
Implementing an Interpreter for Functional Rules
in a Query Optimizer

Mavis K. Lee: Johann Christoph Freytag! Guy M. Lohman
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120

Abstract

Query optimizers translate a high-level, user-submitted
query into an efficient plan for executing that query,
usually by estimating the execution cost of many dif-
ferent alternative plans. Existing implementations of
these sophisticated but complex components of rela-
tional database management systems (DBMSS) typi-
cally embed the available strategies in the optimizer
code, making them difficult to modify or enhance as im-
proved strategies become available. In the last few years,
interest in making DBMSs customizable for new appli-
cation areas has magnified this need for flexible spec-
ification of execution strategies in a query optimizer.
Several researchers have recently proposed query opti-
mizers that are generated from rules for transforming
plans into alternative plans. However, little progress
has been reported on developing an implementation de-
sign that satisfies the requirements for high degrees of
both flexibility and performance in an extensible query
optimizer.

This paper presents a design for implementing a
query optimizer that interprets a new kind of compo-
sitional rules for specifying alternative execution strate-
gies that are input to the optimizer as data. Modifica-
tions to these function-like rules do not necessitate re-

*Current address: MIT, Cambridge, MA 02139
tC:urrent address: ECRC, Arabellastr. 17, D-8000 Muenchen

81, West Germany

Permission to copy without fee sII or part of this nutaisl is
granted provided that the copies are not nude or distributed for
direct conunercisI sdvcm~age, the VLDB copyright notice and
the title of the publication aud its drte sppesr, md notice is given
that copying is by permission of the Very Large Dsta Base
Endowment. To copy otherwise. or to republish, requims a fee
and/or specid permission from the Bndowment.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 218

compilation of the query optimizer, providing greater
flexibility. Yet the interpretation, which resembles a
macro expander, is so simple that a large number of
rules can be processed efficiently. We describe the inter-
preter’s data structures and algorithm, and relate these
to the experience we gained from implementing an ex-
perimental prototype of this interpreter for the Star-
burst extensible database system at the IBM Almaden
Research Center.

1 Introduction

New advances in relational database management sys-
tem (DBMS) technology have introduced problems as
well as benefits. New access methods, join algorithms,
etc. now enable us to process queries more quickly and
efficiently than before. But they also have highlighted
the difficulty of modifying existing DBMSs to incorpo-
rate these new techniques. One component of DBMSs
that has proven especially difficult to modify is the query
optimizer. The task of translating a high-level, user-
submitted query into an efficient query evaluation plan
(QEP, or just “plan”) has traditionally resulted in so-
phisticated, but complex, implementations of the opti-
mizer. As a result, database implementers have been
slow to incorporate advances in technology into opti-
mizers. Extensible DBMSs make extensible query opti-
mizers even more critical.

Query optimizers generally consist of three major
components: feasible plan generation, search strategies,
and cost functions. The plan generation component cre-
ates alternative QEPs for executing a given query. The
order in which these QEPs are evaluated is specified by
the search strategy. Cost functions are used to assess the
desirability of a QEP and to select the cheapest. The
goal of extensible query optimization is to develop a flex-
ible specification of each of these components and avoid
embedding specific execution plans, cost functions, and
search strategies in the code. Search strategies and tech-
niques for the costing of QEPs are fairly well under-
stood. However, specifying alternative QEPs in a way

that facilitates extensibility has proven difficult. Our

efforts have concentrated on the problem of alternative
QEP generation because of the limited progress in this
area to date.

A number of researchers have realized the importance
of extensible DBMSs in general and extensible query
optimizers in particular. Projects such as EXODUS
[C*86], PROBE [DS85], GENESIS [B*86], DASDBS
[P*87], Postgres [SR86], and Starburst [S*86],[H*88]
have dealt with extensibility in DBMSs, and Freytag
[Fre87] and Graefe/DeWitt [GD87] have addressed some
of the difficulties of extensible query optimization. The
difficulty of specifying the repertoire of alternative QEPs
in a high-level, declarative manner has prompted Frey-
tag and Graefe/DeWitt to propose using transforma-
tion rules to alter plans. However, existing optimizers
based on plan transformation rules require sophisticated
pattern-matching to determine the eligibility of rules,
and at any point in the processing, a large number of
rules may be eligible for application. Lohman [Loh87]
has suggested strategy rules as an alternative to plan
transformation rules. His “building-blocks” approach,
similar to Batory’s molecular approach [Bat87b] and
to a functional programming language [Bac85], solves
many of the problems of plan transformation rules.

This paper describes a design for implementing plan
generation in an optimizer by interpreting Lohman’s
strategy rules, in a way that both performs well and
cleanly separates the plan generation, cost estimation,
and search strategy components to facilitate extensi-
bility [Fre88]. Our d iscussion will concentrate on the
generic problem of generating and costing plans, rather
than on a specific set of strategies or algorithms for de-
ciding among those strategies. Section 2 summarizes the
structure of Lohman’s rules, their use to generate plans,
and the association of cost and other properties with
plans. It then motivates the design we present in Sec-
tion 3 by discussing the advantages and disadvantages
of possible implementation approaches. We decided to
develop our own special-purpose rule processor rather
than use an existing rule processor, due to the structure
of our strategy rules and our desire to maintain detailed
control over the order of evaluation. Section 4 describes
the state of the existing prototype, along with the prob-
lems that arose and the solutions that resulted from this
work. In Section 5, we present the conclusions we have
drawn from our work thus far.

2 The Strategy Rules

The strategy rules we use to transform an internal repre-
sentation of user-submitted queries into efficient QEPs

are called STrategy Alternative Rules (STARS), [Loh87].
Since a processor for STARS necessarily depends upon
the structure of those STARS, we first summarize their
important characteristics.

2.1 STARS

Like the rules that Graefe and Dewitt [GD87] and
Freytag [Fre87] d escribe for transforming plans, STARS
provide a high-level, declarative, implementation-
independent specification of the legal strategies for ex-
ecuting a query. However, STAR.s differ from these
rules in that they describe how to build higher-level
constructs from primitive operators, rather than how
to transform the primitive operators. They therefore
resemble more the molecular rules in GENESIS, which
Batory uses to build complex “molecules” out of sim-
ple Umolecules”, which ultimately are combinations of
“atoms” [Bat87b]. Batory uses this approach for all of
GENESIS, whereas STARS are used only in query opti-
mization in Starburst.

STARS resemble a functional programming language
[Bac85] in both function and form. Each STAR defines
a named, parameterized object in terms of one or more
alternative definitions. Each alternative definition may,
in turn, be defined in terms of (invoke) one or more
other STARS or primitive operators called LOw-LEvel-
Plan-Operators (LOLEPOPs), specifying arguments for
the parameters. The arguments may themselves be in-
vocations of STARS or LOLEPOPs. A query evaluation
plan (QEP) is a nesting of invocations of LOLEPOPs,
which, when interpreted at run-time, execute the given
query. The inputs to a LOLEPOP are specified as pa-
rameters of that LOLEPOP. As in the definition of a
function, each alternative definition may have a condi-
tion which determines the applicability of that alterna-
tive. The conditions for alI alternative definitions of
a STAR need not be exclusive: if the conditions on
multiple alternative definitions are true, alI alternatives
having a true condition will be invoked, and multiple
(alternative) plans may be returned. Conditions may
reference the parameters of the STAR as well as global
information available to the optimizer, such as catalog
information and the number of buffers.

STARS also resemble somewhat the production rules
of a grammar. The named, higher-level constructs de-
fined by STARS are analogous to “non-terminals” in a
grammar, and the LOLEPOPs are similar to “termi-
nals”. However, STARS differ from productions in that
they allow conditions of applicability for each alterna-
tive, invocation parameters, and the generation of mul-
tiple plans (grammars seek to find a unique parsing of
an input set of tokens).

219

The following example illustrates a simplified set of
STARs to access a given table. The structure of STARS,
not the specific details of the functionality of these sim-
plified STARS, is the important concept here. In all
examples, we will print non-terminals (STAR names) in
normal font, terminals (LOLEPOPs and constants) in
bold, and parameters in italks The parameter T is
the stored table, C is the set of columns to be accessed,
P is the set of predicates to be applied, i is the index to
be used, and StoremType is the type of storage manager
for a database object l.

TableAccess (T, C, P) =

[

TableScan(T, C, P)
Vi E I(T) : GET(TableScan(i, {TID} , P), T, C, P)

IF CONDITION1

The TableAccess STAR accesses a stored table and re-
turns the specified columns of the stream of tuples that
satisfy the given predicates. When TableAccess is in-
voked, the alternative definitions on the right side of
the equality that have true or non-existent conditions of
applicability will all be invoked (denoted by the squaTe
bracket). Since TableScan has no condition, it will al-
ways be invoked to scan the table. If CONDITION1
is true, the second alternative will be invoked once for
each i in the set I(T) of indices of table T to access in-
dex i, and the resulting stream of tuple identifiers (TIDs)
will be used to GET columns C from table T.

This example is a simplification of the TableAccess
STAR actually used in Starburst. To keep the example
concise, we have allowed the invocation of Table&an
in the second alternative to go unnecessarily to the data
pages even if the required columns can be obtained from
the index. That alternative will also apply the set of
all predicates P twice, once while accessing the index
and again while accessing the data pages. This redun-
dancy can be eliminated using slightly more sophisti-
cated STARS.

I
ACCESS(Heap, T, C, P)
IF Storage(T)=‘heap’

TableScan(T, C, P) =
i

ACCESS(Bkree, T, C, P)
IF Storage(T)=‘BTree’

I

ACCES%(Rkee, T, C, P)
IF Storage(i)=‘RTree’

The TableScan STAR will map to only one (denoted by
the curly brace 2) of three (exclusive) alternative defi-
nitions - a Heap BTree or RTree access - depending

‘In Starburst, an object such as a table or index can be main-
tained in the database in different data structures by alternative
types of storage managers [LMP87].

lThe distinction between a square bracket and a curly brace is
redundant and for readability only; whether the condition func-
tions for all alternatives are mutually exclusive or not is deter-
mined solely by their definitions.

on the type of the storage manager of table T. Since
ACCESS is a LOLEPOP, Heap BTree and Rqee
are constants, and T, C, and P are parameters that will
be instantiated, the resulting plan is fully specified in
terms of known quantities. A valid QEP has thus been
generated that will execute the given query at run-time.

As STARS are invoked, non-terminals are replaced
with alternative definitions, and arguments are substi-
tuted for parameters. This process continues until all
non-terminals have been replaced with LOLEPOPs, at
which point a set of valid QEPs has been created.

The advantages of STAR-based query optimization
are detailed in [Loh87]. While plan transformation rules
frequently involve complex pattern-matching to deter-
mine the eligibility of a rule, STARz are invoked directly
by name, subject only to the condition of applicability
for that invocation. Furthermore, the resulting hierar-
chy of STAR invocations has a fanout that is limited
by the number of alternative definitions for each STAR.
In this example, TableAccess has only two alternative
definitions, while TableScan has only three.

2.2 Properties of Plans

Properties are characteristics of a plan that describe the
net result of the initial properties of its tables and the
work done by that plan [GD87], [Bat87b], [RH86]. We
group properties together as a property vector. Unlike
Graefe and Dewitt [GD87], we treat the plan’s esti-
mated execution cost as any other plan property. Exam-
ple properties include relational properties (such as ta-
bles and columns accessed, and predicates applied thus
far), physical properties (like the order of tuples, and
the site of the result), and estimated properties (includ-
ing the cost to produce a plan and the cardinality of the
result) [Loh87]. Properties are initially derived from the
database catalogs for each stored table or access method
used by a plan, and are subsequently altered by the ad-
dition of LOLEPOPs to the plan. The changes that are
made by a LOLEPOP to a plan’s properties are defined
by a property function for that LOLEPOP type, which
is defined in the C programming language. Once our
STAR processor has reduced a STAR invocation to a
nested invocation of LOLEPOPs, the property function
for each of its LOLEPOPs is invoked to derive the re-
sulting properties of that plan. The query optimizer
will keep the cheapest QEPs having distinct properties,
which we will call the set of “good plans”.

2.3 “Glue” Mechanism

Some LOLEPOPs, notably the JOIN LOLEPOP, re-
quire certain properties of their input streams. For ex-

220

ample, all dyadic LOLEPOPs (JOIN, UNION, etc.)
require both input streams to be co-located at the same
site, and the sort-merge flavor of JOIN requires both
streams to be sorted on their respective join columns.
This prompted the need for a “Glue” mechanism that
finds the cheapest plan that satisfies a certain set of re-
quired properties [Loh87]. “Glue” augments each QEP
in the set of “good plans” for a given table T (to be dis-
cussed in Section 3.2.1) with additional LOLEPOPs, so
that its properties match those required, and the cheap-
est of these augmented plans is returned. For example,
any plan not in the required tuple order would have a
SORT LOLEPOP added, and any plan not resulting at
the required site would have a SHIP LOLEPOP added.
As with other execution strategies, the Glue mechanism
can be specified using STARs; space constraints prevent
our giving the details here.

2.4 The Implementation of STARS

Having summarized the form and important character-
istics of STARS, we turn now to the implementation of a
rule processor for the STARS. The design of the STAR
processor was motivated by the desire to produce an ex-
tensible, flexible optimizer that gives us control over the
order in which STARS were processed. We considered
a number of alternative architectures in light of our ob-
jectives. This section discusses these objectives and how
well each alternative satisfies them. To meet alI of these
objectives, we decided to develop our own interpreter for
STARS, whose design is described in the next section.

Our first objective was to separate the implementa-
tion of plan generation, search strategy, and cost func-
tions, to isolate each component from changes to the
other [Fre87], [Fre88]. 0 ur second objective was to exer-
cise detailed control over the order of evaluation among
alternative definitions and among arguments within a
STAR. Control should not be surrendered to the defaults
of a compiler or an interpreter. It should be possible for
the database customizer (DBC) who defines the STARS
to initialize these orders, and for the STAR processor
to alter them automatically during processing, For ex-
ample, we may choose to evaluate the easier arguments
before the more difficult ones, or a function before its
arguments. If the alternative definitions of the function
are all false, a potentially lengthy argument list may not
have to be evaluated. In addition, maintaining control
over evaluation gives us the opportunity to exploit par-
allelism in execution.

With these objectives in mind, we considered several
architectures for implementing STARS. Given the sim-
ilarity of STARS to functions, one way to implement
each STAR is as a function defined in the C program-

ming languagea. In the body of each STAR’s defini-
tion, each alternative definition would be an expression
in C invoking other functions (STARS or LOLEPOPs),
preceded by its condition of applicability as an IF con-

struct. The C compiler would automatically map the
arguments of each function invocation to the parameters
of its definition, so no “STAR processor” would need to
be constructed! Although this procedural method is rel-
atively easy to understand and implement, and exploits
the natural function-like specification of the rules, it re-
linquishes control of the order of evaluation of the rules
to the compiler, which automatically evaluates argu-
ments before functions [KR78]. This inflexibility made
the procedural method too restrictive for our purposes.

Another possible way to represent STARs is as PRO-
LOG rules. In such an implementation, the STAR pro-
cessor would be a PROLOG interpreter. The inherent
unification capabilities of a PROLOG interpreter would
simplify our work; however, a PROLOG interpreter is
more general-purpose than we need, and does not exploit
the hierarchic structure inherent to query optimization.
For example, the order in which tables are joined must
be decided before any access paths for those tables can
be picked, since the join sequence determines what pred-
icates are eligible to be applied by an access path. As
Graefe and Dewitt discovered in a prototype, general-
purpose rule interpreters usually perform poorly in com-
parison to specialized interpreters and compilers which
exploit the structure of the application [GD87].

The similarities of STARS to the production rules of a
grammar prompted us to consider a compiler generator
like YACC [UN1841 to process STARS. However, STARS
are sufficiently different from productions to make this
difficult. STARS have conditions of applicability and
parameters, which productions do not permit. Further-
more, grammars are typically used by parsers to find one
sequence of terminals that match an input stream of to-
kens, whereas we wish to generate all such sequences.

Finally, STARS’ resemblance to functional program-
ming suggests a functional programming processor to
evaluate STARS. Although some prototype processors
for functional programming languages have been re-
ported [Bac85], to our knowledge, there is no existing
processor for a major portion of any such language.
Additionally, processors for functional languages are no
more likely to allow us control over the order of evalu-
ation than the compilers for C, PROLOG, or any other
general-purpose programming language. What we have
developed is essentially a processor for a fairly large
subset of a functional programming language, with the
added capability to control the order of evaluation.

sC was considered simply for compatibility reasons with the
rest of the Starburst project.

221

To achieve the objectives we described above and to
overcome the limitations of the above alternatives, we
developed a novel design. We are implementing that de-
sign in C, but STARs are not represented as C functions.
To provide control over the generation of a QEP, we con-
trol the interpretation of the rules. Rather than compile
the rules, as Batory and Graefe/DeWitt do, we inter-
pret them to maximise flexibility. In an early prototype,
Graefe and Dewitt tried and rejected as too slow an in-
terpreter of their rules [GD87]. However, STARS can
be interpreted more efficiently, because they avoid the
pattern matching required by unification in plan trans-
formation optimizers. Since STARS are input data to
the rule processor, we do not need to recompile the en-
tire optimizer whenever a new rule is added. Thus, the
strategies available for optimizing two queries within a
single program may differ, simply by changing the STAR
input file! As data, STARS may be readily shipped to
another site as a compact encapsulation of the strate-
gies that any site can perform. This is likely to prove
invaluable for optimization in heterogeneous distributed
databases.

A potential limitation of our design is that we must
rely on the DBC to define the rules properly, i.e. so that
they terminate. We have no way of testing the validity
of the rules in the rule base. This requirement is similar
to Graefe’s soundness and completeness requirements on
his rule set [Gra86], [RH86]. Despite this restriction,
the design, which we detail in the next section, provides
the flexibility and control we needed for our rule-based
optimizer to achieve the objectives we presented above.

3 The STAR Interpreter

This section describes our design for an interpreter of
STARs, which is currently being implemented in Star-
burst. An early prototype of this interpreter has been
completed, and is detailed in Section 4.

3.1 Environment

To give some context, we first describe how optimization
fits into the query processing sequence in Starburst, and
how the rule-based generation of plans fits into the op
timization scheme. More details can be found in [H*88].

3.1.1 Query Processing Sequence

The language in which queries are submitted to our sys-
tem is an extensible variant of SQL [H*88]. The steps
to compile a statement into an Executable Query Evalua-
tion Plan (EQEP) are shown in Figure 1. As the query is

lexed and parsed, a semantic representation of the query
called a Query Graph Model (QGM) is constructed and
used to check the semantics of the query. QGM acts
throughout query processing as an in-memory database
for the query, caching the catalog information on the ta-
bles, columns, and predicates referenced in that query,
as well as the relationships between them that are cre-
ated by the query. QGM Optimization then makes se-
mantic transformations to the QGM, using a distinct set
of sophisticated rewrite rules that transform the QGM
query into a “better” one, i.e., one that is more effi-
cient and/or allows more more leeway during Plan Opti-
mization. If alternative QGM representations are plau-
sible depending upon their estimated cost, then all such
alternative QGMs are passed to Plan Optimization to
be evaluated, joined by a CHOOSE operator which in-
structs the optimizer to pick the least-cost alternative.

Using the QGM representation of the query as input,
Plan Optimization then generates and models the cost
of alternative plans, where each plan is a procedural
sequence of LOLEPOPs for executing the query. The
least-cost plan, called the Optimized Query Evaluation
Plan (OQEP), is passed to Plan Refinement, which trans-
forms this “skeleton” plan into a detailed Executable
Query Evaluation Plan (EQEP) that will be stored in the
database and interpreted at run-time. For the remain-
der of this paper, we will focus exclusively upon Plan
Optimization, and will refer to that component simply
as “the optimizer”.

3.1.2 Query Optimisation

For a given QGM, the top level of the optimizer per-
forms plan optimization “bottom up”, constructing new
plans that join together optimal plan fragments. This
dynamic programming strategy is basically the same as
that used in System R [S*79] and in R* [L*85], except
that it invokes our STAR processor to evaluate alterna-
tive strategies for each table access and join. It first in-
vokes the access-path rules of our STAR processor, once
for each stored table, to construct the possible plans for
accessing individual tables, applying only single-table
predicates. A least-cost plan is retained for each set of
tables accessed thus far having different properties - e.g.
having different tuple orderings, result sites, or predi-
cates applied. These “good plans” are the “atoms” with
which we construct “molecules”. Next, the top level of
the optimizer invokes the join rules of the STAR pro-
cessor, once for each pair of tables that may be joined,
to evaluate alternative plans for joining those tables.
The plans created by these rules point to other plans in
the set of “good plans” that produce the inputs to the
join [Loh87]. The plans with various interesting prop-

222

QUERY

I Run-Time

Figure 1: Major components of Starburst query processing.

erties created by the join rules are added to the set of
“good plans”, and are subsequently used by later invo-
cations of the join rules, building ever larger “molecules”
from smaller “molecules” and “atoms”. This “building
blocks” process repeats, adding more tables to the plans
with more joins, until we have a “best plan” having all
tables joined. This bottom-up approach ensures that
new plans contain only fully optimized plan fragments,
which will not be altered subsequently, and thus saves
having to find and re-evaluate the cost of every plan that
has incorporated that fragment.

Each of the above invocations of the STAR proces-
sor can be thought of as an invocation of a particular
root STAR, so it must specify the STAR’s name and
arguments to instantiate that STAR’s parameters. The
STAR processor then uses the definition of that root
STAR to expand its invocation into its alternative invo-
cations, and so on iteratively until the ihvoCatiOnS are
fully expanded plans, i.e., are nestings of LOLEPOPs.
This process will be explained fully in the next section.
The STAR processor next evaluates the properties of
each such plan, including accumulated estimated cost,
and retains the plans having distinct properties, before
returning control to the top level of the optimizer.

For example, to generate all the single-table access
plans to retrieve columns NAME and ADDRESS from
table EMP and apply predicates EMP.SAL < 30000
and EMP.AGE > 45 , the optimizer’s top level
would invoke the STAR processor with arguments
Table Access, EMP, {NAME, ADDRESS}, and
(EMP.SAL < 30000 ,EMP.AGE > 45 } . Then
the STAR processor might generate from this invoca-
tion the following two fully expanded alternative plans:

ACCESS(Heap, EMP, {NAME, ADDRESS) ,
{EMP.SAL < 30000 ,EMP.AGE > 45))

This plan, when executed at run-time, will simply
ACCESS table EMP using the Heap storage man-

ager, retrieving columns NAME and ADDRESS while
applying the predicates on columns SAL and AGE. The
second fully expanded alternative might be:

GET(ACCESS(BTree,INDEXl, {TID} ,

EMP.AGE > 45),

EMP, {NAME, ADDRESS) ,

EMP.SAL < 30000)

(where INDEX1 is an index of EMP on column AGE).
This neated plan, when executed, will first ACCESS
the index INDEX1 with the BTree storage manager
while applying the predicate on AGE, resulting in a
stream of tuple identifiers (TIDs) that satisfy that pred-
icate. This stream is then the input (first argument) to
the GET operator, which retrieves columns NAME and
ADDRESS from table EMP while applying the pred-
icate on SAL. This second plan results in a stream of
tuples in AGE order, whereas the first plan has no par-
ticular order (since EMP is stored using the Heap stor-
age manager), so both plans for accessing EMP would
be retained, and control would be returned to the top
level of the optimizer.

3.2 STAR Processor Structure

We now de,scribe how the STAR processor translates
a single STAR invocation into a set of alternative, fully
expanded plans whose properties have been determined,
beginning with the data structures on which that pro-
cessing depends.

3.2.1 Data Structures

Only four simple data structures are needed by the
STAR processor: (1) the STAR array, the internal rep
resentation of STARS; (2) the set of “good plans” with
distinct properties; (3) the Invocation Tree to keep track

223

of STAR invocations; and (4) the “To Do” list of invo-
cations in the Invocation Tree yet to be evaluated. The
first two are retained throughout optimization, whereas
the last two are created in working space that is allo-
cated for each invocation of the STAR processor, in or-
der to minimize the space needed and to eliminate the
need for garbage collection. The structure and use of
each data structure will be discussed in turn.

The STAR array is an input to the optimizer that
stores the internal definition of each STAR. It remains
unchanged throughout optimization. The entry for a
given STAR points to all of its alternative definitions.
Each alternative definition contains an invocation of an-
other STAR or a LOLEPOP, as well as the name of its
(optional) condition function, which is a C function to
test whether that alternative is applicable or not.

We have already mentioned the set of “good plans”,
which is a set of least-cost plans having distinct prop
erties, e.g. different predicates applied or columns ac-
cessed thus far, site, and tuple ordering. When the
STAR processor generates a plan whose properties have
been ascertained, the estimated cost of the new plan is
compared with the cost of any existing plan having the
same properties, and the cheapest is retained. Though
this technique was used in System R and in R*, it has
been generalized to permit representation of more prop-
erties, any number of tables in a query, and to use the
space more efficiently.

The Invocation Tree contains a node for each STAR in-
vocation. Each time the STAR processor is invoked, the
Invocation Tree is initialized ivith a single node for that
invocation, as shown in Figure 2. An Invocation Tree

Atgummnts

Figure 2: The Invocation Tree before evaluation of node
Table Access.

node contains the STAR’s name and its arguments. An
argument may itself be an invocation, as the function g
in the nested expression f(g(z)) is both an argument to
f and an invocation of g, In such a case, g is treated like
a child of f in the Invocation Tree. This relationship of
nested invocations is illustrated in the Invocation Tree
of Figure 3 by the GET node and its first argument,
an invocation of TableScan. In addition, any invocation

may have alternative invocations, which are like siblings
to that invocation because they are generated from al-
ternative definitions of the same STAR, as we will see
shortly. AlI the sibling alternative invocations are also
linked together, as illustrated by the TableScan node
and the two GET nodes in Figure 3.

Figure 3: The Invocation Tree afier evaluation of node
TableAccess.

The “To Do” list is a prioritized queue of pointers to
invocations in the Invocation Tree. It is used to decide
which node (invocation) in the Invocation Tree to eval-
uate next. Simply by assigning a priority to each alter-
native, the DBC can determine the order of evaluation
of invocations, achieving flexible evaluation order, one of
our major objectives. This simple but extremely flexible
prioritization scheme includes as a special case the sim-
pler strategies of breadth-first search (i.e., a queue) and
depth-first search (i.e., a stack). A similar strategy was
used by the Exodus rule-generated optimizer [GDS?],
in which the priority of each plan transformation that
might be applied next is automatically calculated as the
expected cost benefit (called the promise) of that trans-
formation.

3.2.2 Invocation Evaluation Algorithm

We now describe the algorithm whereby the STAR pro-
cessor converts one STAR invocation into a set of al-
ternative plans, each with a vector of properties. The
algorithm is composed of two phases: (1) the reduction
of STARS to nestings of LOLEPOPs (plans) and (2) the
determination ofeach plan’s properties. Each phase will

be described and illustrated with an example separately,
but as implemented, the two phases can be intermixed.

The first phase of this algorithm is essentially a macro
processor, which iteratively evaluates a node in the In-
vocation Tree by replacing that node with its definition
(from the STAR array), and substituting the old node’s
arguments wherever parameters appear in that defini-

224

tion. Any arguments that are invocations must them-
selves be evaluated in the same way. This evaluation
continues until all invocations have been evaluated 4.
The process therefore differs little from the evaluation
of a function invocation in any compiler, ezcept that the
function that was invoked may have alternative deiini-
tions (siblings), each with a condition of applicability.
In addition, the order of evaluation is controlled by the
priority assigned to each invocation in the “To Do” list,
not by any built-in mechanism, thereby achieving our
objective of flexible control over the order of evaluation.

We now discuss one iteration (evaluation) of this al-
gorithm, and then illustrate it with an example. First
the highest-priority pointer is popped off the top of the
“To Do” list, and the name of the STAR invoked by that
node in the Invocation Tree is looked up in the STAR
array. Its entry in the STAR array points to all of its
alternative definitions, each of which may have a condi-
tion function. Only those alternative definitions whose
condition function either returns true or is omitted need
be evaluated, which involves creating a new invocation
node for it in a sibling set, and a pointer to it in the “To
Do” list with an assigned priority. Parameter substitu-
tion is accomplished as in any programming language.
However, if an argument A in an alternative definition
is an invocation of another STAR S, then a new node
is created for S - just as above - and is pointed to by
A. Finally, the newly-created sibling set replaces the
original invocation node in the Invocation Tree.

Using our earlier example, the invocation of the STAR
processor with the invocation

TableAccess(EMP, {NAME, ADDRESS} ,
{EMP.SAL < 30000 ,EMP.AGE > 45))

would initialize the Invocation Tree with just this one
invocation, as shown in Figure 2 5. The STAR name
TableAccess is looked up in the STAR array to get a
pointer to its alternative definitions. Suppose as before
that the definition of TableAccess was:

TableAccess(T, C, P) =

1

TableScan(T, C, P)
Vi E I(T) : GET(TableScan(i, {TID} , P), T, C, P)

IF CONDITION1

This STAR has two alternative definitions on the right
side of the equality: alternative 1 invokes the STAR
called TableScan, and alternative 2 invokes the LOLE-
POP called GET, Suppose that CONDITION1 is

‘Recursive STARS raise the possibility that this process may
not terminate. We defer discussion of this problem until section
3.3.4.

“Actually, constants such as the table, column, and predi-
cate names are pointed to by Invocation Tree nodes, to avoid
redundancy.

true and that I(EMP) = {INDEXl,INDEXS}. Al-
ternative 2 is repeated once for each element in I(T), as
will be discussed in Section 3.3.2 below. So 3 new nodes
wiII be created in the sibling set for TableAccess: one
for TableScan and two for GET.

Parameter substitution for each new node replaces
each parameter in the definition with the correspond-
ing argument in the invocation, e.g. the parameter T is
replaced by EMP. In the second alternative definition
of TableAccess, the first argument of GET is an invo-
cation of the STAR called TableScan. So a node in the
Invocation Tree is created for this nested invocation of
TableScan, pointed to by the entry for the first argu-
ment of the new node for GET, and a pointer to the
TableScan node is assigned a priority and put onto the
“To Do” list.

The resulting Invocation Tree, after one iteration of
this first phase of the invocation evaluation algorithm,
is shown in Figure 3. Note that at least three more of
these iterations will be necessary, since the TableScan
nodes are STARS that have not yet been fully reduced
to LOLEPOPs. There will be one entry in the “To Do”
list for each of them.

Once this phase has fully expanded any alternative to
a nesting of LOLEPOPs, we can in the second phase of
the algorithm determine.its properties. We start with
the most nested LOLEPOP first (usually an ACCESS
to a stored table) and work “inside out”, calling the
property function of each LOLEPOP. Each property
function uses the arguments of that LOLEPOP’s invo-
cation, including input plans and their properties, to set
the appropriate properties in the property vector that is
returned. Cost equations in the property function add
the cost of this LOLEPOP to the cumulative cost of its
input(s). The structure of such cost equations are well
established [S*79] and validated [ML86], so we wilI not
discuss them further here. The DBC need only adapt
them to the particular methods used to implement each
flavor of LOLEPOP and the machine environment.

Suppose that the fully expanded form of our example
above resulted in two alternative plans:

ACCESS(Heap, EMP, {NAME, ADDRESS} ,
{EMP.SAL < 30000 ,EMP.AGE > 45 })

and

GET(ACCESS(BTree,INDEXl, {TID} ,
EMP.AGE > 45),

EMP, {NAME, ADDRESS} ,

EMP.SAL < 30000)

The first alternative has no nesting, so we need only
invoke the property function for the ACCESS LOLE

225

POP, passing its arguments. The property function
would return a property vector that summarized the
cost and net effect of that plan: it will retrieve columns
NAME, ADDRESS, and TID (which is by default al-
ways accessed so we can later re-access the table for
more columns) from table EMP and apply the pred-
icates on SAL and AGE, and the tuples will have no
particular order because they were stored by the Heap
storage manager.

The second alternative is more complicated, how-
ever. The most nested LOLEPOP is the ACCESS
of INDEXl. The property function for ACCESS is
again called, but this time returns different properties:
only the TID of table EMP has been accessed, only the
predicate on AGE has been applied, and the tuples are
now retrieved in the order of the column of INDEXl,
AGE, by the BTree storage manager. The cost so far
is only the cost of accessing the portion of INDEX1
that satisfies the predicate on AGE. Now we may eval-
uate the properties of the GET LOLEPOP, given its
input arguments and theiT properties (in the case of
its first argument). The property function for GET
unions the names of the columns that it GETS to those
of its input stream (defined by argument l), and does
the same with the predicates applied thus far. Thus,
after the GET has been executed, the [columns] prop-
erty now equals {NAME, ADDRESS} U{TID} and
the [predicates] property is {EMP.SAL < 30000) U
{EMP.AGE > 45 }. Note that, not coincidentally,
these properties are identical to those of the previous
alternative. However, the [order] property of the tu-
ples in the second alternative is AGE, inherited from
the input stream, whereas the order of the tuples in the
first alternative is null. Costs are added for accessing
the data pages and applying the remaining predicate on
SAL to each tuple in the input stream.

Once an alternative’s properties have been evaluated
in this way, it is retained unless a cheaper plan with the
same properties already exists. After this is completed
for all alternative plans generated, control is returned to
the top level of the optimizer.

Although the above algorithm alternately accesses the
rule definitions in the STAR array, the next rule to ex-
pand via the “To Do” list, and the properties gener-
ated by the property functions, the separation of these
components makes it easy to alter one component with-
out affecting the others or the overall algorithm. For
example, new STARS can be inserted in the STAR ar-
ray without affecting the property functions, so long as
the same LOLEPOPs are referenced. Similarly, a new
search strategy can be implemented by simply changing
the priorities assigned to each invocation before it is in-
serted in the “To Do” list. Thus, our design has achieved

our objectives of both extensibility and complete control
over the order of evaluation of STARS.

3.3 Special Problems

We now discuss several practical problems that arise in
implementing the above algorithm, and anticipated so-
lutions.

3.3.1 Space Management

As more STARS and more alternative definitions to
STARS are defined, the Invocation Tree for any given
invocation may get quite large, and thus efficient uti-
lization of space becomes a concern. Every time a node
in the Invocation Tree is processed by the above algo-
rithm, the space of the old node may be freed, while
space for one or more new nodes for each alternative is
consumed. Since the nodes are variable in length, the
new nodes may or may not be able to re-use the old
node’s space, leading to fragmentation of the space. For
now, we anticipate that there will be sufficient space to
generate and fully expand the Invocation Tree for any
given invocation of the STAR processor without having
to do garbage collection. The working space contain-
ing the Invocation Tree and “To Do” list can (and will)
be reclaimed upon exiting the STAR processor, since the
plans that were generated by that invocation have either
been discarded or retained in the set of “good plans”.

3.3.2 “For All” Mechanism

Some set-valued arguments may be treated collec-
tively as a set, while others should be treated in-
dividually. In the example above, argument 3 of
the invocation of TableAccess, the set of predi-
cates {EMP.SAL < 30000 ,EMP.AGE > 45 } , is
passed as a collection of predicates to be applied by
TableScan (which is then passed on to ACCESS un-
changed). However, each alternative plan returned by
TableScan should have the GET operator applied in-
dividually to it, and similarly we want to apply the
TableScan operator to every index in the set I(T). What
is needed is a “FOR ALL” mechanism, which will re-
peatedly apply an operator to each instance of a set
of arguments. This is similar to the MAP operator in
LISP. As in [Loh87], we assume that alternative plans
are to be treated individually, whereas any other argu-
ments that are sets are to be treated collectively unless
otherwise noted by the “FOR ALL” (denoted “V”) op

erator before an alternative (e.g., the second alternative
of TableAccess).

226

Implementing this “FOR ALL” mechanism becomes
more difficult when we permit multiple “FOR ALL”s
within a single invocation. Unfortunately, this general-
ization is unavoidable, since dyadic LOLEPOPs such as
JOIN and UNION may have two input streams, each
of which may have multiple alternatives. We want the
system to automatically generate all Cartesian products
of those alternatives. For example, suppose we have an
invocation of a sort-merge JOIN such as

JOIN(sort-merge, {DEPT.DNO = EMP.DNO},
Outer, Inner)

for which Outer has two alternative plans 01 and 02,
and Inner has three plans: 11, 12, and 13. Then six
JOIN invocations should be evaluated, one joining the
streams produced by 01 and 11, one joining 01 with 12,
. ..(and one joining 02 with 13.

The other implementation problem is that the “FOR
ALL” mechanism must iterate over sets containing dif-
ferent types of objects. The example above iterated over
a set of alternative plans, but the Table&an STAR it-
erates over a set I(T) of indices.

We anticipate having an iterator mechanism for each
type of set to be iterated over, which will be OPENed by
specifying the set and the type of its elements. Then,
each time the NEXT of that iterator is requested, it
returns a pointer to the next element in the set.

3.3.3 I&e-using Common Subexpressions

The Cartesian products generated by the “FOR ALL”
mechanism described in the previous section are likely
to generate redundant invocations. Ideally, com-
mon subexpressions could be identified and shared by
STARs, so that the Invocation Tree would be a directed
acyclic graph rather than a tree. However, generaliz-
ing STARz to permit any invocation to have multiple
parents, i.e., allowing multiple invocations to point to
the same argument, added too much complexity to the
second, “inside out” phase of our STAR processing algo-
rithm to justify the expected gain in efficiency. Instead,
we are able to keep the Invocation Tree a true tree by re-
taining the set of “good plans” as this shared repository
of subexpressions. Our bottom-up, “building blocks”
approach to optimization ensures that the best plans for
a subexpression will have already been constructed and
stored in that set before they are needed, in most cases.
Otherwise, Glue will invoke the appropriate STAR to
generate and store the needed plans.

3.3.4 Recursive STARS

Thus far, only in the Glue STAR has the use of recursive
STARS been required. In our simple example, recursion
poses little problem, since the recursion will terminate
after adding a finite number of LOLEPOPs to satisfy the
finite number of required properties. In general, how-
ever, allowing recursive STARS poses the serious risk of
infinite recursion, if the STARS are formulated incor-
rectly. It is conceivable that, as in PROLOG, different
orders of evaluation could affect whether a given recur-
sion is safe (i.e., terminates) or not. Since other malfunc-
tions are possible with poorly specified STARS that are
similarly very hard to detect, we have decided initially
to permit recursion and place the burden on the DBC
to ensure that STARS do not contain infinite recursion
and other errors. These potential pitfalls are no different
than those faced by the definer of a standard grammar,
which commonly contains recursive productions. It re-
mains an open problem whether a STAR checker could
be built to automate the detection of errors in STAR
specifications.

4 Prototype

An initial prototype of the STAR processor design de-
scribed above has already been built, and its lessons
have been incorporated into the design presented ear-
lier. In general, the prototype proved that this design
can achieve both of our major goals: clean separation
of the plan generation from the search strategy and cost
functions, and detailed control over the order of evalu-
ation of rules. Therefore, little in the prototype needed
to be changed in our current design. The overall ar-
chitecture of the major components is unchanged, and
the data structures differ only in their implementation
details. However, the prototype implemented a limited
subset of the algorithm. It nonetheless gave us some
ideas for making the algorithm more efficient as well as
more flexible. We therefore limit our discussion here
to some of the more significant differences between the
prototype and the current design, and what we learned
from our implementation.

First of alI, only a simplified version of the first phase
of the algorithm described above - the reduction of
STARs to nestings of LOLEPOPs - was implemented
in the prototype, as its feasibility seemed the most cru-
cial test of the architecture in general, particularly the
separation of the search strategy from the general mech-
anism that processed each STAR. By changing the “To
Do” list in the prototype from a queue to a stack, we
readily changed the search strategy from breadth-first to
depth-first, thus proving the independence of the search

227

mechanism and inspiring the more generalized priority
queue mechanism discussed in Section 3.2.

Secondly, the first phase of the algorithm was slightly
different in the prototype than in the design presented
above. As a result, the prototype could process STARS
having at most one reference to a STAR in each alterna-
tive definition. When evaluating a STAR reference, the
prototype did not replace its node in the Invocation Tree
with nodes for its alternative definitions, but retained
the node for the STAR and linked it to “children” nodes
representing its alternative definitions. Then, when 8ll
STARS had been fully expanded, the Invocation Tree
had to be compressed to remove the non-LOLEPOP
nodes. This separation of the plan generation phase
into two separate expansion and compression sub-phases
made it very easy to trace the sequence of STARS that
had been invoked, but had two disadvantages. First, we
were concerned that the Invocation Tree might quickly
become quite large, even though the prototype did not
actually require the entire expansion process to termi-
nate before compression began. Second, we wanted the
flexibility of allowing more than one STAR to be refer-
enced in any alternative definition. Specifically, a dyadic
operation such as JOIN is likely to invoke STARS, not
LOLEPOPs, for both of its input streams. Both prob-
lems were obviated by the algorithm presented in Sec-
tion 3, which permits any number of STARS to be ref-
erenced in an alternative definition, as functions and/or
as arguments, and replaces nodes for STAR invocations
by one or more nodes representing their alternative def-
initions.

Thus, the prototype both proved the operability of our
design and contributed substantially to its improvement.

5 Conclusion

We have presented a design for implementing a modular,
extensible query optimizer based upon a set of declar-
ative rules, called STARS, for representing alternative
query execution strategies. By interpreting these rules,
we gain the flexibility of treating them 8s data that is
an input to the optimizer, and so can readily change the
strategies without having to re-compile the optimizer.
By building our own interpreter of STARS rather than
using a general-purpose programming language, we re-
tain complete control over the order of evaluation of
STARS. This permits us to experiment with alternative
search strategies, and ultimately to “fine tune” those
strategies for individual applications. We have imple-
mented a prototype of our STAR processor to prove
the feasibility of our design, and have incorporated the
lessons of that prototype into our current design. Our

modular design cleanly separates the three major com-
ponents that generate execution plans, estimate the cost
and other properties of those plans, and determine the
next plan to generate. The design is also quite simple,
requiring only four data structures and a straightfor-
ward, two-phase algorithm that first expands STARS
into plans like a macro processor, and then evaluates
the properties of those plans to find the cheapest. This
simplicity enhances both extensibility and performance.

In retrospect, our STAR processor actually may have
much wider applicability than just query optimization.
Since STARS so closely resemble functions, our inter-
preter should be able to interpret a subset of a functional
programming language. STARS may also be viewed as
parametrized productions in a generalized grammar, in
which a reference to a non-terminal in the grammar trig-
gers its production only if some additional conditions are
met. The expanded universe of languages whose gram-
mars might be directly interpretable with our STAR pro-
cessor has yet to be characterized.

In the immediate future, we plan to expand our proto-
type to implement the complete optimizer, to integrate
it with the rest of Starburst, and to address some of the
open issues we bypassed in developing the prototype.
Unfortunately, we were unable to compare the perfor-
mance of our interpreter with that of the compiled, pro-
cedural approach. The STAR array is currently initial-
ized manually in the code, but we hope to build a front
end that will permit the DBC to specify STARs in a
high-level functional programming language, and possi-
bly do some preprocessing of STARS such as checking,
optimization, and early binding.

6 Acknowledgements

We would like to thank several colleagues for their con-
tributions to this work. Laura Hsas supplied helpful
guidance and constructive critique throughout the evo-
lution of our design and prototype. Ed Wimmers pro-
vided references, discussion, and feedback on the re-
lationship of our work to that of functional program-
ming. She1 Finkelstein, Laura Haaz, John McPherson,
Pat Selinger, Irv Traiger, and Ed Wimmers 8ll reviewed
at least one earlier draft of this paper, enhancing its

readability substantially.

References

[Bac85] J. Backus. From Functional Level Semantics
to Program Transformation and Optimiza-
tion. Tech. Rep. RJ4567, IBM Almaden Res.
Ctr., San Jose, CA, Jan. 1985.

228

[B*86]

[Bat87a]

[Bat87b]

[c*ss]

[DS85]

[Fre87]

[Fre88]

[GD87]

[Gra86]

[H*88]

[KR78]

[LMP87]

D.S. Batory et al. GENESIS: An Ezten-
sible Database Management System. Tech.
Rep. TR-86-07, Dept. of Comp. Sci., Univ.
of Texas at Austin, March 1986. To appear
in IEEE Trans. on Software Engr..

D.S. Batory. Extensible Cost Models and
Query Optimization in GENESIS. IEEE
Database Engr., 10(4), Nov. 1987.

D.S. Batory. A Molecular Database Systems
Technology. Tech. Rep. TR-87-23, Dept. of
Comp. Sci., Univ. of Texas at Austin, June
1987.

M.J. Carey et al. The Architecture of the
EXODUS Extensible DBMS: a Preliminary
Report. In PTOCS. of the Intl. Workshop
on Object-Oriented Database Systems, IEEE,
Asilomar, CA, Sept. 1986.

U. Dayal and J. Smith. A Knowledge Ori-
ented Database Management System. In
hoceedings of the hlamorada Workshop on
Large Scale Knowledge Base and Reasoning
Systems, Islamorada, CA, Feb. 1985.

J.C. Freytag. A Rule-Based View of Query
Optimization. In Procs. of ACM-SIGMOD,
pages 173-180, San Francisco, CA, May
1987.

J.C. Freytag. Towards a Uniform Approach
to Query Optimization. Working paper,
IBM Almaden Res. Ctr., San Jose, CA, Feb.
1988.

G. Graefe and D.J. Dewitt. The EXO-
DUS Optimizer Generator. In P~ocs. of
ACM-SIGMOD, pages 160-172, San Fran-
cisco, CA, May 1987.

G. Graefe. Software Modularization with
the EXODUS Optimizer Generator. IEEE
Database Engr., 9(4):37-43, Dec. 1986.

L.M. Haas et al. An Eztensible Processor
for an E&ended Relational Query Language.
Tech. Rep. RJ6182, IBM Almaden Res. Ctr.,
San Jose, CA, Feb. 1988.

B.W. Kernighan and D.M. Ritchie. The C
Progmmming Language. Prentice Ha& Inc.,
Englewood Cliffs, NJ 07632,1978.

B.G. Lindsay, J.McPherson, and H. Pira-
hesh. A Data Management Extension Ar-
chitecture. In PTOCS. of ACM-SIGMOD,

[L*85]

[Loh87]

[ML851

[ML861

[P*87]

[RH86]

[s*79]

[S86]

[SR86]

[UN1841

pages 220-226, San Francisco, CA, May
1987.

G.M. Lohman et al. Query Processing in
R*. In Reiner Kim, Batory, editor, Query
Processing in Database Systems, page pp.31,
Springer-Verlag, 1985.

G.M. Lohman. Grammar-like Functional
Rules for Representing Query Optimizaiion
Al2ematives. In Procs. of ACM-SIGMOD,
Chicago, IL, June 1988 (to appear). Also
available as Tech. Rep. RJ5992, IBM Al-
maden Res. Ctr., San Jose, CA, Dec. 1987.

L. Mackert and G.M. Lohman. Indez Scans
using a Finite LRU Buffer: A Validated
I/O Model. To appear in ACM Trans. on
Database Systems. Also available as Tech.
Rep. RJ4836, IBM Almaden Res. Ctr., San
Jose, CA, 1985.

L. Mackert and G.M. Lohman. R* Opti-
mizer Validation and Performance EvaIua-
tion for Distributed Queries. In Procs. of
ACM-SIGMOD, pages 84-95, Washington,
DC, May 1986.

H.B. Paul et al. Architecture and Imple-
mentation of the Darmstadt Database Ker-
nel System. In PTOCS. of ACM-SIGMOD,
pages 196-207, San Franciko, CA, May
1987.

A. Rosenthal and P. Helman. Understanding
and Extending Transformation-Based Opti-
mizers. IEEE Database Engr., 9(4):44-51,
Dec. 1986.

P.G. SeIinger et al. Access Path Selection
in a Relational Database Management Sys-
tem. In PTOCS. of ACM-SIGMOD, pages 23-
34, May 1979.

P.M. Schwarz et al. Extensibility in the Star-
burst Database System. In Procs. of the Intl.
Workshop on Objec&Oriented Database Sys-
tems, IEEE, AsiIomar, CA, Sept. 1986.

M. Stonebraker and L. Rowe. The Design
of Postgres. In Procs. of ACM-SIGMOD,
pages 340-355, May 1986.

UNIX. UNIX Progmmmer’s Manual, Sup-
plementary Documents. Dept. of EE and
CS, Univ. of California, Berkeley, CA, March
1984.

229

