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Abstract 

Query optimizers translate a high-level, user-submitted 
query into an efficient plan for executing that query, 
usually by estimating the execution cost of many dif- 
ferent alternative plans. Existing implementations of 
these sophisticated but complex components of rela- 
tional database management systems (DBMSS) typi- 
cally embed the available strategies in the optimizer 
code, making them difficult to modify or enhance as im- 
proved strategies become available. In the last few years, 
interest in making DBMSs customizable for new appli- 
cation areas has magnified this need for flexible spec- 
ification of execution strategies in a query optimizer. 
Several researchers have recently proposed query opti- 
mizers that are generated from rules for transforming 
plans into alternative plans. However, little progress 
has been reported on developing an implementation de- 
sign that satisfies the requirements for high degrees of 
both flexibility and performance in an extensible query 
optimizer. 

This paper presents a design for implementing a 
query optimizer that interprets a new kind of compo- 
sitional rules for specifying alternative execution strate- 
gies that are input to the optimizer as data. Modifica- 
tions to these function-like rules do not necessitate re- 
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compilation of the query optimizer, providing greater 
flexibility. Yet the interpretation, which resembles a 
macro expander, is so simple that a large number of 
rules can be processed efficiently. We describe the inter- 
preter’s data structures and algorithm, and relate these 
to the experience we gained from implementing an ex- 
perimental prototype of this interpreter for the Star- 
burst extensible database system at the IBM Almaden 
Research Center. 

1 Introduction 

New advances in relational database management sys- 
tem (DBMS) technology have introduced problems as 
well as benefits. New access methods, join algorithms, 
etc. now enable us to process queries more quickly and 
efficiently than before. But they also have highlighted 
the difficulty of modifying existing DBMSs to incorpo- 
rate these new techniques. One component of DBMSs 
that has proven especially difficult to modify is the query 
optimizer. The task of translating a high-level, user- 
submitted query into an efficient query evaluation plan 
(QEP, or just “plan”) has traditionally resulted in so- 
phisticated, but complex, implementations of the opti- 
mizer. As a result, database implementers have been 
slow to incorporate advances in technology into opti- 
mizers. Extensible DBMSs make extensible query opti- 
mizers even more critical. 

Query optimizers generally consist of three major 
components: feasible plan generation, search strategies, 
and cost functions. The plan generation component cre- 
ates alternative QEPs for executing a given query. The 
order in which these QEPs are evaluated is specified by 
the search strategy. Cost functions are used to assess the 
desirability of a QEP and to select the cheapest. The 
goal of extensible query optimization is to develop a flex- 
ible specification of each of these components and avoid 
embedding specific execution plans, cost functions, and 
search strategies in the code. Search strategies and tech- 
niques for the costing of QEPs are fairly well under- 
stood. However, specifying alternative QEPs in a way 



that facilitates extensibility has proven difficult. Our 

efforts have concentrated on the problem of alternative 
QEP generation because of the limited progress in this 
area to date. 

A number of researchers have realized the importance 
of extensible DBMSs in general and extensible query 
optimizers in particular. Projects such as EXODUS 
[C*86], PROBE [DS85], GENESIS [B*86], DASDBS 
[P*87], Postgres [SR86], and Starburst [S*86],[H*88] 
have dealt with extensibility in DBMSs, and Freytag 
[Fre87] and Graefe/DeWitt [GD87] have addressed some 
of the difficulties of extensible query optimization. The 
difficulty of specifying the repertoire of alternative QEPs 
in a high-level, declarative manner has prompted Frey- 
tag and Graefe/DeWitt to propose using transforma- 
tion rules to alter plans. However, existing optimizers 
based on plan transformation rules require sophisticated 
pattern-matching to determine the eligibility of rules, 
and at any point in the processing, a large number of 
rules may be eligible for application. Lohman [Loh87] 
has suggested strategy rules as an alternative to plan 
transformation rules. His “building-blocks” approach, 
similar to Batory’s molecular approach [Bat87b] and 
to a functional programming language [Bac85], solves 
many of the problems of plan transformation rules. 

This paper describes a design for implementing plan 
generation in an optimizer by interpreting Lohman’s 
strategy rules, in a way that both performs well and 
cleanly separates the plan generation, cost estimation, 
and search strategy components to facilitate extensi- 
bility [Fre88]. Our d iscussion will concentrate on the 
generic problem of generating and costing plans, rather 
than on a specific set of strategies or algorithms for de- 
ciding among those strategies. Section 2 summarizes the 
structure of Lohman’s rules, their use to generate plans, 
and the association of cost and other properties with 
plans. It then motivates the design we present in Sec- 
tion 3 by discussing the advantages and disadvantages 
of possible implementation approaches. We decided to 
develop our own special-purpose rule processor rather 
than use an existing rule processor, due to the structure 
of our strategy rules and our desire to maintain detailed 
control over the order of evaluation. Section 4 describes 
the state of the existing prototype, along with the prob- 
lems that arose and the solutions that resulted from this 
work. In Section 5, we present the conclusions we have 
drawn from our work thus far. 

2 The Strategy Rules 

The strategy rules we use to transform an internal repre- 
sentation of user-submitted queries into efficient QEPs 

are called STrategy Alternative Rules (STARS), [Loh87]. 
Since a processor for STARS necessarily depends upon 
the structure of those STARS, we first summarize their 
important characteristics. 

2.1 STARS 

Like the rules that Graefe and Dewitt [GD87] and 
Freytag [Fre87] d escribe for transforming plans, STARS 
provide a high-level, declarative, implementation- 
independent specification of the legal strategies for ex- 
ecuting a query. However, STAR.s differ from these 
rules in that they describe how to build higher-level 
constructs from primitive operators, rather than how 
to transform the primitive operators. They therefore 
resemble more the molecular rules in GENESIS, which 
Batory uses to build complex “molecules” out of sim- 
ple Umolecules”, which ultimately are combinations of 
“atoms” [Bat87b]. Batory uses this approach for all of 
GENESIS, whereas STARS are used only in query opti- 
mization in Starburst. 

STARS resemble a functional programming language 
[Bac85] in both function and form. Each STAR defines 
a named, parameterized object in terms of one or more 
alternative definitions. Each alternative definition may, 
in turn, be defined in terms of (invoke) one or more 
other STARS or primitive operators called LOw-LEvel- 
Plan-Operators (LOLEPOPs), specifying arguments for 
the parameters. The arguments may themselves be in- 
vocations of STARS or LOLEPOPs. A query evaluation 
plan (QEP) is a nesting of invocations of LOLEPOPs, 
which, when interpreted at run-time, execute the given 
query. The inputs to a LOLEPOP are specified as pa- 
rameters of that LOLEPOP. As in the definition of a 
function, each alternative definition may have a condi- 
tion which determines the applicability of that alterna- 
tive. The conditions for alI alternative definitions of 
a STAR need not be exclusive: if the conditions on 
multiple alternative definitions are true, alI alternatives 
having a true condition will be invoked, and multiple 
(alternative) plans may be returned. Conditions may 
reference the parameters of the STAR as well as global 
information available to the optimizer, such as catalog 
information and the number of buffers. 

STARS also resemble somewhat the production rules 
of a grammar. The named, higher-level constructs de- 
fined by STARS are analogous to “non-terminals” in a 
grammar, and the LOLEPOPs are similar to “termi- 
nals”. However, STARS differ from productions in that 
they allow conditions of applicability for each alterna- 
tive, invocation parameters, and the generation of mul- 
tiple plans (grammars seek to find a unique parsing of 
an input set of tokens). 
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The following example illustrates a simplified set of 
STARs to access a given table. The structure of STARS, 
not the specific details of the functionality of these sim- 
plified STARS, is the important concept here. In all 
examples, we will print non-terminals (STAR names) in 
normal font, terminals (LOLEPOPs and constants) in 
bold, and parameters in italks The parameter T is 
the stored table, C is the set of columns to be accessed, 
P is the set of predicates to be applied, i is the index to 
be used, and StoremType is the type of storage manager 
for a database object l. 

TableAccess (T, C, P) = 

[ 

TableScan(T, C, P) 
Vi E I(T) : GET(TableScan(i, {TID} , P), T, C, P) 

IF CONDITION1 

The TableAccess STAR accesses a stored table and re- 
turns the specified columns of the stream of tuples that 
satisfy the given predicates. When TableAccess is in- 
voked, the alternative definitions on the right side of 
the equality that have true or non-existent conditions of 
applicability will all be invoked (denoted by the squaTe 
bracket). Since TableScan has no condition, it will al- 
ways be invoked to scan the table. If CONDITION1 
is true, the second alternative will be invoked once for 
each i in the set I(T) of indices of table T to access in- 
dex i, and the resulting stream of tuple identifiers (TIDs) 
will be used to GET columns C from table T. 

This example is a simplification of the TableAccess 
STAR actually used in Starburst. To keep the example 
concise, we have allowed the invocation of Table&an 
in the second alternative to go unnecessarily to the data 
pages even if the required columns can be obtained from 
the index. That alternative will also apply the set of 
all predicates P twice, once while accessing the index 
and again while accessing the data pages. This redun- 
dancy can be eliminated using slightly more sophisti- 
cated STARS. 

I 
ACCESS(Heap, T, C, P) 
IF Storage(T)=‘heap’ 

TableScan(T, C, P) = 
i 

ACCESS(Bkree, T, C, P) 
IF Storage(T)=‘BTree’ 

I 

ACCES%(Rkee, T, C, P) 
IF Storage(i)=‘RTree’ 

The TableScan STAR will map to only one (denoted by 
the curly brace 2 ) of three (exclusive) alternative defi- 
nitions - a Heap BTree or RTree access - depending 

‘In Starburst, an object such as a table or index can be main- 
tained in the database in different data structures by alternative 
types of storage managers [LMP87]. 

lThe distinction between a square bracket and a curly brace is 
redundant and for readability only; whether the condition func- 
tions for all alternatives are mutually exclusive or not is deter- 
mined solely by their definitions. 

on the type of the storage manager of table T. Since 
ACCESS is a LOLEPOP, Heap BTree and Rqee 
are constants, and T, C, and P are parameters that will 
be instantiated, the resulting plan is fully specified in 
terms of known quantities. A valid QEP has thus been 
generated that will execute the given query at run-time. 

As STARS are invoked, non-terminals are replaced 
with alternative definitions, and arguments are substi- 
tuted for parameters. This process continues until all 
non-terminals have been replaced with LOLEPOPs, at 
which point a set of valid QEPs has been created. 

The advantages of STAR-based query optimization 
are detailed in [Loh87]. While plan transformation rules 
frequently involve complex pattern-matching to deter- 
mine the eligibility of a rule, STARz are invoked directly 
by name, subject only to the condition of applicability 
for that invocation. Furthermore, the resulting hierar- 
chy of STAR invocations has a fanout that is limited 
by the number of alternative definitions for each STAR. 
In this example, TableAccess has only two alternative 
definitions, while TableScan has only three. 

2.2 Properties of Plans 

Properties are characteristics of a plan that describe the 
net result of the initial properties of its tables and the 
work done by that plan [GD87], [Bat87b], [RH86]. We 
group properties together as a property vector. Unlike 
Graefe and Dewitt [GD87], we treat the plan’s esti- 
mated execution cost as any other plan property. Exam- 
ple properties include relational properties (such as ta- 
bles and columns accessed, and predicates applied thus 
far), physical properties (like the order of tuples, and 
the site of the result), and estimated properties (includ- 
ing the cost to produce a plan and the cardinality of the 
result) [Loh87]. Properties are initially derived from the 
database catalogs for each stored table or access method 
used by a plan, and are subsequently altered by the ad- 
dition of LOLEPOPs to the plan. The changes that are 
made by a LOLEPOP to a plan’s properties are defined 
by a property function for that LOLEPOP type, which 
is defined in the C programming language. Once our 
STAR processor has reduced a STAR invocation to a 
nested invocation of LOLEPOPs, the property function 
for each of its LOLEPOPs is invoked to derive the re- 
sulting properties of that plan. The query optimizer 
will keep the cheapest QEPs having distinct properties, 
which we will call the set of “good plans”. 

2.3 “Glue” Mechanism 

Some LOLEPOPs, notably the JOIN LOLEPOP, re- 
quire certain properties of their input streams. For ex- 
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ample, all dyadic LOLEPOPs (JOIN, UNION, etc.) 
require both input streams to be co-located at the same 
site, and the sort-merge flavor of JOIN requires both 
streams to be sorted on their respective join columns. 
This prompted the need for a “Glue” mechanism that 
finds the cheapest plan that satisfies a certain set of re- 
quired properties [Loh87]. “Glue” augments each QEP 
in the set of “good plans” for a given table T (to be dis- 
cussed in Section 3.2.1) with additional LOLEPOPs, so 
that its properties match those required, and the cheap- 
est of these augmented plans is returned. For example, 
any plan not in the required tuple order would have a 
SORT LOLEPOP added, and any plan not resulting at 
the required site would have a SHIP LOLEPOP added. 
As with other execution strategies, the Glue mechanism 
can be specified using STARs; space constraints prevent 
our giving the details here. 

2.4 The Implementation of STARS 

Having summarized the form and important character- 
istics of STARS, we turn now to the implementation of a 
rule processor for the STARS. The design of the STAR 
processor was motivated by the desire to produce an ex- 
tensible, flexible optimizer that gives us control over the 
order in which STARS were processed. We considered 
a number of alternative architectures in light of our ob- 
jectives. This section discusses these objectives and how 
well each alternative satisfies them. To meet alI of these 
objectives, we decided to develop our own interpreter for 
STARS, whose design is described in the next section. 

Our first objective was to separate the implementa- 
tion of plan generation, search strategy, and cost func- 
tions, to isolate each component from changes to the 
other [Fre87], [Fre88]. 0 ur second objective was to exer- 
cise detailed control over the order of evaluation among 
alternative definitions and among arguments within a 
STAR. Control should not be surrendered to the defaults 
of a compiler or an interpreter. It should be possible for 
the database customizer (DBC) who defines the STARS 
to initialize these orders, and for the STAR processor 
to alter them automatically during processing, For ex- 
ample, we may choose to evaluate the easier arguments 
before the more difficult ones, or a function before its 
arguments. If the alternative definitions of the function 
are all false, a potentially lengthy argument list may not 
have to be evaluated. In addition, maintaining control 
over evaluation gives us the opportunity to exploit par- 
allelism in execution. 

With these objectives in mind, we considered several 
architectures for implementing STARS. Given the sim- 
ilarity of STARS to functions, one way to implement 
each STAR is as a function defined in the C program- 

ming languagea. In the body of each STAR’s defini- 
tion, each alternative definition would be an expression 
in C invoking other functions (STARS or LOLEPOPs), 
preceded by its condition of applicability as an IF con- 

struct. The C compiler would automatically map the 
arguments of each function invocation to the parameters 
of its definition, so no “STAR processor” would need to 
be constructed! Although this procedural method is rel- 
atively easy to understand and implement, and exploits 
the natural function-like specification of the rules, it re- 
linquishes control of the order of evaluation of the rules 
to the compiler, which automatically evaluates argu- 
ments before functions [KR78]. This inflexibility made 
the procedural method too restrictive for our purposes. 

Another possible way to represent STARs is as PRO- 
LOG rules. In such an implementation, the STAR pro- 
cessor would be a PROLOG interpreter. The inherent 
unification capabilities of a PROLOG interpreter would 
simplify our work; however, a PROLOG interpreter is 
more general-purpose than we need, and does not exploit 
the hierarchic structure inherent to query optimization. 
For example, the order in which tables are joined must 
be decided before any access paths for those tables can 
be picked, since the join sequence determines what pred- 
icates are eligible to be applied by an access path. As 
Graefe and Dewitt discovered in a prototype, general- 
purpose rule interpreters usually perform poorly in com- 
parison to specialized interpreters and compilers which 
exploit the structure of the application [GD87]. 

The similarities of STARS to the production rules of a 
grammar prompted us to consider a compiler generator 
like YACC [UN1841 to process STARS. However, STARS 
are sufficiently different from productions to make this 
difficult. STARS have conditions of applicability and 
parameters, which productions do not permit. Further- 
more, grammars are typically used by parsers to find one 
sequence of terminals that match an input stream of to- 
kens, whereas we wish to generate all such sequences. 

Finally, STARS’ resemblance to functional program- 
ming suggests a functional programming processor to 
evaluate STARS. Although some prototype processors 
for functional programming languages have been re- 
ported [Bac85], to our knowledge, there is no existing 
processor for a major portion of any such language. 
Additionally, processors for functional languages are no 
more likely to allow us control over the order of evalu- 
ation than the compilers for C, PROLOG, or any other 
general-purpose programming language. What we have 
developed is essentially a processor for a fairly large 
subset of a functional programming language, with the 
added capability to control the order of evaluation. 

sC was considered simply for compatibility reasons with the 
rest of the Starburst project. 
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To achieve the objectives we described above and to 
overcome the limitations of the above alternatives, we 
developed a novel design. We are implementing that de- 
sign in C, but STARs are not represented as C functions. 
To provide control over the generation of a QEP, we con- 
trol the interpretation of the rules. Rather than compile 
the rules, as Batory and Graefe/DeWitt do, we inter- 
pret them to maximise flexibility. In an early prototype, 
Graefe and Dewitt tried and rejected as too slow an in- 
terpreter of their rules [GD87]. However, STARS can 
be interpreted more efficiently, because they avoid the 
pattern matching required by unification in plan trans- 
formation optimizers. Since STARS are input data to 
the rule processor, we do not need to recompile the en- 
tire optimizer whenever a new rule is added. Thus, the 
strategies available for optimizing two queries within a 
single program may differ, simply by changing the STAR 
input file! As data, STARS may be readily shipped to 
another site as a compact encapsulation of the strate- 
gies that any site can perform. This is likely to prove 
invaluable for optimization in heterogeneous distributed 
databases. 

A potential limitation of our design is that we must 
rely on the DBC to define the rules properly, i.e. so that 
they terminate. We have no way of testing the validity 
of the rules in the rule base. This requirement is similar 
to Graefe’s soundness and completeness requirements on 
his rule set [Gra86], [RH86]. Despite this restriction, 
the design, which we detail in the next section, provides 
the flexibility and control we needed for our rule-based 
optimizer to achieve the objectives we presented above. 

3 The STAR Interpreter 

This section describes our design for an interpreter of 
STARs, which is currently being implemented in Star- 
burst. An early prototype of this interpreter has been 
completed, and is detailed in Section 4. 

3.1 Environment 

To give some context, we first describe how optimization 
fits into the query processing sequence in Starburst, and 
how the rule-based generation of plans fits into the op 
timization scheme. More details can be found in [H*88]. 

3.1.1 Query Processing Sequence 

The language in which queries are submitted to our sys- 
tem is an extensible variant of SQL [H*88]. The steps 
to compile a statement into an Executable Query Evalua- 
tion Plan (EQEP) are shown in Figure 1. As the query is 

lexed and parsed, a semantic representation of the query 
called a Query Graph Model (QGM) is constructed and 
used to check the semantics of the query. QGM acts 
throughout query processing as an in-memory database 
for the query, caching the catalog information on the ta- 
bles, columns, and predicates referenced in that query, 
as well as the relationships between them that are cre- 
ated by the query. QGM Optimization then makes se- 
mantic transformations to the QGM, using a distinct set 
of sophisticated rewrite rules that transform the QGM 
query into a “better” one, i.e., one that is more effi- 
cient and/or allows more more leeway during Plan Opti- 
mization. If alternative QGM representations are plau- 
sible depending upon their estimated cost, then all such 
alternative QGMs are passed to Plan Optimization to 
be evaluated, joined by a CHOOSE operator which in- 
structs the optimizer to pick the least-cost alternative. 

Using the QGM representation of the query as input, 
Plan Optimization then generates and models the cost 
of alternative plans, where each plan is a procedural 
sequence of LOLEPOPs for executing the query. The 
least-cost plan, called the Optimized Query Evaluation 
Plan (OQEP), is passed to Plan Refinement, which trans- 
forms this “skeleton” plan into a detailed Executable 
Query Evaluation Plan (EQEP) that will be stored in the 
database and interpreted at run-time. For the remain- 
der of this paper, we will focus exclusively upon Plan 
Optimization, and will refer to that component simply 
as “the optimizer”. 

3.1.2 Query Optimisation 

For a given QGM, the top level of the optimizer per- 
forms plan optimization “bottom up”, constructing new 
plans that join together optimal plan fragments. This 
dynamic programming strategy is basically the same as 
that used in System R [S*79] and in R* [L*85], except 
that it invokes our STAR processor to evaluate alterna- 
tive strategies for each table access and join. It first in- 
vokes the access-path rules of our STAR processor, once 
for each stored table, to construct the possible plans for 
accessing individual tables, applying only single-table 
predicates. A least-cost plan is retained for each set of 
tables accessed thus far having different properties - e.g. 
having different tuple orderings, result sites, or predi- 
cates applied. These “good plans” are the “atoms” with 
which we construct “molecules”. Next, the top level of 
the optimizer invokes the join rules of the STAR pro- 
cessor, once for each pair of tables that may be joined, 
to evaluate alternative plans for joining those tables. 
The plans created by these rules point to other plans in 
the set of “good plans” that produce the inputs to the 
join [Loh87]. The plans with various interesting prop- 
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Figure 1: Major components of Starburst query processing. 

erties created by the join rules are added to the set of 
“good plans”, and are subsequently used by later invo- 
cations of the join rules, building ever larger “molecules” 
from smaller “molecules” and “atoms”. This “building 
blocks” process repeats, adding more tables to the plans 
with more joins, until we have a “best plan” having all 
tables joined. This bottom-up approach ensures that 
new plans contain only fully optimized plan fragments, 
which will not be altered subsequently, and thus saves 
having to find and re-evaluate the cost of every plan that 
has incorporated that fragment. 

Each of the above invocations of the STAR proces- 
sor can be thought of as an invocation of a particular 
root STAR, so it must specify the STAR’s name and 
arguments to instantiate that STAR’s parameters. The 
STAR processor then uses the definition of that root 
STAR to expand its invocation into its alternative invo- 
cations, and so on iteratively until the ihvoCatiOnS are 
fully expanded plans, i.e., are nestings of LOLEPOPs. 
This process will be explained fully in the next section. 
The STAR processor next evaluates the properties of 
each such plan, including accumulated estimated cost, 
and retains the plans having distinct properties, before 
returning control to the top level of the optimizer. 

For example, to generate all the single-table access 
plans to retrieve columns NAME and ADDRESS from 
table EMP and apply predicates EMP.SAL < 30000 
and EMP.AGE > 45 , the optimizer’s top level 
would invoke the STAR processor with arguments 
Table Access, EMP, {NAME, ADDRESS}, and 
(EMP.SAL < 30000 ,EMP.AGE > 45 } . Then 
the STAR processor might generate from this invoca- 
tion the following two fully expanded alternative plans: 

ACCESS(Heap, EMP, {NAME, ADDRESS) , 
{EMP.SAL < 30000 ,EMP.AGE > 45 ) ) 

This plan, when executed at run-time, will simply 
ACCESS table EMP using the Heap storage man- 

ager, retrieving columns NAME and ADDRESS while 
applying the predicates on columns SAL and AGE. The 
second fully expanded alternative might be: 

GET(ACCESS(BTree,INDEXl, {TID} , 

EMP.AGE > 45 ), 

EMP, {NAME, ADDRESS) , 

EMP.SAL < 30000 ) 

(where INDEX1 is an index of EMP on column AGE). 
This neated plan, when executed, will first ACCESS 
the index INDEX1 with the BTree storage manager 
while applying the predicate on AGE, resulting in a 
stream of tuple identifiers (TIDs) that satisfy that pred- 
icate. This stream is then the input (first argument) to 
the GET operator, which retrieves columns NAME and 
ADDRESS from table EMP while applying the pred- 
icate on SAL. This second plan results in a stream of 
tuples in AGE order, whereas the first plan has no par- 
ticular order (since EMP is stored using the Heap stor- 
age manager), so both plans for accessing EMP would 
be retained, and control would be returned to the top 
level of the optimizer. 

3.2 STAR Processor Structure 

We now de,scribe how the STAR processor translates 
a single STAR invocation into a set of alternative, fully 
expanded plans whose properties have been determined, 
beginning with the data structures on which that pro- 
cessing depends. 

3.2.1 Data Structures 

Only four simple data structures are needed by the 
STAR processor: (1) the STAR array, the internal rep 
resentation of STARS; (2) the set of “good plans” with 
distinct properties; (3) the Invocation Tree to keep track 
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of STAR invocations; and (4) the “To Do” list of invo- 
cations in the Invocation Tree yet to be evaluated. The 
first two are retained throughout optimization, whereas 
the last two are created in working space that is allo- 
cated for each invocation of the STAR processor, in or- 
der to minimize the space needed and to eliminate the 
need for garbage collection. The structure and use of 
each data structure will be discussed in turn. 

The STAR array is an input to the optimizer that 
stores the internal definition of each STAR. It remains 
unchanged throughout optimization. The entry for a 
given STAR points to all of its alternative definitions. 
Each alternative definition contains an invocation of an- 
other STAR or a LOLEPOP, as well as the name of its 
(optional) condition function, which is a C function to 
test whether that alternative is applicable or not. 

We have already mentioned the set of “good plans”, 
which is a set of least-cost plans having distinct prop 
erties, e.g. different predicates applied or columns ac- 
cessed thus far, site, and tuple ordering. When the 
STAR processor generates a plan whose properties have 
been ascertained, the estimated cost of the new plan is 
compared with the cost of any existing plan having the 
same properties, and the cheapest is retained. Though 
this technique was used in System R and in R*, it has 
been generalized to permit representation of more prop- 
erties, any number of tables in a query, and to use the 
space more efficiently. 

The Invocation Tree contains a node for each STAR in- 
vocation. Each time the STAR processor is invoked, the 
Invocation Tree is initialized ivith a single node for that 
invocation, as shown in Figure 2. An Invocation Tree 

Atgummnts 

Figure 2: The Invocation Tree before evaluation of node 
Table Access. 

node contains the STAR’s name and its arguments. An 
argument may itself be an invocation, as the function g 
in the nested expression f(g(z)) is both an argument to 
f and an invocation of g, In such a case, g is treated like 
a child of f in the Invocation Tree. This relationship of 
nested invocations is illustrated in the Invocation Tree 
of Figure 3 by the GET node and its first argument, 
an invocation of TableScan. In addition, any invocation 

may have alternative invocations, which are like siblings 
to that invocation because they are generated from al- 
ternative definitions of the same STAR, as we will see 
shortly. AlI the sibling alternative invocations are also 
linked together, as illustrated by the TableScan node 
and the two GET nodes in Figure 3. 

Figure 3: The Invocation Tree afier evaluation of node 
TableAccess. 

The “To Do” list is a prioritized queue of pointers to 
invocations in the Invocation Tree. It is used to decide 
which node (invocation) in the Invocation Tree to eval- 
uate next. Simply by assigning a priority to each alter- 
native, the DBC can determine the order of evaluation 
of invocations, achieving flexible evaluation order, one of 
our major objectives. This simple but extremely flexible 
prioritization scheme includes as a special case the sim- 
pler strategies of breadth-first search (i.e., a queue) and 
depth-first search (i.e., a stack). A similar strategy was 
used by the Exodus rule-generated optimizer [GDS?], 
in which the priority of each plan transformation that 
might be applied next is automatically calculated as the 
expected cost benefit (called the promise) of that trans- 
formation. 

3.2.2 Invocation Evaluation Algorithm 

We now describe the algorithm whereby the STAR pro- 
cessor converts one STAR invocation into a set of al- 
ternative plans, each with a vector of properties. The 
algorithm is composed of two phases: (1) the reduction 
of STARS to nestings of LOLEPOPs (plans) and (2) the 
determination ofeach plan’s properties. Each phase will 

be described and illustrated with an example separately, 
but as implemented, the two phases can be intermixed. 

The first phase of this algorithm is essentially a macro 
processor, which iteratively evaluates a node in the In- 
vocation Tree by replacing that node with its definition 
(from the STAR array), and substituting the old node’s 
arguments wherever parameters appear in that defini- 
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tion. Any arguments that are invocations must them- 
selves be evaluated in the same way. This evaluation 
continues until all invocations have been evaluated 4. 
The process therefore differs little from the evaluation 
of a function invocation in any compiler, ezcept that the 
function that was invoked may have alternative deiini- 
tions (siblings), each with a condition of applicability. 
In addition, the order of evaluation is controlled by the 
priority assigned to each invocation in the “To Do” list, 
not by any built-in mechanism, thereby achieving our 
objective of flexible control over the order of evaluation. 

We now discuss one iteration (evaluation) of this al- 
gorithm, and then illustrate it with an example. First 
the highest-priority pointer is popped off the top of the 
“To Do” list, and the name of the STAR invoked by that 
node in the Invocation Tree is looked up in the STAR 
array. Its entry in the STAR array points to all of its 
alternative definitions, each of which may have a condi- 
tion function. Only those alternative definitions whose 
condition function either returns true or is omitted need 
be evaluated, which involves creating a new invocation 
node for it in a sibling set, and a pointer to it in the “To 
Do” list with an assigned priority. Parameter substitu- 
tion is accomplished as in any programming language. 
However, if an argument A in an alternative definition 
is an invocation of another STAR S, then a new node 
is created for S - just as above - and is pointed to by 
A. Finally, the newly-created sibling set replaces the 
original invocation node in the Invocation Tree. 

Using our earlier example, the invocation of the STAR 
processor with the invocation 

TableAccess(EMP, {NAME, ADDRESS} , 
{EMP.SAL < 30000 ,EMP.AGE > 45 ) ) 

would initialize the Invocation Tree with just this one 
invocation, as shown in Figure 2 5. The STAR name 
TableAccess is looked up in the STAR array to get a 
pointer to its alternative definitions. Suppose as before 
that the definition of TableAccess was: 

TableAccess(T, C, P) = 

1 

TableScan(T, C, P) 
Vi E I(T) : GET(TableScan(i, {TID} , P), T, C, P) 

IF CONDITION1 

This STAR has two alternative definitions on the right 
side of the equality: alternative 1 invokes the STAR 
called TableScan, and alternative 2 invokes the LOLE- 
POP called GET, Suppose that CONDITION1 is 

‘Recursive STARS raise the possibility that this process may 
not terminate. We defer discussion of this problem until section 
3.3.4. 

“Actually, constants such as the table, column, and predi- 
cate names are pointed to by Invocation Tree nodes, to avoid 
redundancy. 

true and that I(EMP) = {INDEXl,INDEXS}. Al- 
ternative 2 is repeated once for each element in I(T), as 
will be discussed in Section 3.3.2 below. So 3 new nodes 
wiII be created in the sibling set for TableAccess: one 
for TableScan and two for GET. 

Parameter substitution for each new node replaces 
each parameter in the definition with the correspond- 
ing argument in the invocation, e.g. the parameter T is 
replaced by EMP. In the second alternative definition 
of TableAccess, the first argument of GET is an invo- 
cation of the STAR called TableScan. So a node in the 
Invocation Tree is created for this nested invocation of 
TableScan, pointed to by the entry for the first argu- 
ment of the new node for GET, and a pointer to the 
TableScan node is assigned a priority and put onto the 
“To Do” list. 

The resulting Invocation Tree, after one iteration of 
this first phase of the invocation evaluation algorithm, 
is shown in Figure 3. Note that at least three more of 
these iterations will be necessary, since the TableScan 
nodes are STARS that have not yet been fully reduced 
to LOLEPOPs. There will be one entry in the “To Do” 
list for each of them. 

Once this phase has fully expanded any alternative to 
a nesting of LOLEPOPs, we can in the second phase of 
the algorithm determine.its properties. We start with 
the most nested LOLEPOP first (usually an ACCESS 
to a stored table) and work “inside out”, calling the 
property function of each LOLEPOP. Each property 
function uses the arguments of that LOLEPOP’s invo- 
cation, including input plans and their properties, to set 
the appropriate properties in the property vector that is 
returned. Cost equations in the property function add 
the cost of this LOLEPOP to the cumulative cost of its 
input(s). The structure of such cost equations are well 
established [S*79] and validated [ML86], so we wilI not 
discuss them further here. The DBC need only adapt 
them to the particular methods used to implement each 
flavor of LOLEPOP and the machine environment. 

Suppose that the fully expanded form of our example 
above resulted in two alternative plans: 

ACCESS(Heap, EMP, {NAME, ADDRESS} , 
{EMP.SAL < 30000 ,EMP.AGE > 45 } ) 

and 

GET(ACCESS(BTree,INDEXl, {TID} , 
EMP.AGE > 45 ), 

EMP, {NAME, ADDRESS} , 

EMP.SAL < 30000 ) 

The first alternative has no nesting, so we need only 
invoke the property function for the ACCESS LOLE 
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POP, passing its arguments. The property function 
would return a property vector that summarized the 
cost and net effect of that plan: it will retrieve columns 
NAME, ADDRESS, and TID (which is by default al- 
ways accessed so we can later re-access the table for 
more columns) from table EMP and apply the pred- 
icates on SAL and AGE, and the tuples will have no 
particular order because they were stored by the Heap 
storage manager. 

The second alternative is more complicated, how- 
ever. The most nested LOLEPOP is the ACCESS 
of INDEXl. The property function for ACCESS is 
again called, but this time returns different properties: 
only the TID of table EMP has been accessed, only the 
predicate on AGE has been applied, and the tuples are 
now retrieved in the order of the column of INDEXl, 
AGE, by the BTree storage manager. The cost so far 
is only the cost of accessing the portion of INDEX1 
that satisfies the predicate on AGE. Now we may eval- 
uate the properties of the GET LOLEPOP, given its 
input arguments and theiT properties (in the case of 
its first argument). The property function for GET 
unions the names of the columns that it GETS to those 
of its input stream (defined by argument l), and does 
the same with the predicates applied thus far. Thus, 
after the GET has been executed, the [columns] prop- 
erty now equals {NAME, ADDRESS} U{TID} and 
the [predicates] property is {EMP.SAL < 30000 ) U 
{EMP.AGE > 45 }. Note that, not coincidentally, 
these properties are identical to those of the previous 
alternative. However, the [order] property of the tu- 
ples in the second alternative is AGE, inherited from 
the input stream, whereas the order of the tuples in the 
first alternative is null. Costs are added for accessing 
the data pages and applying the remaining predicate on 
SAL to each tuple in the input stream. 

Once an alternative’s properties have been evaluated 
in this way, it is retained unless a cheaper plan with the 
same properties already exists. After this is completed 
for all alternative plans generated, control is returned to 
the top level of the optimizer. 

Although the above algorithm alternately accesses the 
rule definitions in the STAR array, the next rule to ex- 
pand via the “To Do” list, and the properties gener- 
ated by the property functions, the separation of these 
components makes it easy to alter one component with- 
out affecting the others or the overall algorithm. For 
example, new STARS can be inserted in the STAR ar- 
ray without affecting the property functions, so long as 
the same LOLEPOPs are referenced. Similarly, a new 
search strategy can be implemented by simply changing 
the priorities assigned to each invocation before it is in- 
serted in the “To Do” list. Thus, our design has achieved 

our objectives of both extensibility and complete control 
over the order of evaluation of STARS. 

3.3 Special Problems 

We now discuss several practical problems that arise in 
implementing the above algorithm, and anticipated so- 
lutions. 

3.3.1 Space Management 

As more STARS and more alternative definitions to 
STARS are defined, the Invocation Tree for any given 
invocation may get quite large, and thus efficient uti- 
lization of space becomes a concern. Every time a node 
in the Invocation Tree is processed by the above algo- 
rithm, the space of the old node may be freed, while 
space for one or more new nodes for each alternative is 
consumed. Since the nodes are variable in length, the 
new nodes may or may not be able to re-use the old 
node’s space, leading to fragmentation of the space. For 
now, we anticipate that there will be sufficient space to 
generate and fully expand the Invocation Tree for any 
given invocation of the STAR processor without having 
to do garbage collection. The working space contain- 
ing the Invocation Tree and “To Do” list can (and will) 
be reclaimed upon exiting the STAR processor, since the 
plans that were generated by that invocation have either 
been discarded or retained in the set of “good plans”. 

3.3.2 “For All” Mechanism 

Some set-valued arguments may be treated collec- 
tively as a set, while others should be treated in- 
dividually. In the example above, argument 3 of 
the invocation of TableAccess, the set of predi- 
cates {EMP.SAL < 30000 ,EMP.AGE > 45 } , is 
passed as a collection of predicates to be applied by 
TableScan (which is then passed on to ACCESS un- 
changed). However, each alternative plan returned by 
TableScan should have the GET operator applied in- 
dividually to it, and similarly we want to apply the 
TableScan operator to every index in the set I(T). What 
is needed is a “FOR ALL” mechanism, which will re- 
peatedly apply an operator to each instance of a set 
of arguments. This is similar to the MAP operator in 
LISP. As in [Loh87], we assume that alternative plans 
are to be treated individually, whereas any other argu- 
ments that are sets are to be treated collectively unless 
otherwise noted by the “FOR ALL” (denoted “V”) op 

erator before an alternative (e.g., the second alternative 
of TableAccess). 
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Implementing this “FOR ALL” mechanism becomes 
more difficult when we permit multiple “FOR ALL”s 
within a single invocation. Unfortunately, this general- 
ization is unavoidable, since dyadic LOLEPOPs such as 
JOIN and UNION may have two input streams, each 
of which may have multiple alternatives. We want the 
system to automatically generate all Cartesian products 
of those alternatives. For example, suppose we have an 
invocation of a sort-merge JOIN such as 

JOIN(sort-merge, {DEPT.DNO = EMP.DNO}, 
Outer, Inner) 

for which Outer has two alternative plans 01 and 02, 
and Inner has three plans: 11, 12, and 13. Then six 
JOIN invocations should be evaluated, one joining the 
streams produced by 01 and 11, one joining 01 with 12, 
. ..( and one joining 02 with 13. 

The other implementation problem is that the “FOR 
ALL” mechanism must iterate over sets containing dif- 
ferent types of objects. The example above iterated over 
a set of alternative plans, but the Table&an STAR it- 
erates over a set I(T) of indices. 

We anticipate having an iterator mechanism for each 
type of set to be iterated over, which will be OPENed by 
specifying the set and the type of its elements. Then, 
each time the NEXT of that iterator is requested, it 
returns a pointer to the next element in the set. 

3.3.3 I&e-using Common Subexpressions 

The Cartesian products generated by the “FOR ALL” 
mechanism described in the previous section are likely 
to generate redundant invocations. Ideally, com- 
mon subexpressions could be identified and shared by 
STARs, so that the Invocation Tree would be a directed 
acyclic graph rather than a tree. However, generaliz- 
ing STARz to permit any invocation to have multiple 
parents, i.e., allowing multiple invocations to point to 
the same argument, added too much complexity to the 
second, “inside out” phase of our STAR processing algo- 
rithm to justify the expected gain in efficiency. Instead, 
we are able to keep the Invocation Tree a true tree by re- 
taining the set of “good plans” as this shared repository 
of subexpressions. Our bottom-up, “building blocks” 
approach to optimization ensures that the best plans for 
a subexpression will have already been constructed and 
stored in that set before they are needed, in most cases. 
Otherwise, Glue will invoke the appropriate STAR to 
generate and store the needed plans. 

3.3.4 Recursive STARS 

Thus far, only in the Glue STAR has the use of recursive 
STARS been required. In our simple example, recursion 
poses little problem, since the recursion will terminate 
after adding a finite number of LOLEPOPs to satisfy the 
finite number of required properties. In general, how- 
ever, allowing recursive STARS poses the serious risk of 
infinite recursion, if the STARS are formulated incor- 
rectly. It is conceivable that, as in PROLOG, different 
orders of evaluation could affect whether a given recur- 
sion is safe (i.e., terminates) or not. Since other malfunc- 
tions are possible with poorly specified STARS that are 
similarly very hard to detect, we have decided initially 
to permit recursion and place the burden on the DBC 
to ensure that STARS do not contain infinite recursion 
and other errors. These potential pitfalls are no different 
than those faced by the definer of a standard grammar, 
which commonly contains recursive productions. It re- 
mains an open problem whether a STAR checker could 
be built to automate the detection of errors in STAR 
specifications. 

4 Prototype 

An initial prototype of the STAR processor design de- 
scribed above has already been built, and its lessons 
have been incorporated into the design presented ear- 
lier. In general, the prototype proved that this design 
can achieve both of our major goals: clean separation 
of the plan generation from the search strategy and cost 
functions, and detailed control over the order of evalu- 
ation of rules. Therefore, little in the prototype needed 
to be changed in our current design. The overall ar- 
chitecture of the major components is unchanged, and 
the data structures differ only in their implementation 
details. However, the prototype implemented a limited 
subset of the algorithm. It nonetheless gave us some 
ideas for making the algorithm more efficient as well as 
more flexible. We therefore limit our discussion here 
to some of the more significant differences between the 
prototype and the current design, and what we learned 
from our implementation. 

First of alI, only a simplified version of the first phase 
of the algorithm described above - the reduction of 
STARs to nestings of LOLEPOPs - was implemented 
in the prototype, as its feasibility seemed the most cru- 
cial test of the architecture in general, particularly the 
separation of the search strategy from the general mech- 
anism that processed each STAR. By changing the “To 
Do” list in the prototype from a queue to a stack, we 
readily changed the search strategy from breadth-first to 
depth-first, thus proving the independence of the search 
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mechanism and inspiring the more generalized priority 
queue mechanism discussed in Section 3.2. 

Secondly, the first phase of the algorithm was slightly 
different in the prototype than in the design presented 
above. As a result, the prototype could process STARS 
having at most one reference to a STAR in each alterna- 
tive definition. When evaluating a STAR reference, the 
prototype did not replace its node in the Invocation Tree 
with nodes for its alternative definitions, but retained 
the node for the STAR and linked it to “children” nodes 
representing its alternative definitions. Then, when 8ll 
STARS had been fully expanded, the Invocation Tree 
had to be compressed to remove the non-LOLEPOP 
nodes. This separation of the plan generation phase 
into two separate expansion and compression sub-phases 
made it very easy to trace the sequence of STARS that 
had been invoked, but had two disadvantages. First, we 
were concerned that the Invocation Tree might quickly 
become quite large, even though the prototype did not 
actually require the entire expansion process to termi- 
nate before compression began. Second, we wanted the 
flexibility of allowing more than one STAR to be refer- 
enced in any alternative definition. Specifically, a dyadic 
operation such as JOIN is likely to invoke STARS, not 
LOLEPOPs, for both of its input streams. Both prob- 
lems were obviated by the algorithm presented in Sec- 
tion 3, which permits any number of STARS to be ref- 
erenced in an alternative definition, as functions and/or 
as arguments, and replaces nodes for STAR invocations 
by one or more nodes representing their alternative def- 
initions. 

Thus, the prototype both proved the operability of our 
design and contributed substantially to its improvement. 

5 Conclusion 

We have presented a design for implementing a modular, 
extensible query optimizer based upon a set of declar- 
ative rules, called STARS, for representing alternative 
query execution strategies. By interpreting these rules, 
we gain the flexibility of treating them 8s data that is 
an input to the optimizer, and so can readily change the 
strategies without having to re-compile the optimizer. 
By building our own interpreter of STARS rather than 
using a general-purpose programming language, we re- 
tain complete control over the order of evaluation of 
STARS. This permits us to experiment with alternative 
search strategies, and ultimately to “fine tune” those 
strategies for individual applications. We have imple- 
mented a prototype of our STAR processor to prove 
the feasibility of our design, and have incorporated the 
lessons of that prototype into our current design. Our 

modular design cleanly separates the three major com- 
ponents that generate execution plans, estimate the cost 
and other properties of those plans, and determine the 
next plan to generate. The design is also quite simple, 
requiring only four data structures and a straightfor- 
ward, two-phase algorithm that first expands STARS 
into plans like a macro processor, and then evaluates 
the properties of those plans to find the cheapest. This 
simplicity enhances both extensibility and performance. 

In retrospect, our STAR processor actually may have 
much wider applicability than just query optimization. 
Since STARS so closely resemble functions, our inter- 
preter should be able to interpret a subset of a functional 
programming language. STARS may also be viewed as 
parametrized productions in a generalized grammar, in 
which a reference to a non-terminal in the grammar trig- 
gers its production only if some additional conditions are 
met. The expanded universe of languages whose gram- 
mars might be directly interpretable with our STAR pro- 
cessor has yet to be characterized. 

In the immediate future, we plan to expand our proto- 
type to implement the complete optimizer, to integrate 
it with the rest of Starburst, and to address some of the 
open issues we bypassed in developing the prototype. 
Unfortunately, we were unable to compare the perfor- 
mance of our interpreter with that of the compiled, pro- 
cedural approach. The STAR array is currently initial- 
ized manually in the code, but we hope to build a front 
end that will permit the DBC to specify STARs in a 
high-level functional programming language, and possi- 
bly do some preprocessing of STARS such as checking, 
optimization, and early binding. 
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