects the optimized plan,
then the average number of I/O operations per query

1/ 4,H,, ((H,,, +2)n — (n+ ])H,,). For the
special case m = n, this simplifies to (2n - H,,)/ Hp.
The standard System R/DB2 plans require n/ Hyp, —
(2n - H,)/ HZ ((n + 1)H, — 2n)/ HZ additional

1/0O operations, on average.

n/ H,, singce when a term that oc-

Is =

For the first example query, the expected number
of I/Os for a plan selected by System R/DB2 is 20.057.
Always choosing the optimal plan would produce an
average of 11.4054 1/Os. For the second example, Sys-
tem R/DB2 requires 20.0537 I/Os on average, again,
while the average is 7.4691 for optimal plans. On a
query analogous to the second example, but involving
subject rather than title keyterms, System R/DB2 re-
quires an average of 150.0184 I/Os, while the optimal
plan only needs 39.2485 1/Os on average. The expected
cost for the plan selected by DB2 diverges even more
rapidly from the expected cost for the optimal plan for
queries involving more than two terms. For example,
with three conjuncts and n =105, the plan selected by
DB2 still requires 20.0537 1/Os on average, while the
optimal plan requires only 3.9873 I/Os. For three con-
juncts and n = 200, DB2 plans average 34.0250 1/Os,
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while optimal plans average 5.5626 1/Os.

4. Selectivity Estimation

Previous query planners have defined estimators by
built-in formulas. The System R/DB2 planner incorpo-
rates a number of hard-coded formulas {Selinger et al.
1979] to cstimate the sclectivity of varions predicates
having the form (column relop value). The definitions
of user-supplicd estimators for the uscr-defined access
methods given in [Stonebraker 1986] also rely on for-
mulas. Tn addition, with the exception of histograms
in commercial INGRES, existing systems estimate se-
lectivity for maw.y types of predicates, such as (column
= value), withont refcrence to value. Other predicates,
such as (column < value), are estimated using only sim-
ple interpolation coyaputations on the specified value
(again, except when histograms are used). A selectiv-
ity estimate in current systems is tailored to a specific
relation, a specific distribution of colnmn values, and
a specific value appearing in a predicate only through
reference to a few basic parameters, such as the over-
all number of tuples in the relation or the number of
unique values that appear in the index on a given col-
umn. Existing estimation formulas are quite general
and consequently are not likely to be highly accurate
for any specific predicate on a specific coluinn of a spe-
cific table.

This paper proposes the incorporation of user-
defined selectivity estimation procedures as a method
of improving the accuracy of selectivity cstimation.
These procedures may be of arbitrary complexity and
may include both sophisticated algorithms and inter-
nal lookups for exceptional cases using sizable data
structures built into the estimator procedures. Clearly,
user-defined estimation procedures must accompany
the user-defined operators currently being incorporated
in various extensible database systems such as POST-
GRES [Stonebraker & Rowe 1985]. However, there are
compelling justifications for permitting user-defined es-
timation procedures to be supplied for built-in opera-
tors as well:

e Because of the tremendous variation between value
distributions in different columns of a relation
or from relation to relation, estimation methods
closely tailored to specific tables are required for
precise estimation.

User-defined estimators permit the incorporation
of application-specific knowledge into the estima-
tion (and hence the optimization) process. For ex-
ample, it may be known that longer words tend



to occur less frequently or that a value distribu-
tion is rclatively wuiform when some group of ex-
ceptional values is revnoved. Exar:ples of the use
of application-specific knowledge i« estimation will
be developed in Section 5.

Sclectivity estimators are nused to estimate the se-
lectivity of predicates appearing in queries. The
statistics that characterize the selectivity of such
predicates may be different from the statistics that
characterize a database. Given a large enough
sampling of gneries, it may be worthwhile to ad-
just the selectivity estimators to reflect the biases
of users querying the database. With some biblio-
griphic databases (particnlarly when users receive
training beforc using them), users tend to avoid the
most commonly occurring keyterms because they
have little retrieval precision and produce unwieldy
query results. Similarly, a substantial number of
predicatcs of the form (coluinn = value) actually
fail to match any tuples in a public access infor-
mation retrieval system {often because of a high
incidence of keyboarding and spelling errors when
queries are entered and a lack of understanding of
indexing practice by retrieval system users). The
cffects of these phenomena can only be reflected in
sclectivity estimation by a user-defined estimator
procedure.

4.1 Definition Registry and Choice of

Predicate Selectivity Estimators

A predicate selectivity estimator is a procedure (either
built-in or user-defined) that returns an integer giving
the estimated number of tuples that will satisfy the
predicate, and has as input parameters the predicate
being estimated and statistical data maintained by the
DBMS about the table referenced in the predicate and
any associated indices.

A predicate selectivity estimator procedure is reg-
istered with the DBMS through the directive

DEFINE PREDICATE ESTIMATOR procedure-name

By definition, all predicate estimators take the same
input parameters and return the same result parame-
ters. Thus, there is no need to enumerate the param-
eter datatypes in the registration directive. A regis-
tered estimator is attached to a user-defined Boolean-
valued binary operator, operator-name, through the
ESTIMATOR parameter that is specified by extend-
ing the syntax of the DEFINE OPERATOR direc-
tive [Stonebraker 1986]. Such an estimator is called
the global default estimator for the operator in ques-
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tion. Built-in Boolean-valued binary operators, such
as { =, <, >, <, >} on various datatypes, are
assumed to have global default estimators associated
with them as well.

Local estimators can be defined that take prece-
dence over the global default estimator when predicates
involve specific tables or specific columns of specific ta-
bles. Such local estimators are defined by associating a
registercd estimator with an operator using one of the
dircctives:

ESTIMATE operator name WITH
estimator-name ON table-name
ESTIMATE operator-name WITH

estimator-name ON table-name.column-name

The first directive indicates that the specified estimator
is to be used to estimate selectivity of predicates in the
form (column relop value) where column is any column
in the specified table. The second form of the directive
defines the estimator to apply to predicates of the form
(column-name relop value). The query planner always
uses the most specific estimator available to compute
the selectivity of a predicate.

Estimators for Predicates of the
Form (value IN column) in Bibliographic
Retrieval Systems

5.

This section describes the construction of an extremely
accurate estimator for predicates of the form (term IN
TITLE-KEYTERMS) as an example of the applicabil-
ity of user-defined predicate selectivity estimators. The
statistics of title keyterms in the MELVYL database
are typical of many bibliographic databases, and a sim-
ilar analysis and approach can be used to develop es-
timators for other predicate types such as {term IN
SUBJECT-KEYTERMS). Section 5.1 discusses crite-
ria used to measure the quality of estimators. Section
5.2 briefly reviews prior work in both parametric and
nonparametric estimators for selectivity and discusses
why these prior approaches fail to meet the needs of
bibliographic retrieval systems. Section 5.3 describes
methods for actually constructing estimators. Finally,
Section 5.4 uses the criteria described in Section 5.1 to
evaluate the performance of the estimators developed
using the proposed methods against other approaches
discussed in Section 5.2.

5.1 Evaluating the Quality of Estima-
tors: Measures and Sample Sets

Let SEL(p) denote the true selectivity of the predicate
p and let SELg (p) denote the estimated selectivity



computed by some estimator function E. The mctric
commonly used in statistical analysis to measure the
quabity of an estimator E rclative to a set P of predi-
cates is the root mean square (RMS) error (cf [Bendat
& Piersol 1971], p. 170ff). RMS(E, P) is defined as

bir) Z (SEL(p) ~ SFL& (7))

\/(‘ARD(

If the average is used as the estimator, then the RMS
error is ¢qual to the standard deviation. The normal-
izedd RMS error, which measures the relative error of an

cstimn.t.or, is written NRMS(¥, P) and defined as

' v L (QF‘L(
C AR]) () SEL

thp(p))?
(r)? '

We will be concerned with two main sets of predi-
cates: the set D of all predicates of the form (value IN
column) where value appears in column for some row of
the table, and a set Q of sample predicates taken from
queries. Note that Q can contain predicates that do
not match any tuples in the database, while all pred-
icates in D match at least one tuple. The subset Q'
of Q consisting of those predicates in Q that match at
least one tuple in the database will also be used.

For the experimental results given here, the set
Q contains 817,093 title keyterms that were extracted
from a sample of 885,930 MELVYL catalog FIND com-
mands (of which 326,511 referenced the title keyterm
index) recorded from public access MELVYL catalog
terminals during part of 1986. These 817,093 keyterms
were extracted from a total of 1,017,306 title keyterms
appearing in the FIND commands; the remaining title
keyterms were discarded because they were stoplisted
words not indexed in the MELVYL database, they con-
tained invalid characters, or they actually were partial
match specifications for title keyterms. In this sam-
ple of 817,093 title keyterms entered by users 80,151
distinct title keyterms appear. Some 30,955 of the
817,093 keyterms did not match any keyterm in the
MELVYL database; 6467 user keyterms retrieved only
a single book from the database. The least selective ti-
tle keyterms actually used retrieved 79,535 books; these
least selective keyterms were used 1363 times.

The set D consists of the 951,008 different title
keyterms that appeared in the MELVYL database as
of December 12, 1986. This set was actually derived
from a larger set of 954,531 terms, some of which can-
not appear in user queries (because they have been sto-
plisted but were partially indexed in the database prior
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to stoplisting, or because they contain characters that
cannot be entered by the user in a title keyterm) and
thus were eliminated from the sample. Of the keyterms
in the set D, 484,505 keyterms are used only once. The
two keyterms appearing most frequently in book titles
occur 143,554 and 526,269 times, respectively. (There
is some reason to argue that the most common keyterm,
which appears 526,269 times, should not be considered
since it appears to be a keyterm that should have been
stoplisted and which appears rarely, if at all, in user
queries.)

5.2 An Overview of Prior Work on
Selectivity Estimation Methods

Parametric Methods

The first parametric approach to selectivity estimation
was formalized in [Selinger et al. 1979] and assumed
that the selectivity of index values was uniformly dis-
tributed and that each value selected approximately
CARD(T)/UNIQUE(]) tuples. Inequality operators
and range searching were carried out by further assum-
ing that the distribution of values within the index was
uniform between the high and low values appearing in
the index, and then by using this distribution of values
to estimate the number of values in the index satisfy-
ing the inequality or range predicate. Once the number
of values was known, the selectivity of the range could
be readily computed. The method used to estimate se-
lectivity based on uniform distributions has an obvious
extension when applied to IN predicates as discussed in
Section 3.

More generalized parametric approaches were pro-
posed by [Christodoulakis 1981] who suggested model-
ing selectivity using a series of (univariate) Pearson dis-
tributions which provides a range of distributions from
uniform to normal (cf [Christodoulakis 1981], p. 62).
The method assumes that for an index I with low
value £ and high value h the distribution of selectivities
is given by some distribution D on the interval [¢, h|
which is either a discrete distribution (when values of I
are integers) or a continuous distribution (when values
of I are reals).

The difficulty in applying parametric distribu-
tions (other than the uniform distribution employed
by Selinger, which has been shown to work poorly for
bibliographic databases in Section 3) is that the in-
dices are composed of character strings rather than
integers or reals. A mapping from character strings
to some interval of either integers or reals is required
to apply nonuniform parametric estimation techniques.



The literature contains no coxsideration of appropriate
mappings, although there has been some work done
on appropriate distributions to describe bibliographic
databases, which assumes that values appearing in an
index have been mapped to an integer interval (typi-
cally through frequency ranking). Unfortunately, fre-
quency ranking amounts to a map from strings to inte-
gers defined by an explicit table. The storage for such a
table will be nearly as large as the index itself, render-
ing it useless for most estimation processes. Certainly,
there is no map from keyterms in alphabetical order, for
example, to rank frequency, which can be determined
by simple interpolation or other nontabular methods.

Nonparametric Esttmation

[Kooi 1980, Piatetsky-Shapiro, & Conuell 1984,
Christodoulakis 1981] propose variations on a nonpara-
metric estimation method called histograms. While
their work scems to have been written with the estima-
tion of selectivity for numeric keys in mind, it is easily
extended Lo character-valued keys. The basic idea of
histogram estimation is that the range of key values is
partitioned into a set of subranges Ry, Ro,...,R,,. This
can be done either algorithmically (for example, by di-
viding the range from £ to h into fixed-length segments
in the case of a numeric index), or by a table of explicit
subrange demarcation points determined according to
some criteria. Each subrange R, is then modeled using
some distribution ;. All three papers propose use of
the uniform distribation, but an arbitrary distribution
could be used.

The major difficulty with the currently proposed
nonparametric methods for a bibliographic database is
that they assume that ranges of keyterms in some nat-
ural ordering (such as collating sequence) have similar
distributions, or at least that using a uniform approx-
imation for the selectivity of moderate-sized groups of
keyterms will be sufficient. The assumption of local
“smoothness” in the distribution does not hold true in
practice. when terms are listed in collating sequence,
selectivity varies wildly from term to term.

5.3 Construction of an Accurate
Selectivity Estimator for Title
Keyterms

Construction of a selectivity estimation procedure for
title keyterms is approached by piecewise approxima-
tion. First, frequently occurring keyterms are identi-
fied: their selectivity is estimated precisely by main-
taining an actual list of these keyterms and the num-
ber of tuples they select within the estimator proce-
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dure. Subsection 5.3.1 gives both theoretical and ex-
perimental analyses of the trade-off between memory
requirements and estimator accuracy.

For the remaining keyterms (which are not identi-
fied as very commonplace), the overall approach is to
partition the set of possible keyterms into classes, based
on some application-dependent criteria, which can be
expected to correlate with selectivity, and then to cal-
culate a uniform approximation for keyterm selectivity
within each class. The estimator contains lists giving
the average value to be used for each class. Once a
class is assigned to an inpnt keyterm, the selectivity
estimate to be used is looked up in the list. The parti-
tioning mechanisms that are considered in Subsection
5.3.2 are keyterm length (the number of characters in
the keyterm) and analysis of digrams (adjacent letter
pairs) that occur in keyterms. Keyterm length can be
expected to correlate to selectivity in that long words
are used less often than short words; there is a natu-
ral tendency in the development of language towards
abbreviating long words that are frequently used, or
supplanting them with shorter synonyms. Digram fre-
quency is a well known “signature” of romance lan-
guages and has been used for centuries in cryptanalysis
[Kahn 1967]. It is reasonable to expect that a word
containing an infrequently used digram will not be used
often.

Analysis of selectivity for those keyterms for which
selectivity must be heuristically estimated (since they
are not explicitly listed in the estimator procedure as
are frequently occurring keyterms) reveals an interest-
ing and somewhat unexpected phenomenon. The se-
lectivity statistics for keyterms used in queries are rud-
tcally different than the statistics obtained by consid-
ering all keyterms that occur in the database. This
application-specific knowledge is also incorporated into
the estimation algorithms of Subsection 5.3.2 by assign-
ing the selectivity estimate constant for each keyterm
class based on query statistics rather than database
statistics.

5.3.1 Selectivity Estimation for

Frequently Occurring Keyterms

A relatively small number of common keyterms (typi-
cally about .5%) are responsible for much of the vari-
ance in keyterm selectivity. These keyterms and their
selectivities can simply be stored in a list in the esti-
mator procedure.

The following table demonstrates the relationship
between allocating memory for lists of common terms



and their occurrence counts and the RMS error (rela-
tive to the set of D of all predicates containing all title
keyterms appearing in the database) when the average
sclectivity of the remaining terms not stored in memory
is used as a selectivity estimator for these terms.

Selectivity

Approx. cut-off for
# terms storage terms lIsted RMS
in mnemory (K bytes) in memory error
50 <1 26,005 307.8487
100 1 17,431 264.7333
200 2 12,241 219.2439
500 6 6,434 150.5060
1000 12 3,477 105.4980
2000 25 1,723 68.7911
5002 63 634  36.4704
10,013 127 269  20.8231
15,202 192 158 14.4888
20,111 255 110 11.2171
25,066 318 82 9.0797
50,343 639 3 4.4764
76,210 967 17 2.8640
96,678 1,227 12 2.2050

5.3.2 Selectivity Estimation for

Infrequently Occurring Keyterms

If we assume that m keyterms are listed explicitly in
the estimator along with their selectivity, several ap-
proaches can be taken for estimating the selectivity of
input keyterms that do not appear in the list of m
keyterms. The simplest approaches use uniform ap-
proximation for the remaining keyterms. The more
elaborate (and hopefully more accurate) methods at-
tempt to partition the remaining keyterms into keyterm
classes so that the selectivity for members of each
keyterm class can be well-approximated by a constant
estimate over that keyterm class. This section defines a
number of approaches and in some cases provides em-
pirical data supporting the use of the approach. Sub-
section 5.4 actually compares the performance of the
estimators defined here.

Uniform Estimators

A Uniform{m, S) estimator employs a list of the m
terms that appear most frequently in the database
and their selectivity; a selectivity estimate for an in-
put keyterm that appears in the list is taken from the
list. For keyterms that do not appear on the list, se-
lectivity is estimated by averaging the selectivities of
all the keyterms that appear in the set S but are not
among the mkeyterms explicitly listed in the estimator.
Note that Selinger’s uniform approximation is simply
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Uniform(0,D). Table 2 can thus be considered as giving
the RMS arror for the series of estimates Uniform(n,

D) on the set D.
Length Estimators

A Length{m, §) estimator employs a list of the m
terms that appear most frequently in the database and
their selectivity, and a list of keyterm lengths and sclec-
tivily estimates for terms of that length. This second
list is obtained by taking all terms in S that are not
among the m terms cxplicitly listed, grouping these
terms by length, and then computing the average se-
lectivity for cach group of terms of the same length.

There is a significant corrclation between length
and selectivity; in addition, the average sclectivity of
keyterms appearing in user queries of a given length is
quite different from the same list when computed nsing
terms appearing in the database. Table 1 gives average
selectivity values by length for several different length
estimators based both on databuse keyterms (the set
D) and keyterms from user queries (Q).

Digram Estimators

A Digram(m, S) estimator again employs a list of the
m most frequently occurring terms in the database and
their selectivity. Digram estimators nse two additional
lists. The first list contains all two-letter pairs occur-
ring in database keyterms and the frequency with which
each two-letter pair occurs. The second list is of all di-
grams from terms in S (except for those in the list of
the m most common terms) and a selectivity estimate
developed by averaging the selectivity of all keyterms in
S that have the specified digram as the least frequently
occurring digram in the keyterm (based on the occur-
rence frequencies for digrams in the database given in
the first additional list).

More precisely, for any digram &, let FREQ(§)
= CARD({w € D|w contains the digram § }} For any
keyterm w, LFD(w), the least frequently occurring di-
gram in w, is defined as LFD(w) = §, where § is
a digram in w and FREQ(6) < FREQ(y) for any
other digram v in w. For any digram 6, let S(6) =
AVG(SEL(w)), where this average is taken over the set
{w|w € S — {explicitly listed keyterms} and LFD(w) =
§}. For any input keyterm not on the list of m most
common keyterms, S(LFD(w)) is used as a selectivity
estimate.

There is a significant correlation between the value
of a word’s least common digram and that word’s selec-



tivity. Again, there is a substautial variation hetween
the estimated sclectivity derived from the sets Q and
D, as with the length estimators. Due to the size of
the lists involved, however, they will not be reproduced
here.

Minimum Variance Estimators

A Minvar(m, S) estimator combines the length and di-
gram approaches. It employs a length estimator and a
digram estimator for input keyterms not on the list of
m common kcyterms. However, it also includes lists
of variances for the estimates provided by the length
and digram estimators and selects the estimate with
the lower variance for each input keyterm not explic-
itly listed with its selectivity in the list of the m most
common keyterms.

ITistogram Estimators

A Histogram(k) estimator is developed by choosing ev-
ery kth keyterm (t;) from a list of all keyterms in D
in alphabetical order, and associating with each one of
these chosen keyterms a selectivity estimate developed
by averaging the selectivity of the k — 1 keyterms in D
immediately precceding the sclected keyterm, plus the
selectivity of the chosen keyterm £, itself. If an input
keyterm w falls into the sequence of chosen keyterms
on the st as t,, < w < t,, 4, then the estimated selec-
tivity value for t,,,,; is returned by the estimator.

Based on the discnssion in 5.2, these estimators
should not be expected to perform well in the biblio-
graphic retrieval environment. However, since they are
used by INGRES as a means of improving on the selec-
tivity estimates of System R/DB2, their performance
will be examined in comparison to the other estimators
defined in this section.

5.4 A Comparison of Estimator
Performance

Table 2provides RMS and normalized RMS values for
the various estimators when applied to three predi-
cate sets: D (all keyterms in the database), Q (all
keyterms in user queries), and Q' (all keyterms in user
queries that match keyterms in the database). For
those estimators that use variable amourits of memory
(all those except for the Uniform(0, S) estimator in-
cluded for comparative purposes since System R/DB2
uses it), two memory sizes were used: about 5,000 terms
in memory (requiring about 68KB) and about 25,000
terms in memory (requiring about 318KB). While the
estimators are listed as 5,000 and 25,000, actual values

varied slightly because the cutoff for storage in mem-
ory was by sclectivity value, and multiple keyterms ex-
isted with the desired sclectivity values. Consequently,
for example, all of the estimators except for the his-
togram estimators really used a value of 4,993 rather
than 5,000, and of 24,847 rather than 25,000.

A number of conclusions can be drawn immedi-
ately from Table 2. The really crucial performance
measures are RMS and wormalized RMS on the set Q,
since thesc figures give a very good sense of how well the
various estimators will perform on actual user queries.

o Uniform approximation never works well.

e Histograms do not work well either. Moreover,
providing more memory to maintain finer his-
tograms does not help. The variation in keyterm
selectivity from term to term when they are ar-
ranged in alphabetical order is so radical that in
some cases a histogram with 25,000 partitions ac-
tually gives worse estiinates than one with 5,000
partitions.

o Allocating enough space to list 25,000 rather than
5,000 comnon terms makes an enormous difference
in estimator accuracy. If the memory used by the
cstimator is amortized over many users {(as in a
server model DBMS supporting a public access in-
formation retrieval system), it may be worthwhile
to assign large amounts of memory to make critical
estimators accurate.

o There is not a great deal of difference in the perfor-
mance of Length, Digram, and Minvar estimators
for a given amount of memory. On the basis of
simplicity, Length estimators thus seem to be the
best choice. '

The poor performance of the digram estimators is
somewhat suprising since the digram estimators intrin-
sically should contain more information than length es-
timators. It may be necessary to use n-grams with
n > 3 to obtain more precise estimates, or to apply
digram estimation in more elaborate ways.

To gain some sense of how the various estimators
would perform on keyterms appearing in actual user
queries, comparisons for the estimators were also run
on several randomly selected subsets of Q. The results
of these comparisons are similar to those in Table 2
and are not reproduced here due to space limitations.
They show similar performance from Length, Digram,
and Minvar estimators in most cases, suggesting that
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the extra complexity of Digram and Minvar estimators
are not warranted.

Table 2 also illustrates another interesting phe-
nomenon. Estimators based on the scts Q and Q' gen-
erally display a smaller RMS crror than those based
on the set D. However, the normalized RMS error for
estimators based on the set D are typically lower than
those based on the sets Q and Q'. This lower nor-
malized RMS error appears to be due to the fact that
estimators based on Q or Q' use higher values than
those based on D. As a result, they tend to overesti-
mate sclectivity by a larger factor for terms that ac-
tually occur only a few times. As a general rule, this
type of estimation error is not terribly costly in terms of
its cffect on query plan cost; it results in a few unnec-
essary 1/O operations rather than a disastrous error.
In fact, the construction of estimators with lists of the
most commonly occurring terms effectively guarantees
that the planner will not make a totally disastrous er-
ror due to selectivily estimation error by choosing an
unselective term as an access path. For any estimator
E, the worst-case error for a two-predicate conjunctive
query (i.e., “SELECT % ... WHERE X AND Y”) is

maz{SEL(X) - SEL(Y)}, where SEL; (X) < SELg (Y).

For the MELVYL catalog title keyterm index, the
worst case for the Uniform(0,D) estimator used by
System R/DB2 is > 100,000; for estimators such as
Length(m, S) or Digram(m, S), the worst-case error
can be determined from Table 3 {(as a function of m).
For example, for m -= 5,000, the worst-case error is re-
duced to 633; for m == 25,000, the worst-case error is
reduced to 81. This reduction in the worst-case error
is advantageous, as it leads to more consistent perfor-
mance from the DBMS.

6. Conclusions

This paper has shown that current query planners of-
ten fail to select optimal plans even for simple queries
in an environment where column values have highly
skewed distributions. These errors result from the in-
ability of current selectivity estimation methods to cope
with highly skewed selectivity distributions and are
very costly. To solve this problem, a general mecha-
nism for incorporating user-defined selectivity estima-
tion into an RDBMS has been proposed. New estima-
tion techniques suitable for use with textual or biblio-
graphic databases having highly skewed attribute selec-
tivity were defined and compared to existing methods.
It seems clear that the estimation techniques described
here are useful in a bibliographic or textual database
environment. It would be interesting to compare these

estimation methods to more standard selectivity esti-
mation methods on text-oriented but noubibliographic
files, such as those found in business applications. If
user-defined selectivity estimation is to be incorporated
in extensible database systems, it will be necessary to
develop tools and theory to assist in the creation of
appropriate estimators for various types of databases.
This paper takes a first step toward this goal by dcfin-
ing a set of performance measures for estimators, as
well as cnlarging the repertoire of available estimation
methods.

The user-defined estimator scheme described here
is actually a somewhat simplified version of [Lynch
1987), which also provides user-defined estimators for
AND and OR operators between predicates, and ex-
tends the predicate selectivity estimator definition to
accommodate LIKE predicates. While techniques sim-
ilar to those presented here can be used to estimate
selectivity of LIKE predicates fairly effectively, estima-
tion for AND and OR operators requires radically dif-
ferent techniques and seems to be a much more difficult
problem. The experiments described in {Lynch 1987] do
suggest that the simple estimators for AND and OR se-
lectivity presented in [Selinger et al. 1979 do not work
well in a bibliographic retrieval environment.

The results presented in Table 2 also give rise to
a speculation with far-reaching consequences. To date,
all selectivity estimation approaches have worked with
values from the database, including uniform approxi-
mation and histograms. This paper shows that selectiv-
ity statistics as computed even from very large samples
of actual queries are radically different from those de-
rived using “static” analysis of the database, and that
the use of statistics derived from queries yields much
better selectivity estimation for predicates that actu-
ally appear in queries. This suggests that research on
selectivity estimation may have been emphasizing the
wrong issue. Rather than concentrating on improving
the precision of database statistics, perhaps more em-
phasis needs to be placed on classifying query loads
into categories within which queries display reasonably
consistent statistics, and on estimating based on selec-
tivity statistics derived from measuring the behavior of
actual queries from these query classes. There seems to
be relatively little data concerning selectivity statistics
from queries outside of the bibliographic and informa-
tion retrieval environment. This area calls for further
exploration.
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Table 1

Selectivity estimate values used by various Length(n, $) estimators for input keyterms not appearing on the
estimator’s list of n most cammon keyterms.

Length of LEN(5000,D) LEN(25000,0) LEN(5000,Q) LEN(25000,Q)

input keyterm estimate cstimate estimate estimate
2 86.4308 24.0760 197.5307 45.5159
3 30.0237 10.4747 193.8650 31.2523
4 21.3743 8.1082 200.3063 23.8138
5 15.0218 6.3543 197.8719 23.0159
(] 12.1657 5.5393 187.0229 23.2190
7 10.7595 5.1059 184.4071 21.5149
8 10.0285 4.8539 172.9779 20.4142
9 8.6586 4.5544 160.4237 18.5192
10 7.9595 4.2959 163.8453 19.0465
11 6.9992 4.0134 142.9688 19.2429
12 6.1356 3.7465 145.34083 17.7244
13 5.4916 3.4490 157.8668 19.1518
14 4.5296 3.1732 123.0083 16.8670
15 4.0559 3.0338 114.1361 16.1683
16 3.4247 2.7795 103.7550 19.3652
17 20238 2.5258 53.7007 15.7198
18 2.7111 2.3254 53.3232 11.6151
19 2.4987 2.2178 25.9162 10.6258
20 2.1248 2.0158 14.7368 11.1727
Table 2

Comparative Evaluation of Accuracy of Selectivity Estimators

OnD On Q On Q'

RMS Norm. RMS RMS Norm. RMS RMS Norm. RMS
Uniform(O,D) 438.7117 19.6863 14970.8874 86.2833 15262.7879 87.8218
Uniform(SOOO,D) 36.5123 6.4435 143.4466 7.5934 15262.7879 7.5404
Uniform(SOOO,Q) 169.9704 139.5262 106.4853 41.2332 102.8396 23,6115
Digrnm(SOOO,D) 36.2739 6.9228 142.1616 7.6410 144.9182 7.4999
Digram(SOOO,Q) 157.9533 127.5859 101.1532 39.1720 97.8610 23.1684
Digmr_n(SOOO,Q’) 177.5873 143.0888 102.1313 44.7559 97.9755 25.7701
Histngram(SOOO) 441.8301 99.1798 14555.9069 01.2785 14839.7162 02.9223
Length(SOOO,D) 36.2158 6.8400 141.8514 7.6875 144.5993 7.4995
Length(SOOO,Q) 154.4031 124.5423 105.7466 40.3043 102.3710 23.3572
Length(5000,Q') 176.9654 143.2313 106.5406 45.6190 101.6222 26.3108
Minvar(5000,D) 36.2743 5.2452 143.1128 7.5430 145.8945 7.5239
Minvm‘(SOOO,Q) 132.1300 105.4864 102.7227 34.6216 10.7255 20.5920
Minvar((SOOO,Q') 176.5009 142.7997 106.4962 45.5152 101.6222 26.3108
Uniform(25000,D 9.1298 2.9155 11.4930 1.8240 11.6836 1.6350
Uniform(25000,Q; 18.8942 15.9204 9.4498 4.8585 8.6645 2.6064
Digram(25000,D) 9.0590 2.9643 11.3539 1.8468 11.5364 1.6264
Digram(25000,Q) 18.5824 15.4162 9.0767 4.6790 8.3512 2.6204
Digram(?SOOO,Q') 24.1957 20.5051 9.6115 6.2455 8.031 3.3179
Histogram(25000) 438.8197 51.2145 14873.4377 86.4492 15163.4348 87.9912
Length(2SOOO,D) 9.0319 2.9652 11.2231 1.8789 11.3959 1.6185
Length(ZSOOO,Q) 17.4581 14.4929 9,3460 4.7534 8.6041 2.5938
Length(25000,Q ) 23.9356 20.3597 9.7343 6.3205 8.2685 8.3765
Minv:u‘(25000,D) 9.0510 2.5612 11.4675 1.7987 11.6613 1.6331
Minvar;| 25000,Q) 17.4111 14.4424 9.3363 4.7343 8.6041 2.5938
Minvar(25000,Q') 23.9300 20.2495 9.6987 6.2729 8.2602 3.3707
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