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Abstract 

When column values in a large dat.abase follow highly 
skewed distributions (such as Zipf distributions, typi- 
( ally found in textual dnt,abascs), qnery optimizers in 
c111 rem relat.ional syst,ems often fail to choose optimal 
query plans cvcn for simple single-relation queries. The 
rtrnjor cause of these optil+rization failures is incorrect 
predicate selectivity estimation; the likelihood and cost 
of such errors are quantified. A scheme for adding user- 
clrfin~~d selectivity estimators to a relational DBMS is 
propc,.:cd. The paper defines a series of new selectivity 
estimation methods that work well with highly skewed 
v&e distributions and then compares them to cur- 
rently used methods such as uniform approximation 
and histograms. Empirical data from a large biblio- 
graphic database is used throughout the a.nalyses in 
this paper. 

1. Introduction 

While current query optimizers such as those in Sys- 
tem R/DB2 [Selinger et al. 19791 or INGRES [RTI 
1986, Stonebraker et al. 19761 use elaborate algorithms 
to determine the best execution plan for multirelation 
joins, their ability to optimize relatively simple single- 
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relation queries is limited by their inability to estimate 
accurately predicate selectivity. For some applications, 
including textual and bibliographic databases, this lim- 
ita.tion is a major problem since column values are dis- 
tributed in an irregular fashion, and effective query op 
timization depends on t,he ability to correctly estimate 
selectivity of predicates. 

Section 2 discusses models of highly skewed column 
value distributions, which are based on Zipf distribu- 
tions. Actual data from a la.rge bibliographic database 
is used to parameterize and vnbdate the models pre- 
sented. The third section qmmtifies the effects of in- 
correct selectivity estimation in large databases where 
column values follow these distributions and shows that 
these errors are unacceptable. Section 4 defines a mech- 
a.nism for incorporating user-defined selectivity estima- 
tors into a relational database using an approach sim- 
ilar to that proposed for user-defined operators in pre- 
vious research [Stonebraker 19861. The final section 
proposes a series of new selectivity estimation methods 
that work well with highly skewed column value distri- 
butions on textual databases and compares the perfor- 
mance of these estimators with previous methods such 
as histograms and uniform approximation. 

This paper uses SQL for a query language. To 
avoid complexities involved in indexing textual data 
[Lynch & Stonebraker 1988], it is assumed that the 
DBMS is augmented to permit column values to be sets 
as proposed in, for example, [Zaniolo 19831. Zaniolo’s 
notation, adapted for SQL, is used: braces surrounding 
a datatype in a table definition indicate that the COE 
umn value is a set of that datatype, and the IN operator 
tests for membership in a set. This paper is concerned 
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vnly with sets of strings. It is a.ssnmed that the DBMS 
can buil(l ;I. B-tree index for elements of a set of st.rings 
by placing each element in t,hc B-tree, and that it. will 
me t,his B-tree sccondnry index to resulve set memher- 
ship (IN operator) predicates. SclecGvity estimat,ion 
for a %nndnrd” relntia>nal system with the IN opera- 
tor is assumed to be a direct extension of t,he uniform- 
disl ribution-b,ascd selectivity estimation traditionally 
used for equality predicates. This is detailed in Section 
3. While (*he paper considers IN-opernt,or predicates, 
t.he results are equally n.pplicnl~le to stnnclard equality 
predicates on columns with similarly distributed values. 

For a t,nble T, CARD(T) is t.he uumber of rows in 
t.he table. For an index I, CARD(I) is the total number 
of entries in t,he index. UNZQlJE(I) is the uumber of 
unique key values in an index I. The selectivity of a 
predicate is defined to be t.he fra.ctiou of the tuples in a 
relnt ion t,hat the predicate matches. Thus, a predicn.te 
with selectivity 5’ will select S*CA RD(T) rows from a 
table T. 

The empirical data in this paper is taken from a 
large bibliographic database used by the MELVYL@ 
online union catalog, a replacement for a traditional 
library card catalog that provides access to the hold- 
iugs of the libraries of the University of California nine- 
campus system. The MELVYL catalog is described in 
detail in [DLA 1987, Lynch 19871 and t,he references 
Chcre. 

2. Modeling Bihliogr:>phic Databases: 
Zipf Dis:triblltions 

A II onliuc library cat,alog is used as a concrete example 
in t.his paper. The crntrn.1 relation in such a da.tabase 
describes books and might be defined as: 

CREATE TABLE BOOKS 
(TITLE LONG VARCHAR, TITLE-KEYTERMS 

{VARCHAR}, 
SUBJECTS LONG VARCHAR, SUBJECT-KEYTERMS 

{VARCHAR}, other CO~UIS); 

Here, TITLEKEYTERMS and SUBJECT-KEY- 
TER.MS are sets of strings, the elements of which are 
(roughly speaking) the individual words comprising the 
book’s title and the subject headings assigned to the 
book. (See [Lynch and Stonebraker 19881 for full de- 
tails on keywords.) A typical online catalog user query 
would be “find all books with the word history in the 
title.” This would translate to an SQL query like 

SELECT * FROM BOOKS WHERE "HISTORY" 

IN TITLE-KEYTER!.tS; 

The set-valued columns TITLE-KEY Tk:RMS and 
SUBJECT-KEYTERMS are assumed to have sec- 
ondary B-t,ree indicts to support IN operator predicates 
as described above. The distribution of values in these 
indices is the major focus of interest. A simple, mnt,he- 

matically tractable, a.nd reasouably accurate first-order 
model of keyterm selectivity in bibliographic databases 
is provided by a discrete distribution called t,he Zipf 
distl ibution [Fedorowicz 19811. Many other authors, in- 
cluding [Knuth 1968, 1973, Christodoulakis 19841, also 
use t,he Zipf distlibut.ion more generally to model dis- 
tributions of vnlucs th:lt n.re highly uonul~iform, with- 
out specific reference t(o bibliographic databases. Word 
frequency distrihut.ions for many textual databases are 
known to follow Zipf or Zipf-like distributions. The Zipf 
distribution wit,11 parameter n, Zipf(n), is a set of prob- 
abilities pi, 1 5 i < n, where p; = l/i H,,. Here H,, is 
the nth h;umonic number, H,, = CL=, l/k. The dis- 
t,ribution is interprctcd a.s the probability bhat a given 
keyterm appears in i rows of the database is p;. The 
expected number of appearances of a keyterm is n/H,. 

The following (slightly rounded) values observed 
from the MELVYL catalog database provide real-world 
para.meter values for the Zipf distribution model. 

Rows in Books Table 4,000,000 
Unique Subject Keyterms 300,000 
Total Occurrences of Subject Keyterms 45,000,000 
1Jniqne Title Keyterms 1 ,ooo,ooo 
Total Occurrences of Title Keyterms 20,000,000 

While thk Zipf dist#ribution model is simple, ana- 
lytically tractable, irnd does capture the highly skewed 
nature of keyterm distributions, it is far from per- 
fect. The value for n in the Zipf distribution 
model for each of the keyterm indices can be deter- 
mined by observing that CARD(I) = UNIQUE(I) 

uaverage 
En, 

number of occurrences of a value in 
or CARD(Z)/UNIQUE(I) = n/ H,. For subject 

keyterms n/ H,, = 150, so n is 1143; for title keyterms 
n/Hn = 20, yielding n = 105. It is clear from these 
figures that, as is common with Zipf distributions used 
to model bibliographic databases, the match between 
the theoretical distribution and the empirical data is 
not close for the most frequently occurring terms. The 
most common terms in the actual title file, which con- 
tains about 950,000 keyterms, occur perhaps 70,000 
times. (There are six terms occurring more than 70,000 
times.) However, modeling this keyterm collection with 
Zipf(70,OOO) would imply much larger numbers of t* 
tal keyterm occurrences than actually are found in the 
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dabbase. 111 &lition, the standn.rd Zipf distribution 
le~lds to est.ilnntc iucorreclly the number of infrequently 
occurring terms. A Zipf (1143) JistJ,ibution would pre- 
tl ict tli at 1 ,OOO,OOO/ II 144s := 131,249 terms would occur 
ouly once. Jn act.uality, there arc SOJW 484,505 of these 
terms in the MISLVYL catalog title keyterm file. More 
cla.borate disbributions can be used to obtain more pre- 
cise models [Lynch 19871, but space considerations pre- 
clude a discussion here. 

3. The Effects of Selectivity Estimation 
Failure on the Performance of 
Current Optimizers 

Jn determining the evnluatiou plan for a siugle-relation 
conjunctive query involving several predicates, current 
syst,cms perform a selecbivity estimate 011 ea,ch predi- 
cate [Scl;,iger et al. 19793. This selectivity est,imate 
provides the approximate number of tuples from the 
target rclnt.ion hat sa.tisfies the predicate. Assuming 
that secondary indices exist for all predicates involved 
iu bhe query (which will be typical in a bibliographic 
retrieval environment), the query planner will choose 
the predicate it believes to be most selective (i.e., sat- 
isfied by the smallest number of tuples), use the index 
for that predicate to obtain the TIDs of the tuples sat- 
isfying the predicate, and then read these tuples and 
verify that they sn.tisfy the remaining predicates in the 
conjunctive query. Those tuples sa.tisfying all predi- 
cates comprise the result from the query. Consider the 
following two queries: 

SELECT * FROM BOOKS WHERE 
term1 IN TITLE-KEYTERMS AND term2 
IN SUBJECT-KEYTERMS; 

and 

SELECT * FROM BOOKS WHERE 
term1 IN TITLE-KEYTERMS AND term2 
IN TITLE-KEYTERMS; 

A current query planner will typically estimate se- 
lectivity for an equality predicate by assuming a uni- 
form distribution of column values when an index is 
available, or statistics on the number of unique val- 
ues appearing in a table for a given column are main- 
tained. Assuming a column C is indexed by an index 
I, selectivity of a predicate such as (C = due) will be 
estimated by l/ UNZQlJE(Z). For set-valued relations, 
where there can be more than one entry in the index 
for a single column value appearing in the relation, this 
formula must be generalized to estimate selectivity of 
the IN operator to CARD(I)/CARD(T) * UNIQUE(I). 
This uniform-distribution-based estimate gives an ex- 
pected selectivity of l/200,000 for title keyterms and 

3/80,000 for subject keyterms. The key point about 
uniform distribution selectivity estimation is that sclec- 
tivity is estimated independently of the constant that 
appears in the predicate. 

In the first query, System R or 1NGR.E will al- 
ways choose the predicate involving t.he title keytcrm 
since the selectivity of values in the title keyterm index 
is much smaller than the selectivity of values in the sub- 
ject keyterm index, and will use the title predicate to 
select rows to read and exir.mine. This may or may not 
be a good decision, depending OJI the values of term1 
and term2; in Jllilll)’ c‘ases a randomly selected subject 
keyterm will be more selective than a randomly selected 
tit,le keyterm. Specifically, if the subject keyterms are 
Zipf(m) and the t,itle keyterms are Zipf(n), the prob- 
ability that using the title predicate to select the ac- 

H (1) n- H cess path is correct is = 1 + w ,nH ~ 2H,. where 

H :’ = C;=“=, l/i”, th c n tl I grnera.lizcd harmonic num- 
ber. (Details of this and other computations are omit- 
ted here in the interest of space; see [Lynch 19871 for 
full details.) 

For m = 1143 and n = 105, this probability is 
.6768; thus, the selected pln.n is correct about two out 
of three times. 

In the second example query, the optimizer can- 
not differentiate between the selectivity of the first and 
second predicates involving title keyterms; it will ar- 
bitrarily select one. The likelihood that it will choose 
the more selective predicate is somewhat better than 
.5. (It is better than .5 because the two terms may 
have equal selectivity.) Assuming the distribution of 
keyterms modeled by Zipf(n), a similar computations 
shows that the correct choice will be mde with proba- 

bility l/ 2 + Hi2’/ 2H2,. 

For n -= 105 (the value for title keyterms), the 
probability that the correct plan is chosen is .5298. For 
n = 1143 (a query similar to the second example but 
involving $ubject keyterms rather than title keyterms), 
the probability that the planner selects the correct plan 
is .5142. The reason the probability is better than .5 
is that some l/H, of the subject keyterms only occur 
once; no matter which predicate is selected for the ac- 
cess path, the selection will always be correct at least 
that often (13% of the time for n = 1143). As queries 
become more complex, the likelihood that the planner 
will choose the optimal plan drops off quickly. Similar 
computations show that for n = 105, a five-term query 
only will be evaluated optimally with probability about 
.27. 
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Thus, t)he planner oft,cn v. ill select the wrong plan. 
This erroneous choice may not he disastrous if t.he se- 
lect.ed plan is only slightly suboptimaL If the sclect,ed 
pl<m requires an order of mngnibude more I/O thnu t,he 
optimal plan, however, the error is quite serious. To 
measure the effects uf bad plan selection due to iucor- 
rrct, selectivity estinmtion, the avcrnge uu*nber of I/O 
oper:lt,inns rcquirrtl for queries in the form 

SELECT * FROld BOOKS y!HERE terml IN TITLE-KEY- 
TERMS AND term.2 III SUBJECT-KEYTER!dS; 

will be conlput.ed over all pa.irs (terml, term!?) where 
term1 is a title keyterm and termZ?is a :.llbject kcyterm. 
Query plans will be selected both by using the System 
R/D132 Ig tl a ori 1111 and uuder the nssumpt.ion that the 
DBMS has perfect knowledge of predicate selectivity 
(and, thus, always selects the optima1 plan from the set 
of plans considered by System R/DB2 in tilis situation). 
We assume that the values of TITLE-KEYTERMS are 
Zipf(n) and that those of SUBJECT-KEYTERMS are 
%ipf(m). 

The average number of I/O operations required for 
plans selected by the System R/DB2 planner is sim- 

ply 5 i/iH, = n/ H,, since when a term that oc- 
i=l 

curs i times is used as the access path, i ren.ds are 
uecessary t,o obt.ain the corresponding tuples. 111 con- 
trast, if the planner always selects the optimized plan, 
t.hen the n.vcrage number of I/O operations per query 

is -= l/ ff,,ff,,& 
( 
(H,,, + 2)” - (n + 1) H,,) . For the 

special case m = n, this simplifies to (2n -- H,,)/ H,. 
The standard System R/DB2 plms require n/H, - 

Pn Hn)/ Hi = ((n + 1) H, - 2n)/ HE additional 
I/O operations, on average. 

For the first example query, the expected number 
of I/OS for a plan selected by System R/DB2 is 20.057. 
Always choosing the optima1 plan would produce an 
average of Il.4054 I/OS. For the second example, Sys- 
tem R/DB2 requires 20.0537 I/OS on average, again, 
while the average is 7.4691 for optimal plans. On a 
query ana.logous to the second exn.mple, but involving 
subject rather than title keyterms, System R/DB2 re- 
quires an average of 150.0184 I/OS, while the optimal 
plan only needs 39.2485 I/OS on average. The expected 
cost for the plan selected by DB2 diverges even more 
rapidly from the expected cost for the optimal plan for 
queries involving more than two terms. For example, 
with three conjuncts and n -105, the plan selected by 
DB2 still requires 20.0537 I/OS on average, while the 
optimal plan requires only 3.9873 I/OS. For three con- 
juncts and n = 200, DB2 plans average 34.0250 I/OS, 

while optimal plans avcrnge 5.5626 I/OS. 

4. Selectivity Estirmtion 

Previous query planners have defiued cst,imators by 
built-in formulas. The Syslem R/DB2 planner iucurpo- 
rates a numbor of hard-coded formulas [Selinger ct al. 
19791 to cstinlnte the selectivity of variolls prcdicnl,es 
hnviiig l,lie fo1.m (column relop due). The defi~~itioiis 
of user-suppliL<I cst.irnators for the user-&fined access 
met,hods given iu [Stouebrnker 1’3dG] also rely on for- 
muln.s. 111 ncldit+~n, with the exccp! il-bn of histograms 
iu comnrercial Ih”GR ES, exisfjing syet.ems estimate se- 
lectivity for m:>;.y types of predicates, such as (column 
; v&e), wit.hout rcfcrcnce bo vcrlue. Other predicat,es, 

such as (coll~mn < vtllue), are estimnt,ed usiug only sim- 
ple intcrpolat,ion col:lputations on the specified vulue 
(again, except when hist,ogrnms are used). A selectiv- 
ity estimate in current syst,ems is tailored to a specific 
relation, a specific distribution of colunm values, and 
a specific value appearing in a predicate only through 
reference to a few basic parameters, such R.S the over- 
all number of t,uples in the relation or the number of 
unique values that appear in t,he index on a given col- 
umn. Existing estimation formulas are quite genera1 
and consequently are not likely to be highly accurate 
for any specific predicate on a specific column of a spe- 
cific t.able. 

This paper proposes the incorporation of user- 
defined selectivity estimation procedures as a method 
of improving the accuracy of selectivity c&nation. 
These procedures may be of a.rbitrary complexity and 
may include both sophisticated algorithms and inter- 
nal lookups for exceptional cases using sizable data 
sbructllres built into the estimator procedures. Clearly, 
user-defined estimation procedures must accompany 
t,he user-defined operators currently being incorporated 
in various extensible datab‘ase systems such as POST- 
GRES [Stonebraker & Rowe 19851. However, there are 
compelling justifications for permitting user-defined es- 
timat,ion procedures to be supplied for built-in opera- 
tors as well: 

. Because of the tremendous variation between value 
distributions in different columns of a relation 
or from relation to relation, est.imation methods 
closely tailored to specific tables are required for 
precise estimation. 

. User-defined estimators permit the incorporation 
of application-specific knowledge into the estima- 
tion (and hence the optimization) process. For ex- 
ample, it may be known that longer words tend 
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to occur less frcqueutly or that a v:llue tlistribu- 
tion is rclntivcly 1111if0rm whcJ1 soJiie group of ex- 
cc’ptiuna.1 values is rc~~ioved. Exnl.:ples of the use 
of nl)plicnt,ioll-speciTIc kuowlcdge i ,i cstinl.4!1ion will 
he tlevelupcd ill Section 5. 

0 Sclcctivity eslmiators are use d to est,imate the se- 
lectivity of predicates appearing in queries. The 
stn&tics that c.linracPerize the selectivity of such 
p4icates may he dilfcrent, from the statistics that 
characterize a database. Given a large enough 
sn.mpling uf queries, it may be wort.hwhilc to ad- 
just I.he xrleclivit,y estimators to reflect l.hc biases 
of users qucryilrg t,he database. With some biblio- 
gr;iphic tl;il abases (particula.rly when users receive 
training bcforc using them), users t,end t.o ;lWJid t,he 
most commonly occurring keyt,erms because t,hcy 
have lit,tle retrieval precision ant1 produce uuwieldy 
query results. Sirniln.rly, a substantial number of 
predicat,, s of the form (colu7nn = value) actually 
fail to match any tuples in a public access infor- 
mation ret.rieval system (often because of a high 
incidence of keyboarding and spelling errors when 
queries ‘are entered and a lack of understanding of 
indexing pra.ctice by retrieval syst,em users). The 
effects of these phenomena can only be reflected in 
selectivity estimation by a user-defined estimator 
procedure. 

4.1 Definition Registry and Choice of 
Predicate Selectivity Estimators 

A predicate selectivity estimator is a procedure (either 
built-in or user-defined) that returns an integer giving 
t.he estimated number of tuples that will satisfy the 
predicate, and has as input parameters the predicate 
being estimated and st.atistical data JllailltaiJled by the 
DBMS about the t,able referenced in the predicn.te and 
any associated indices. 

A predicate selectivity estimator procedure is reg- 
istered with the DBMS through the directive 

DEFINE PREDICATE ESTIMATOR procedure-name 

By definition, all predicate estimators take the same 
input parameters and return the same result parame- 
ters. Thus, there is no need to enumerate the param- 
eter datatypes in the registration directive. A regis- 
tered estimator is attached to a user-defined Boolean- 
valued binary operator, operator-name, through the 
ESTIMATOR parameter that is specified by extend- 
ing t,he syntax of the DEFINE OPERATOR direc- 
tive [Stonebraker 1986]. Such an estimator is called 
the global default estimator for the operator in ques- 

tion. Built-in Boole:ln-valued binary operators, such 
as { = , < , > , < , 2 } on vn.rinus dn.tatypes, nre 
assumed to have global default estimators associntcd 
with lhem as well. 

Locnl est,iJJJators caJ1 be defined that take prece- 
dence over the global default cst,imator when predicates 
involve specific tables or specific colu~JlJis of specific ta- 
bles. Such locn.1 cstimn.bors are defined by associa.ting a 
regist,crcd estimator with au operator using one of the 
directives: 

ESTIMATE opewtor name WITH 
estimator-ntcme ON table-name 

ESTIMA’L‘E operutor-name Wl’I’H 
estimator-name ON table-nnme.column-name 

The first directive indicates that the specified estimator 
is to be used to estimate selectivity of predicates in the 
form (column relop value) where column is any column 
in the specified table. The second form of the directive 
defiJles the estilnator to apply to predicates of the form 
(column-name relop value). The query planner always 
uses the JJiost specific estimator ava.ilable to compute 
the selectivity of a predicate. 

5. Estimators for Predicates of the 
Form (value IN column) in Bibliographic 
Retrieval Systems 

This section describes the construction of an extremely 
accurate estimator for predica.tes of the form (term IN 
TITLE-KEYTERMS) as au example of the applicabil- 
ity of user-defined predicate selectivity estimators. The 
statistics of title keyterms in the MELVYL-database 
are typical of many bibliographic databases, and a sim- 
ilar a7.nalysis and approach can be used to develop es- 
timators for other predicate types such as (term IN 
SUBJECT-KEYTERMS). Section 5.1 discusses crite- 
ria used to measure the quality of estimators. Section 
5.2 briefly reviews prior work in both parametric and 
nonparametric estimators for selectivity and discusses 
why these prior approaches fail to meet the needs of 
bibliographic retrieval systems. Section 5.3 describes 
methods for actually constructing estimators. Finally, 
Section 5.4 uses the criteria described in Section 5.1 to 
evaluate the performance of the estimators developed 
using the proposed methods against other approaches 
discussed in Section 5.2. s 

5.1 Evaluating the Quality of Estima- 
tors: Measures and Sample Sets 

Let SEL(p) denote the true selectivity of the predicate 
p and let SELB (p ) d enote the estimated selectivity 
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conlputed lay some c:t.irllntor function E= The ni,:t,ric 
~o~u~nonly used in statistical alta.lysis to measure the 
cpality of an estiln;rtor E rclntive to a set P of predi- 
c;rt,es is the root n~ean squ(~1.e (1x’MS) error (cf [Bendat 
8r. Picrsol 13711, p. 170ff). RMS(E, Z’) is defined as 

‘- - - c (SEC(p) - SELa(p))Q. CAR D(P) I,EP 

If the average is used as the estimator, then the RMS 
crrur is cqun.1 t,o the standard dcvia.tion. The normal- 
ixecl RMS error, which measures t.he relative error of an 
cst,inln.tor, is written NRMS(I(:, f’) and defined as 

\I 
._~ .~ 

(SEL(p) SEL,q(p))2 
cARlI I’EP ,, 

l -- 1 --- spI (p)“.---.-’ 

We will be concerned with two main sets of prcdi- 
cates: the set D of all predicates of t(he form (v&e IN 
c0lum.n) where vulue appears in column for some row of 
the table, and a set Q of sample predica.tes taken from 
queries. Note that Q can contain predicates t.hat do 
not match a.ny tuples in the datab‘ase, while all pred- 
icates in D match at le,ast one tuple. The subset Q’ 
of Q consisting of those predicates in Q that ma.tch at 
least one tuple in the database will also be used. 

For the experimental resulbs given here, the set 
Q cont.ains 817,093 title keyterms t#hat were extracted 
from a sample of 885,930 MELVYL catalog FIND com- 
mands (of which 326,511 referenced bhe title keyterm 
index) recorded from public access MELVYL catalog 
termino.ls during part of 1986. These 817,093 keyterms 
were extra.ctcd from a total of 1,017,306 title keyterms 
nppen.ring in the FlND commands; t.he remaining title 
keyt.erms were discarded because they were stoplisted 
words not indexed in t.he MELVYL data.base, they con- 
tained invalid chara.cters, or they nc.tun.lly were partial 
match specifications for title keyterms. In this sn.m- 
ple of 817,093 title keyterms entered by users 80,151 
distinct title keyterms appear. Some 30,955 of the 
817,093 keyterms did not match arly keyterm in the 
MELVYL database; 6467 user keyterms retrieved ody 
a single book from the database. The least selective ti- 
tle kcyterms actually used retrieved 79,535 books’; these 
lenst selective keyterms were used 1363 times. 

The set D consists of the 951,008 different title 
keyterms that appeared in the MELVYL database as 
of December 12, 1986. This set was actually derived 
from a larger set of 954,531 terms, some of which can- 
not appear in user queries (because they have been sto- 
plisted but were partially indexed in the database prior 

to stoplisting, or because they contain chnrncters t,hat 
ca.nnot he entered by the user in a title kcyterm) and 
thus were eliminated from t,he sa.mple. Of the kcytcrms 
iu I,he set D, 484,505 keyterms are used only once. The 
two kcytcrms appearing most frequently in book t,it,les 
occur 143,554 snd 526,269 times, respectively. (There 
is some reason to argue that the most common keyterm, 
which appears 526,269 t,imes, should not be considered 
since it appears to be a keyt.erm that should have been 
stoplisted a.nd which appears rarely, if at a.11, in user 
queries.) 

5.2 A.n Overview of Prior Work on 
Selectivity I<stinlation Methods 

Parametric Methods 

The first parametric approach to selectivity estimn.tion 
was formalized in [Selinger et al. 19791 and assumed 
that the selectivity of index values was uniformly dis- 
tributed and that each v&e selected approximately 
CARD(T)/UNIQUE(Z) tuples. Inequality operators 
and range searching were carried out by further assum- 
ing that the distribution of values within the index was 
uniform between the high and low values appearing in 
the index, and then by using this distribution of values 
to estimate the number of values in the index satisfy- 
ing the inequality or range predicate. Once the number 
of values was known, the selectivity of the range could 
be readily computed. The method used to estimate se- 
lectivity based on uniform distributions has an obvious 
extension when applied to IN predicates as discussed in 
Section 3. 

More generalized parametric approaches were pro- 
posed by [Christodoulakis 1981] who suggested model- 
ing selectivity using a series of (univariate) Pea.rson dis- 
tributions which provides a range of distributions from 
uniform to normal (cf [Christodoulakis 19811, p. 62). 
The method assumes that for an index Z with low 
value ! and high value h the distribution of selectivities 
is given by some distribution Don the interval [.!!, h] 
which is either a discrete distribution (when values of Z 
are integers) or a continuous distribution (when values 
of Z are reals). 

The difficulty in applying parametric distribu- 
tions (other than the uniform distribution employed 
by Selinger, which has been shown to work poorly for 
bibliographic databases in Section 3) is that the in- 
dices are composed of character strings rather than 
integers or reals. A mapping from character strings 
to some interval of either integers or reals is required 
to apply nonuniform parametric estimation techniques. 
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The literature contains no co:!sideration of appropriate 
mappings, although there has been some work done 
on appropriate dist r.ihut,ions to describe bibliographic 
dnt.nbnses, which a:‘sumes that values appearing in an 
index have been mapped to an integer interval (typi- 
ca.lly through frequency ra.nking). Unfortunately, fre- 
quency ra.nking amounts to a map from strings to inte- 
gers d&nod Ly an explicit table. The storage for such a 
table will be nearly as large n.s the iudcx itself, render- 
ing it useless for most estimation processes. Certainly, 
thrrc is no map honk keyt.erms in n.lphabebical order, for 
example, t,o rank frcqucncy, which C~JI be determined 
by simple interpolation or other nont.nbular ~nethods. 

Nonparametric Estimation 

IK ooi 1980, Piatetsky-Shapiro, & Conuell 1984, 
C’hristodoulakis 19811 propose variations on a nonpara- 
metric estimabion met,hod ca.lled histograms. While 
their work seems to have been w&en with l.he estima- 
tion of selectivity for numeric keys in mind, it is easily 
extended to character-valued keys. The basic idea of 
hist.ogrnm estimation is that the ra.nge of key values is 
pa.rtit.ioned into a set of subranges RI, Ra,. . .,R,. This 
can be done either a.lgorithmically (for example, by di- 
viding the range from t! to h into fixed-length segments 
in the case of a numeric index), or by a table of explicit 
subrange demarcation points determined according to 
some criteria. Each subrange Ri is then modeled using 
some distribution Di. All three papers propose use of 
the uniform distriLution, but a.n a.rbitrary distribution 
could be used. 

The major difficulty with the currently proposed 
nonparametric methods for a bibliographic database is 
that they assume that ranges of keyterms in some nat- 
ural ordering (such as collat#ing sequence) have similar 
distributions, or at lea.st that using a uniform a.pprox- 
imation for the selectivity of moderate-sized groups of 
keyterms will be sufficient. The assumption of local 
%moothness” in the distribution does not hold true in 
practice. when terms are listed in collating sequence, 
selectivity varies wildly from term to term. 

5.3 Construction of an Accurate 
Selectivity Estimator for Title 
Keyterms 

Construction of a selectivity estimation procedure for 
title keyterms is approached by piecewise approxima- 
tion. First, frequently occurring keyterms are identi- 
fied: their selectivity is estimated precisely by main- 
taining an actual list of these keyterms and the num- 
ber of tuples they select within the estimator proce- 

dure. Subsection 5.3.1 gives both t,heoretical and cx- 
perimental n.ualyses of the tratle-off between mt*luory 
requirements and est,imator accuracy. 

For the remaining keyterms (which a.rc uot itlenti- 
fied a.s very commonplace), the overall approach is to 
pnrt.ition the set. of possible keyterms into class;cs, based 
on some application-dependent criteria, which GIJI be 
expected to col,lolJte with selectivity, and ~.IIcJ~ t.o cnl- 
culatc a uniform approximation for keyterm selectivity 
within each class. The estimator tont.nins lists giving 
the avera.ge vnhle to be used for each class. Once a 
class is assigned to 311 iuput keyterm, the selectivity 
estimate to be used is looked up in the list. The psrti- 
tioning mechaui?rns that are considered in Subsection 
5.3.2 are kcytcrm lenglh (the uumber of characters in 
the keyterm) and analysis of digrams (n.djaceut letter 
pairs) that occur in kcyterms. Keyterm length GIJI be 
expected to correlate to selectivity in that long words 
are used less often than short words; there is a natu- 
ral tendency in the development of language towards 
abbrevin.ting long words t,hat are fr( quently used, or 
supplanting them with shorter sy~lo~~y~ns. Digrarn frc- 
quency is a well. known “signature” of romance lm- 
guages and has been used for centuries in cryptn.nalysis 
[Kahn 13671. It is rensonable to expect that a word 
contn.ining an infrequently used digram will not be used 
often. 

Analysis of selectivity for those keyterms for which 
selectivity must be heuristically estimated (since t,hey 
are not explicitly listed in the estimator procedure as 
are frequently occurring keyterms) reveals an interest- 
ing and somewhat unexpected phenomenon. The se- 
lectivity statistics for keyterms zlsed in queries are rad- 
ically different than the statistics obta.ined by consid- 
ering all keyterms that occur in the da.tabase. This 
application-specific knowledge is also incorporated into 
the estimation algorithms of SubsecGon 5.3.2 by assign- 
ing the selectivity estimate con&ant for each keyterm 
class based on query statistics rather than database 
statistics. 

5.3.1 Selectivity Estimation for 
Frequently Occurring Keyterms 

A relatively small number of common keyterms (typi- 
cally about .5%) are responsible for much of the vari- 
ance in keyterm selectivity. These keyterms and their 
selectivities can simply be stored in a list in the esti- 
mator procedure. 

The following table demonstrates the relationship 
between allocating memory for lists of common terms 
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;~ntf their occurrence counts n.ud the HMS error (rela- 
tive to the set of D uf all predicates conta.ining all title 
keyt,erms a.ppearing in the dstn.base) when the average 
sclcctivity of the remaiuiug terms not stored in memory 
is used as a selectivity est,imator for these terms. 

Selectivity 

A pprox. cut-off for 

# terms storage terms lsted RMS 

in tnemory(K bytes) 
- .~~-__- --- 

50 51 
100 1 

200 2 

500 6 

1000 12 

2000 25 

5002 63 

10,013 127 

15,202 192 

20,111 255 

25,066 318 

50,343 639 

76,210 967 

96,678 1,227 

in memory el’ror 

26,QOS 307.8487 

17,431 264.7333 

12,241 219.2439 

6,434 150.5060 

3,477 105.4980 

1,723 68.7911 

634 36.4704 

269 20.8231 

158 14.4888 

110 11.2171 

82 9.0797 

31 4.4764 

17 2.8640 

12 2.2050 

5.3.2 Sdectivity Estimation for 
Infrequently Occurring Kcyterms 

If we ;tisume that m kcytcrms are listed explicitly in 
the estimator along with their selectivity, several ap- 
proa.ches cau be taken for estimating the selectivity of 
input keyterms that do not appear in the list of m 
keyterms. The simplest approaches use uniform ap- 
proximation for the remaining keyterms. The more 
elaborate (and hopefully more accurate) methods st- 
tempt to partition the remaining keyterms into keyterm 
classes so that the select.ivity for members of ea.41 
keyterm class can be well-approximated by a constant 
estimate over that keyterm class. This section defines a 
number of approaches a.nd in some cases provides em- 
pirical data supporting the use of the approach. Sub- 
section 5.4 actually compares the performance of the 
estimators defined here. 

Uniform Estimators 

A Uniform(m, S) estimator employs a list of the m 
terms that appear most frequently in the database 
and their selectivity; a selectivity estimate for an in- 
put keyterm that appears in the list is taken from the 
list. For keyterms tl1a.t do not appear on the list, se- 
lectivity is estimated by averaging the selectivities of 
all the keyterms that appear in the set S but are not 
among the mkeyterms explicitly listed in the estimator. 
Note that Selinger’s uniform approximation is simply 

Uniform(O,D). Table 2 can thus be considered C~ giving 
the RMS error for the series of estimates IJniform(n, 
D) on the set D. 

Length Estimators 

A J,cngth(m, S) .-t, ~3 imntor employs a list of the m 
terms t,hnt. nppcn.r most fl.oqucntly in the datahn.se and 
their sclect,ivity, and a list of keytcrm lengths and sclcc- 
tivity estimates for terms of that length. This second 
list is obt,ained by taking all terms in S that a.re not 
n.mong the m t(erms explicitly listed, grouping these 
terms by length, iI)ld then comput,ing the average se- 
lectivity for each group of terms of the same length. 

There is a significant correlation between length 
and selectivity; in addition, the average selectivity of 
keyterms appearing in user queries of a given length is 
quite different from the same list when computed using 
terms appearing in the database. Table 1 gives average 
selectivity va.lues by length for several different lcngt,h 
estimators bnsed both 0x1 datab:lse keyterms (the set 
D) a.nd keyterms from user queries (Q). 

Digram Estimators 

A Digram(m, S) estimator again employs a list of the 
m most frequently occurring terms in the database and 
their selectivity. Digram estimators use two additional 
lists. The first list contains all two-letter pn.irs occur- 
ring in database keyterms and the frequency with which 
each two-letter pair occurs. The second list is of all di- 
grams from terms in S (except for those in the list of 
the m most common terms) and a selectivity estimate 
developed by averaging the selectivity of all keyterms in 
S that have the specified digram as the least frequently 
occurring digram in the keyterm (based on the occur- 
rence frequencies for digrams in the database given in 
the first additional list). 

More precisely, for any digram 6, let FREQ(6 ) 
;= CARD({w E Dj w contains the digram 6 }) For any 
keyterm w, LFD(w), tl le 1 east frequently occurring di- 
gram in w, is defined as LFD(w) = 6, where 6 is 
a digram in w and FREQ(6 ) 5 FREQ(7) for any 
other digram 7 in w. For any digram 6, let S(6) = 
AVG(SEL(w)), h w ere this average is taken over the set 
{wlw E S - {explicitly listed keyterms} and LFD(w) = 
6 }. For any input keyterm not on the list of m most 
common keyterms, S(LFD(w)) is used as a selectivity 
estimate. 

There is a significant correlation between the value 
of a word’s least common digram and that word’s selec-’ 
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tivity. Again, there is a. subs:tal*tial variation bcl.ween 
I he &imated sclcct,ivity derived from the sets Q n.nd 
D, as \&I1 bhe lcugth estimators. Due to t!lc size of 
t,hc lists involved, howcvcr, they will not be reproduced 
here. 

Minimum Vnrinnce Estimulors 

A Miuva.r(,, S) estimator combines the lengt,h aad di- 
gra.m approaches. It employs a length estimator and a 
digram cst,imnt,or for input keyt,erms not on the list of 
m common kcyterms. However, it also includes lists 
of variances for the estimates provided by the lengt,h 
nnd digram est,imators nud s;clc& the cstimntc lvith 
the lower vn.rinnce for each input keyt.erm not explic- 
itly listed wit.1~ its selectivity in the list of the m most 
common keyterms. 

Iktogram Estimators 

A lIistogrnm(lc) t es imator is developed by choosing ev- 
ery /c th kcyterm (t;) from a list of all keyterms in D 
in alphabetical order, and associating with each one of 
these chosen keyterms a selectivity estimate developed 
by avern.ging the selectivity of t.he k - 1 keyterms in D 
immediately precceding the selected keyterm, plus the 
selectivity of the chosen kcyterm t; it.self. If an input 
keyterm w falls into the sequence of chosen keyterms 
on the list as t ,‘ < w < t ,,+,, then the estimated selec- 
t,ivit,y value for t ,L+i is ret.urned by the estimator. 

Based on the discussion in 5.2, these estimators 
should not be expect.ed to perform well in the biblio- 
graphic retrieval environment. However, since they are 
used by INGRES as a means of improving on the selec- 
tivity estimates of System R/DBP, their performance 
will be examined in comparison t.o the other estimators 
defined in this section. 

5.4 A Comparison of Estimator 
Performance 

Table 2provides RMS and normalized RMS values for 
the various estimators when applied to three predi- 
cate sets: D (all keyterms in the database), Q (all 
keyterms in user queries), and Q’ (all keyterms in user 
queries that match keyterms in the database). For 
t,hose estimators that use variable amourits of memory 
(all those except for the Uniform(0, S) estimator in- 
cluded for comparative purposes since System R/DBZ 
uses it), two memory sizes were used: about 5,000 terms 
in memory (requiring about 68KB) and about 25,000 
terms in memory (requiring about 318KB). While the 
estimators are listed as 5,000 and 25,000, actual values 

varied slightly because t.he cutoff for storage in mem- 
ory was by sclcctivity value, a.nd multiple keytcrms ex- 
isted with the desired selectivity dues. Consequently, 
for example, all of the est,imators except for the his- 
togram cst.inintors really used a v;llue of 4,333 r&her 
t,llan 5,000, and of 24,847 rather than 25,000. 

A uumber of conclusions can he drawn immedi- 
nt,ely from ‘Table 2. The rea.lly crucial performa.nce 
~~JEIII~CS are RMS and Ilormalized RMS on the set Q, 
&ice these fil;ures give a very good sense of how well the 
various eslimat,ors will perform on a.ctual user queries. 

Uniform approximnbiou never wf,rks well. 

Histograms do not work well either. Moreover, 
providing more memory to maintain finer his- 

tograms does not help. The variation in keyterm 
selectivity from term to term when they are ar- 
ranged in alphabetical order is so radical that in 
some cases a histogram with 25,000 partitions ac- 
t,ua.lly gives worse estimates than one with 5,000 
partitions. 

Alloca.ting enough space to list 25,000 rather than 
5,000 common terms ma.kes an enormous difference 
in estimator accura.cy. If the memory used by the 
cstimat.or is amortized over many users (as in a 
server model DBMS supporting a public access in- 
formation retrieva.1 syst,cm), it may be worthwhile 
to assign large amounts of memory to make critical 
estimators accurate. 

There is not a great deal of difference in the perfor- 
ma.nce of Length, Digram, and Minvar estimators 
for a given amount of,,memory. On the basis of 
simplicity, Length estimators thus seem to be the 
best choice. , 

The poor performance of the digram estimators is 
somewhat suprising since the digram estimators intrin- 
sically should contain more information than length es- 
timators. It may be necessary to use n-grams with 
n _> 3 to obtain more precise estimates, or to apply 
digram estimation in more elaborate ways. 

To gain some sense of how the various estimators 
would perform on keyterms appearing in actual user 
queries, comparisons for the estimators were also run 
on several randomly selected subsets of Q. The results 
of these comparisons are similar to those in Table 2 
and are not reproduced here due to space limitations. 
They show similar performance from Length, Digram, 
and Minvar estimators in most cases, suggesting that 
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the ex6ra complexity of D&ram and Minvar estimators 
ilrC 1lOt Wil.lYCLllteCl. 

Table 2 also illustrates another interesting phe- 
uomcnon. Estiluators bnscd on the sets Q and Q’ gen- 
erally display a smaller RMS error than those based 
on the set D. However, the normnlized RMS error for 
est,imn.tors based on the set D are typically lower than 
those based on t.he sets Q n.nd Q’. This lower nor- 
malized RMS error appears to be due to the fnct that 
est,imstors based on Q or Q’ use higher values than 
those based on D. As a result, they tend to ovcrcsti- 
mate selectivity by a larger facctor for terms t.hat ac- 
tua.lly occur only a few times. As a general rule, this 
type of estimatiou error is not terribly costly in terms of 
its effect on query plan cost; it results in a few unnec- 
essary I/O operations &her t,han a disastrous error. 
In fact, the construction of estimators with lists of the 
most commoiily occurring terms effectively guarantees 
that the planner will not make a totally disa.strous er- 
ror due to selectivity estimation error by choosing an 
unselective term as an access path. For a.ny estimator 
E, the worst-case error for a two-predicate conjunctive 
query (i.e., “SELECT * . . . WHERE X AND Y”) is 
maz{SEL(X) - SEL(Y)}, where SELE (X) 5 SELB (Y). 

Fnr the MELVYL catalog title keyterm index, the 
worst case for the Uniform(O,D) estimator used by 
System R/DB2 is >_ 100,000; for estimators such as 
Lcngth(m, S) or Digram(m, S), the worst-case error 
can be determined from Table 3 (as a function of m). 
For exa.mple, for m -= 5,000, the worst-case error is re- 
duced to 633; for m -: 25,000, the worst-case #error is 
reduced to 81. This reduction in the worst-case error 
is advantageous, as it leads to more consistent perfor- 
mance from the DBMS. 

6. Conclusions 

This paper has shown that current query pla.nners of- 
ten fail to select optimal plans even for simple queries 
in an environment where column values have highly 
skewed distributions. These errors result from the in- 
ability of current selectivity estimation methods to cope 
with highly skewed selectivity distributions and are 
very costly. To solve this problem, a general mecha- 
nism for incorporating user-defined selectivity estima- 
tion into an RDBMS has been proposed. New estima- 
tion techniques suitable for use with textual or biblio- 
graphic databases having highly skewed attribute selec- 
tivity were defined and compared to existing methods. 
It seems clear that the estimation techniques described 
here are useful in a bibliographic or textual database 
environment. It would be interesting to compare these 

estimation methods to more sta.ndard sel4vity esti- 
mation methods on text-oriented but nonbibliographic 
files, such n.s those found in business applications. If 
user-defined scleclivity estimation is to be iucorporated 
in extensible database systems, it will be necessary to 
develop tools n.ud theory to a.ssist in the creation of 
appropriate estimat(ors for various types of databases. 
This paper takes a first step toward this goal by dcfin- 
ing a set of performance measures for estimators, as 
well a.s culargiug the repertoire of available estimation 
met.hods. 

The user-dcfincd estimator scheme described here 
is actually a somewhat simplified version of [Lynch 
19871, which also provides user-defined estimators for 
AND and OR operators bet,ween predicates, and ex- 
tends the predica.te selectivity estima.tor definition to 
accommodate LIKE predicates. While techniques sim- 
ilar to those presented here can be used to estimate 
selectivity of LIKE predicates fairly effectively, estima- 
tion for AND and OR operators requires radica.lly dif- 
ferent techniques and seems to be a ~nucll more difficult 
problem. The experiments described in [Lynch 19871 do 
suggest that the simple estimators for AND and OR se- 
lectivity presented in [Selinger et al. 19791 do not work 
well in a bibliographic retrieval environment. 

The results presented in Table 2 also give rise to 
a speculation with far-reaching cousequences. To date, 
a11 selectivity estimation approaches have worked with 
values from the database, including uniform approxi- 
mation and histograms. This paper shows that selectiv- 
ity statistics as computed even from very large samples 
of actual queries are radically different from those de- 
rived using @static” analysis of the database, and that 
the use of statistics derived from queries yields much 
better selectivity estimation for predicates that actu- 
ally appear in queries. This suggests that research on 
selectivity estimation may have been emphasizing the 
wrong issue. Rather than concentrating on improving 
the precision of database statistics, perhaps more em- 
phasis needs to be placed on classifying query loads 
into categories within which queries display reasonably 
consistent statistics, and on estimating based on selec- 
tivity statistics derived from measuring the behavior of 
actual queries from these query classes. There seems to 
be relatively little data concerning selectivity statistics 
from queries outside of the bibliographic and informa- 
tion retrieval environment. This area calls for further 
exploration. 
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Table 1 

Selectivity estimnt,e values used by various Lcngth(n, S) estimators for input kcyterms not appearing on the 
estimator’s list of n mopt common keyterms. 

Cength of LEN(5000,D) J,EN(250OO,D) LEN(SOOO,(a) LEN(25000,Q) 
input kcyterm estimate estimate estimate estimate 

Uniform(O,D) 
Uniform( 5000,D) 
Uniform(5000,Q) 
Digmm(5000,D) 
Digram(5000,Q) 
Digmm(5000,Q’) 
Histogram(5000) 
Length(5000,D) 
Length(5000,Q) 
Length(5000,Q’) 
Minvar(5000,D) 
Minvar(5000,Q) 
Minvar( (5000,Q’) 
Uniform(25000,D 
Uniform(25000,Q 
Digrsm(25000,D) 
Digram(25000,Q) 
Digram(25000,Q’) 
Histogram(25000) 
Length(25000,D) 
Length(25000,Q] 
Length(25000,Q ) 
Minvnr(25000,D) 
Minvar 25000,Q) 

t Minvar 25000,Q’) 

2 86.4308 24.0760 1’37.531)7 45.5159 
3 30.0237 10.4747 lQ3.8ti50 31.2523 
4 21.3743 8.1082 200.3063 23.8138 
5 15.0218 6.3543 I Q7.6719 23.0159 
6 12.1657 5.53Q3 187.0229 23.2190 
7 10.7595 5.1059 184.4071 21.5149 
8 10.0285 4.8539 172.9779 20.4142 
9 8.6586 4.5544 160.4237 18.5192 

10 7.9595 4.2959 lG3.8453 19.0465 
11 G.QQQ2 4.0134 142.0688 19.2429 
12 6.1356 3.7465 145.3403 17.7244 
13 5.4916 3.4490 157.8668 19.1518 
14 4.5296 3.1732 123.0083 16.8670 
15 4.0559 3.0338 114.1361 16.1683 
16 3.4247 2.7795 103.7550 19.3652 
17 2.9238 2.5258 53.7OQ7 15.7198 
18 2.7111 2.3254 53.3232 11.6151 
19 2.4987 2.2178 25.9162 10.6258 
20 2.1246 2.0158 14.7368 11.1727 

Table 2 
Comparative Evaluation of Accuracy of Selectivity Estimators 

On D 

RMS Norm. RMS 

438.7117 19.6863 
36.5123 6.4435 

169.9704 139.5262 
36.2739 6.9228 

157.9533 127.5859 
177.5873 143.9888 
441.8301 99.1798 

36.2158 6.8400 
154.4031 124.5423 
176.9654 143.2313 

36.2743 5.2452 
132.1300 105.4864 
176.5009 142.7997 

9.1298 2.915s 
18.8942 15.9204 
9.0590 2.9643 

18.5824 15.4162 
24.1957 20.5051 

438.8197 51.2146 
9.0319 2.9652 

17.4581 14.4929 
23.9356 20.3597 
9.0510 2.5612 

17.4111 14.4424 
23.9300 20.2496 

RMS Norm. RMS .--.- c- RMS Norm. RMS 

14970.8874 86.2833 15262.7879 87.8218 
143.4466 7.5934 15262.7879 7.5404 
106.4853 41.2332 102.8396 23,6115 
142.1616 7.6410 144.9182 7.4999 
101.1532 39.1720 97.8610 23.1684 
102.1313 44.7559 97.9755 25.7701 

14555.9069 91.2785 14839.7162 92.9223 
141.8514 7.6875 144.5993 7.4995 
105.7466 40.3043 102.3710 23.3572 
106.5406 45.6190 101.6222 26.3108 
143.1128 7.5430 145.8945 7.5239 
102.7227 34.6216 10.7255 20.5920 
106.4962 45.6152 101.6222 26.3108 

11.4930 1.8240 11.6836 1.6350 
9.4498 4.8585 8.6645 2.6064 

11.3539 1.8468 11.5364 1.6264 
9.0767 4.6790 8.3512 2.6204 
9.5115 6.2455 8.031 3.3179 

14873.4377 86.4492 15163.4348 87.9912 
11.2231 1.8789 11.3959 1.6185 
9.3460 4.7534 8.6041 2.5938 
9.7343 6.3205 8.2686 3.3765 

11.4675 1.7987 11.6613 1.6331 
9.3363 4.7343 8.6041 2.5938 
9.6987 6.2729 8.2602 3.3707 

On Q On Q’ 
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